JP3925884B2 - Method for coating SiC film - Google Patents

Method for coating SiC film Download PDF

Info

Publication number
JP3925884B2
JP3925884B2 JP30993198A JP30993198A JP3925884B2 JP 3925884 B2 JP3925884 B2 JP 3925884B2 JP 30993198 A JP30993198 A JP 30993198A JP 30993198 A JP30993198 A JP 30993198A JP 3925884 B2 JP3925884 B2 JP 3925884B2
Authority
JP
Japan
Prior art keywords
sic
base material
cvd
sic film
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30993198A
Other languages
Japanese (ja)
Other versions
JP2000129444A (en
Inventor
祥一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP30993198A priority Critical patent/JP3925884B2/en
Publication of JP2000129444A publication Critical patent/JP2000129444A/en
Application granted granted Critical
Publication of JP3925884B2 publication Critical patent/JP3925884B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、黒鉛材やC/C複合材(炭素繊維強化炭素複合材)などの炭素材あるいはSiCやSi3 4 などのセラミック材を基材として、その表面にCVD法によりSiC被膜を効率よく被覆することのできるSiC被膜の被覆方法に関する。
【0002】
【従来の技術】
半導体製造用の熱処理治具、例えばサセプター、ライナーチューブ、プロセスチューブ、ウエハーボートなどには高純度でシリコンウエハーを汚染しない非汚染性に加えて、吸熱、急冷に対する耐熱衝撃性に優れ、化学的に安定で耐蝕性が高いことが必要とされる。これらの熱処理治具としてはSiC基材の表面にCVD法(化学的気相蒸着法)によりSiC被膜を被着したものが有用(特開昭54−90966 号公報、同63−35452 号公報など)されている。
【0003】
また、加熱装置のヒータ、例えば半導体製造用の各種装置のヒータには非汚染性の高純度のSiC発熱体が有用されており、特公昭59−23072号公報には再結晶SiC体の表面にCVD法により厚さ10μ以上の緻密質SiC膜を形成した炭化珪素発熱体が開示されている。
【0004】
また、炭素材は耐酸化性が充分でなく、例えばC/C複合材は大気中においては500℃付近から酸化されるという難点があり、炭素材に耐酸化性を付与するために炭素材の表面に酸化抵抗性の大きな被覆層を形成して耐酸化性を向上させる方法が古くから行われている。その1手段として炭素材の表面にCVD法によりSiC被膜を形成する方法が開発されている。
【0005】
これらのCVD法によるSiC被膜の形成は、1分子中にSi原子とC原子とを含む、例えばCH3 SiCl3 、(CH3 3 SiCl、CH3 SiHCl2 などの有機珪素化合物を水素ガスなどのキャリアガスとともに加熱して還元熱分解させる方法、あるいはSiCl4 などの珪素化合物とCH4 などの炭素化合物とを加熱反応させてSiCを析出させる方法、などで行われる。
【0006】
【発明が解決しようとする課題】
このCVD法によるSiC被膜の形成は、CVD反応装置の反応管内に基材をセットして、上記の原料ガスを送入し、所定の温度に加熱して熱分解反応によりSiCを析出して、被膜を形成するものである。この場合、基材は先端の尖った複数本の支柱である基材ホルダーによって支持され反応管内にセットされる。そのために、基材ホルダーが当接する基材面にはSiC被膜が形成されず、被覆処理の途中でCVD反応を一旦中断して基材を移動し、当接点を変更する必要が生じる。したがって、SiC被膜は前記した基材と基材ホルダーの接点部分が熱衝撃などの衝撃時に発生する亀裂の起点となり易く、また作業が煩雑化する問題点がある。
【0007】
この問題点を解消するために、本出願人は中央部に貫通孔を有するカーボン基材の全面にCVD法により他物質の被膜を形成するにあたり、カーボン基材をその貫通孔の直径より小さな断面積を有する回転支持杆に懸架することにより、反応過程を通じてカーボン基材の支持接点を連続的に移動することを特徴とするカーボン基材面への被膜形成方法(特公平5−33305 号公報)を提案した。しかしながら、前記した発明は基材の形状として中央部に貫通穴または空間を有するものに限定される問題がある。
【0008】
本発明は、上記とは別異の観点から研究し、簡便な手法によりCVD法によるSiC被膜を被覆処理することのできる方法を見出し、本発明の開発に至ったもので、その目的は基材表面にCVD法によりSiC被膜を効率よく被覆することのできるSiC被膜の被覆方法を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的を達成するための本発明によるSiC被膜の被覆方法は、基材表面にCVD法によりSiC被膜を被着する方法において、基材面の一部にCVD法により作製したSiC成形体であるSiC板を嵌着または貼着し、嵌着または貼着したSiC板を保持部として基材をCVD反応装置の基材ホルダーにセットすることを構成上の特徴とする。
【0010】
【発明の実施の形態】
本発明において、SiC被膜を被覆する基材には黒鉛材やC/C複合材などの炭素材、SiCやSi3 4 などのセラミック材が対象となる。これらの基材はCVD反応装置の反応管内に先端の尖った複数本の基材ホルダーによって支持されてセットされる。本発明は、この基材ホルダーによって支持され当接する基材面の一部、すなわち少なくとも基材ホルダーに当接する基材表面を含む基材面の一部にSiC板を嵌着または貼着し、この嵌着または貼着したSiC板を基材ホルダーによって支持される保持部とするものである。
【0011】
したがって、基材保持部となるSiC板の基材ホルダーに当接する部分には、SiC被膜が形成されないのであるから、SiC板の性状はCVD法により被着するSiC被膜と同等の性状であることが望ましい。そのために、SiC板はCVD法により作製したSiC成形体であることが好ましい。このSiC成形体は炭素系基体や金属系基体にCVD反応によりSiC被膜を成膜したのち、切削、研磨、燃焼などの方法で基体を除去することにより作製することができる。
【0012】
このようにして作製されるSiC成形体は、被覆するSiC被膜層の厚さを考慮してその厚さが設定され、その大きさは先端の尖った基材ホルダーに支持され得る面積があればよいこととなる。すなわち、SiC板の厚さは概ね0.05〜5mm程度に、その大きさは0.2mm2 以上に設定される。
【0013】
このSiC成形体をSiC板として、基材面がCVD反応装置の基材ホルダーに当接する部分、すなわち基材面の保持部に嵌着する。SiC板は、基材面の該当する部位をSiC板の形状に合わせて欠切し、欠切部にSiC板を嵌合することにより基材面に嵌着することができる。また、基材面がCVD反応装置の基材ホルダーに当接する部分に有機物または有機物と炭素粉からなる高純度の接着剤を介して加熱・炭化して前記したSiC板を貼着することができる。前記した有機物としてはフェノール系樹脂などの熱硬化性樹脂が好ましく適用される。
【0014】
本発明は、このようにして基材面にSiC板を嵌着または貼着した部位を保持部として、CVD反応装置の基材ホルダーにより支持し、セットしてCVD法によりSiC被膜を被着するのであるから、基材ホルダーに当接する部位にSiC被膜が被覆されなくても、その部位にはCVD法により作製されたSiC成形体であるSiC板が嵌着または貼着されており、SiC被膜層と同等の性状を有していることになる。
【0015】
その結果、被覆処理の途中でCVD反応を一旦中断して、基材ホルダーとの当接点を変更するために基材を移動することなく、1回の操作でSiC被膜を基材面に被着することが可能となる。また、被覆処理の途中でCVD反応を一旦中断し、基材を移動することに伴う基材保持部をはじめとする基材部位の欠損も阻止することができる。このように、本発明によれば基材表面にCVD法によりSiC被膜を効率よく被覆することのできるので、製造コストの低減化および品質向上を図ることができる。
【0016】
【実施例】
以下、本発明の実施例を比較例と対比しながら具体的に説明する。
【0017】
実施例1
基材として155×100×10mmの黒鉛板を使用した。SiC板には炭素基体にCVD反応によりSiC被膜を成膜したのち炭素基体を除去して得られた、直径5mm、厚さ1.7mmのCVD−SiC成形体を用いた。このようにして作製したSiC板を4個用い、黒鉛板に埋め込んで嵌着した。この黒鉛基材をCVD反応装置の石英反応管に挿入し、SiC板を先端の尖った4本の基材ホルダーに当接させてセットした。
【0018】
次いで、CVD反応装置の系内を大気圧下に1250℃の温度に昇温し、原料ガスとしてトリクロロメチルシランと水素との混合ガス(CH3SiCl3:H2のモル比=1:0.03)を送入して1時間CVD反応させ、厚さ50μm のSiC被膜を被着した。
【0019】
このようにして黒鉛基材にSiC被膜を被覆した試料について、下記の方法で熱衝撃試験を実施した。
▲1▼1200℃に保持された加熱炉に試料を入れて2分間保持したのち炉から取り出し、大気中で略200℃/分の冷却速度で430℃に冷却した。
▲2▼再び1200℃に保持された加熱炉に試料を入れ、▲1▼の操作を繰り返した。
▲3▼この操作を7回繰り返した後、金属顕微鏡により50〜100倍の倍率で試料表面を観察した。
その結果、SiC板の嵌着部位周辺においてクラックおよび被膜の剥離など異常は全く観察されなかった。
【0020】
実施例2
縦横100mm、厚さ10mmの炭化珪素焼結体を基材とし、実施例1と同一の方法により作製したSiC板4個を用いて、基材面に埋め込み嵌着した。次いで、実施例1と同じ方法によりCVD反応装置の基材ホルダーにセットして同一の条件により2時間CVD反応を行って、厚さ100μm のSiC被膜を被着した。得られたSiC被膜を被覆した炭化珪素焼結体について、実施例1と同一の方法で熱衝撃試験を行った結果はSiC板の嵌着部位周辺においてクラックおよび被膜の剥離など異常は全く認められなかった。
【0021】
比較例1
実施例1と同一の基材を用いて、SiC板を嵌着することなくそのままCVD反応装置の基材ホルダーにセットした。次いで、実施例1と同一の方法でCVD反応させて厚さ50μm のSiC被膜を被着した。さらに基材ホルダーとの接点を変更して、実施例1と同一の方法でCVD反応させてさらに厚さ50μm のSiC被膜を被着した。合計100μm のSiC被膜を被着して得られたSiC被膜した黒鉛基材について、実施例1と同一の熱衝撃試験を実施した結果は基材ホルダーとの接点部分の1ケ所で微少クラックが発生していることが観察された。
【0022】
実施例3
基材として、15×45×5mmの黒鉛板を準備し、15×45×0.5mmのCVD−SiC板を黒鉛板に高純度のフェノール系樹脂と高純度の黒鉛粉を混合した接着剤を用いて貼着し、500℃の温度に設定された乾燥器内で1hr炭化接合した。このように準備された基材を実施例1と同一条件で、50μm のSiC膜を被覆した。得られたSiC被覆黒鉛板を実施例1と同一の方法で熱衝撃試験を行った結果、クラック及び膜の剥離は見られなかった。
【0023】
【発明の効果】
以上のとおり、本発明のSiC被膜の被覆方法によれば、基材面の一部にSiC板を嵌着または貼着し、該SiC板を保持部としてCVD反応装置の基材ホルダーにセットすることにより、基材ホルダーとの当接点を変更するために被覆処理の途中でCVD反応を一旦中断して基材を移動する必要がなく、1回の操作でSiC被膜を被着することが可能となる。したがって、基材の移動に伴う基材保持部などの欠損も阻止することができ、効率的にSiC被膜を被覆することが可能となり、製造コストの低減化ならびに品質の向上を図ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention uses a carbon material such as a graphite material or a C / C composite material (carbon fiber reinforced carbon composite material) or a ceramic material such as SiC or Si 3 N 4 as a base material, and an SiC film is efficiently formed on the surface by a CVD method. The present invention relates to a method for coating a SiC film that can be well coated.
[0002]
[Prior art]
Heat treatment jigs for semiconductor manufacturing, such as susceptors, liner tubes, process tubes, wafer boats, etc., have high purity and non-contamination properties that do not contaminate silicon wafers. It must be stable and have high corrosion resistance. As these heat treatment jigs, those obtained by depositing a SiC film on the surface of a SiC substrate by a CVD method (chemical vapor deposition method) are useful (Japanese Patent Laid-Open Nos. 54-90966, 63-35452, etc.) )
[0003]
Further, non-contaminating high-purity SiC heating elements are useful for heaters of heaters, for example, heaters of various apparatuses for manufacturing semiconductors, and Japanese Patent Publication No. 59-23072 discloses a surface of a recrystallized SiC body. A silicon carbide heating element in which a dense SiC film having a thickness of 10 μm or more is formed by a CVD method is disclosed.
[0004]
In addition, the carbon material has insufficient oxidation resistance. For example, a C / C composite material has a difficulty in that it is oxidized from around 500 ° C. in the atmosphere, and in order to impart oxidation resistance to the carbon material, A method for improving oxidation resistance by forming a coating layer having high oxidation resistance on the surface has been practiced for a long time. As one means, a method of forming a SiC film on the surface of a carbon material by a CVD method has been developed.
[0005]
Formation of the SiC film by these CVD methods includes Si atoms and C atoms in one molecule, for example, an organic silicon compound such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, CH 3 SiHCl 2 , hydrogen gas, etc. how to decompose reducing heat by heating with a carrier gas or a method of the carbon compounds such as silicon compounds and CH 4, such as SiCl 4 by heating the reaction to precipitate the SiC,, carried out in the like.
[0006]
[Problems to be solved by the invention]
For the formation of the SiC film by this CVD method, the base material is set in the reaction tube of the CVD reactor, the above-mentioned raw material gas is introduced, SiC is deposited by a thermal decomposition reaction by heating to a predetermined temperature, A film is formed. In this case, the base material is supported by a base material holder that is a plurality of pillars with sharp tips, and is set in the reaction tube. Therefore, the SiC film is not formed on the base material surface with which the base material holder abuts, and it is necessary to temporarily interrupt the CVD reaction during the coating process to move the base material and change the contact point. Therefore, the SiC film has a problem that the contact portion between the base material and the base material holder tends to be a starting point of a crack generated at the time of impact such as thermal shock, and the operation becomes complicated.
[0007]
In order to solve this problem, the present applicant cuts the carbon base material smaller than the diameter of the through-hole when forming a coating of another substance on the entire surface of the carbon base material having a through-hole at the center by the CVD method. A method for forming a coating on a carbon substrate surface, characterized by continuously moving the support contacts of the carbon substrate through a reaction process by being suspended on a rotating support rod having an area (Japanese Patent Publication No. 5-33305) Proposed. However, the above-described invention has a problem that the shape of the base material is limited to a shape having a through hole or a space in the center.
[0008]
The present invention has been studied from a viewpoint different from the above, found a method capable of coating a SiC film by a CVD method by a simple method, and has led to the development of the present invention. An object of the present invention is to provide a method for coating a SiC film, which can efficiently coat a SiC film on the surface by a CVD method.
[0009]
[Means for Solving the Problems]
The SiC film coating method according to the present invention for achieving the above object is a method of depositing a SiC film on a substrate surface by a CVD method, wherein the SiC molded body is formed on a part of the substrate surface by the CVD method. A structural feature is that a certain SiC plate is fitted or pasted, and the base plate is set in a base material holder of a CVD reactor using the fitted or stuck SiC plate as a holding portion.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the base material on which the SiC film is coated includes carbon materials such as graphite materials and C / C composite materials, and ceramic materials such as SiC and Si 3 N 4 . These substrates are set by being supported by a plurality of substrate holders having sharp tips in the reaction tube of the CVD reactor. The present invention attaches or affixes a SiC plate to a part of the substrate surface supported and abutted by the substrate holder, that is, a part of the substrate surface including at least the substrate surface abutting the substrate holder, This fitted or stuck SiC plate is used as a holding portion supported by the base material holder.
[0011]
Therefore, since the SiC film is not formed on the portion of the SiC plate that contacts the substrate holder of the SiC substrate holding part, the property of the SiC plate is the same property as the SiC film deposited by the CVD method. Is desirable. Therefore, the SiC plate is preferably a SiC molded body produced by a CVD method. This SiC molded body can be produced by forming a SiC film on a carbon-based substrate or a metal-based substrate by a CVD reaction, and then removing the substrate by a method such as cutting, polishing, or combustion.
[0012]
The thickness of the SiC molded body produced in this way is set in consideration of the thickness of the SiC coating layer to be coated, and the size has an area that can be supported by the substrate holder with a sharp tip. It will be good. That is, the thickness of the SiC plate is set to about 0.05 to 5 mm, and the size is set to 0.2 mm 2 or more.
[0013]
This SiC molded body is used as a SiC plate, and the base material surface is fitted into a portion where the base material surface comes into contact with the base material holder of the CVD reactor, that is, a holding portion of the base material surface. The SiC plate can be fitted to the substrate surface by notching a corresponding portion of the substrate surface in accordance with the shape of the SiC plate and fitting the SiC plate into the notched portion. In addition, the above SiC plate can be pasted by heating and carbonizing via a high-purity adhesive made of organic matter or organic matter and carbon powder on the portion where the substrate surface comes into contact with the substrate holder of the CVD reactor. . A thermosetting resin such as a phenolic resin is preferably applied as the organic substance.
[0014]
In the present invention, the portion where the SiC plate is fitted or stuck on the surface of the base material in this way is used as a holding portion, supported by the base material holder of the CVD reactor, set, and the SiC coating is applied by the CVD method. Therefore, even if the SiC film is not coated on the portion that contacts the base material holder, the SiC plate, which is an SiC molded body produced by the CVD method, is fitted or adhered to the portion. It has the same properties as the layer.
[0015]
As a result, the CVD reaction is temporarily interrupted during the coating process, and the SiC film is applied to the substrate surface in one operation without moving the substrate to change the contact point with the substrate holder. It becomes possible to do. In addition, the CVD reaction can be temporarily interrupted during the coating process, and the loss of the base material part including the base material holding part accompanying the movement of the base material can be prevented. Thus, according to the present invention, the SiC film can be efficiently coated on the substrate surface by the CVD method, so that the manufacturing cost can be reduced and the quality can be improved.
[0016]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0017]
Example 1
A 155 × 100 × 10 mm graphite plate was used as the substrate. As the SiC plate, a CVD-SiC molded body having a diameter of 5 mm and a thickness of 1.7 mm obtained by forming a SiC film on a carbon substrate by a CVD reaction and then removing the carbon substrate was used. Four SiC plates produced in this way were used and embedded in a graphite plate. This graphite base material was inserted into a quartz reaction tube of a CVD reactor, and an SiC plate was set in contact with four base material holders having sharp tips.
[0018]
Next, the temperature of the CVD reactor system is raised to 1250 ° C. under atmospheric pressure, and a mixed gas of trichloromethylsilane and hydrogen (CH 3 SiCl 3 : H 2 molar ratio = 1: 0.03) as a raw material gas. Then, a CVD reaction was performed for 1 hour, and a 50 μm thick SiC film was deposited.
[0019]
Thus, the thermal shock test was implemented with the following method about the sample which coat | covered the SiC film on the graphite base material.
(1) The sample was placed in a heating furnace maintained at 1200 ° C., held for 2 minutes, then removed from the furnace, and cooled to 430 ° C. in the atmosphere at a cooling rate of approximately 200 ° C./min.
(2) The sample was again put into a heating furnace maintained at 1200 ° C., and the operation of (1) was repeated.
(3) After repeating this operation seven times, the surface of the sample was observed with a metal microscope at a magnification of 50 to 100 times.
As a result, no abnormalities such as cracks and peeling of the coating film were observed around the SiC plate fitting site.
[0020]
Example 2
A silicon carbide sintered body having a length and width of 100 mm and a thickness of 10 mm was used as a base material, and four SiC plates produced by the same method as in Example 1 were used for embedding on the base material surface. Subsequently, it was set on the base material holder of the CVD reactor by the same method as in Example 1, and the CVD reaction was performed for 2 hours under the same conditions to deposit a SiC film having a thickness of 100 μm. The silicon carbide sintered body coated with the obtained SiC film was subjected to a thermal shock test in the same manner as in Example 1. As a result, there were no abnormalities such as cracks and peeling of the film around the area where the SiC plate was fitted. There wasn't.
[0021]
Comparative Example 1
Using the same base material as in Example 1, it was set as it was in the base material holder of the CVD reactor without fitting the SiC plate. Next, a 50 μm thick SiC film was deposited by the CVD reaction in the same manner as in Example 1. Further, the contact point with the substrate holder was changed, and a CVD reaction was carried out by the same method as in Example 1 to deposit a SiC film having a thickness of 50 μm. The same thermal shock test as in Example 1 was performed on the SiC-coated graphite substrate obtained by depositing a total of 100 μm SiC coating. As a result, a minute crack was generated at one point of contact with the substrate holder. It was observed that
[0022]
Example 3
As a base material, a 15 × 45 × 5 mm graphite plate was prepared, and a 15 × 45 × 0.5 mm CVD-SiC plate was mixed with a high purity phenolic resin and high purity graphite powder mixed with the graphite plate. And bonded by carbonization for 1 hr in a dryer set at a temperature of 500 ° C. The base material thus prepared was coated with a 50 μm SiC film under the same conditions as in Example 1. The obtained SiC-coated graphite plate was subjected to a thermal shock test in the same manner as in Example 1. As a result, no cracks and film peeling were observed.
[0023]
【The invention's effect】
As described above, according to the method for coating a SiC film of the present invention, a SiC plate is fitted or pasted on a part of a substrate surface, and the SiC plate is used as a holding portion and set in a substrate holder of a CVD reactor. This eliminates the need to temporarily interrupt the CVD reaction during the coating process to change the point of contact with the substrate holder, and allows the substrate to be moved in one operation. It becomes. Accordingly, it is possible to prevent defects in the base material holding part or the like accompanying the movement of the base material, and it is possible to efficiently coat the SiC film, and it is possible to reduce the manufacturing cost and improve the quality.

Claims (1)

基材表面にCVD法によりSiC被膜を被着する方法において、基材面の一部にCVD法により作製したSiC成形体であるSiC板を嵌着または貼着し、嵌着または貼着したSiC板を保持部として基材をCVD反応装置の基材ホルダーにセットすることを特徴とするSiC被膜の被覆方法。In a method of depositing a SiC film on a substrate surface by a CVD method , a SiC plate, which is a SiC molded body produced by a CVD method, is fitted or stuck to a part of the substrate surface, and the fitted or stuck SiC A method for coating a SiC film, comprising setting a base material on a base material holder of a CVD reactor using a plate as a holding portion.
JP30993198A 1998-10-30 1998-10-30 Method for coating SiC film Expired - Lifetime JP3925884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30993198A JP3925884B2 (en) 1998-10-30 1998-10-30 Method for coating SiC film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30993198A JP3925884B2 (en) 1998-10-30 1998-10-30 Method for coating SiC film

Publications (2)

Publication Number Publication Date
JP2000129444A JP2000129444A (en) 2000-05-09
JP3925884B2 true JP3925884B2 (en) 2007-06-06

Family

ID=17999080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30993198A Expired - Lifetime JP3925884B2 (en) 1998-10-30 1998-10-30 Method for coating SiC film

Country Status (1)

Country Link
JP (1) JP3925884B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278851B2 (en) * 2008-10-23 2013-09-04 東洋炭素株式会社 Method for forming silicon carbide film on carbon substrate surface
KR101543358B1 (en) 2013-11-19 2015-08-11 (주)제너코트 Method for improving property of graphite surface

Also Published As

Publication number Publication date
JP2000129444A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JPH05294781A (en) Glassy carbon-coated graphite component for producing silicon crystal and production thereof
KR100592741B1 (en) Silicon carbide fabrication
KR100427118B1 (en) Heat treatment jig and its manufacturing method
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
JPH1012692A (en) Dummy wafer
JP4071919B2 (en) SiC-coated graphite member and method for producing the same
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP2000302577A (en) Graphite member coated with silicon carbide
JP3925884B2 (en) Method for coating SiC film
JP2000302576A (en) Graphite material coated with silicon carbide
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP4455895B2 (en) Method for producing vapor-deposited ceramic coating material
JP4447131B2 (en) Regeneration method of silicon carbide-coated graphite member and silicon carbide-coated graphite member thereby
JPH0583517B2 (en)
JP3739507B2 (en) Manufacturing method of heat treatment jig
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH1135391A (en) Silicon carbide-coated susceptor
JPH07147277A (en) Member for semiconductor
JPH05124864A (en) Production of high purity silicon carbide body
JP2708612B2 (en) Method for producing pyrolytic boron nitride compact
JP2002249387A (en) Method for manufacturing silicon carbide-based member
JP3942158B2 (en) Method for producing cylindrical SiC molded body
JPS6117910B2 (en)
JP2003268548A (en) SiC FILM-FORMED GLASSY CARBON STOCK

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6