JP3245965B2 - Production method of copper powder - Google Patents

Production method of copper powder

Info

Publication number
JP3245965B2
JP3245965B2 JP16348992A JP16348992A JP3245965B2 JP 3245965 B2 JP3245965 B2 JP 3245965B2 JP 16348992 A JP16348992 A JP 16348992A JP 16348992 A JP16348992 A JP 16348992A JP 3245965 B2 JP3245965 B2 JP 3245965B2
Authority
JP
Japan
Prior art keywords
copper
copper powder
solution
particle size
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16348992A
Other languages
Japanese (ja)
Other versions
JPH05331508A (en
Inventor
広次 谷
一仁 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP16348992A priority Critical patent/JP3245965B2/en
Publication of JPH05331508A publication Critical patent/JPH05331508A/en
Application granted granted Critical
Publication of JP3245965B2 publication Critical patent/JP3245965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は銅ペースト等に用いられ
る微粒子状の銅粉末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine copper powder used for copper paste and the like.

【0002】[0002]

【従来の技術】銅ペーストに用いられる銅粉末は1μm
〜10μmの粒径のものが多いが、粒径1μm以下の銅
粉末は活性が高く、銅ペーストに用いて基板に焼付けし
た場合、基板との界面での化学的結合により接着強度が
向上し、緻密で良質の銅電極を形成できるという特徴が
ある。このような微細な銅粉末を製造するため、従来よ
り電解法,噴霧法,ガス還元法,機械的粉砕法等の種々
の製造方法が知られているが、これら方法は製造に手間
がかかったり、不純物が混入しやすかったり、さらに製
造した銅粉末の粒子が大きく、粒径が不規則である等の
問題があった。
2. Description of the Related Art Copper powder used for copper paste is 1 μm.
Copper particles with a particle size of 1 μm or less have high activity, and when baked on a substrate using a copper paste, the bonding strength is improved by chemical bonding at the interface with the substrate, The feature is that a dense and high-quality copper electrode can be formed. In order to produce such fine copper powder, various production methods such as an electrolysis method, a spray method, a gas reduction method, and a mechanical pulverization method are conventionally known. However, these methods require time and effort for production. In addition, there are problems that impurities are easily mixed therein, and that the particles of the produced copper powder are large and irregular in particle size.

【0003】このような問題を解決するため、本出願人
は、ピロリン酸銅,塩化第2銅またはギ酸銅を含む銅含
有溶液とヒドラジンあるいはヒドラジン化合物とを混合
し、この混合溶液を加熱することにより銅粉末を還元析
出させる銅粉末の製造方法を提案した(特開平3−28
7707号公報参照) 。
[0003] In order to solve such a problem, the present applicant has proposed a method of mixing a copper-containing solution containing copper pyrophosphate, cupric chloride or copper formate with hydrazine or a hydrazine compound and heating the mixed solution. A method for producing copper powder by reducing and precipitating copper powder by the method described in Japanese Patent Application Laid-Open No. 3-28.
No. 7707).

【0004】[0004]

【発明が解決しようとする課題】これによると、出発原
料にピロリン酸銅を用いた場合、得られる銅粉末の平均
粒径は0.6μmであり、塩化第2銅を用いた場合は
0.3μmであった。しかし、出発原料にギ酸銅を用い
た場合、粒度分布幅が小さく均質な銅粉末が得られるも
のの、平均粒径は5μmと大きかった。そこで、本発明
の目的は、ギ酸銅を用いて平均粒径が1μm以下の超微
粒子で、かつ粒径分布幅が小さく均質な銅粉末を得るこ
とができる銅粉末の製造方法を提供することにある。
According to this, when copper pyrophosphate is used as a starting material, the average particle size of the obtained copper powder is 0.6 μm, and when copper (II) chloride is used, the average particle size is 0.6 μm. It was 3 μm. However, when copper formate was used as a starting material, a uniform copper powder having a small particle size distribution width was obtained, but the average particle size was as large as 5 μm. Therefore, an object of the present invention is to provide a method for producing a copper powder that can obtain ultrafine particles having an average particle diameter of 1 μm or less and a uniform copper powder having a small particle diameter distribution width using copper formate. is there.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の銅粉末の製造方法は、ギ酸銅を含む銅含有
溶液にpH調整溶液を添加することにより溶液pHを6
〜14に調整する工程と、pHが調整された銅含有溶液
とヒドラジンあるいはヒドラジン化合物とを混合する工
程と、この混合溶液を加熱することにより銅粉末を還元
析出せしめる工程と、を含むものである。
In order to achieve the above object, a method for producing a copper powder according to the present invention comprises adding a pH adjusting solution to a copper-containing solution containing copper formate to adjust the solution pH to 6 or less.
To 14, a step of mixing the pH-adjusted copper-containing solution with hydrazine or a hydrazine compound, and a step of heating the mixed solution to cause the copper powder to undergo reductive precipitation.

【0006】[0006]

【作用】本発明では、出発原料としてギ酸銅を用い、こ
の水溶液にpH調整溶液を添加して溶液pHを6〜14
に調整する。次に、この銅含有溶液に還元剤であるヒド
ラジンあるいはヒドラジン化合物を混合して加熱処理す
ると、銅塩中の銅が還元析出され、平均粒径が1μm以
下で、かつ粒径分布幅が小さく均質な銅粉末が得られ
る。
According to the present invention, copper formate is used as a starting material, and a pH adjusting solution is added to the aqueous solution to adjust the solution pH to 6 to 14.
Adjust to Next, when a hydrazine or a hydrazine compound as a reducing agent is mixed with this copper-containing solution and heat-treated, copper in the copper salt is reduced and precipitated, the average particle size is 1 μm or less, and the particle size distribution width is small and uniform. Copper powder is obtained.

【0007】加熱処理の適正温度は、20℃〜100℃
の範囲が望ましい。その理由は、20℃未満では銅粉末
の還元析出が不十分であり、100℃を越えると還元析
出する銅粉末の粒径が大きく、かつ粒径のバラツキが大
きくなるからである。加熱時間は特に限定されない。1
0分間でも銅粉末の析出は起こるが、未反応物が残るた
め、30分〜3時間が好ましい。3時間を越えると、析
出した銅粉末の凝集が起こってしまう。pH調整溶液と
しては、水酸化ナトリウム,水酸化カリウム,アンモニ
ア等の水溶液を用いることができる。また、ヒドラジン
あるいはヒドラジン化合物としては、ヒドラジン自身は
勿論、抱水ヒドラジン,ヒドラジンヒドラート,硫酸ヒ
ドラジン,硫酸ヒドラゾニウム,塩化ヒドラゾニウム等
がある。ギ酸銅とヒドラジンあるいはヒドラジン化合物
との混合比は特に限定されないが、ギ酸銅1モルに対し
てヒドラジンは1〜15モルが適当である。1モル未満
では反応速度が遅く未反応物が残るからであり、15モ
ルを越えると、歩留りが悪く、粒径において微粒子状の
銅粉末が得られないからである。
[0007] The appropriate temperature of the heat treatment is 20 ° C to 100 ° C.
Is desirable. The reason is that when the temperature is lower than 20 ° C., the reductive precipitation of the copper powder is insufficient, and when the temperature exceeds 100 ° C., the particle size of the reductively precipitated copper powder is large and the variation in the particle size is large. The heating time is not particularly limited. 1
Deposition of copper powder occurs even for 0 minutes, but unreacted substances remain, so that 30 minutes to 3 hours are preferable. If the time exceeds 3 hours, aggregation of the precipitated copper powder occurs. As the pH adjusting solution, an aqueous solution of sodium hydroxide, potassium hydroxide, ammonia or the like can be used. Examples of the hydrazine or hydrazine compound include hydrazine itself, hydrazine hydrate, hydrazine hydrate, hydrazine sulfate, hydrazonium sulfate, hydrazonium chloride and the like. The mixing ratio of copper formate to hydrazine or a hydrazine compound is not particularly limited, but 1 to 15 moles of hydrazine is suitable for 1 mole of copper formate. If the amount is less than 1 mol, the reaction rate is low and unreacted materials remain. If the amount exceeds 15 mol, the yield is poor, and fine-particle copper powder cannot be obtained with a particle size.

【0008】[0008]

【実施例】ギ酸銅〔Cu(HCOO)2 ・4H2 O〕3
50gを水2500ccに溶かした溶液に、水酸化ナト
リウムを溶かした水溶液(pH調整溶液)を添加し、溶
液pHを6〜14に調整した。この溶液と抱水ヒドラジ
ンとを混合し、この混合溶液を80℃に加熱(加熱時間
は2時間)すると、沈澱粉末が得られた。これを1時間
放置して冷却し、室温下でグラスフィルタを用いて液を
濾過し、pH7の水で水洗いした後、アセトンで洗浄し
て乾燥した。こうして得られた銅粉末の平均粒径および
粒度分布を比較例とともに次表に示す。なお、粒径,粒
度分布は走査型電子顕微鏡写真から求めた。
EXAMPLES Copper formic acid [Cu (HCOO) 2 · 4H 2 O ] 3
An aqueous solution (pH adjusting solution) in which sodium hydroxide was dissolved was added to a solution in which 50 g was dissolved in 2500 cc of water, and the solution pH was adjusted to 6 to 14. This solution and hydrazine hydrate were mixed, and this mixed solution was heated to 80 ° C. (heating time was 2 hours) to obtain a precipitated powder. This was allowed to cool for 1 hour, filtered at room temperature using a glass filter, washed with water of pH 7, washed with acetone, and dried. The average particle size and particle size distribution of the copper powder thus obtained are shown in the following table together with comparative examples. The particle size and the particle size distribution were determined from a scanning electron micrograph.

【0009】[0009]

【表1】 表1において、比較例はpH調整溶液(水酸化ナトリウ
ム)を添加しておらず、溶液pHはギ酸銅溶液そのもの
のpHを表している。
[Table 1] In Table 1, in Comparative Example, no pH adjusting solution (sodium hydroxide) was added, and the solution pH represents the pH of the copper formate solution itself.

【0010】表1から明らかなように、ギ酸銅溶液のp
Hを大きくすれば、それだけ平均粒径が小さくなるが、
逆にpHを大きくし過ぎると、粒度分布比が相対的に大
きくなる傾向を示す。例えば、実施例Aでは粒度分布比
は0.5〜2の範囲であり、実施例Bでは粒度分布比は
0.4〜1.6の範囲であり、さらに実施例Cでは粒度
分布比は0.3〜2.3の範囲である。また、最終的に
得られた銅粉末を電子顕微鏡写真でみると、凝集が小さ
く、分散性の良い球状の粉末であり、しかも不純物を殆
ど含まない高純度のものであった。
As is apparent from Table 1, the p of copper formate solution
The larger H is, the smaller the average particle size is,
Conversely, if the pH is too high, the particle size distribution ratio tends to be relatively large. For example, in Example A, the particle size distribution ratio is in the range of 0.5 to 2, in Example B, the particle size distribution ratio is in the range of 0.4 to 1.6, and in Example C, the particle size distribution ratio is 0. 0.3 to 2.3. In addition, when the copper powder finally obtained was observed by an electron micrograph, it was a spherical powder having a small aggregation and a good dispersibility and a high purity containing almost no impurities.

【0011】この銅粉末は、ガラスフリット,有機ワニ
スとともに混合されて銅ペーストとされ、またペースト
への微粉添加剤としても使用される。上記銅粉末は分散
性が良いので、ガラスフリットおよび有機ワニスに対し
て均等に混合され、均質なペーストが得られた。このペ
ーストはセラミックス基板等の上に印刷,塗布したの
ち、窒素等の非酸化性雰囲気中で焼付けされる。こうし
て得られた電極や回路パターンは良好な半田付け性と十
分な接着強度を有し、信頼性の高い厚膜回路を得ること
ができた。
This copper powder is mixed with a glass frit and an organic varnish to form a copper paste, and is also used as a fine powder additive to the paste. Since the copper powder had good dispersibility, it was uniformly mixed with the glass frit and the organic varnish to obtain a homogeneous paste. This paste is printed and applied on a ceramic substrate or the like, and then baked in a non-oxidizing atmosphere such as nitrogen. The thus obtained electrodes and circuit patterns had good solderability and sufficient adhesive strength, and a highly reliable thick film circuit could be obtained.

【0012】[0012]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、ギ酸銅溶液のpHを予めpH調整溶液によって
6〜14、つまりほぼ中性あるいはアルカリ性に調整し
ておき、これにヒドラジンあるいはヒドラジン化合物を
加えて湿式還元法により銅粉末を析出させることによ
り、平均粒径が1μm以下で、粒径分布幅が小さく均質
の銅粉末を得ることができる。
As is apparent from the above description, according to the present invention, the pH of the copper formate solution is previously adjusted to 6 to 14, that is, almost neutral or alkaline, by a pH adjusting solution, and the hydrazine is added thereto. Alternatively, by adding a hydrazine compound and precipitating copper powder by a wet reduction method, a homogeneous copper powder having an average particle size of 1 μm or less and a small particle size distribution width can be obtained.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ギ酸銅を含む銅含有溶液にpH調整溶液を
添加することにより溶液pHを6〜14に調整する工程
と、pHが調整された銅含有溶液とヒドラジンあるいは
ヒドラジン化合物とを混合する工程と、この混合溶液を
加熱することにより銅粉末を還元析出させる工程と、を
含む銅粉末の製造方法。
A step of adjusting the solution pH to 6 to 14 by adding a pH adjusting solution to a copper-containing solution containing copper formate; and mixing the pH-adjusted copper-containing solution with hydrazine or a hydrazine compound. A method for producing a copper powder, comprising: a step of reducing and precipitating a copper powder by heating the mixed solution.
JP16348992A 1992-05-29 1992-05-29 Production method of copper powder Expired - Fee Related JP3245965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16348992A JP3245965B2 (en) 1992-05-29 1992-05-29 Production method of copper powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16348992A JP3245965B2 (en) 1992-05-29 1992-05-29 Production method of copper powder

Publications (2)

Publication Number Publication Date
JPH05331508A JPH05331508A (en) 1993-12-14
JP3245965B2 true JP3245965B2 (en) 2002-01-15

Family

ID=15774839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16348992A Expired - Fee Related JP3245965B2 (en) 1992-05-29 1992-05-29 Production method of copper powder

Country Status (1)

Country Link
JP (1) JP3245965B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379419B1 (en) * 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
JP7121884B1 (en) * 2021-03-29 2022-08-19 三菱マテリアル株式会社 Copper particles and method for producing the same

Also Published As

Publication number Publication date
JPH05331508A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
JP2638271B2 (en) Production method of copper fine powder
EP0985474B1 (en) Method for producing metal powder by reduction of metallic salt.
JP4687599B2 (en) Copper fine powder, method for producing the same, and conductive paste
JP4821014B2 (en) Copper powder manufacturing method
US20040221685A1 (en) Method for manufacturing nano-scaled copper powder by wet reduction process
JP3570591B2 (en) Production method of copper powder
JPH0480303A (en) Manufacture of copper powder coated with silver
JPH02294414A (en) Production of fine copper powder
JPH09241709A (en) Production of copper powder
JP2016011448A (en) Fine particle, method for producing fine particle, and fine particle dispersion solution
JP3073732B1 (en) Nickel fine powder and method for producing the same
JP3245965B2 (en) Production method of copper powder
JPS6299406A (en) Production of copper powder
JPH02294415A (en) Production of fine copper powder
KR100631025B1 (en) Method of manufacturing silver powder by chemical reduction
JPH05221637A (en) Production of cuprous oxide powder and copper powder
JP4352121B2 (en) Copper powder manufacturing method
JP2009052146A (en) Copper powder and its manufacturing method
JPH04235205A (en) Production of copper powder
JPH086130B2 (en) Method for producing copper powder
TW201338893A (en) Silver powder
JP2018104724A (en) Production method of silver-coated copper powder
JPH06336601A (en) Production of nickel powder
JP2004339601A (en) Method for manufacturing nickel powder
JP3444608B2 (en) Production method of copper fine powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees