JP5183439B2 - Method for producing carbon nanotubes - Google Patents

Method for producing carbon nanotubes Download PDF

Info

Publication number
JP5183439B2
JP5183439B2 JP2008299033A JP2008299033A JP5183439B2 JP 5183439 B2 JP5183439 B2 JP 5183439B2 JP 2008299033 A JP2008299033 A JP 2008299033A JP 2008299033 A JP2008299033 A JP 2008299033A JP 5183439 B2 JP5183439 B2 JP 5183439B2
Authority
JP
Japan
Prior art keywords
substrate
carbon nanotubes
underlayer
weight
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008299033A
Other languages
Japanese (ja)
Other versions
JP2010126368A (en
Inventor
健司 水田
友紀 西良
智也 山下
研次 吉川
淳 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2008299033A priority Critical patent/JP5183439B2/en
Publication of JP2010126368A publication Critical patent/JP2010126368A/en
Application granted granted Critical
Publication of JP5183439B2 publication Critical patent/JP5183439B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、製品が安価で、生産性が高い、カーボンナノチューブの生成方法に関する。   The present invention relates to a method for producing carbon nanotubes, which is inexpensive and has high productivity.

カーボンナノチューブは、熱化学気相蒸着法(以下、熱CVD法と呼ぶ)を始め、種々の方法にて生成することが可能であり、電子放出源、電極、触媒等、様々な製品への応用研究がなされている。   Carbon nanotubes can be produced by various methods including thermal chemical vapor deposition (hereinafter referred to as thermal CVD method), and applied to various products such as electron emission sources, electrodes, and catalysts. Research has been done.

カーボンナノチューブの生成方法について、一般的な熱CVD法によるカーボンナノチューブ生成を例に説明すると、まず基板上にFe等の金属薄膜からなる触媒層を形成し、この触媒層付きの基板をCVD装置内に導いて500〜800℃で加熱するとともに、アセチレンガス等の原料ガスを供給することで、触媒層上にカーボンナノチューブが生成される(例えば、特許文献1、2参照)。
特開2003−286017号公報 特開2008−137831号公報
The method for producing carbon nanotubes will be described by taking an example of carbon nanotube production by a general thermal CVD method. First, a catalyst layer made of a metal thin film such as Fe is formed on a substrate, and the substrate with the catalyst layer is placed in the CVD apparatus. In addition to heating at 500 to 800 ° C. and supplying a source gas such as acetylene gas, carbon nanotubes are generated on the catalyst layer (see, for example, Patent Documents 1 and 2).
JP 2003-286017 A JP 2008-137831 A

通常のカーボンナノチューブの生成に用いる基板は、石英ガラスやシリカアルミナを材料とするものである。基板の材料は、熱CVD法の場合、600〜800℃の高温下に晒されるため、耐熱性をもったものに限られているからである。   A substrate used for production of normal carbon nanotubes is made of quartz glass or silica alumina. This is because the substrate material is limited to a material having heat resistance because it is exposed to a high temperature of 600 to 800 ° C. in the case of the thermal CVD method.

一方、カーボンナノチューブを大量生産するには、カーボンナノチューブは安価で生産性が高い方法で生産されることが求められる。また、基板上に生成されたカーボンナノチューブをそのまま電子放出源や電極等に適用する場合、基板は導電性材料からなることが望ましい。   On the other hand, in order to mass-produce carbon nanotubes, carbon nanotubes are required to be produced by a method that is inexpensive and highly productive. In addition, when the carbon nanotube generated on the substrate is applied as it is to an electron emission source, an electrode, or the like, the substrate is preferably made of a conductive material.

しかし、従来から用いられているシリコンあるいは石英やアルミナからなる耐熱性の基板は、比較的高価であり、また所定容量の熱CVD装置により一度に生成できるカーボンナノチューブ量は制約され、そのため大量生産には不利であった。   However, conventional heat-resistant substrates made of silicon, quartz, or alumina are relatively expensive, and the amount of carbon nanotubes that can be generated at one time by a predetermined volume of thermal CVD equipment is limited, so that mass production is possible. Was disadvantageous.

本発明は、上記の点に鑑み、安価で生産性が高い、カーボンナノチューブの生成方法を提供することを課題とする。   In view of the above points, an object of the present invention is to provide a carbon nanotube production method that is inexpensive and has high productivity.

本発明は、
基板上に下地層を形成する工程と、
前記下地層上に触媒金属を含む触媒層を形成する工程と、
前記触媒層の金属を微粒化する工程と、
前記触媒粒子を核として熱化学気相蒸着法によりカーボンナノチューブを生成させる工程と
からなるカーボンナノチューブの生成方法において、
前記基板がSiOを70重量%以上、Alを15重量%以上を含み、かつ、SiOとAlとの合計が90重量%以上であり、
前記下地層がSiOを40重量%以上、BaOを2〜40重量%含む
ことを特徴とするカーボンナノチューブの生成方法である。
The present invention
Forming a base layer on the substrate;
Forming a catalyst layer containing a catalyst metal on the underlayer;
Atomizing the metal of the catalyst layer;
In the method for producing carbon nanotubes comprising the step of producing carbon nanotubes by thermal chemical vapor deposition using the catalyst particles as nuclei,
Wherein the substrate of SiO 2 70% by weight or more, the Al 2 O 3 contains more than 15 wt%, and is the sum of SiO 2 and Al 2 O 3 is 90 wt% or more,
The method for producing carbon nanotubes is characterized in that the underlayer contains 40% by weight or more of SiO 2 and 2 to 40% by weight of BaO.

以下、各工程について詳しく説明をする。   Hereinafter, each step will be described in detail.

基板の表面に下地層を形成する工程では、下地層の成分を含む液をスプレーにより基板表面に噴霧し、形成された噴霧層を乾燥し、加熱するのが好ましい。それ以外の方法として、下地層の成分を含む液を刷毛で基板に塗布した後、形成された塗布層を乾燥し、加熱してもよい。加熱温度は好ましくは900〜1300℃である。   In the step of forming the underlayer on the surface of the substrate, it is preferable to spray a liquid containing the components of the underlayer onto the substrate surface by spraying, dry the formed spray layer, and heat. As another method, after the liquid containing the component of the base layer is applied to the substrate with a brush, the formed application layer may be dried and heated. The heating temperature is preferably 900 to 1300 ° C.

基板は、SiOを70重量%以上、好ましくは70〜75重量%含み、Alを15重量%以上、好ましくは15〜20重量%を含み、かつ、SiOとAlとの合計が90重量%以上、好ましくは90〜95重量%である。下地層は、SiOを40重量%以上、好ましくは40〜50重量%含み、BaOを2〜40重量%、好ましくは5〜40重量%含む。下地層の厚みは、好ましくは10〜500μmである。基板の材料としては、セラミック平板、例えば平板タイル、平板陶磁器等であってよいが、価格の点で平板タイルが好ましい。 The substrate contains 70% by weight or more of SiO 2 , preferably 70 to 75% by weight, 15% by weight or more of Al 2 O 3 , preferably 15 to 20% by weight, and SiO 2 and Al 2 O 3 Is 90% by weight or more, preferably 90 to 95% by weight. The underlayer contains 40% by weight or more of SiO 2 , preferably 40 to 50% by weight, and 2 to 40% by weight, preferably 5 to 40% by weight of BaO. The thickness of the underlayer is preferably 10 to 500 μm. The material of the substrate may be a ceramic flat plate, for example, a flat tile, a flat ceramic, or the like, but a flat tile is preferable in terms of cost.

下地層の上に触媒金属を含む触媒層を形成する工程では、触媒金属を蒸着させる方法が一般的である。その他の方法として、触媒金属の化合物を含む液を超音波振動によりまたは超音波を伴ったスプレーにより基板表面に噴霧し、形成された噴霧層を加熱する方法、触媒金属の化合物を含む液をスプレーや刷毛で基板に塗布した後、プラズマ照射または加熱する方法、同触媒をクラスター銃で打ち付け、乾燥させ、必要であれば加熱する方法、金属を化学蒸着させる方法、金属を基板に電子ビーム蒸着し、その後この塗膜または蒸着膜を加熱する方法等が採用できる。触媒金属は、鉄、コバルト、ニッケルなどであり、例えば鉄カルボニル錯体(ペンタカルボニル鉄等)のような錯体の形態、金属アルコキシド(Fe(OEt)等)の形態等をとることができる。金属錯体や金属アルコキシドは溶液で供給されてもよい。溶媒はアセトン、アルコール等であってよい。溶液中の金属錯体や金属アルコキシドの濃度は例えば1〜5重量%であってよい。触媒膜の厚みは、厚過ぎると加熱による金属粒子化が困難になるので、好ましくは1〜100nmである。 In the step of forming the catalyst layer containing the catalyst metal on the underlayer, a method of depositing the catalyst metal is common. Other methods include spraying a liquid containing a catalyst metal compound onto the substrate surface by ultrasonic vibration or spraying with ultrasonic waves, heating the formed spray layer, and spraying a liquid containing the catalyst metal compound. After applying to the substrate with brush or brush, plasma irradiation or heating, hitting the catalyst with a cluster gun and drying, heating if necessary, method of chemical vapor deposition of metal, electron beam deposition of metal on the substrate Thereafter, a method of heating the coating film or the deposited film can be employed. The catalyst metal is iron, cobalt, nickel, and the like, and can take the form of a complex such as an iron carbonyl complex (pentacarbonyliron or the like), a metal alkoxide (Fe (OEt) 3 or the like), or the like. The metal complex or metal alkoxide may be supplied in a solution. The solvent may be acetone, alcohol or the like. The concentration of the metal complex or metal alkoxide in the solution may be, for example, 1 to 5% by weight. If the thickness of the catalyst film is too thick, it becomes difficult to form metal particles by heating, and is preferably 1 to 100 nm.

触媒層の金属を微粒化する工程では、好ましくは減圧下または非酸化雰囲気中で好ましくは650〜800℃で触媒層を加熱すると、直径1〜50nm程度の金属触媒粒子が形成される。   In the step of atomizing the metal of the catalyst layer, metal catalyst particles having a diameter of about 1 to 50 nm are formed by heating the catalyst layer preferably at 650 to 800 ° C. in a reduced pressure or non-oxidizing atmosphere.

触媒粒子を核として熱CVD法によりカーボンナノチューブを生成させる工程では、原料ガスは通常はアセチレン(C)ガスであるが、メタンガス、エタンガスのような他の脂肪族炭化水素ガスであってもよい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが基板表面にブラシ毛状に形成される。原料ガスはヘリウムやアルゴン、キセノンのような不活性ガスで希釈された状態で原料ガス供給管を経て反応ゾーンに供給してもよい。ガス供給は連続的に行っても断続的に行ってもよい。熱CVD法の操作条件は、好ましくは、大気圧下で、温度650〜800℃、時間1〜10分である。 In the process of generating carbon nanotubes by the thermal CVD method using catalyst particles as nuclei, the raw material gas is usually acetylene (C 2 H 2 ) gas, but other aliphatic hydrocarbon gas such as methane gas or ethane gas. Also good. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in the shape of brush hairs on the substrate surface. The source gas may be supplied to the reaction zone through a source gas supply pipe in a state diluted with an inert gas such as helium, argon or xenon. The gas supply may be performed continuously or intermittently. The operating conditions of the thermal CVD method are preferably a temperature of 650 to 800 ° C. and a time of 1 to 10 minutes under atmospheric pressure.

カーボンナノチューブの長さは好ましくは1〜10μm、直径は好ましくは20〜30nm、カーボンナノチューブ相互間の間隔は好ましくは100〜150nmである。   The length of the carbon nanotube is preferably 1 to 10 μm, the diameter is preferably 20 to 30 nm, and the distance between the carbon nanotubes is preferably 100 to 150 nm.

本発明の方法によれば、安価にかつ高い生産性で均一な配向性のカーボンナノチューブを生成することができる。   According to the method of the present invention, carbon nanotubes with uniform orientation can be produced at low cost with high productivity.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

実施例1
SiOを74重量%含み、Alを18重量%含み、その他の成分がFe、KO、NaO、CaO、MgO、LiOなどである50×5mmの平板タイルを用意した。この平板タイルの表面にSiOを42重量%含み、BaOを2重量%含む釉薬をスプレーで塗布して、1000℃で加熱処理し、厚さ100μmの下地層を形成した。
Example 1
50 × 5 mm flat plate containing 74 wt% of SiO 2 , 18 wt% of Al 2 O 3 , and other components such as Fe 2 O 3 , K 2 O, Na 2 O, CaO, MgO, Li 2 O Tiles were prepared. A glaze containing 42% by weight of SiO 2 and 2% by weight of BaO was applied on the surface of the flat tile by spraying, followed by heat treatment at 1000 ° C. to form a base layer having a thickness of 100 μm.

次いで、この基板の下地層の表面にFeを蒸着させ、Feからなる触媒層を形成し、さらにこれを700℃で加熱して触媒層の金属を微粒化した。こうして形成された層構造を図2に示す。図2中、(2)は平板タイルからなる基板、(3)は基板上に形成された下地層、(4)は下地層の上に形成された触媒層である。   Next, Fe was vapor-deposited on the surface of the base layer of the substrate to form a catalyst layer made of Fe, and further heated at 700 ° C. to atomize the metal of the catalyst layer. The layer structure thus formed is shown in FIG. In FIG. 2, (2) is a substrate made of flat tiles, (3) is a base layer formed on the substrate, and (4) is a catalyst layer formed on the base layer.

次いで、触媒粒子を有する基板を、熱CVD法を行う装置(図1参照)に装入し、触媒粒子を核として熱CVD法によりカーボンナノチューブを生成させた。図1中、(1)は反応管、(2)は下地層上に触媒粒子を有する基板である。下地層を有する基板(2)を反応管(1)にその一端から導入し他端から排出する。反応管(1)内において、不活性ガスで希釈したアセチレン気流中にて、下地層上に触媒粒子を有する基板(2)を、700℃の温度で15分間処理した。   Next, the substrate having the catalyst particles was loaded into an apparatus for performing a thermal CVD method (see FIG. 1), and carbon nanotubes were generated by the thermal CVD method using the catalyst particles as nuclei. In FIG. 1, (1) is a reaction tube, and (2) is a substrate having catalyst particles on an underlayer. A substrate (2) having an underlayer is introduced into one end of the reaction tube (1) and discharged from the other end. In the reaction tube (1), the substrate (2) having catalyst particles on the underlayer was treated at a temperature of 700 ° C. for 15 minutes in an acetylene gas stream diluted with an inert gas.

こうして、触媒粒子を核として熱CVD法により基板の下地層上に生成させたカーボンナノチューブのSEM像を、図3に示す。このSEM像から明らかなように、カーボンナノチューブは基板の下地層の全面にわたって均一な配向性で生成された。   FIG. 3 shows an SEM image of the carbon nanotubes thus produced on the base layer of the substrate by the thermal CVD method using the catalyst particles as nuclei. As is apparent from this SEM image, the carbon nanotubes were generated with a uniform orientation over the entire surface of the substrate underlayer.

実施例2,3
下地層を形成するための釉薬として、SiOを42重量%含み、BaOを4.5重量%または35重量%含むものを用いた以外、実施例1と同じ操作を行い、触媒粒子を核として熱CVD法により基板の下地層上にカーボンナノチューブを生成させた。これらのカーボンナノチューブのSEM像も、基板の下地層の全面にわたって均一な配向性で生成された。
Examples 2 and 3
The same operation as in Example 1 was performed except that the glaze for forming the underlayer contained SiO 2 in an amount of 42% by weight and BaO in an amount of 4.5% by weight or 35% by weight. Carbon nanotubes were generated on the substrate underlayer by thermal CVD. SEM images of these carbon nanotubes were also generated with uniform orientation over the entire surface of the substrate underlayer.

比較例1〜6
基板となる平板タイルとして、その主成分SiOおよびAlの割合が表1に示すものを用い、下地層となる釉薬として、その主成分SiOおよびBaOの割合が表1に示すものを用いた以外、実施例1と同じ操作を行い、触媒粒子を核として熱CVD法により基板の下地層上にカーボンナノチューブを生成させた。比較例4では釉薬の塗布を行わなかった以外、実施例1と同じ操作を行った。比較例1のカーボンナノチューブのSEM像を、図4に示す。このSEM像から明らかなように、カーボンナノチューブは基板の下地層に部分的にかつ不均一な配向性でしか生成しなかった。比較例6では平板タイルはSiOを多く含み多く石英ガラスに近くなるため、基板自体の割れが影響し、カーボンナノチューブは生成しなかった。
Comparative Examples 1-6
As the flat tile used as the substrate, the ratio of the main components SiO 2 and Al 2 O 3 is as shown in Table 1, and as the glaze as the underlayer, the ratio of the main components SiO 2 and BaO is as shown in Table 1. The same operation as in Example 1 was performed except that the carbon nanotubes were formed on the underlayer of the substrate by thermal CVD using the catalyst particles as nuclei. In Comparative Example 4, the same operation as in Example 1 was performed except that no glaze was applied. An SEM image of the carbon nanotube of Comparative Example 1 is shown in FIG. As is apparent from this SEM image, the carbon nanotubes were generated only partially and in a non-uniform orientation in the underlayer of the substrate. In Comparative Example 6, since the flat tile contains a large amount of SiO 2 and is close to quartz glass, cracking of the substrate itself has an effect, and carbon nanotubes were not generated.

実施例および比較例で用いた、平板タイルを構成する主成分SiOおよびAlの割合、下地層となる釉薬の主成分SiOおよびBaOの割合、並びに生成したカーボンナノチューブの評価結果を表1にまとめて示す。
The ratio of the main components SiO 2 and Al 2 O 3 constituting the flat tile, the ratio of the main components SiO 2 and BaO of the glaze used as the underlayer, and the evaluation results of the generated carbon nanotubes used in the examples and comparative examples are shown. Table 1 summarizes the results.

評価基準
○:カーボンナノチューブが基板の下地層の全面に生成している
×:カーボンナノチューブが基板の下地層に部分的にしかまたは全く生成しなかった
Evaluation criteria ○: Carbon nanotubes are generated on the entire surface of the substrate underlayer ×: Carbon nanotubes are generated only partially or not on the substrate underlayer

熱CVD法を行う装置を概略的に示す垂直断面図である。It is a vertical sectional view which shows roughly the apparatus which performs a thermal CVD method. 層構造を示す垂直断面図である。It is a vertical sectional view showing a layer structure. 実施例1で生成させたカーボンナノチューブのSEM像SEM image of carbon nanotubes produced in Example 1 比較例1で生成させたカーボンナノチューブのSEM像SEM image of the carbon nanotube produced in Comparative Example 1

符号の説明Explanation of symbols

(1) 反応管
(2) 平板タイルからなる基板
(3) 基板上に形成された下地層
(4) 下地層の上に形成された触媒層
(1) Reaction tube
(2) Substrate made of flat tile
(3) Underlayer formed on the substrate
(4) Catalyst layer formed on the underlayer

Claims (1)

基板上に下地層を形成する工程と、
前記下地層上に触媒金属を含む触媒層を形成する工程と、
前記触媒層の金属を微粒化する工程と、
前記触媒粒子を核として熱化学気相蒸着法によりカーボンナノチューブを生成させる工程と
からなるカーボンナノチューブの生成方法において、
前記基板がSiOを70重量%以上、Alを15重量%以上を含み、かつ、SiOとAlとの合計が90重量%以上であり、
前記下地層がSiOを40重量%以上、BaOを2〜40重量%含む
ことを特徴とするカーボンナノチューブの生成方法。
Forming a base layer on the substrate;
Forming a catalyst layer containing a catalyst metal on the underlayer;
Atomizing the metal of the catalyst layer;
In the method for producing carbon nanotubes comprising the step of producing carbon nanotubes by thermal chemical vapor deposition using the catalyst particles as nuclei,
Wherein the substrate of SiO 2 70% by weight or more, the Al 2 O 3 contains more than 15 wt%, and is the sum of SiO 2 and Al 2 O 3 is 90 wt% or more,
The method for producing carbon nanotubes, wherein the underlayer contains 40% by weight or more of SiO 2 and 2 to 40% by weight of BaO.
JP2008299033A 2008-11-25 2008-11-25 Method for producing carbon nanotubes Expired - Fee Related JP5183439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299033A JP5183439B2 (en) 2008-11-25 2008-11-25 Method for producing carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299033A JP5183439B2 (en) 2008-11-25 2008-11-25 Method for producing carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2010126368A JP2010126368A (en) 2010-06-10
JP5183439B2 true JP5183439B2 (en) 2013-04-17

Family

ID=42327008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299033A Expired - Fee Related JP5183439B2 (en) 2008-11-25 2008-11-25 Method for producing carbon nanotubes

Country Status (1)

Country Link
JP (1) JP5183439B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978345B2 (en) * 2015-05-07 2016-08-24 ニッタ株式会社 Fe fine particle holding structure, catalyst for generating CNT, CNT manufacturing method, and manufacturing method of Fe fine particle holding structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830254B2 (en) * 1978-08-14 1983-06-28 日本フエロ−株式会社 enamel frit
JP3412804B2 (en) * 1996-12-26 2003-06-03 Hoya株式会社 Information recording medium substrate
JP2004284919A (en) * 2003-03-25 2004-10-14 Mitsubishi Electric Corp Method of producing substrate for forming carbon nanotube, and method of producing carbon nanotube using the substrate
JP5222456B2 (en) * 2005-09-05 2013-06-26 日立造船株式会社 Carbon nanotube production method and three-layer structure used therefor

Also Published As

Publication number Publication date
JP2010126368A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP3912583B2 (en) Method for producing oriented carbon nanotube film
JP6656620B2 (en) Carbon nanotube coated member and method of manufacturing the same
JP5419027B2 (en) Thin film production method and apparatus using microplasma method
JP2002338221A5 (en)
EP1686092A1 (en) Method for producing nanostructured carbon material, nanostructured carbon material produced by such method, and substrate having such nanostructured carbon material
TW200535274A (en) Growth of carbon nanotubes at low temperature
JP2006111517A (en) Apparatus and method for manufacturing carbon nanotube
Vilatela et al. A spray pyrolysis method to grow carbon nanotubes on carbon fibres, steel and ceramic bricks
JP5183439B2 (en) Method for producing carbon nanotubes
Yamamoto et al. Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed-corona plasma
JP3372751B2 (en) Field electron emission device and method of manufacturing the same
JP5246938B2 (en) Carbon nanotube growth substrate, transistor, and method of manufacturing carbon nanotube growth substrate
JP5500850B2 (en) Method for producing carbon nanotube
JP4829634B2 (en) Method for forming catalyst and method for producing carbon film using the same
JP6311391B2 (en) Method for producing recycled substrate and method for producing catalyst substrate for carbon nanotube production
TW202126836A (en) Method and apparatus for forming a plasma resistant coating, component, and plasma processing apparatus
JP6376009B2 (en) Method for producing reused substrate, method for producing catalyst substrate for producing carbon nanotubes, and method for producing carbon nanotubes
JP5448708B2 (en) Carbon nanotube substrate
JP2013155067A (en) Substrate for generating carbon nanotube, and method for generating carbon nanotube using the same
JP2010173915A (en) Method for producing carbon nanotube
JP2015189612A (en) Production method of reused substrate, and production method of catalyst substrate for producing carbon nanotube
TWI408246B (en) Manufacturing method for branched carbon nanotubes
JP6171805B2 (en) Method for producing carbon nanostructure
JP2006062924A (en) Method for controlling density in formation of carbon nanotube
TW200912026A (en) Method for manufacturing carbon nanotubes and method for forming carbon particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees