JP2009137805A - Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown - Google Patents

Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown Download PDF

Info

Publication number
JP2009137805A
JP2009137805A JP2007317738A JP2007317738A JP2009137805A JP 2009137805 A JP2009137805 A JP 2009137805A JP 2007317738 A JP2007317738 A JP 2007317738A JP 2007317738 A JP2007317738 A JP 2007317738A JP 2009137805 A JP2009137805 A JP 2009137805A
Authority
JP
Japan
Prior art keywords
gas
substrate
carbon nanotube
cnt
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007317738A
Other languages
Japanese (ja)
Inventor
Minao Nakano
美尚 中野
Hirohiko Murakami
村上  裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2007317738A priority Critical patent/JP2009137805A/en
Publication of JP2009137805A publication Critical patent/JP2009137805A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for producing a carbon nanotube excellent in adhesion to a substrate, and a substrate obtained by growing such carbon nanotubes with good adhesion. <P>SOLUTION: The carbon nanotube is produced on a substrate using at least two hydrocarbon gases different in decomposition temperature as raw material gas for carbon nanotube production. The substrate is obtained by growing carbon nanotubes (CNT) which are thus produced and whose bottom parts including joints or whose entire surfaces including the bottom parts are covered with a carbon thin film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カーボンナノチューブ(以下、CNTと称す)の作製方法及びCNTを成長させた基板、特に基板との密着性の高いCNTの作製方法及びCNTを密着性良く成長させた基板に関する。   The present invention relates to a method for producing carbon nanotubes (hereinafter referred to as CNT), a substrate on which CNTs are grown, particularly a method for producing CNTs having high adhesion to the substrates, and a substrate on which CNTs are grown with good adhesion.

CNTの作製方法には、従来から種々の方法が提案されている。CNTの作製方法として、基板上にCNTを垂直配向させ、かつ密集成長させた、いわゆるブラシ状CNTについては、種々の成長方法や、基板技術や、触媒調製方法等が報告されている。しかし、いずれの場合も、成長したCNTが基板表面から容易に剥がれてしまうという共通の問題点がある。CNTの基板への密着性は非常に弱く、CNTがエアブローで容易に剥離してしまったり、エアブローで剥離しなくても、CNTが何かに接触して負荷がかかると剥離してしまうという問題がある。密着性が弱いために、成長させたCNTに負荷がかかる用途には使用できない。   Various methods for producing CNTs have been proposed. As a method for producing CNTs, various growth methods, substrate technologies, catalyst preparation methods, and the like have been reported for so-called brush-like CNTs in which CNTs are vertically aligned and densely grown on a substrate. However, in any case, there is a common problem that the grown CNT easily peels off from the substrate surface. The adhesion of CNTs to the substrate is very weak, and the CNTs can be easily peeled off by air blow, or even if they are not peeled off by air blow, they will peel off if they come into contact with something and a load is applied. There is. Since the adhesion is weak, it cannot be used for applications in which the grown CNT is loaded.

CNTの密着性を改良することを目的とするCNT作製方法が知られている(例えば、特許文献1参照)。この作製方法は、基板上にCNT成長温度より高い融点を有する金属の膜を形成し、この金属膜の上に触媒を設け、次いでCNTを成長せしめた後に、金属膜を溶融させてCNTの下端部分を溶融金属で被覆して固定する方法である。これにより、CNTと基板との密着性が向上し、CNTに触れた程度では剥がれず、さらに強めの衝撃にも密着性が損なわれず、基板に固定されたCNTが作製される。この場合、CNT成長後に溶融工程を行うので、プロセス工程が増えるという問題がある。   A CNT manufacturing method for improving the adhesion of CNTs is known (for example, see Patent Document 1). In this production method, a metal film having a melting point higher than the CNT growth temperature is formed on a substrate, a catalyst is provided on the metal film, and then the CNT is grown, and then the metal film is melted to melt the lower end of the CNT. In this method, the portion is covered with a molten metal and fixed. As a result, the adhesion between the CNT and the substrate is improved, and the CNT fixed to the substrate is produced without being peeled off to the extent that the CNT is touched and without being damaged even by a strong impact. In this case, since the melting step is performed after CNT growth, there is a problem that the number of process steps increases.

また、流動気相CVD法により極細単層CNTからなる炭素繊維集合体を製造する際に、2種類の分解温度の異なる炭素源を、所定の割合で用いることによりCNTの直径を制御することが知られている(例えば、特許文献2参照)。この製造方法では、第一の炭素源として、芳香族炭化水素、脂環式炭化水素、長鎖脂肪族炭化水素を用い、第二の炭素源として、不飽和脂肪族炭化水素を用いて、直径の制御された(2.0nm未満)CNTからなる炭素繊維集合体を製造しているに過ぎず、基板上にCNTを密着性良く成長せしめるものではない。   In addition, when producing a carbon fiber aggregate composed of ultrafine single-walled CNTs by a fluidized gas phase CVD method, the diameter of the CNTs can be controlled by using two types of carbon sources having different decomposition temperatures at a predetermined ratio. It is known (see, for example, Patent Document 2). In this production method, an aromatic hydrocarbon, an alicyclic hydrocarbon, or a long-chain aliphatic hydrocarbon is used as the first carbon source, and an unsaturated aliphatic hydrocarbon is used as the second carbon source. The carbon fiber aggregates made of CNTs with controlled CNTs (less than 2.0 nm) are merely produced, and the CNTs are not grown on the substrate with good adhesion.

特開2007−76925号公報(特許請求の範囲)JP 2007-76925 A (Claims) 特開2006−213590号公報(特許請求の範囲、段落0012及び0013)JP 2006-213590 A (Claims, paragraphs 0012 and 0013)

本発明の課題は、上述の従来技術の問題点を解決することにあり、基板との密着性に優れたCNTの簡便な作製方法及びこの作製方法によりCNTを密着性良く成長せしめてなる基板を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and a simple method for producing CNTs having excellent adhesion to a substrate and a substrate in which CNTs are grown with good adhesion by this production method. It is to provide.

本発明のCNTの作製方法は、基板上にCNTを作製する方法において、CNT作製用原料ガスとして、分解温度の異なる少なくとも二種類の炭化水素ガスを好ましくは混合して使用することを特徴とする。   The method for producing CNTs of the present invention is characterized in that, in the method for producing CNTs on a substrate, at least two types of hydrocarbon gases having different decomposition temperatures are preferably used as a raw material gas for producing CNTs. .

本発明によれば、上記したように、原料ガスとして分解温度の異なる少なくとも二種類の炭化水素ガスを混合して使用することによって、CNTの成長とカーボン薄膜との形成が起こり、作製したCNTと基板との接合箇所を含めた根本部分又は根本部分を含めた全表面が原料ガス由来のカーボン薄膜で覆われ、その結果、基板に対するCNTの密着性が顕著に向上する。使用する炭化水素ガスが1種類の場合、作製したCNTの表面、根本部分をカーボン薄膜で覆うことは難しい。この場合、CNT成長温度よりも高温にすることで、DLC(ダイアモンド様カーボン)等のカーボン膜になる可能性はあるが、何らかの工夫を加えなければ、通常はアモルファスカーボンとして粉末の堆積物になってしまう。   According to the present invention, as described above, by using a mixture of at least two types of hydrocarbon gases having different decomposition temperatures as a raw material gas, growth of CNT and formation of a carbon thin film occur. The base portion including the joint portion with the substrate or the entire surface including the root portion is covered with the carbon thin film derived from the source gas, and as a result, the adhesion of the CNTs to the substrate is significantly improved. When one type of hydrocarbon gas is used, it is difficult to cover the surface and the base portion of the produced CNT with a carbon thin film. In this case, there is a possibility that it becomes a carbon film such as DLC (diamond-like carbon) by setting the temperature higher than the CNT growth temperature. However, unless some contrivance is added, it usually becomes a powder deposit as amorphous carbon. End up.

上記CNT作製方法において、分解温度の異なる少なくとも二種類の炭化水素ガスが分解温度の異なる二種類の炭化水素ガスからなり、低温分解ガスにアセチレン及び高温分解ガスにエチレン若しくはメタン、又は低温分解ガスにエチレン及び高温分解ガスにメタンを使用することを特徴とする。   In the CNT manufacturing method, at least two types of hydrocarbon gases having different decomposition temperatures are composed of two types of hydrocarbon gases having different decomposition temperatures, acetylene as a low temperature decomposition gas, ethylene or methane as a high temperature decomposition gas, or as a low temperature decomposition gas. It is characterized by using methane for ethylene and hot cracked gas.

上記分解温度の異なる少なくとも二種類の炭化水素ガスが分解温度の異なる二種類の炭化水素ガスからなり、低温分解ガスの使用量が、流量(sccm)基準で、高温分解ガスの使用量の0.01〜20%であることが好ましい。その使用量が0.01%未満であると、十分なCNTの密着性が得られず、また、使用量が20%を超えると、アモルファスカーボンが生じてしまう。この範囲内の割合で分解温度の異なる二種類のガスを使用すれば、基板上にCNTが密着性良く成長する。   The at least two types of hydrocarbon gases having different cracking temperatures are composed of two types of hydrocarbon gases having different cracking temperatures, and the amount of the low-temperature cracked gas used is 0.0% of the amount of the hot cracked gas used on the basis of the flow rate (sccm). It is preferable that it is 01 to 20%. If the amount used is less than 0.01%, sufficient adhesion of CNTs cannot be obtained, and if the amount used exceeds 20%, amorphous carbon is produced. If two kinds of gases having different decomposition temperatures at a rate within this range are used, CNTs grow on the substrate with good adhesion.

上記炭化水素ガスが、N、Ar、He、H、及びNHから選ばれた少なくとも一種類のガスで希釈されていることが好ましい。 The hydrocarbon gas is preferably diluted with at least one gas selected from N 2 , Ar, He, H 2 , and NH 3 .

上記CNTを、熱CVD法、プラズマCVD法、又は触媒を利用したリモートプラズマCVD法のようなCVD法を用いて作製することが好ましい。   It is preferable to produce the CNTs using a CVD method such as a thermal CVD method, a plasma CVD method, or a remote plasma CVD method using a catalyst.

また、本発明のCNTが成長した基板は、上記作製方法により作製された、接合箇所を含めた根本部分又は根本部分を含めた全表面がカーボン薄膜で覆われたCNTを成長させてなる基板である。   In addition, the substrate on which the CNT of the present invention has grown is a substrate formed by the above-described manufacturing method, and is a substrate formed by growing a CNT with a carbon thin film covered on the entire surface including the joint portion or the entire surface including the joint portion. is there.

本発明によれば、基板との密着性の良いCNTを作製することができると共に、CNTが密着性良く成長した基板を提供できるという効果を奏する。   According to the present invention, it is possible to produce CNTs having good adhesion to a substrate and to provide a substrate on which CNTs are grown with good adhesion.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本発明のCNTの作製方法の一実施の形態によれば、基板上に、例えばスパッタリング法又はEB蒸着法により、金属膜、窒化物膜、及び酸化物膜(例えば、Al、Ti、TiN、及びAl膜等)を形成し、次いでスパッタリング法、EB蒸着法、アークプラズマ蒸着法等により、この金属膜上にCNT成長用触媒を成膜して触媒付き基板を得、かくして得られた基板上に、分解温度の異なる少なくとも二種類のCNT作製用原料ガスである炭化水素ガスの混合ガスを供給し、例えば、Fe触媒を使用した場合、低温分解ガスとしてアセチレン(分解温度:600〜750℃)、高温分解ガスとしてエチレン(分解温度:750〜850℃)若しくはメタン(分解温度:850〜950℃)、又は低温分解ガスとしてエチレン、高温分解ガスとしてメタンを供給し、好ましくは、低温分解ガスを、その使用量が、流量基準で、高温分解ガスの使用量の0.01〜20%となるような割合で供給し、所定の温度及び圧力で基板上にCNTを作製する。この場合、上記炭化水素ガスとして、N、Ar、He、H、及びNHから選ばれた少なくとも一種類のガスで希釈されている炭化水素ガスを用いても良い。 According to an embodiment of the CNT manufacturing method of the present invention, a metal film, a nitride film, and an oxide film (for example, Al, Ti, TiN, and the like) are formed on a substrate by, for example, a sputtering method or an EB deposition method. forming an al 2 O 3 film, etc.), then sputtering, EB evaporation, by arc plasma deposition method and the like, to obtain a catalyst-coated substrate by forming a CNT growth catalyst on the metal film, thus obtained When a mixed gas of hydrocarbon gas, which is at least two kinds of raw material gases for producing CNTs having different decomposition temperatures, is supplied onto a substrate, for example, when an Fe catalyst is used, acetylene (decomposition temperature: 600 to 750) is used as a low temperature decomposition gas. ° C), ethylene as the high temperature cracking gas (decomposition temperature: 750-850 ° C) or methane (cracking temperature: 850-950 ° C), or ethylene as the low temperature cracking gas, high temperature Methane is supplied as a degassing gas, preferably a low-temperature cracked gas is supplied at a rate such that the amount used is 0.01 to 20% of the amount used of the high-temperature cracked gas based on the flow rate, and a predetermined temperature. And CNTs on the substrate with pressure. In this case, as the hydrocarbon gas, a hydrocarbon gas diluted with at least one gas selected from N 2 , Ar, He, H 2 , and NH 3 may be used.

基板としては、例えばシリコン、石英、サファイヤ、金属(例えば、Ti、Cr、SiC、AlN等)からなる基板を使用できる。Fe、Co、Ni、或いはSUS(ステンレス)等から選ばれた少なくともどれか一つを含む金属基板なら、これらの金属等が触媒となるので、触媒成膜は必要ない。そのほかのAlやTi等の場合はバッファ層だけとなる。   As the substrate, for example, a substrate made of silicon, quartz, sapphire, metal (for example, Ti, Cr, SiC, AlN, etc.) can be used. In the case of a metal substrate including at least one selected from Fe, Co, Ni, SUS (stainless steel) or the like, these metals and the like serve as a catalyst, and thus no catalyst film formation is necessary. In the case of other Al or Ti, only the buffer layer is provided.

触媒としては、公知のCNT成長用触媒であれば制限なく使用でき、例えばCo、Ni、及びFeから選ばれたいずれか一種、又はこれらの金属の少なくとも一種を含む合金(例えば、Ni−Fe合金(アンバー)、ステンレス等)を使用できる。   As the catalyst, any known CNT growth catalyst can be used without limitation. For example, any one selected from Co, Ni, and Fe, or an alloy containing at least one of these metals (for example, a Ni-Fe alloy). (Amber), stainless steel, etc.) can be used.

分解温度の異なる少なくとも二種類のCNT作製用原料ガスである炭化水素ガスとしては、アセチレンやエチレン等の不飽和炭化水素ガス、メタン等の飽和炭化水素ガス、及びメタノール(分解温度:750℃)やエタノール(分解温度:700℃)等のアルコールを、分解温度に差ができるように適宜組み合わせて使用できる。この場合、炭化水素同士を分解温度に差が出るように適宜組み合わせ、アルコール同士を分解温度に差が出るように適宜組み合わせ、或いは炭化水素とアルコールとを分解温度に差が出るように適宜組み合わせて使用すれば良い。また、三種類以上の炭化水素ガスを用いる場合も、上記分解温度の異なる二種類の炭化水素ガスの場合と同様に、分解温度が相互に異なる炭化水素ガスを適宜選択して組み合わせれば良い。   The hydrocarbon gas that is at least two kinds of raw material gases for producing CNTs having different decomposition temperatures includes unsaturated hydrocarbon gases such as acetylene and ethylene, saturated hydrocarbon gases such as methane, and methanol (decomposition temperature: 750 ° C.) Alcohols such as ethanol (decomposition temperature: 700 ° C.) can be used in appropriate combination so that the decomposition temperature can be varied. In this case, the hydrocarbons are appropriately combined so that the decomposition temperatures differ, the alcohols are appropriately combined so that the decomposition temperatures differ, or the hydrocarbons and alcohols are appropriately combined so that the decomposition temperatures differ. Use it. Also, when three or more kinds of hydrocarbon gases are used, as in the case of the two kinds of hydrocarbon gases having different decomposition temperatures, hydrocarbon gases having different decomposition temperatures may be appropriately selected and combined.

本発明では、例えば、アセチレンとエチレン、アセチレンとメタン、エチレンとメタンとを組み合わせて使用することが好ましい。   In the present invention, for example, acetylene and ethylene, acetylene and methane, or ethylene and methane are preferably used in combination.

低温分解ガスを、その使用量が、流量基準で、高温分解ガスの使用量の0.01〜20%となるような割合で基板上に供給してCNTを作製する際に、上記炭化水素ガスとして、N、Ar、He、H、及びNHから選ばれた少なくとも一種類のガスで希釈されている炭化水素ガスを用いる場合、低温分解ガスの使用量と高温分解ガスの使用量との割合を、希釈ガスの希釈割合により適宜変動せしめることが好ましい。例えば、流量基準で、低温分解ガスとしてのアセチレン:1〜10sccmに対し、高温分解ガスとしてのエチレン:500〜1000sccmを混合して使用する場合、N等の希釈ガス:50〜1000sccmで希釈することが好ましい。 When the CNT is produced by supplying the low-temperature cracked gas onto the substrate at a rate such that the amount used is 0.01 to 20% of the amount of the high-temperature cracked gas used on the basis of the flow rate, When using a hydrocarbon gas diluted with at least one gas selected from N 2 , Ar, He, H 2 , and NH 3 , the use amount of the low-temperature cracking gas and the use amount of the high-temperature cracking gas It is preferable to appropriately vary the ratio according to the dilution ratio of the dilution gas. For example, when using acetylene: 1 to 10 sccm as a low-temperature decomposition gas and ethylene: 500 to 1000 sccm as a high-temperature decomposition gas on a flow basis, dilute with a diluent gas such as N 2 : 50 to 1000 sccm. It is preferable.

CNT作製方法としては、既知のCVD法であれば特に制限なく使用でき、例えば、熱CVD法、プラズマCVD法、又は触媒を利用したリモートプラズマCVD法等によるCVD法を用いることができる。熱CVD法、又はリモートプラズマCVD法を用いることが好ましく、特に密着性の高いCNTを作製するには熱CVD法がより好ましい。このリモートプラズマCVD法とは、プラズマ中で原料ガスをイオン種やラジカル種に分解し、この分解されて得られた原料ガス中のイオン種を取り除いて、ラジカル種を原料としてCNT成長を行う方法である。上記CVD法によりCNTを作製するためのプロセス条件は、特に制限されず、公知のプロセス条件であれば良い。   As a CNT manufacturing method, any known CVD method can be used without particular limitation. For example, a CVD method such as a thermal CVD method, a plasma CVD method, or a remote plasma CVD method using a catalyst can be used. The thermal CVD method or the remote plasma CVD method is preferably used, and the thermal CVD method is more preferable for producing CNTs having particularly high adhesion. This remote plasma CVD method is a method in which source gas is decomposed into ion species and radical species in plasma, and ion species in the source gas obtained by the decomposition are removed, and CNT growth is performed using radical species as a raw material. It is. The process conditions for producing CNTs by the CVD method are not particularly limited, and may be known process conditions.

本発明のCNT作製方法は、上記したように、CNTを成長できる公知のプロセス条件で実施できる。この場合、最低でも低温分解ガスのみでCNTを成長できるように、バッファ層と触媒層の種類と膜厚の組み合わせを適宜選択する必要があり、好ましくは高温分解ガスでもCNTを成長できることが良い。低温分解ガスによるCNT成長温度(600〜750℃)と高温分解ガスによるCNT成長温度(750〜950℃)との間の温度でCNT成長を行う。この場合、好ましくは、高温分解ガスによるCNT成長温度より10℃〜100℃低いことが良い。10℃未満であると、アモルファスカーボンが生成しやすくなり、100℃を超えると、密着性が十分に得られない。また、CNTの成長時間は高温分解ガスによるCNT成長時間にあわせるようにすることが好ましい。   As described above, the CNT production method of the present invention can be carried out under known process conditions capable of growing CNTs. In this case, it is necessary to appropriately select a combination of the type and film thickness of the buffer layer and the catalyst layer so that the CNT can be grown only with the low-temperature decomposition gas, and preferably the CNT can be grown with the high-temperature decomposition gas. CNT growth is performed at a temperature between the CNT growth temperature (600 to 750 ° C.) using the low temperature decomposition gas and the CNT growth temperature (750 to 950 ° C.) using the high temperature decomposition gas. In this case, the temperature is preferably lower by 10 ° C. to 100 ° C. than the CNT growth temperature by the high-temperature decomposition gas. When the temperature is less than 10 ° C., amorphous carbon is easily generated, and when the temperature exceeds 100 ° C., sufficient adhesion cannot be obtained. The CNT growth time is preferably matched to the CNT growth time by the high-temperature decomposition gas.

本発明によれば、上記したように、分解温度の異なる少なくとも二種類の炭化水素ガスを混合して使用することによって、CNT成長とカーボン薄膜との形成が起こり、作製したCNTと基板との接合箇所を含めた根本部分又は根本部分を含めた全表面が原料ガス由来のカーボン薄膜で覆われる。このように根本部分を覆う場合は、低温(例えば、750〜800℃)で成長させる場合やエチレン量が少ない場合、また、全体を覆う場合は、高温(例えば、800〜900℃)で成長させた場合やエチレン量がアセチレンに対して多い場合である。アセチレンとエチレンとを使用する場合は、高温分解ガスのエチレンが、覆うカーボンを作製する。   According to the present invention, as described above, by using a mixture of at least two types of hydrocarbon gases having different decomposition temperatures, CNT growth and carbon thin film formation occur, and the produced CNT is bonded to the substrate. The root portion including the portion or the entire surface including the root portion is covered with the carbon thin film derived from the source gas. Thus, when covering the root part, when growing at a low temperature (for example, 750 to 800 ° C.), when the amount of ethylene is small, or when covering the whole, it is grown at a high temperature (for example, 800 to 900 ° C.). Or the amount of ethylene is larger than that of acetylene. In the case of using acetylene and ethylene, carbon which is covered with ethylene of a high-temperature decomposition gas is produced.

希釈ガスの使用量に関しては、炭化水素ガスの種類及び使用量やその他のプロセス条件により異なるが、例えば、アセチレン:10sccm、エチレン:1000sccmの場合、一般にNガスを500sccmにしても密着性の良いCNTが得られるが、300sccmにすると、アモルファスカーボンが堆積しやすくなる。Nガス量が多くなるにつれて、CNTの長さが短くなっていき、多くしすぎるとCNTは成長しなくなる。これは、CNT成長のための炭素供給量が炭化水素ガスの分圧に依存しているためである。例えば、アセチレンとNとの反応の場合、アセチレンに対してNガスを増やしていくと、アセチレン:10sccm、Nガス:2000sccmではCNTは成長しない。 The amount of dilution gas used varies depending on the type and amount of hydrocarbon gas used and other process conditions. For example, in the case of acetylene: 10 sccm and ethylene: 1000 sccm, generally N 2 gas is set to 500 sccm, and adhesion is good. CNT can be obtained, but when it is 300 sccm, amorphous carbon is easily deposited. As the amount of N 2 gas increases, the length of the CNTs decreases. If the amount of N 2 gas is excessive, the CNTs do not grow. This is because the carbon supply amount for CNT growth depends on the partial pressure of the hydrocarbon gas. For example, in the case of a reaction between acetylene and N 2 , if N 2 gas is increased with respect to acetylene, CNT does not grow at acetylene: 10 sccm and N 2 gas: 2000 sccm.

以下に実施例を挙げて、本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples.

成膜室にシリコン基板を載置し、スパッタリング法により、シリコン基板上にバッファ層としてのAl膜を20nmの厚みに形成し、このAl膜上に触媒としてアンバー合金を成膜した。次いで、成膜室内に1atmの圧力下、Nガス:1000sccmを導入し、上記のようにして得られた触媒付き基板を800℃まで昇温せしめた。この圧力及び温度を維持したまま、成膜室内にアセチレン:10sccm及びエチレン:1000sccmを導入してCNTの成長を開始した。20分間成長を続けた後、成膜室内を排気し、降温せしめ、基板を取り出した。かくして得られたCNTが成長した基板の断面SEM写真を図1に示す。 A silicon substrate was placed in the deposition chamber, and an Al film as a buffer layer was formed to a thickness of 20 nm on the silicon substrate by sputtering, and an amber alloy was formed as a catalyst on the Al film. Next, N 2 gas: 1000 sccm was introduced into the film formation chamber under a pressure of 1 atm, and the substrate with catalyst obtained as described above was heated to 800 ° C. While maintaining this pressure and temperature, acetylene: 10 sccm and ethylene: 1000 sccm were introduced into the deposition chamber to start the growth of CNTs. After continuing the growth for 20 minutes, the film formation chamber was evacuated, the temperature was lowered, and the substrate was taken out. A cross-sectional SEM photograph of the substrate on which the CNT thus obtained has grown is shown in FIG.

図1から明らかなように、基板上に、100μm程度の長さを持ち、垂直に密集して配向しているブラシ状CNTが作製されていた。このCNTは、手で触れても基板から剥がれることもなく、また、CNTに市販の粘着テープを貼って、引っ張った程度では剥がれることもなかった。このCNTは、目視では黒色をしているが、サンプルステージが銀色になっており、DLC(ダイアモンド様カーボン)からなるカーボン薄膜がステージ部分に形成されていることが確認できた。このサンプルステージは、石英の板の上にSiCが載っており、その上に基板が載せられる。石英やSiCにカーボン膜が生成していることからCNTにもカーボン膜が生成しているものと判断する。また、触媒膜があると、低温でDLC等のカーボン膜ができるため、ステージ等よりは容易にCNTの根本部分の触媒がある部分がカーボン膜で覆われる。   As is apparent from FIG. 1, brush-like CNTs having a length of about 100 μm and densely aligned vertically were produced on the substrate. The CNTs were not peeled off from the substrate even when they were touched by hand. Also, the CNTs were not peeled off when a commercially available adhesive tape was applied to the CNTs and pulled. Although this CNT is visually black, the sample stage is silver, and it was confirmed that a carbon thin film made of DLC (diamond-like carbon) was formed on the stage portion. In this sample stage, SiC is placed on a quartz plate, and a substrate is placed thereon. Since a carbon film is formed on quartz or SiC, it is determined that a carbon film is also formed on CNT. In addition, since a carbon film such as DLC can be formed at a low temperature when the catalyst film is present, a part having the catalyst at the base part of CNT is more easily covered with the carbon film than a stage or the like.

実施例1におけるNガス、アセチレン、及びエチレンの量を、以下のように変えて、実施例1のCNT成長プロセスを繰り返した。
(1)Nガス:1000sccm、アセチレン:0.1sccm、及びエチレン:1000sccmのように、アセチレンをエチレンの0.01%とした場合、成長したCNTの密着性は、実施例1の場合の密着性と比べて若干劣るものの、通常より十分に高く、CNTに触れても基板から剥がれなかった。
The CNT growth process of Example 1 was repeated with the amounts of N 2 gas, acetylene, and ethylene in Example 1 changed as follows.
(1) When N 2 gas: 1000 sccm, acetylene: 0.1 sccm, and ethylene: 1000 sccm, when acetylene is 0.01% of ethylene, the adhesion of the grown CNT is the same as in Example 1. Although it was slightly inferior to the properties, it was sufficiently higher than usual, and even if it touched CNT, it did not peel from the substrate.

(2)Nガス:1000sccm、アセチレン:1sccm、及びエチレン:1000sccmのように、アセチレンをエチレンの0.1%とした場合、成長したCNTの密着性は、実施例1の場合の密着性と同程度であった。 (2) When acetylene is 0.1% of ethylene, such as N 2 gas: 1000 sccm, acetylene: 1 sccm, and ethylene: 1000 sccm, the adhesion of the grown CNT is the same as that of Example 1 It was about the same.

(3)Nガス:1000sccm、アセチレン:200sccm、及びエチレン:1000sccmのように、アセチレンをエチレンの20%とした場合、成長したCNTの密着性は、実施例1の場合の密着性と同程度であった。 (3) When acetylene is 20% of ethylene, such as N 2 gas: 1000 sccm, acetylene: 200 sccm, and ethylene: 1000 sccm, the adhesion of the grown CNT is about the same as that in Example 1 Met.

以上から、低温分解ガスの使用量が、流量基準で、高温分解ガスの使用量の0.01〜20%である場合に、高い密着性が得られたことが分かる。   From the above, it can be seen that high adhesion was obtained when the amount of low-temperature cracked gas used was 0.01 to 20% of the amount of high-temperature cracked gas used on a flow rate basis.

実施例1において、触媒としてNiを成膜し、成膜室内にアセチレン:0.1、1、100、200sccmを導入したことを除いて実施例1記載のプロセスを繰り返して、CNTを作製した。かくして得られたCNTの成長した基板の断面SEM写真から、図1と同様に、基板上に100μm程度の長さを持ち、垂直に密集して配向しているブラシ状CNTが作製されていたことが確認できた。このCNTは、実施例1の場合と同様に、手で触れても基板から剥がれることもなく、また、CNTに市販の粘着テープを貼って、引っ張った程度では剥がれることもなかった。また、実施例1と同様に、カーボン薄膜がステージ部分に形成されていることが確認できた。   In Example 1, Ni was formed as a catalyst, and CNTs were produced by repeating the process described in Example 1 except that acetylene: 0.1, 1, 100, and 200 sccm were introduced into the film formation chamber. From the cross-sectional SEM photograph of the CNT-grown substrate thus obtained, a brush-like CNT having a length of about 100 μm and vertically densely aligned was produced on the substrate, as in FIG. Was confirmed. As in Example 1, this CNT was not peeled off from the substrate even when it was touched by hand, and it was not peeled off when a commercially available adhesive tape was applied to the CNT and pulled. Further, as in Example 1, it was confirmed that the carbon thin film was formed on the stage portion.

実施例1におけるNガス、アセチレン、及びエチレンの代わりに、Nガス:2000sscm、アセチレン:10sccm、エチレン:500sccm、及びメタン:5500sccmを用いて、実施例1のCNT成長プロセスを繰り返した。但し、850℃で20分成長せしめた。 The CNT growth process of Example 1 was repeated using N 2 gas: 2000 sscm, acetylene: 10 sccm, ethylene: 500 sccm, and methane: 5500 sccm instead of N 2 gas, acetylene, and ethylene in Example 1. However, it was grown at 850 ° C. for 20 minutes.

かくして得られたCNTは十分密着性が高かった。但し、三種類のガスを使用する場合は、その使用量のバランスが難しく、アセチレンを50sccmにすると、アモルファスカーボンが堆積し、アセチレンを1sccmにすると、得られたCNTの密着性は劣り、基板から容易に剥がれてしまう。
(比較例1)
The CNT thus obtained had sufficiently high adhesion. However, when using three kinds of gases, it is difficult to balance the amount of use, and when acetylene is 50 sccm, amorphous carbon is deposited, and when acetylene is 1 sccm, the adhesion of the obtained CNT is inferior. It easily peels off.
(Comparative Example 1)

成膜室内にアセチレンのみ又はエチレンのみを導入したことを除いて、実施例1記載のプロセスを繰り返して、CNTを作製した。得られたCNTに対して手で触れたところ、両者とも、容易に基板から剥がれた。
(比較例2)
CNTs were produced by repeating the process described in Example 1 except that only acetylene or ethylene was introduced into the film formation chamber. When the obtained CNT was touched by hand, both were easily peeled off from the substrate.
(Comparative Example 2)

実施例1におけるNガス、アセチレン、及びエチレンの代わりに、(1)Nガス:1000sscm、アセチレン:0.1sccm、及びエチレン:2000sccmのように、アセチレンをエチレンの0.005%としたガス、また、(2)Nガス:1000sscm、アセチレン:300sccm、及びエチレン:1000sccmのように、アセチレンをエチレンの30%としたガスを用いて、実施例1のCNT成長プロセスを繰り返した。 Instead of N 2 gas, acetylene, and ethylene in Example 1, (1) N 2 gas: 1000 sscm, acetylene: 0.1 sccm, and ethylene: 2000 sccm, a gas in which acetylene is 0.005% of ethylene In addition, the CNT growth process of Example 1 was repeated using a gas in which acetylene was 30% of ethylene, such as (2) N 2 gas: 1000 sscm, acetylene: 300 sccm, and ethylene: 1000 sccm.

かくして得られたCNTは、上記(1)の場合、手で触れたところ、容易に基板から剥がれ、また、上記(2)の場合、密着性は良く、手で触れても基板から剥がれなかったが、CNT上にアモルファスカーボンが堆積していた。このアモルファスカーボンが堆積している状態の基板の断面SEM写真を図2に示す。   The CNT thus obtained was easily peeled off from the substrate when touched by hand in the case of (1), and in the case of (2), the adhesion was good and did not peel from the substrate even when touched by hand. However, amorphous carbon was deposited on the CNT. A cross-sectional SEM photograph of the substrate on which the amorphous carbon is deposited is shown in FIG.

本発明によれば、ブラシ状に密集して垂直に配向成長したCNTは基板から剥離し難いいので、半導体装置分野や、CNTが物理的に接触するような分野、例えばウェハートランスファーの滑り止めや、水路の内壁保護や接触抵抗の低減用等の分野で利用可能である。   According to the present invention, CNTs that are densely packed in a brush shape and vertically oriented and grown are difficult to peel off from the substrate. Therefore, in the field of semiconductor devices, fields where CNTs physically contact, for example, anti-slip of wafer transfer, It can be used in fields such as protecting the inner walls of waterways and reducing contact resistance.

実施例1で得られたCNTが成長した基板の断面SEM写真。The cross-sectional SEM photograph of the board | substrate with which CNT obtained in Example 1 grew. 比較例2で得られたCNTが成長した基板の断面SEM写真。The cross-sectional SEM photograph of the board | substrate with which CNT obtained by the comparative example 2 grew.

Claims (6)

基板上にカーボンナノチューブを作製する方法において、カーボンナノチューブ作製用原料ガスとして、分解温度の異なる少なくとも二種類の炭化水素ガスを使用することを特徴とするカーボンナノチューブの作製方法。 In the method for producing carbon nanotubes on a substrate, at least two types of hydrocarbon gases having different decomposition temperatures are used as a raw material gas for producing carbon nanotubes. 前記分解温度の異なる少なくとも二種類の炭化水素ガスが分解温度の異なる二種類の炭化水素ガスからなり、低温分解ガスにアセチレン及び高温分解ガスにエチレン若しくはメタン、又は低温分解ガスにエチレン及び高温分解ガスにメタンを使用することを特徴とする請求項1記載のカーボンナノチューブの作製方法。 The at least two types of hydrocarbon gases having different cracking temperatures are composed of two types of hydrocarbon gases having different cracking temperatures, acetylene as the low temperature cracking gas and ethylene or methane as the high temperature cracking gas, or ethylene and the high temperature cracking gas as the low temperature cracking gas. The method for producing a carbon nanotube according to claim 1, wherein methane is used for the carbon nanotube. 前記分解温度の異なる少なくとも二種類の炭化水素ガスが分解温度の異なる二種類の炭化水素ガスからなり、低温分解ガスの使用量が、流量基準で、高温分解ガスの使用量の0.01〜20%であることを特徴とする請求項1又は2記載のカーボンナノチューブの作製方法。 The at least two kinds of hydrocarbon gases having different cracking temperatures are composed of two kinds of hydrocarbon gases having different cracking temperatures, and the usage amount of the low temperature cracking gas is 0.01 to 20 of the usage amount of the high temperature cracking gas on the basis of the flow rate. The carbon nanotube production method according to claim 1, wherein the carbon nanotube production method is a percentage. 前記炭化水素ガスが、N、Ar、He、H、及びNHから選ばれた少なくとも一種類のガスで希釈されていることを特徴とする請求項1〜3のいずれかに記載のカーボンナノチューブの作製方法。 The hydrocarbon gas, N 2, Ar, He, carbon according to any one of claims 1 to 3, characterized in that it is diluted with at least one kind of gas selected from H 2, and NH 3 Nanotube fabrication method. 前記カーボンナノチューブを、熱CVD法、プラズマCVD法、又は触媒を利用したリモートプラズマCVD法のようなCVD法を用いて作製することを特徴とする請求項1〜4のいずれかに記載のカーボンナノチューブの作製方法。 5. The carbon nanotube according to claim 1, wherein the carbon nanotube is produced using a CVD method such as a thermal CVD method, a plasma CVD method, or a remote plasma CVD method using a catalyst. Manufacturing method. 請求項1〜5のいずれかに記載の作製方法により作製された、接合箇所を含めた根本部分又は該根本部分を含めた全表面がカーボン薄膜で覆われたカーボンナノチューブを成長させた基板。 A substrate on which a carbon nanotube, which is produced by the production method according to any one of claims 1 to 5, including a bonded portion or a carbon nanotube in which an entire surface including the basic portion is covered with a carbon thin film, is grown.
JP2007317738A 2007-12-07 2007-12-07 Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown Pending JP2009137805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317738A JP2009137805A (en) 2007-12-07 2007-12-07 Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317738A JP2009137805A (en) 2007-12-07 2007-12-07 Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown

Publications (1)

Publication Number Publication Date
JP2009137805A true JP2009137805A (en) 2009-06-25

Family

ID=40868835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317738A Pending JP2009137805A (en) 2007-12-07 2007-12-07 Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown

Country Status (1)

Country Link
JP (1) JP2009137805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093812A (en) * 2013-11-13 2015-05-18 東京エレクトロン株式会社 Carbon nano-tube production method and wiring formation method
KR101981675B1 (en) 2017-12-11 2019-05-24 한국과학기술연구원 Apparatus for manufacturing CNT and Method of manufacturing CNT using the same
KR102012429B1 (en) 2018-02-09 2019-11-04 한국과학기술연구원 Carbon nanotube fiber having improved mechanical and electrical properties and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361599A (en) * 2001-06-07 2002-12-18 Sony Corp Carbon nanotube structure and its manufacturing method, cold cathod field electron emitting element and its manufacturing method, and cold cathod field electron emission displaying device and its manufacturing method
JP2007299697A (en) * 2006-05-02 2007-11-15 Kochi Univ Of Technology Electron emission element and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361599A (en) * 2001-06-07 2002-12-18 Sony Corp Carbon nanotube structure and its manufacturing method, cold cathod field electron emitting element and its manufacturing method, and cold cathod field electron emission displaying device and its manufacturing method
JP2007299697A (en) * 2006-05-02 2007-11-15 Kochi Univ Of Technology Electron emission element and its manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012031547; KIM W, et al.: 'Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes.' Nano Lett Vol.2, No.7, 200207, p.703-708 *
JPN6012031548; STEINER,S.A. et al: 'Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes' Langmuir Vol.23, No.9, 20070424, p.5161-5166 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093812A (en) * 2013-11-13 2015-05-18 東京エレクトロン株式会社 Carbon nano-tube production method and wiring formation method
WO2015072254A1 (en) * 2013-11-13 2015-05-21 東京エレクトロン株式会社 Process for producing carbon nanotubes and method for forming wiring
US20160251757A1 (en) * 2013-11-13 2016-09-01 Tokyo Electron Limited Process for producing carbon nanotubes and method for forming wiring
US10378104B2 (en) 2013-11-13 2019-08-13 Tokyo Electron Limited Process for producing carbon nanotubes and method for forming wiring
KR101981675B1 (en) 2017-12-11 2019-05-24 한국과학기술연구원 Apparatus for manufacturing CNT and Method of manufacturing CNT using the same
KR102012429B1 (en) 2018-02-09 2019-11-04 한국과학기술연구원 Carbon nanotube fiber having improved mechanical and electrical properties and method of manufacturing the same

Similar Documents

Publication Publication Date Title
EP1061041A1 (en) Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
JP2009286688A (en) Method of manufacturing carbon nanotube film
JP4684053B2 (en) Method for producing carbon nanotube and method for fixing the same
JP2004176132A (en) Nanodiamond film, and production method therefor
JP2007182374A (en) Method for manufacturing single-walled carbon nanotube
JP2009137805A (en) Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown
CN109119327A (en) The method of epitaxial growth aluminium nitride on nano-patterned sapphire substrate
CN109081332A (en) Graphene nano graphical sapphire substrate and preparation method thereof
CN110804731B (en) Mn grown by atomic layer deposition technologyxN film method
JP2011132068A (en) Method of manufacturing carbon nanotube
Tzeng et al. Graphene induced diamond nucleation on tungsten
JP5002187B2 (en) Carbon nanocoil growth method
TWI551717B (en) Method for manufacturing diamond-like carbon film
JP2007254167A (en) Method for production of carbon nanotube
US20090039055A1 (en) Method For Making An Aligned Carbon Nanotube
JP4907017B2 (en) Method for producing carbon nanotube film body
JP2009190953A (en) Method for manufacturing semiconductor substrate and semiconductor substrate manufactured by the same
JP2007284311A (en) Manufacturing method of carbon nano-material
Handuja et al. Growth of long aligned carbon nanotubes on amorphous hydrogenated silicon nitride by thermal chemical vapor deposition
JPH0656585A (en) Coating method of diamond film
JPH05209276A (en) Manufacture of diamond coated member
JP4988234B2 (en) Method for growing single-walled carbon nanotubes
TW201903187A (en) Method for fabricating carbon nanotube array
JP5471269B2 (en) Manufacturing method of carbon nanotube device
JP2009190916A (en) SiC SUBSTRATE AND VAPOR PHASE DEPOSITION METHOD OF SiC SUBSTRATE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121003