JP2010173915A - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP2010173915A
JP2010173915A JP2009020402A JP2009020402A JP2010173915A JP 2010173915 A JP2010173915 A JP 2010173915A JP 2009020402 A JP2009020402 A JP 2009020402A JP 2009020402 A JP2009020402 A JP 2009020402A JP 2010173915 A JP2010173915 A JP 2010173915A
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
catalyst
layer
amorphous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009020402A
Other languages
Japanese (ja)
Inventor
Kenji Mizuta
健司 水田
Atsushi Yano
淳 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009020402A priority Critical patent/JP2010173915A/en
Publication of JP2010173915A publication Critical patent/JP2010173915A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon nanotubes, by which carbon nanotubes having stable orientation can be produced even when a substrate is reused. <P>SOLUTION: The method for producing carbon nanotubes includes steps of: forming an amorphous layer on the surface of a substrate essentially comprising a nonoxide material containing silicon by heating the substrate at 500 to 1,000°C for 1 to 50 hours in air; forming a catalyst layer containing a catalyst metal on the amorphous layer; micronizing the metal in the catalyst layer into fine particles; and forming carbon nanotubes by using the fine particles as a catalyst. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、再利用基板に安定した配向性を有するカーボンナノチューブを生成させることができるカーボンナノチューブの生成方法、および、強度的にも優れていることから複数回使用することができるカーボンナノチューブ生成用の基板の製造方法に関する。 The present invention provides a carbon nanotube production method capable of producing carbon nanotubes having a stable orientation on a reuse substrate, and a carbon nanotube production method that can be used multiple times because of its excellent strength. The present invention relates to a substrate manufacturing method.

カーボンナノチューブは、熱化学気相蒸着法(以下、熱CVD法と呼ぶ)を始め、種々の方法にて生成が可能であり、電子放出源、電極、触媒等、様々な製品について応用研究がなされている。   Carbon nanotubes can be produced by various methods including thermal chemical vapor deposition (hereinafter referred to as thermal CVD method), and applied research has been conducted on various products such as electron emission sources, electrodes, and catalysts. ing.

カーボンナノチューブの生成方法としては、大量生成のためのスケールアップが最も容易な熱CVD法によるカーボンナノチューブ生成が適しているが、この方法ではカーボンナノチューブ生成用基板は500〜800℃の環境下に晒されるため、耐熱性を有したものであることが必須条件となっている。さらに基板表面の平滑性も要求されるため、石英ガラスやシリコン(Si)などからなる基板が用いられている(例えば、特許文献1参照)。また、同程度の耐熱性を有し、かつ石英ガラスなどに比べ安価なアルミナやジルコニア等の耐熱性セラミックからなる基板を用いることもある。カーボンナノチューブは、それら表面に触媒としてFe等の金属を薄膜状に生成し、次いでこの触媒層を微粒化した後、加熱炉中でアセチレン等の炭素源を用いて触媒付き基板を処理することで生成される。また、導電性材料からなる基板の表面にアルミニウム、チタン、シリコン、モリブデン、ニッケルおよびその合金よりなる群から選ばれる少なくとも一つを含む材料からなる中間層を設け、触媒層を形成した三層構造体からなるカーボンナノチューブ生成用の部材も記載されている(例えば、特許文献2参照)。この三層構造部材にカーボンナノチューブを生成させたものをそのまま電子放出源や電極などに使用することができる。   As a method for producing carbon nanotubes, the production of carbon nanotubes by the thermal CVD method, which is the easiest to scale up for mass production, is suitable. Therefore, it must be heat-resistant. Further, since the substrate surface is required to be smooth, a substrate made of quartz glass, silicon (Si), or the like is used (for example, see Patent Document 1). A substrate made of a heat-resistant ceramic such as alumina or zirconia, which has the same level of heat resistance and is cheaper than quartz glass, may be used. Carbon nanotubes are produced by forming a metal such as Fe as a catalyst on the surface of the carbon nanotubes, then atomizing the catalyst layer, and then treating the substrate with the catalyst using a carbon source such as acetylene in a heating furnace. Generated. Further, a three-layer structure in which a catalyst layer is formed by providing an intermediate layer made of a material containing at least one selected from the group consisting of aluminum, titanium, silicon, molybdenum, nickel and alloys thereof on the surface of a substrate made of a conductive material. A member for producing carbon nanotubes composed of a body is also described (for example, see Patent Document 2). A material in which carbon nanotubes are formed on this three-layer structure member can be used as it is for an electron emission source or an electrode.

前記のような方法でカーボンナノチューブを大量生成する場合、基板は再利用できるのが望ましいが、石英ガラスや耐熱性セラミックスからなる基板では熱衝撃性が劣り、基板を再利用するとカーボンナノチューブ生成工程において割れが生じることがある。また、アルミナ(Al2O3)やジルコニア(ZrO2)のような金属酸化物材料からなる基板はその表面にシリカ(SiO2)を多く含む非晶質層を形成することが必要であり、この非晶質層は通常はシリカ含有コーティング液を基板表面に塗布する方法で形成されるが、同コーティング液を均一に塗布することは非常に困難である。加えて、再利用の際に非晶質層が基板との熱膨張差の影響から剥離することが多い。 When producing a large amount of carbon nanotubes by the above method, it is desirable that the substrate can be reused. However, a substrate made of quartz glass or heat-resistant ceramics is inferior in thermal shock. Cracks may occur. Further, a substrate made of a metal oxide material such as alumina (Al 2 O 3 ) or zirconia (ZrO 2 ) needs to form an amorphous layer containing a large amount of silica (SiO 2 ) on its surface, This amorphous layer is usually formed by a method in which a silica-containing coating solution is applied to the substrate surface, but it is very difficult to uniformly apply the coating solution. In addition, the amorphous layer often peels off due to the influence of the difference in thermal expansion from the substrate during reuse.

このように、石英ガラスや耐熱性セラミックスからなる基板や、アルミナやジルコニアのような金属酸化物材料からなる基板に非晶質層を設けたものでは、再利用の際に、基板全面にわたって一定方向への配向性を有するカーボンナノチューブを安定して生成することが困難であるという問題があった。   Thus, in the case where an amorphous layer is provided on a substrate made of quartz glass or heat-resistant ceramics, or a substrate made of a metal oxide material such as alumina or zirconia, a certain direction is applied over the entire surface of the substrate during reuse. There has been a problem that it is difficult to stably produce carbon nanotubes having a high orientation.

そこで、本発明では基板を再利用した場合でも、安定した配向性を有するカーボンナノチューブの生成が可能なカーボンナノチューブの生成方法を提供する。   Thus, the present invention provides a method for producing carbon nanotubes that can produce carbon nanotubes having stable orientation even when the substrate is reused.

本発明は、上述の問題を解決すべく完成されたものである。   The present invention has been completed to solve the above-mentioned problems.

本発明の第1は、ケイ素を含む非酸化物材料を主成分とする基板を大気中で500℃〜1000℃の温度で1〜50時間加熱し、前記基板の表面に非晶質層を形成させる工程と、
前記非晶質層の上に触媒金属を含む触媒層を形成する工程と、
前記触媒層の金属を微粒化する工程と、
前記微粒子を触媒として、カーボンナノチューブを形成することを特徴とする、
カーボンナノチューブの生成方法である。
In the first aspect of the present invention, a substrate mainly composed of a non-oxide material containing silicon is heated in the atmosphere at a temperature of 500 ° C. to 1000 ° C. for 1 to 50 hours to form an amorphous layer on the surface of the substrate. A process of
Forming a catalyst layer containing a catalyst metal on the amorphous layer;
Atomizing the metal of the catalyst layer;
A carbon nanotube is formed using the fine particles as a catalyst,
This is a method for producing carbon nanotubes.

本発明の第2は、ケイ素を含む非酸化物材料を主成分とする基板を大気中で500℃〜1000℃の温度で1〜50時間加熱し、前記基板の表面に非晶質層を形成させることを特徴とする、カーボンナノチューブ生成用の基板の製造方法である。   In the second aspect of the present invention, a substrate mainly composed of a non-oxide material containing silicon is heated in the atmosphere at a temperature of 500 ° C. to 1000 ° C. for 1 to 50 hours to form an amorphous layer on the surface of the substrate. A method of manufacturing a substrate for producing carbon nanotubes.

第1および第2の発明において、ケイ素を含む非酸化物材料は窒化ケイ素(Si34)または炭化ケイ素(SiC)であることが好ましい。 In the first and second inventions, the non-oxide material containing silicon is preferably silicon nitride (Si 3 N 4 ) or silicon carbide (SiC).

窒化ケイ素を主成分とする非酸化物材料は、例えば、窒化ケイ素90重量%に焼結助剤としてアルミナとイットリア又はアルミナとマグネシアを10重量%添加した焼結体であってよい。炭化ケイ素を主成分とする非酸化物材料は、炭化ケイ素95重量%に焼結助剤として炭化ホウ素と炭素5重量%を添加した焼結体であってよい。   The non-oxide material mainly composed of silicon nitride may be, for example, a sintered body obtained by adding 90% by weight of silicon nitride and 10% by weight of alumina and yttria or alumina and magnesia as a sintering aid. The non-oxide material mainly composed of silicon carbide may be a sintered body in which boron carbide and 5% by weight of carbon are added as sintering aids to 95% by weight of silicon carbide.

基板の厚さは特に限定されないが、ハンドリング可能な厚みとして0.5mm以上が好ましい。基板表面に形成される非晶質層の厚さについても特に限定されないが、1μm以上が好ましい。   Although the thickness of a board | substrate is not specifically limited, 0.5 mm or more is preferable as thickness which can be handled. The thickness of the amorphous layer formed on the substrate surface is not particularly limited, but is preferably 1 μm or more.

基板を大気中で所要条件下で加熱することで、基板表面にSiOを主成分とする非晶質層(ガラス層、すなわちアモルファスシリカ)が形成される。加熱温度は500〜1000℃、好ましくは700〜950℃で、加熱時間は1〜50時間、好ましくは20〜40時間である。 By heating the substrate in the atmosphere under required conditions, an amorphous layer (glass layer, that is, amorphous silica) mainly composed of SiO 2 is formed on the substrate surface. The heating temperature is 500 to 1000 ° C., preferably 700 to 950 ° C., and the heating time is 1 to 50 hours, preferably 20 to 40 hours.

基板の加熱手段は、電気炉などであってよい。基板の加熱は、大気中で行われる。これにより、基板に付着したタール分(スス)や不純物を除去することができる。   The substrate heating means may be an electric furnace or the like. The substrate is heated in the atmosphere. Thereby, tar content (soot) and impurities adhering to the substrate can be removed.

基板の加熱条件が温度:500℃未満または時間:1時間未満であると、基板を構成する非酸化物材料が非晶質化しない。基板の加熱条件が温度:1000℃越または時間:50時間超であると、非晶質層が基板本体から剥離したり、カーボンナノチューブ生成工程で基板本体または非晶質層が割れたりクラックを生じたりする。いずれの場合も、一定の方向に配向性を有するカーボンナノチューブを基板上に生成することができない。   When the heating condition of the substrate is temperature: less than 500 ° C. or time: less than 1 hour, the non-oxide material constituting the substrate does not become amorphous. If the heating condition of the substrate is temperature: over 1000 ° C. or time: over 50 hours, the amorphous layer is peeled off from the substrate body, or the substrate body or amorphous layer is cracked or cracked in the carbon nanotube production process. Or In either case, carbon nanotubes having orientation in a certain direction cannot be generated on the substrate.

触媒層は、好ましくは鉄、コバルト、ニッケル及びその合金よりなる群から選ばれる材料からなる。触媒層の厚みは好ましくは0.1〜20nmである。触媒層の形成は、電子ビーム(EB)蒸着法、スパッタリング法、溶液法等によって行ってよい。   The catalyst layer is preferably made of a material selected from the group consisting of iron, cobalt, nickel and alloys thereof. The thickness of the catalyst layer is preferably 0.1 to 20 nm. The catalyst layer may be formed by an electron beam (EB) vapor deposition method, a sputtering method, a solution method, or the like.

触媒層の金属を微粒化するには、好ましくは減圧下または非酸化雰囲気中で好ましくは650〜800℃の温度で触媒層を有する基板を加熱する。これにより、直径1〜50nm程度の触媒微粒子が形成される。   In order to atomize the metal of the catalyst layer, the substrate having the catalyst layer is preferably heated at a temperature of preferably 650 to 800 ° C. under reduced pressure or in a non-oxidizing atmosphere. Thereby, catalyst fine particles having a diameter of about 1 to 50 nm are formed.

次いで、触媒微粒子を核として高温雰囲気で熱CVD法により原料ガスからカーボンナノチューブを成長させる。カーボンナノチューブの原料ガスは、炭素を含有するガスであればいずれのものでもよく、たとえばメタン、エタン、プロパン、ヘキサンなどのアルカン類、エチレン、プロピレンのアルケン類、ベンゼン、トルエンなどの芳香族化合物などがある。とりわけアセチレンガスが好ましい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが触媒微粒子を核として基板上にブラシ状に形成される。搬送ガスも、不活性ガスであればよく、好ましくは窒素ガスが用いられる。カーボンナノチューブの形成温度は、好ましくは650〜800℃である。   Next, carbon nanotubes are grown from the raw material gas by a thermal CVD method in a high temperature atmosphere using the catalyst fine particles as nuclei. The carbon nanotube source gas may be any gas containing carbon, such as alkanes such as methane, ethane, propane and hexane, alkenes of ethylene and propylene, aromatic compounds such as benzene and toluene, etc. There is. In particular, acetylene gas is preferable. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in a brush shape on the substrate with catalyst fine particles as nuclei. The carrier gas may be an inert gas, and preferably nitrogen gas is used. The formation temperature of the carbon nanotube is preferably 650 to 800 ° C.

本発明によれば、基板の表面に非晶質層を形成させることにより、基板は強度的に優れたものとなり、複数回再使用しても、非晶質層および基板本体に剥離や割れが生じることがない。したがって、再利用基板に安定した配向性を有するカーボンナノチューブを生成させることができる。   According to the present invention, by forming an amorphous layer on the surface of the substrate, the substrate becomes excellent in strength, and even if it is reused multiple times, the amorphous layer and the substrate body are not peeled or cracked. It does not occur. Therefore, carbon nanotubes having stable orientation can be generated on the reuse substrate.

熱化学気相蒸着法を示す概略図である。It is the schematic which shows a thermal chemical vapor deposition method.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

実験1〜5(本発明に相当しない比較例)、実験6〜12(本発明に相当する実施例)、実験12〜17(本発明に相当しない比較例)
基板として、窒化ケイ素90重量%に焼結助剤としてアルミナとイットリア又はアルミナとマグネシアを10重量%添加した焼結体(表1中Si34と記す)、または炭化ケイ素95重量%に焼結助剤として炭化ホウ素と炭素5重量%を添加した焼結体(表1中SiCと記す)からなる平板(50×50×2mm)を用い、これらを大気中で表1に示す温度および時間で加熱処理し、基板の表面に厚さ1.5μmの非晶質層を形成させた。
Experiments 1 to 5 (Comparative examples not corresponding to the present invention), Experiments 6 to 12 (Examples corresponding to the present invention), Experiments 12 to 17 (Comparative examples not corresponding to the present invention)
As a substrate, sintered body in which 90% by weight of silicon nitride and 10% by weight of alumina and yttria or alumina and magnesia are added as sintering aids (referred to as Si 3 N 4 in Table 1), or sintered to 95% by weight of silicon carbide. A flat plate (50 × 50 × 2 mm) made of a sintered body (added with SiC in Table 1) to which boron carbide and 5% by weight of carbon are added as a binder is used at temperatures and times shown in Table 1 in the atmosphere. Then, an amorphous layer having a thickness of 1.5 μm was formed on the surface of the substrate.

加熱後の基板の非晶質層表面に電子ビーム(EB)蒸着法を用いて触媒金属である鉄を厚さ5nm程度製膜した。   Iron, which is a catalytic metal, was formed on the amorphous layer surface of the substrate after heating using an electron beam (EB) vapor deposition method to a thickness of about 5 nm.

ついで、触媒層を有する基板を非酸化雰囲気中で温度650〜800℃で加熱し、触媒層の金属を直径1〜50nm程度の触媒微粒子化した。   Next, the substrate having the catalyst layer was heated in a non-oxidizing atmosphere at a temperature of 650 to 800 ° C., and the catalyst layer metal was made into catalyst fine particles having a diameter of about 1 to 50 nm.

得られた触媒微粒子付き基板(4)を図1に示す熱CVD法のための装置(1)においてその反応管(2)内の基台(3)上に置き、基板(4)の触媒微粒子を核としてカーボンナノチューブを生成させた。原料ガスにはアセチレンガスを用い、この搬送ガスとして不活性ガスである窒素ガスを用いた。反応管(2)内の昇温中は管内に窒素ガスを流しておき、熱CVD法数分前に、アセチレンガスおよび窒素ガスを排気ライン側に流し始め、熱CVD法ガス流量の安定化を図った。この後、アセチレンガスおよび窒素ガスを管内へ導入し熱CVD法を行った。これにより、ガスの導入初期での流速の不均一分布や、不純物などが熱CVD法に悪影響を与えないようにした。熱CVD法の条件は、温度725℃、時間15分、ガス流量1000ccmとし、アセチレンガス濃度は2.5%とした。   The obtained catalyst fine particle-attached substrate (4) is placed on the base (3) in the reaction tube (2) in the apparatus (1) for the thermal CVD method shown in FIG. Carbon nanotubes were generated using the as the nucleus. Acetylene gas was used as the source gas, and nitrogen gas, which is an inert gas, was used as the carrier gas. During the temperature rise in the reaction tube (2), nitrogen gas is allowed to flow through the tube, and several minutes before the thermal CVD method, acetylene gas and nitrogen gas begin to flow to the exhaust line side to stabilize the thermal CVD gas flow rate. planned. Thereafter, acetylene gas and nitrogen gas were introduced into the tube, and a thermal CVD method was performed. As a result, the non-uniform distribution of the flow velocity at the initial stage of gas introduction and impurities are prevented from adversely affecting the thermal CVD method. The conditions of the thermal CVD method were a temperature of 725 ° C., a time of 15 minutes, a gas flow rate of 1000 ccm, and an acetylene gas concentration of 2.5%.

得られた結果を表1に示す。表1において、○は基板全面に配向性を有するカーボンナノチューブが生成されたことを意味し、×は配向性を有するカーボンナノチューブが生成しなかったことを意味する。また、加熱後の基板表面層を粉末X線回折を用いて結晶質か非晶質か調べた。その結果、実験6〜14では明確なピークが現れず、非晶質と判断した。実験1〜5のように加熱しない場合や加熱温度が低い場合、加熱時間が短かい場合は、基板材料自身のピークが認められ、結晶質と判断された。実験16〜17のように加熱温度が高すぎるとクリストバライトの明瞭なピークが認められ、同じく結晶質と判断された。なお、実験12のように加熱時間が長過ぎると基板表面に生成した非晶質層が基板表面より剥離し、配向性を有するカーボンナノチューブを生成することができない。   The results obtained are shown in Table 1. In Table 1, ◯ means that carbon nanotubes having orientation were generated on the entire surface of the substrate, and x means that carbon nanotubes having orientation were not generated. In addition, whether the substrate surface layer after heating was crystalline or amorphous was examined using powder X-ray diffraction. As a result, in Experiments 6 to 14, a clear peak did not appear and it was judged to be amorphous. When the heating was not carried out as in Experiments 1 to 5, the heating temperature was low, or the heating time was short, the peak of the substrate material itself was observed and it was judged to be crystalline. When the heating temperature was too high as in Experiments 16 to 17, a clear cristobalite peak was observed, which was also judged to be crystalline. If the heating time is too long as in Experiment 12, the amorphous layer generated on the substrate surface peels off from the substrate surface, and carbon nanotubes having orientation cannot be generated.

実験13〜14は、アルミナ、ジルコニアの表面に非晶質SiO2をコーティングした基板での結果である。この場合、カーボンナノチューブは生成するものの、使用後の基板にはクラックが発生し、元の基板形状を保つことができなかった。よって再度使用することはできないため×とした。 Experiments 13 to 14 are results on a substrate in which amorphous SiO 2 is coated on the surface of alumina or zirconia. In this case, although carbon nanotubes were generated, cracks occurred in the substrate after use, and the original substrate shape could not be maintained. Therefore, since it cannot be used again, it was set as x.

実験15は、石英ガラスでの結果であるが、実験13〜14と同様に使用後の基板にはクラックが発生しており、再使用はできないため×とした。  Experiment 15 is the result with quartz glass. Like the experiments 13 to 14, the substrate after use has cracks and cannot be reused.

一方、実験6〜11では、配向性を有するカーボンナノチューブが生成された。さらに、カーボンナノチューブ生成後の基板について、基板上に残留するカーボンナノチューブ及び金属酸化物を除去後、前記の方法と同じく触媒層の形成および熱CVD法を行うことにより、再度配向性を有するカーボンナノチューブが生成されることが確認できた。   On the other hand, in Experiments 6 to 11, oriented carbon nanotubes were generated. Furthermore, after removing the carbon nanotubes and metal oxides remaining on the substrate after the carbon nanotubes have been generated, the carbon nanotubes having orientation are obtained again by performing the catalyst layer formation and the thermal CVD method in the same manner as described above. Was confirmed to be generated.

表1より、本発明方法により得られた非晶質層を有する基板は、非常に良好な結果が得られていることがわかる。また、熱CVD法実施後の状況においてもクラック等の発生がなく、繰り返し使用が可能であることがわかる。また、基板表面上には非晶質層を有していることが重要であり、前記のとおり温度が所定範囲から外れると、非晶質が形成されなかったり、非晶質が結晶質へ変化するため、配向性を有するカーボンナノチューブは生成しない。


Figure 2010173915
From Table 1, it can be seen that the substrate having an amorphous layer obtained by the method of the present invention has obtained very good results. In addition, it can be seen that cracks and the like are not generated even in the situation after the thermal CVD method is performed, and that repeated use is possible. In addition, it is important to have an amorphous layer on the surface of the substrate. As described above, when the temperature is out of the predetermined range, the amorphous is not formed or the amorphous is changed to crystalline. Therefore, carbon nanotubes having orientation are not generated.


Figure 2010173915

CNT:カーボンナノチューブ     CNT: Carbon nanotube

(1) 熱CVD法のための装置
(2) 反応管
(3) 基台
(4) 触媒微粒子付き基板
(1) Equipment for thermal CVD
(2) Reaction tube
(3) Base
(4) Substrate with catalyst fine particles

特開2003−286017号公報JP 2003-286017 A 特開2007−70137号公報JP 2007-70137 A

Claims (4)

ケイ素を含む非酸化物材料を主成分とする基板を大気中で500℃〜1000℃の温度で1〜50時間加熱し、前記基板の表面に非晶質層を形成させる工程と、
前記非晶質層の上に触媒金属を含む触媒層を形成する工程と、
前記触媒層の金属を微粒化する工程と、
前記微粒子を触媒として、カーボンナノチューブを形成することを特徴とする、
カーボンナノチューブの生成方法。
A step of heating a substrate mainly composed of a non-oxide material containing silicon in the atmosphere at a temperature of 500 ° C. to 1000 ° C. for 1 to 50 hours to form an amorphous layer on the surface of the substrate;
Forming a catalyst layer containing a catalyst metal on the amorphous layer;
Atomizing the metal of the catalyst layer;
A carbon nanotube is formed using the fine particles as a catalyst,
A method for producing carbon nanotubes.
前記ケイ素を含む非酸化物材料が窒化ケイ素(Si34)または炭化ケイ素(SiC)であることを特徴とする
請求項1記載のカーボンナノチューブの生成方法。
The method for producing carbon nanotubes according to claim 1, wherein the non-oxide material containing silicon is silicon nitride (Si 3 N 4 ) or silicon carbide (SiC).
ケイ素を含む非酸化物材料を主成分とする基板を大気中で500℃〜1000℃の温度で1〜50時間加熱し、前記基板の表面に非晶質層を形成させることを特徴とする、カーボンナノチューブ生成用の基板の製造方法。   A substrate mainly composed of a non-oxide material containing silicon is heated in the atmosphere at a temperature of 500 ° C. to 1000 ° C. for 1 to 50 hours to form an amorphous layer on the surface of the substrate, A method for producing a substrate for producing carbon nanotubes. 前記ケイ素を含む非酸化物材料が窒化ケイ素(Si34)または炭化ケイ素(SiC)であることを特徴とする
請求項3記載のカーボンナノチューブ生成用の基板の製造方法。
The method for producing a substrate for producing carbon nanotubes according to claim 3, wherein the non-oxide material containing silicon is silicon nitride (Si 3 N 4 ) or silicon carbide (SiC).
JP2009020402A 2009-01-30 2009-01-30 Method for producing carbon nanotube Pending JP2010173915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020402A JP2010173915A (en) 2009-01-30 2009-01-30 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020402A JP2010173915A (en) 2009-01-30 2009-01-30 Method for producing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2010173915A true JP2010173915A (en) 2010-08-12

Family

ID=42705241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020402A Pending JP2010173915A (en) 2009-01-30 2009-01-30 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2010173915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212084A (en) * 2015-05-07 2015-11-26 ニッタ株式会社 Fe FINE PARTICLE HOLDING STRUCTURE, CNT, CATALYST FOR PRODUCING CNT, CNT MANUFACTURING METHOD AND MANUFACTURING METHOD OF Fe FINE PARTICLE HOLDING STRUCTURE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284852A (en) * 2003-03-20 2004-10-14 Toshiba Corp Method of producing carbon nanotube, method of producing semiconductor device using carbon nanotube, and apparatus for producing carbon nanotube
JP2007015890A (en) * 2005-07-07 2007-01-25 Univ Nagoya Substrate for carbon nanotube formation, its manufacturing method, and carbon nanotube
JP2007284336A (en) * 2006-03-20 2007-11-01 Tokyo Univ Of Science Method for growing carbon nanotube and method for manufacturing carbon nanotube structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004284852A (en) * 2003-03-20 2004-10-14 Toshiba Corp Method of producing carbon nanotube, method of producing semiconductor device using carbon nanotube, and apparatus for producing carbon nanotube
JP2007015890A (en) * 2005-07-07 2007-01-25 Univ Nagoya Substrate for carbon nanotube formation, its manufacturing method, and carbon nanotube
JP2007284336A (en) * 2006-03-20 2007-11-01 Tokyo Univ Of Science Method for growing carbon nanotube and method for manufacturing carbon nanotube structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212084A (en) * 2015-05-07 2015-11-26 ニッタ株式会社 Fe FINE PARTICLE HOLDING STRUCTURE, CNT, CATALYST FOR PRODUCING CNT, CNT MANUFACTURING METHOD AND MANUFACTURING METHOD OF Fe FINE PARTICLE HOLDING STRUCTURE

Similar Documents

Publication Publication Date Title
JP5737547B2 (en) Method for producing silicon carbide-coated graphite particles and silicon carbide-coated graphite particles
JP6656620B2 (en) Carbon nanotube coated member and method of manufacturing the same
JP5419027B2 (en) Thin film production method and apparatus using microplasma method
JP2002338221A (en) Method for producing orienting carbon nanotube membrane
JP2003510462A (en) Method of forming nanotube layer on substrate
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
JPH11317282A (en) Molybdenum disilicide composite ceramic heating element and its manufacture
JP2008201648A (en) Carbon nanotube production apparatus and carbon nanotube production method
JP2010173915A (en) Method for producing carbon nanotube
JP2005075720A (en) SiC-COATED CARBON NANOTUBE, MANUFACTURING METHOD THEREFOR AND COMPOSITE MATERIAL THEREOF
JP2009119414A (en) Substrate for cnt (carbon nanotube) growth and method of manufacturing cnt
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP2006298684A (en) Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element
JPS62167886A (en) Composite body having carbon film
JP4455895B2 (en) Method for producing vapor-deposited ceramic coating material
JP2005112659A (en) Apparatus and method for manufacturing carbon nanotube
JP2003277031A (en) Method for manufacturing carbon nanotube
JP4028274B2 (en) Corrosion resistant material
JP5448708B2 (en) Carbon nanotube substrate
JP2009137805A (en) Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown
JP5183439B2 (en) Method for producing carbon nanotubes
JP2009298610A (en) Method for producing silicon carbide tube
JP2007320810A (en) Method and apparatus for producing carbon nanotube
JP3925884B2 (en) Method for coating SiC film
JP2006128064A (en) Method of manufacturing carbon nanotube using catalyst, method of manufacturing field emission electron source, field emission electron source and field emission display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806