JP3122148B2 - Method for producing palladium powder - Google Patents

Method for producing palladium powder

Info

Publication number
JP3122148B2
JP3122148B2 JP03044327A JP4432791A JP3122148B2 JP 3122148 B2 JP3122148 B2 JP 3122148B2 JP 03044327 A JP03044327 A JP 03044327A JP 4432791 A JP4432791 A JP 4432791A JP 3122148 B2 JP3122148 B2 JP 3122148B2
Authority
JP
Japan
Prior art keywords
palladium
solution
particle size
reaction
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03044327A
Other languages
Japanese (ja)
Other versions
JPH051301A (en
Inventor
泰夫 岩田
勝美 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Priority to JP03044327A priority Critical patent/JP3122148B2/en
Publication of JPH051301A publication Critical patent/JPH051301A/en
Application granted granted Critical
Publication of JP3122148B2 publication Critical patent/JP3122148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はエレクトロニクス用の印
刷、焼成用ペーストの原料として用いられるパラジウム
粉末及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a palladium powder used as a raw material for printing and firing pastes for electronics and a method for producing the same.

【0002】[0002]

【従来の技術及びその問題点】パラジウム含有ペースト
はパラジウム等の粉末にガラスフリツト、有機ビヒクル
等を混練して得られるものであり、これをセラミツクス
基板等にスクリーン印刷等で塗布し、焼成して電極等の
形成に用いられる。
2. Description of the Related Art A palladium-containing paste is obtained by kneading a glass frit, an organic vehicle, etc. with a powder of palladium or the like. The paste is applied to a ceramics substrate or the like by screen printing or the like, and fired to form an electrode. Etc.

【0003】一般にパラジウム粉末は空気中で焼成する
と昇温過程において500℃付近から一旦酸化パラジウ
ムを形成し始め、700℃付近でほぼ完全に酸化物とな
り、さらに800℃付近で酸素を放出して焼結する。従
つて焼成過程において重量、容量等の変化があるため回
路等の断線、あるいは基板の破損等が生じ易く、基板等
の材質の選定あるいは部品の設計にかなりの制約があつ
た。
Generally, when palladium powder is fired in the air, it begins to form palladium oxide once at about 500 ° C. during the heating process, becomes almost completely oxide at about 700 ° C., and further releases oxygen at about 800 ° C. to fire. Tie. Accordingly, there is a change in weight, capacity, and the like in the firing process, so that disconnection of a circuit or the like or breakage of the substrate or the like is apt to occur, so that selection of a material of the substrate or the like or design of parts is considerably restricted.

【0004】また、パラジウム粉末の中には、凝集性が
強く単一の粒子に分散せしめるのが困難なものもある。
このような凝集性の強い粒子は、ペーストを作成して塗
布した際に塗布膜の平滑性を損ない、また膜厚を均一に
できないために電気特性の不安定性を生ずる等の問題を
ひきおこしていた。
Some palladium powders have high cohesiveness and are difficult to disperse into single particles.
Such strongly agglomerated particles cause problems such as impairing the smoothness of a coating film when a paste is prepared and applied, and causing instability of electric characteristics because the film thickness cannot be made uniform. .

【0005】[0005]

【発明が解決しようとする問題】本発明の目的は、空気
中での焼成時に室温〜1000℃までの昇温過程におけ
る重量変化が小さく、しかも凝集傾向が少なく分散性の
良い球状パラジウム粉末、及びその製造方法を提供する
ことにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a spherical palladium powder which has a small weight change during the heating process from room temperature to 1000 ° C. during firing in air, has a low tendency to aggregate, and has a good dispersibility. It is to provide a manufacturing method thereof.

【0006】[0006]

【問題点を解決するための手段】上記目的は、走査型電
子顕微鏡(以下これをSEMという)観察による一次粒
径の分布が0.1〜1μmの範囲の中にあり、レーザー
散乱法による粒度分布の幅が0.1〜1.5μmの範囲
の中にある球状パラジウム粉末であって、空気中での焼
成時に室温〜1000℃までの昇温過程における重量変
化が4重量%以下であることを特徴とする球状パラジウ
ム粉末および
SUMMARY OF THE INVENTION The object of the present invention is that the distribution of the primary particle size observed by a scanning electron microscope (hereinafter referred to as SEM) is in the range of 0.1 to 1 μm, the width of the distribution is met spherical palladium powder that is in the range of 0.1 to 1.5 [mu] m, the weight change in the course of Atsushi Nobori up to room temperature to 1000 ° C. is 4 wt% or less during firing in air Characterized by spherical palladium powder and

【0007】かかる球状パラジウム粉末の製造方法とし
て、パラジウムアンモニウム錯体溶液のpHを7〜11と
し、該溶液の温度を50℃以上に維持しつつ界面活性剤
の存在下で次亜リン酸ナトリウム溶液を用いて還元する
ことからなる製造方法によって達成される。
[0007] As a method for producing such spherical palladium powder, the pH of a palladium ammonium complex solution is set to 7 to 11, and while maintaining the temperature of the solution at 50 ° C or higher, a sodium hypophosphite solution is added in the presence of a surfactant. It is achieved by the manufacturing process comprising reducing with.

【0008】以下本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

【0009】本発明のパラジウム粉末は、SEM観察に
よつて得られる一次粒径の平均値が0.1〜1μm、好
ましくは0.1〜0.5μm、であり、かつLASER散
乱法による粒度分布の範囲が0.1〜1.5μm、好ま
しくは0.1〜1.0μm、の幅に含まれる分散性の良い
粒状粉末であり、さらに空気中にて室温〜1000℃で
の熱分析におけるTG変化が4重量%以内、好ましくは
3.5%以内、である。
The palladium powder of the present invention has an average primary particle size obtained by SEM observation of 0.1 to 1 μm, preferably 0.1 to 0.5 μm, and has a particle size distribution determined by LASER scattering. Is in the range of 0.1 to 1.5 μm, preferably 0.1 to 1.0 μm, and TG in thermal analysis at room temperature to 1000 ° C. in air. The change is within 4% by weight, preferably within 3.5%.

【0010】本発明のパラジウム粉末の製造方法におい
て使用するパラジウムアンモニウム錯体は、例えば硝酸
パラジウム等のパラジウムの酸性溶液をアンモニア水に
て中和したもの、あるいはジクロロジアミンパラジウ
ム、テトラアミンパラジウム溶液等である。反応に使用
するパラジウムアンモニウム錯体のpHは7〜11の範囲
が望ましい。これはpH7以下ではパラジウムアンモニウ
ム錯体が溶液状態を維持しにくくて沈殿を形成したりす
るためであり、またpH11以上にするには強アルカリを
多量に混合しなくてはならない事などから実用的でない
ためである。
The palladium ammonium complex used in the method for producing palladium powder of the present invention is, for example, a solution obtained by neutralizing an acidic solution of palladium such as palladium nitrate with aqueous ammonia, or a solution of dichlorodiamine palladium or tetraamine palladium. . The pH of the palladium ammonium complex used in the reaction is preferably in the range of 7 to 11. This is because at pH 7 or lower, the palladium ammonium complex is difficult to maintain in a solution state and forms a precipitate, and at pH 11 or higher, it is not practical because a large amount of a strong alkali must be mixed. That's why.

【0011】反応温度に関しては50℃以下にすると還
元析出されるパラジウムが反応容器壁に鏡状に析出し易
く、従つて粒子同士の凝集の原因となるため50℃以上
で反応させる事が望ましい。なお沸騰状態に近くても特
に問題はないが、反応時の取り扱い等を考慮するならば
60〜90℃程度が好ましい。反応液に混合する界面活
性剤はアラビアゴム、ゼラチン等様々なものが使用でき
るが、入手方法、安定性、価格等を考慮するならばゼラ
チンが好ましい。なおゼラチンの使用量を少なめにすれ
ば比較的大きな粒子が得られ、また多めにすれば小さめ
の粒子が得られる。従つてゼラチンの使用量を変える事
によつてパラジウム粉末の粒径を変化させる事もでき
る。
When the reaction temperature is set to 50 ° C. or less, palladium that is reduced and precipitated is likely to be deposited in a mirror-like manner on the reaction vessel wall, thus causing aggregation of particles. Therefore, it is desirable to carry out the reaction at 50 ° C. or more. Although there is no particular problem even when the temperature is close to the boiling state, it is preferably about 60 to 90 ° C. in consideration of handling during the reaction. Various surfactants such as gum arabic and gelatin can be used as the surfactant to be mixed with the reaction solution, but gelatin is preferable in consideration of the availability, stability, price and the like. If the amount of gelatin used is small, relatively large particles can be obtained, and if it is large, small particles can be obtained. Accordingly, the particle size of the palladium powder can be changed by changing the amount of gelatin used.

【0012】還元剤としては次亜リン酸ナトリウムの他
に水素化ホウ素ナトリウム、ジメチルアミンボラン、硫
酸ヒドラジン、塩酸ヒドラジン、ギ酸ナトリウム等につ
いても検討を行つたが、次亜リン酸ナトリウム以外には
目的のパラジウム粉末を得る事はできなかつた。還元剤
の量は反応当量に対して10〜150%多く使用する。
これは反応当量と等量では反応が終了しない場合がある
ために、最低でも10%余分に使用するのが望ましく、
また反応中に分解される可能性があるため150%程度
多く使用する場合もある。還元剤の水溶液の濃度は余り
濃厚になつたりあるいは稀薄にならない方が良く、実用
的には5〜30%程度が良い。
As a reducing agent, sodium borohydride, dimethylamine borane, hydrazine sulfate, hydrazine hydrochloride, sodium formate, etc. were studied in addition to sodium hypophosphite. No palladium powder could be obtained. The amount of the reducing agent is used by 10 to 150% higher than the reaction equivalent.
This is because the reaction may not be completed with the equivalent of the reaction equivalent, so it is desirable to use at least 10% extra.
In some cases, it is used in an amount of about 150% more because it may be decomposed during the reaction. It is better that the concentration of the aqueous solution of the reducing agent is not too thick or not too thin, and practically about 5 to 30%.

【0013】反応液の混合速度は速い場合とゆつくりの
場合とで一次粒子の粒度分布に若干の違いを与える。例
えばパラジウムとして100g以下の小さいスケールで
の反応において反応液の混合速度を300g Pd/h程度
まで速くすると一次粒子の大きさが揃いにくいが、パラ
ジウムとして1kg以上のスケールにおいては1kg Pd/h
程度まで速くしても粒度分布に特に大きな問題はなかつ
た。従つて反応のスケールと混合速度のバランスを取る
事が重要である。また反応液の添加方法に関しても還元
剤溶液中にパラジウム溶液と添加する方法、パラジウム
溶液中に還元剤溶液を添加する方法等が一般に考えられ
るが、好ましくはパラジウム溶液と還元剤溶液を温水等
を含有する反応槽中に同時に添加し混合する方法が好ま
しい。これは還元剤とパラジウム溶液の濃度を一定にす
るためである。
The mixing speed of the reaction solution gives a slight difference in the particle size distribution of the primary particles between the case where the reaction solution is fast and the case where the reaction solution is loose. For example, in a reaction on a small scale of 100 g or less as palladium, if the mixing speed of the reaction solution is increased to about 300 g Pd / h, the size of the primary particles is difficult to be uniform.
There was no particular problem with the particle size distribution, even at speeds as fast as possible. It is therefore important to balance the scale of the reaction with the mixing speed. As for the method of adding the reaction solution, a method of adding a palladium solution to a reducing agent solution, a method of adding a reducing agent solution to a palladium solution, and the like are generally considered. The method of simultaneously adding and mixing into the containing reaction tank is preferable. This is to make the concentrations of the reducing agent and the palladium solution constant.

【0014】反応の始まりと終りとでpHに大きな差があ
ると一次粒径がそろいにくくなるので、このような場合
には緩衝液等を用いて反応中のpHを常に一定に保つよう
にすることもできる。例えばpH8〜9付近で反応を行な
う場合は緩衝液として酢酸ナトリウム水溶液等を用いる
のが好ましい。
If there is a large difference in pH between the beginning and end of the reaction, the primary particle diameter becomes difficult to be uniform. In such a case, the pH during the reaction is always kept constant by using a buffer solution or the like. You can also. For example, when the reaction is carried out at around pH 8 to 9, it is preferable to use a sodium acetate aqueous solution or the like as a buffer.

【0015】[0015]

【実施例】以下本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0016】[0016]

【実施例1】パラジウム硝酸溶液(Pd15重量%)2
67gにアンモニア水を加えてpH8に調整し、ゼラチン
0.2gをこれに溶解してから液量を600mlにした。
また次亜リン酸ナトリウム40gを水に溶解し、ゼラチ
ン0.2gをこれに溶解してから液量を600mlにし
た。別にゼラチン0.4gを溶解した水1リツトルを用
意し、70〜75℃に加熱撹拌しながらここへ上記パラ
ジウム溶液及び次亜リン酸ナトリウム溶液を定量ポンプ
を用いて1.5時間で同時に添加した。反応後約30分
加熱を続けた後、生成した粉末を洗浄、乾燥した。得ら
れたパラジウム粉末の特性は以下の様な物であつた。
Example 1 Palladium nitric acid solution (Pd 15% by weight) 2
Aqueous ammonia was added to 67 g to adjust the pH to 8, 0.2 g of gelatin was dissolved in the solution, and the liquid volume was adjusted to 600 ml.
Also, 40 g of sodium hypophosphite was dissolved in water, 0.2 g of gelatin was dissolved therein, and the liquid volume was adjusted to 600 ml. Separately, 1 liter of water in which 0.4 g of gelatin was dissolved was prepared, and the above-mentioned palladium solution and sodium hypophosphite solution were simultaneously added thereto over 1.5 hours by using a metering pump while heating and stirring at 70 to 75 ° C. . After heating was continued for about 30 minutes after the reaction, the generated powder was washed and dried. The properties of the obtained palladium powder were as follows.

【0017】粒形 球状で分散している 一次粒径の分布 0.2〜0.3μm(SEM観察) 粒度分布 0.1〜0.8μm(レーザー散乱
法) 更に、得られたパラジウム粉末を熱天秤により熱分析
し、図1に示すTG曲線を得た。このTG曲線から重量
変化率が2.2%であることが分る。
Granular shape Spherical and dispersed primary particle size distribution 0.2-0.3 μm (SEM observation) Particle size distribution 0.1-0.8 μm (laser scattering method) Thermal analysis was performed using a balance to obtain a TG curve shown in FIG. From the TG curve, it can be seen that the weight change rate is 2.2%.

【0018】[0018]

【実施例2】パラジウム硝酸溶液(Pd15重量%)2
67gにアンモニア水を加えてpH8に調整し、ゼラチン
0.3gをこれに溶解してから液量を600mlにした。
また次亜リン酸ナトリウム40gを水に溶解し、ゼラチ
ン0.3gをこれに溶解してから液量を600mlにし
た。別にゼラチン0.6gを溶解した水1リツトルを用
意し、70〜75℃に加熱撹拌しながらここへ上記パラ
ジウム溶液及び次亜リン酸ナトリウム溶液を定量ポンプ
を用いて1.5時間で同時に添加した。反応後約30分
加熱を続けた後、生成した粉末を洗浄、乾燥した。得ら
れたパラジウム粉末の特性は以下の様な物であつた。
Example 2 Palladium nitric acid solution (Pd 15% by weight) 2
Aqueous ammonia was added to 67 g to adjust the pH to 8, 0.3 g of gelatin was dissolved in this, and the liquid volume was adjusted to 600 ml.
Also, 40 g of sodium hypophosphite was dissolved in water, 0.3 g of gelatin was dissolved therein, and the liquid volume was adjusted to 600 ml. Separately, 1 liter of water in which 0.6 g of gelatin was dissolved was prepared, and the above-mentioned palladium solution and sodium hypophosphite solution were simultaneously added thereto over 1.5 hours by using a metering pump while heating and stirring at 70 to 75 ° C. . After heating was continued for about 30 minutes after the reaction, the generated powder was washed and dried. The properties of the obtained palladium powder were as follows.

【0019】粒形 球状で分散してい
る 一次粒径の分布 0.1〜0.3μm(SEM観
察) 粒度分布 0.1〜0.7μm(レーザー
散乱法) TG曲線重量変化率 2.5%
Granular shape Spherical and dispersed primary particle size distribution 0.1 to 0.3 μm (SEM observation) Particle size distribution 0.1 to 0.7 μm (laser scattering method) TG curve weight change rate 2.5%

【0020】[0020]

【実施例3】ジクロロジアミンパラジウム(Pd50
%)80gをアンモニア水に溶解してpHを10にし、ゼ
ラチン0.2gを溶解してから液量を600mlにした。
また次亜リン酸ナトリウム40gを水に溶解し、ゼラチ
ン0.2gをこれに溶解してから液量を600mlにし
た。別にゼラチン0.4gを溶解した酢酸ナトリウム水
溶液(50g/l)1リツトルを用意し、70〜75℃
に加熱撹拌しながらここへ上記パラジウム溶液及び次亜
リン酸ナトリウム溶液を定量ポンプに用いて1.5時間
で同時に添加した。反応後約30分加熱を続けた後、生
成した粉末を洗浄、乾燥した。得られたパラジウム粉末
の特性は以下の様な物であつた。
Example 3 Dichlorodiamine palladium (Pd50
%) Was dissolved in aqueous ammonia to adjust the pH to 10, 0.2 g of gelatin was dissolved, and the liquid volume was adjusted to 600 ml.
Also, 40 g of sodium hypophosphite was dissolved in water, 0.2 g of gelatin was dissolved therein, and the liquid volume was adjusted to 600 ml. Separately, prepare 1 liter of an aqueous solution of sodium acetate (50 g / l) in which 0.4 g of gelatin is dissolved,
The above-mentioned palladium solution and sodium hypophosphite solution were simultaneously added thereto over 1.5 hours while heating and stirring. After heating was continued for about 30 minutes after the reaction, the generated powder was washed and dried. The properties of the obtained palladium powder were as follows.

【0021】粒形 球状で分散してい
る 一次粒径の分布 0.2〜0.4μm(SEM観
察) 粒度分布 0.1〜1.0μm(レーザー
散乱法) TG曲線重量変化率 3.5%
Granular shape Spherical and dispersed primary particle size distribution 0.2 to 0.4 μm (SEM observation) Particle size distribution 0.1 to 1.0 μm (laser scattering method) TG curve weight change rate 3.5%

【0022】[0022]

【比較例1】ジクロロジアミンパラジウム(Pd50
%)80gを水4リツトルに懸濁させ、塩酸を加えてpH
を1.5に調整し、70℃に加熱撹拌しながらギ酸ナト
リウム溶液(ギ酸ナトリウム56gを水300mlに溶解
したもの)を40分で添加して還元し、反応後約30分
加熱を続けた後、生成した粉末を洗浄、乾燥した。得ら
れたパラジウム粉末の特性は以下の様な物であつた。
Comparative Example 1 Dichlorodiamine palladium (Pd50
%) Is suspended in 4 liters of water, and hydrochloric acid is added thereto to adjust pH.
Was adjusted to 1.5, and the mixture was reduced by adding a sodium formate solution (a solution of 56 g of sodium formate in 300 ml of water) in 40 minutes while heating and stirring at 70 ° C. After heating for about 30 minutes after the reaction, The resulting powder was washed and dried. The properties of the obtained palladium powder were as follows.

【0023】粒形 不定形で凝集して
いる 一次粒径の分布 0.5〜2μm(SEM観察) 粒度分布 0.1〜5μm(レーザー散乱
法) TG曲線重量変化率 15%
Granular shape Amorphous and aggregated primary particle size distribution 0.5 to 2 μm (SEM observation) Particle size distribution 0.1 to 5 μm (laser scattering method) TG curve weight change rate 15%

【0024】[0024]

【比較例2】塩化パラジウム(Pd59.4%)67.
6gを塩酸50リツトルを含んだ水に加熱溶解し、水を
加えて2リツトルとした。水酸化ナトリウム水溶液(N
aOH90gを含む)を用いてこれを中和し液量を5リ
ツトルに調整した。これを70℃に加熱撹拌しながらギ
酸ナトリウム溶液(ギ酸ナトリウム56gを水300ml
に溶解したもの)を40分で添加して還元し、反応後約
30分加熱を続けた後、生成した粉末を洗浄、乾燥し
た。得られたパラジウム粉末の特性は以下の様な物であ
つた。熱分析によるTG曲線を図2に示す。
Comparative Example 2 Palladium chloride (Pd 59.4%) 67.
6 g was heated and dissolved in water containing 50 liters of hydrochloric acid, and water was added to make 2 liters. Sodium hydroxide aqueous solution (N
(containing 90 g of aOH), and the solution was adjusted to 5 liters. This was heated and stirred at 70 ° C. while mixing sodium formate solution (56 g of sodium formate with 300 ml of water).
) Was added in 40 minutes for reduction, and after heating for about 30 minutes after the reaction, the resulting powder was washed and dried. The properties of the obtained palladium powder were as follows. FIG. 2 shows a TG curve by thermal analysis.

【0025】粒形 樹脂状で凝集して
いる 一次粒径の分布 20〜30nm(TEM観察) 粒度分布 0.1〜1.5μm(レーザー
散乱法) TG曲線重量変化率 15% なお、TEM観察とは透過型電子顕微鏡による観察を意
味する。
Particle size Resin-like and aggregated primary particle size distribution 20 to 30 nm (TEM observation) Particle size distribution 0.1 to 1.5 μm (laser scattering method) TG curve weight change rate 15% Means observation with a transmission electron microscope.

【0026】[0026]

【比較例3】パラジウム硝酸溶液(Pd15重量%)2
67gにアンモニア水を加えてpH8に調整し、ゼラチン
0.2gをこれに溶解してから液量を600mlにした。
また硫酸ヒドラジン30gを水に溶解し、ゼラチン0.
2gをこれに溶解してから液量を600mlにした。別に
ゼラチン0.4gを溶解した酢酸ナトリウム水溶液(5
0g/l)1リツトルを用意し、70〜75℃に加熱撹
拌しながらここへ上記パラジウム溶液及び硫酸ヒドラジ
ン溶液を定量ポンプを用いて同時に添加した。反応後約
30分加熱を続けた後、生成した粉末を洗浄、乾燥し
た。得られたパラジウム粉末の特性は以下の様な物であ
つた。
Comparative Example 3 Palladium nitric acid solution (Pd 15% by weight) 2
Aqueous ammonia was added to 67 g to adjust the pH to 8, 0.2 g of gelatin was dissolved in the solution, and the liquid volume was adjusted to 600 ml.
Also, 30 g of hydrazine sulfate was dissolved in water, and gelatin was added in 0.1 g.
After dissolving 2 g of this, the liquid volume was adjusted to 600 ml. Separately, an aqueous solution of sodium acetate containing 0.4 g of gelatin (5 g
(0 g / l) 1 liter was prepared, and the above-mentioned palladium solution and hydrazine sulfate solution were simultaneously added thereto while heating and stirring at 70 to 75 ° C using a metering pump. After heating was continued for about 30 minutes after the reaction, the generated powder was washed and dried. The properties of the obtained palladium powder were as follows.

【0027】粒形 不定形で凝集してい
る(鏡状の物も含まれる) 一次粒径の分布 0.1〜0.3μm(SEM観
察) (鏡状の物は10μm以上) 粒度分布 0.1〜20μm(レーザー散乱
法) TG曲線重量変化率 15%
Granular shape Amorphous and agglomerated (including mirror-like material) Primary particle size distribution 0.1 to 0.3 μm (SEM observation) (Mirror-like material is 10 μm or more) Particle size distribution 1 to 20 μm (laser scattering method) TG curve weight change rate 15%

【0028】[0028]

【比較例4】パラジウム硝酸溶液(Pd15重量%)2
67gにアンモニア水を加えてpH8に調整し、ゼラチン
0.2gをこれに溶解してから液量を600mlにした。
また水酸化ホウ素ナトリウム8gを水に溶解し、ゼラチ
ン0.2gをこれに溶解してから液量を600mlにし
た。別にゼラチン0.4gを溶解した酢酸ナトリウム水
溶液(50g/l)1リツトルを用意し、70〜75℃
に加熱撹拌しながらここへ上記パラジウム溶液及び水素
化ホウ素ナトリウムを定量ポンプを用いて同時に添加し
た。反応後約30分加熱を続けた後、生成した粉末を洗
浄、乾燥した。得られたパラジウム粉末の特性は以下の
様な物であつた。
Comparative Example 4 Palladium nitric acid solution (Pd 15% by weight) 2
Aqueous ammonia was added to 67 g to adjust the pH to 8, 0.2 g of gelatin was dissolved in the solution, and the liquid volume was adjusted to 600 ml.
In addition, 8 g of sodium borohydride was dissolved in water, 0.2 g of gelatin was dissolved therein, and the liquid volume was adjusted to 600 ml. Separately, prepare 1 liter of an aqueous solution of sodium acetate (50 g / l) in which 0.4 g of gelatin is dissolved,
The above-mentioned palladium solution and sodium borohydride were simultaneously added to this with heating and stirring using a metering pump. After heating was continued for about 30 minutes after the reaction, the generated powder was washed and dried. The properties of the obtained palladium powder were as follows.

【0029】粒形 ほとんど凝集して
いる 一次粒径の分布 よく判らない(SEM観察) 粒度分布 0.5〜25μm(レーザー散
乱法) TG曲線重量変化率 15%
Particle shape Almost agglomerated Distribution of primary particle size Not well understood (SEM observation) Particle size distribution 0.5 to 25 μm (laser scattering method) TG curve weight change rate 15%

【0030】[0030]

【発明の効果】以上述べたように、本発明のパラジウム
粉末は、平均粒径及び粒度分布の幅が共に小さく、また
昇温過程における重量変化が少なく、更に分散性の良好
な球状粉末である。従つてこれを用いてペーストを作製
し、印刷、焼成することによつてエレクトロニクス用の
電極、回路等を製造する時は、焼成過程における重量変
化が少ないために回路等の断線や基板の破損が大幅に防
止され、また粒子の凝集性が少ないために印刷回路等の
膜厚が一定で平滑になり、従つて電気特性も安定する。
As described above, the palladium powder of the present invention is a spherical powder having a small average particle size and a small particle size distribution, a small change in weight during the heating process, and a good dispersibility. . Therefore, when manufacturing electrodes, circuits, etc. for electronics by producing pastes, printing and baking using them, disconnection of circuits etc. and breakage of the substrate due to small weight change in the baking process. This is largely prevented, and the cohesion of the particles is small, so that the film thickness of a printed circuit or the like is constant and smooth, and the electric characteristics are also stable.

【0031】また、上記のような優れた特性を有するパ
ラジウム粉末は、本発明の製造方法によつて経済的に効
率良く製造することができる。
Further, palladium powder having the above excellent properties can be economically and efficiently produced by the production method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたパラジウム粉末のTG曲線
を示すグラフである。
FIG. 1 is a graph showing a TG curve of the palladium powder obtained in Example 1.

【図2】比較例2で得られたパラジウム粉末のTG曲線
の示すグラフである。
FIG. 2 is a graph showing a TG curve of the palladium powder obtained in Comparative Example 2.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 B22F 9/24 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) B22F 1/00 B22F 9/24

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 パラジウムアンモニウム錯体溶液のpHを1. The pH of a palladium ammonium complex solution is adjusted
7〜11とし、該溶液の温度を50℃以上に維持しつつ7 to 11, while maintaining the temperature of the solution at 50 ° C. or higher.
界面活性剤の存在下で次亜リン酸ナトリウム溶液を用いUsing sodium hypophosphite solution in the presence of surfactant
て還元することを特徴とするSEM観察による一次粒径Primary particle size by SEM observation characterized by reduction
の分布が0.1〜1μmの範囲の中にあり、レーザー散Distribution is in the range of 0.1 to 1 μm,
乱法による粒度分布の幅が0.1〜1.5μmの範囲のThe width of the particle size distribution by the random method is in the range of 0.1 to 1.5 μm.
中にある球状パラジウム粉末であって、空気中での焼成Spherical palladium powder inside, fired in air
時に室温〜1000℃までの昇温過程における重量変化Sometimes weight change during the heating process from room temperature to 1000 ° C
が4重量%以内である球状パラジウム粉末の製造方法。Is within 4% by weight.
JP03044327A 1991-02-16 1991-02-16 Method for producing palladium powder Expired - Fee Related JP3122148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03044327A JP3122148B2 (en) 1991-02-16 1991-02-16 Method for producing palladium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03044327A JP3122148B2 (en) 1991-02-16 1991-02-16 Method for producing palladium powder

Publications (2)

Publication Number Publication Date
JPH051301A JPH051301A (en) 1993-01-08
JP3122148B2 true JP3122148B2 (en) 2001-01-09

Family

ID=12688410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03044327A Expired - Fee Related JP3122148B2 (en) 1991-02-16 1991-02-16 Method for producing palladium powder

Country Status (1)

Country Link
JP (1) JP3122148B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9020505B2 (en) 2008-09-17 2015-04-28 Qualcomm Incorporated Quick system selection and acquisition for multi-mode mobile devices

Also Published As

Publication number Publication date
JPH051301A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
US4863510A (en) Reduction process for preparing copper, silver, and admixed silver-palladium metal particles
JPH1088206A (en) Silver powder and manufacture of silver powder
CN115055690B (en) Full-spherical polycrystalline silver powder with directionally-aggregated crystal grains and preparation method thereof
JP2002180110A (en) Method for manufacturing metallic colloidal solution
CN114619039A (en) Spherical silver powder, preparation method thereof and conductive paste
JPS6155562B2 (en)
KR101236246B1 (en) Copper powder
JPH07118868A (en) Production of palladium-coated spherical silver powder
JP3122148B2 (en) Method for producing palladium powder
JPH10265812A (en) Production of superfine silver particle
JPH0459904A (en) Manufacture of silver fine powder
JPH0920903A (en) Production of monodisperse gold grain powder
JPH083605A (en) Production of monodispersive noble metal powder and the same noble metal powder
JPH04235205A (en) Production of copper powder
JP5985216B2 (en) Silver powder
JPH06122905A (en) Production of globular fine silver powder
KR101599104B1 (en) Method for manufacturing metal particles with core-shell structure
JPH0657314A (en) Production of fine palladium powder
KR20200061193A (en) Method for producing monodispersed Ag powder
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
CN114682792B (en) Spherical silver powder with high specific surface area and preparation method thereof
JPH0885807A (en) Monodispersed silver-palladium composite powder and its prodution
JPH0784605B2 (en) Method for producing fine copper powder
JPH09256008A (en) Production of monodispersive silver-palladium multiple powder and the same powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees