JP2006298684A - Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element - Google Patents
Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element Download PDFInfo
- Publication number
- JP2006298684A JP2006298684A JP2005120461A JP2005120461A JP2006298684A JP 2006298684 A JP2006298684 A JP 2006298684A JP 2005120461 A JP2005120461 A JP 2005120461A JP 2005120461 A JP2005120461 A JP 2005120461A JP 2006298684 A JP2006298684 A JP 2006298684A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- synthesizing
- carbon
- dimensional material
- walled carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
この発明は、炭素系一次元材料およびその合成方法ならびに炭素系一次元材料合成用触媒およびその合成方法ならびに電子素子およびその製造方法に関し、カーボンナノチューブ、取り分け単層カーボンナノチューブの合成およびそれを用いたトランジスタ等の各種の電子素子の製造に適用して好適なものである。 The present invention relates to a carbon-based one-dimensional material and a method for synthesizing the same, a catalyst for synthesizing a carbon-based one-dimensional material, a method for synthesizing the same, and an electronic device and a method for producing the same. It is suitable for application to the production of various electronic elements such as transistors.
単層カーボンナノチューブは高い移動度を示すことから、高速スイッチング用FETのチャネル材料として期待されている。近年、Fe、Ni、Co、またはそれらを含む合金微粒子からなる触媒を、大きさのそろったサブナノメートルオーダーの細孔を持つゼオライト上に担持させることにより、高純度の径のそろった単層カーボンナノチューブの熱CVD合成が可能になった(例えば、非特許文献1参照。)。また、Fe、Ni、CoをMo等と合金化した触媒を用いても、単層カーボンナノチューブの熱CVD合成が可能になった(例えば、非特許文献2参照。)。
一般的に単層カーボンナノチューブを用いてFETを作製する場合、そのプロセスは大きく二つに分けられる。一つは、高純度の単層カーボンナノチューブを合成した後、この単層カーボンナノチューブ分散液を作製し、これを基板上の所定の位置に塗布する方法である。もう一つは、基板上の所定の位置に触媒を配置し、この触媒を用いて単層カーボンナノチューブを直接成長させ、配向させる方法である。現在、後者の方法は、優れたFET特性を得ることができ、微細プロセスにも対応することができる等の利点があることから、多くの研究が行われている。 In general, when manufacturing an FET using single-walled carbon nanotubes, the process is roughly divided into two. One is a method of synthesizing single-walled carbon nanotubes of high purity, preparing a single-walled carbon nanotube dispersion, and applying it to a predetermined position on the substrate. The other is a method in which a catalyst is arranged at a predetermined position on a substrate, and single-walled carbon nanotubes are directly grown and oriented using this catalyst. At present, since the latter method has advantages such as obtaining excellent FET characteristics and being able to cope with a fine process, many studies have been conducted.
基板上に単層カーボンナノチューブを直接成長させる上述の従来の方法によれば、合成温度を下げることによって、電極および基板材料の選択の幅は広がる。現在主流である熱CVD法による単層カーボンナノチューブの合成法を見てみると、合成温度は650〜1000℃である。しかし、合成温度を下げて行くに連れて単層カーボンナノチューブの純度および結晶性は著しく低下するため、FET等のデバイス作製用単層カーボンナノチューブの合成温度としては、700℃以上、通常は850℃以上が利用されている。ところが、この温度領域では、ガラス基板は、ひずみ点温度が低いため、使用に適していない。すなわち、フラット・パネル・ディスプレイ用等に市販されているガラス基板のひずみ点温度は一般に500℃から590℃であり、最高でも666℃である。したがって、熱CVD法によりガラス基板上に単層カーボンナノチューブを成長させることでデバイスを作製することは困難である。 According to the above-described conventional method of growing single-walled carbon nanotubes directly on a substrate, the range of selection of electrodes and substrate materials is expanded by lowering the synthesis temperature. Looking at the current mainstream synthesis method of single-walled carbon nanotubes by thermal CVD, the synthesis temperature is 650-1000 ° C. However, as the synthesis temperature is lowered, the purity and crystallinity of the single-walled carbon nanotubes are remarkably lowered. Therefore, the synthesis temperature of the single-walled carbon nanotubes for producing devices such as FETs is 700 ° C. or higher, usually 850 ° C. The above is used. However, in this temperature region, the glass substrate is not suitable for use because of its low strain point temperature. That is, the strain point temperature of a glass substrate marketed for flat panel displays or the like is generally 500 ° C. to 590 ° C., and is 666 ° C. at the maximum. Therefore, it is difficult to produce a device by growing single-walled carbon nanotubes on a glass substrate by a thermal CVD method.
H.Dai 等は基板上に蒸着したFe薄膜を触媒前駆体として、メタンガスをプラズマにより活性化するプラズマ強化化学蒸着(Plasma Enhanced Chemical Vapor Deposition,PECVD)法を用いることにより、600℃程度の低温で単層カーボンナノチューブを含むカーボンナノチューブを成長させることができることを報告しているが、得られる単層カーボンナノチューブの純度は低い(例えば、非特許文献3参照。)。また、川原田等は同じく蒸着により形成したAl/Fe/Al薄膜を触媒前駆体として用いることにより600℃で、直径3nm程度の高純度の単層カーボンナノチューブをマット状に、長さをそろえて合成することに成功している。しかし、単層カーボンナノチューブをFET集積回路に利用するためには、直径制御によるバンドギャップ制御が必要である。このバンドギャップは単層カーボンナノチューブの直径に反比例するため、2nm以上の直径を持つ単層カーボンナノチューブではバンドギャップが小さくなり、バイポーラトランジスタへの応用には不適当である。汎用性のあるトランジスタを作製するためには、直径2nm未満の細い径を持つ単層カーボンナノチューブの選択合成技術が必要となる。K.Motomiya等はゼオライト担持触媒を用いてPECVD法により550℃で単層カーボンナノチューブを合成することができることを報告しているが、デバイスプロセスにおけるゼオライトの使用は、ゼオライト自身が不純物粒子として振る舞うため望ましくはない。ゼオライトを使用する合成方法以外にも590℃以下の低温による単層カーボンナノチューブの合成例は多数報告されているが、その多くは多層カーボンナノチューブ中に混入した単層カーボンナノチューブについてのものである。
以上のように、従来の技術では、熱CVD法、PECVD法とも一長一短であった。
そこで、この発明が解決しようとする課題は、650℃以下の低温で直径が2nm未満の高純度の単層カーボンナノチューブを合成することができる炭素系一次元材料の合成方法およびそのような炭素系一次元材料ならびにこの炭素系一次元材料合成用触媒およびその合成方法ならびにこの炭素系一次元材料を用いた電子素子およびその製造方法を提供することである。
As described above, in the conventional technique, both the thermal CVD method and the PECVD method have advantages and disadvantages.
Therefore, the problem to be solved by the present invention is a method for synthesizing a carbon-based one-dimensional material capable of synthesizing single-walled carbon nanotubes having a diameter of less than 2 nm at a low temperature of 650 ° C. or lower, and such a carbon-based material. The object is to provide a one-dimensional material, a catalyst for synthesizing this carbon-based one-dimensional material, a method for synthesizing the same, an electronic device using the carbon-based one-dimensional material, and a method for producing the same.
上記課題を解決するために、第1の発明は、
基体上に担持された触媒を用い、炭素を含む化合物を原料ガスとしてプラズマ中で反応を行うことにより炭素系一次元材料を合成するようにした炭素系一次元材料の合成方法において、
上記触媒として、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)を用いる
ことを特徴とするものである。
In order to solve the above problem, the first invention is:
In the method for synthesizing a carbon-based one-dimensional material, a catalyst supported on a substrate is used to synthesize a carbon-based one-dimensional material by reacting in a plasma using a compound containing carbon as a source gas.
As the catalyst, (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q.ltoreq.1, 0.ltoreq.p.ltoreq.1, 0.ltoreq.q.ltoreq.1) is used.
第2の発明は、
基体上に担持された触媒を用いて合成された炭素系一次元材料であって、
上記触媒が、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)である
ことを特徴とするものである。
The second invention is
A carbon-based one-dimensional material synthesized using a catalyst supported on a substrate,
The catalyst is (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q.ltoreq.1, 0.ltoreq.p.ltoreq.1, 0.ltoreq.q.ltoreq.1).
第1および第2の発明において、触媒として用いる(Fe1-p-q Cop Niq )1-x-y Mox Cry においては、単層カーボンナノチューブを得る観点より、好適には、0.05≦x+y≦0.2の範囲内のx、yを用いる。また、合成の容易さ等の観点より、(Fe1-p-q Cop Niq )1-x-y Mox Cry の中でもFe1-x Mox (ただし、0<x≦0.33)、Co1-x Mox (ただし、0<x≦0.33)、Ni1-x Mox (ただし、0<x≦0.33)等の二元系金属材料が好適に用いられる。触媒を担持させる基体は、好適には、少なくとも表面が酸化物からなる基体が用いられ、具体的には、例えば、表面にSiO2 膜を形成したシリコン基板、ガラス基板等が用いられる。原料ガスとしての炭素を含む化合物には、メタン等の各種のものを用いることができ、必要に応じて選択される。プラズマ中での反応による炭素系一次元材料の合成には、通常はPECVD法が用いられる。合成温度は、一般的には400℃以上650℃以下、好適には450℃以上600℃以下である。炭素系一次元材料は、典型的には単層カーボンナノチューブであるが、二層以上の多層カーボンナノチューブを一部に含む場合もある。
In the first and second inventions, (Fe 1-pq Co p Ni q ) 1-xy Mo x C y used as a catalyst is preferably 0.05 ≦ x + y from the viewpoint of obtaining single-walled carbon nanotubes. X and y in the range of ≦ 0.2 are used. Further, from the viewpoint of ease of synthesis, (Fe 1-pq Co p Ni q) 1-xy Mo x Cr y also Fe 1-x Mo x in (where, 0 <x ≦ 0.33),
第3の発明は、
基体上に担持された触媒を用い、炭素を含む化合物を原料ガスとしてプラズマ中で反応を行うことにより炭素系一次元材料を合成する工程を有する電子素子の製造方法において、
上記触媒として、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)を用いる
ことを特徴とするものである。
The third invention is
In a method for producing an electronic device having a step of synthesizing a carbon-based one-dimensional material by reacting in a plasma using a compound containing carbon as a source gas, using a catalyst supported on a substrate,
As the catalyst, (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q.ltoreq.1, 0.ltoreq.p.ltoreq.1, 0.ltoreq.q.ltoreq.1) is used.
第4の発明は、
基体上に担持された触媒を用いて合成された炭素系一次元材料を有する電子素子において、
上記触媒が、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)である
ことを特徴とするものである。
The fourth invention is:
In an electronic device having a carbon-based one-dimensional material synthesized using a catalyst supported on a substrate,
The catalyst is (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q.ltoreq.1, 0.ltoreq.p.ltoreq.1, 0.ltoreq.q.ltoreq.1).
第3および第4の発明において、電子素子は、炭素系一次元材料を用いるものである限り、基本的にはどのようなものであってもよいが、具体的には、例えば、FET、バイポーラトランジスタ、これらを集積した半導体素子等である。
第3および第4の発明においては、その性質に反しない限り、第1および第2の発明に関連して述べたことが同様に成立する。
In the third and fourth inventions, the electronic device may basically be any electronic device as long as it uses a carbon-based one-dimensional material. A transistor, a semiconductor element in which these are integrated, and the like.
In the third and fourth inventions, the matters described in relation to the first and second inventions are similarly established unless they are contrary to the nature.
第5の発明は、
炭素を含む化合物を原料ガスとしてプラズマ中で反応を行うことにより炭素系一次元材料を合成する際に用いられる炭素系一次元材料合成用触媒であって、
(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)からなる
ことを特徴とするものである。
The fifth invention is:
A catalyst for synthesizing a carbon-based one-dimensional material used when synthesizing a carbon-based one-dimensional material by reacting in a plasma using a compound containing carbon as a source gas,
(Fe 1-pq Co p Ni q ) 1-xy Mo x Cr y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, 0 ≦ p ≦ 1, 0 ≦ q ≦ 1).
第6の発明は、
(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)からなる炭素系一次元材料合成用触媒の合成方法であって、
Fe、CoおよびNiからなる群より選ばれた少なくとも一種の金属とMoおよびCrからなる群より選ばれた少なくとも一種の金属とを含む溶液を基体上に塗布した後、加熱処理を行うことによりこれらの金属を上記基体上に担持させるようにした
ことを特徴とするものである。
ここで、上記の金属を含む溶液は、例えば、酢酸金属、塩化金属、シュウ酸金属、硝酸金属等の溶液である。例えば、酢酸金属は、具体的には、酢酸モリブデン、酢酸クロム、酢酸鉄、酢酸コバルト、酢酸ニッケルである。
第5および第6の発明においては、その性質に反しない限り、第1および第2の発明に関連して述べたことが同様に成立する。
The sixth invention is:
(Fe 1-pq Co p Ni q ) 1-xy Mo x Cr y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, A method for synthesizing a carbon-based one-dimensional material synthesis catalyst comprising 0 ≦ p ≦ 1, 0 ≦ q ≦ 1),
By applying a solution containing at least one metal selected from the group consisting of Fe, Co and Ni and at least one metal selected from the group consisting of Mo and Cr on the substrate, and then performing a heat treatment, these are performed. This metal is supported on the substrate.
Here, the solution containing the metal is, for example, a solution of metal acetate, metal chloride, metal oxalate, metal nitrate, or the like. For example, the metal acetate is specifically molybdenum acetate, chromium acetate, iron acetate, cobalt acetate, or nickel acetate.
In the fifth and sixth inventions, the matters described in relation to the first and second inventions are similarly established unless they are contrary to the nature.
上述のように構成されたこの発明においては、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)は、炭素を含む化合物を原料ガスとしてプラズマ中で反応を行う際、400〜650℃の低温でも高い触媒活性を得ることができる。この場合、この触媒は基体上に担持させることで足り、ゼオライト等の触媒担持用微粒子に担持させる必要がないので、これらの微粒子自身が不純物粒子として振る舞うことによる不純物の混入等の問題がない。
また、Fe、CoおよびNiからなる群より選ばれた少なくとも一種の金属とMoおよびCrからなる群より選ばれた少なくとも一種の金属とを含む溶液の基体上への塗布、その後の加熱処理により、簡便に触媒を合成することができ、基板上に担持させることができる。この場合、ゼオライト等の触媒担持用微粒子を用いる必要も、大掛かりな真空装置による触媒金属の蒸着を行う必要もない。
In the present invention configured as described above, (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, 0 ≦ p ≦ 1, and 0 ≦ q ≦ 1) are high even at a low temperature of 400 to 650 ° C. when the reaction is performed in plasma using a compound containing carbon as a source gas. Catalytic activity can be obtained. In this case, it is sufficient to support the catalyst on the substrate, and it is not necessary to support the catalyst on fine particles for supporting the catalyst such as zeolite. Therefore, there is no problem such as mixing of impurities due to the behavior of these fine particles themselves as impurity particles.
Further, by applying on a substrate a solution containing at least one metal selected from the group consisting of Fe, Co and Ni and at least one metal selected from the group consisting of Mo and Cr, followed by heat treatment, A catalyst can be easily synthesized and supported on a substrate. In this case, it is not necessary to use catalyst-supporting fine particles such as zeolite, and it is not necessary to deposit catalyst metal by a large vacuum apparatus.
この発明によれば、(Fe1-p-q Cop Niq )1-x-y Mox Cry は、炭素を含む化合物を原料ガスとしてプラズマ中で反応を行う際の触媒活性が高いので、650℃以下の低温で単層カーボンナノチューブを合成することができる。このため、基体としてガラス基板を用いることができるようになる。また、こうして合成される単層カーボンナノチューブは一般に高純度であり、直径が2nm未満で0.7nm以上のものも容易に得ることができ、トランジスタ等の電子素子に用いて好適なものである。また、従来の金属触媒は蒸着により形成されるのに対し、塗布およびその後の加熱処理により形成される(Fe1-p-q Cop Niq )1-x-y Mox Cry 触媒を用いることにより、単層カーボンナノチューブの合成プロセスの簡略化を図ることができる。 According to the present invention, (Fe 1-pq Co p Ni q ) 1-xy Mo x C r y has a high catalytic activity when performing a reaction in plasma using a compound containing carbon as a raw material gas, and therefore, 650 ° C. or lower. Single-walled carbon nanotubes can be synthesized at a low temperature. For this reason, a glass substrate can be used as the substrate. In addition, single-walled carbon nanotubes synthesized in this way are generally of high purity, and those having a diameter of less than 2 nm and 0.7 nm or more can be easily obtained, and are suitable for use in electronic devices such as transistors. Further, while the conventional metal catalyst is formed by vapor deposition, by using a coating and is formed by the subsequent heat treatment (Fe 1-pq Co p Ni q) 1-xy Mo x Cr y catalysts, single The synthesis process of the single-walled carbon nanotube can be simplified.
以下、この発明の実施形態について図面を参照しながら説明する。
まず、この発明の第1の実施形態について説明する。
この第1の実施形態においては、表面が酸化物からなる基板上に、触媒としてFe1-x Mox (ただし、0<x≦0.33)を担持させ、このFe1-x Mox 触媒を用いてPECVD法により単層カーボンナノチューブを合成する。合成温度は400〜650℃とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a first embodiment of the present invention will be described.
In the first embodiment, Fe 1-x Mo x (where 0 <x ≦ 0.33) is supported as a catalyst on a substrate having an oxide surface, and this Fe 1-x Mo x catalyst is supported. Is used to synthesize single-walled carbon nanotubes by PECVD. The synthesis temperature is 400 to 650 ° C.
具体的には、例えば次のようにして合成を行う。
まず、Fe1-x Mox 触媒を次のようにして作製する。
酢酸モリブデンおよび酢酸鉄をそれぞれエタノールと混合し、これを超音波で一晩処理することにより、0.01wt%Mo溶液および0.01wt%Fe溶液を合成する。
次に、これらの0.01wt%Mo溶液および0.01wt%Fe溶液を所望の割合で調合することにより、Fe1-x Mox 触媒溶液を合成する。
次に、このFe1-x Mox 触媒溶液中に酸化膜(SiO2 膜)付きシリコン基板を浸漬し、Fe1-x Mox 触媒を基板表面に分散した形で担持させる。
Specifically, for example, synthesis is performed as follows.
First, an Fe 1-x Mo x catalyst is prepared as follows.
Molybdenum acetate and iron acetate are mixed with ethanol, respectively, and treated with ultrasound overnight to synthesize 0.01 wt% Mo solution and 0.01 wt% Fe solution.
Next, an Fe 1-x Mo x catalyst solution is synthesized by preparing these 0.01 wt% Mo solution and 0.01 wt% Fe solution in a desired ratio.
Next, a silicon substrate with an oxide film (SiO 2 film) is immersed in the Fe 1-x Mo x catalyst solution, and the Fe 1-x Mo x catalyst is supported in a dispersed state on the substrate surface.
次に、こうして作製されたFe1-x Mox 触媒担持シリコン基板上に、メタンを原料ガスとして、単層カーボンナノチューブをPECVD法により合成する。その詳細を以下に説明する。まず、Fe1-x Mox 触媒担持シリコン基板を石英管状炉にセットする。そして、まず、触媒表面の有機物を除去するために、空気中400℃で10分間酸化処理した後、炉内をスクラバーポンプにより5Paの圧力まで真空引きし、室温から550〜600℃まで25分間でFe1-x Mox 触媒担持シリコン基板の加熱を行う。次に、炉内にH2 を70sccmで導入し、炉内の圧力を700Paに調整し、20分間維持する。この過程で触媒表面の酸化膜は除去される。 Next, single-walled carbon nanotubes are synthesized by PECVD on the Fe 1-x Mo x catalyst-supported silicon substrate thus produced using methane as a source gas. Details thereof will be described below. First, the Fe 1-x Mo x catalyst supporting silicon substrate is set in a quartz tube furnace. First, in order to remove organic substances on the catalyst surface, after oxidizing in air at 400 ° C. for 10 minutes, the inside of the furnace is evacuated to a pressure of 5 Pa by a scrubber pump, and from room temperature to 550 to 600 ° C. in 25 minutes. The Fe 1-x Mo x catalyst supporting silicon substrate is heated. Next, H 2 is introduced into the furnace at 70 sccm, and the pressure in the furnace is adjusted to 700 Pa and maintained for 20 minutes. In this process, the oxide film on the catalyst surface is removed.
次に、炉内へのH2 の導入を停止し、真空引きした後、再びH2 を70sccmで導入し、さらにメタンを30sccmで導入し、炉内の圧力を60Paに調節し、75Wの高周波プラズマを10分間立てることにより、基板表面に分散したFe1-x Mox 触媒から単層カーボンナノチューブを合成する。
合成後、炉から試料を取り出し、観察、評価を行った。
図1に、上記の単層カーボンナノチューブ合成時の温度−時間変化を示す。
Next, the introduction of H 2 into the furnace was stopped, and after evacuation, H 2 was introduced again at 70 sccm, methane was further introduced at 30 sccm, the pressure in the furnace was adjusted to 60 Pa, and a 75 W high frequency Single-walled carbon nanotubes are synthesized from the Fe 1-x Mo x catalyst dispersed on the substrate surface by raising the plasma for 10 minutes.
After the synthesis, a sample was taken out from the furnace and observed and evaluated.
FIG. 1 shows a temperature-time change during the synthesis of the single-walled carbon nanotube.
Fe1-x Mox のxを0.33(Fe0.67Mo0.33)、0.2(Fe0.8 Mo0.2 )、0.1(Fe0.9 Mo0.1 )、0.05(Fe0.95Mo0.05)の四水準に変えて、合成を行った。
図2〜図5は、それぞれFe0.67Mo0.33触媒、Fe0.8 Mo0.2 触媒、Fe0.9 Mo0.1 触媒、Fe0.95Mo0.05触媒を用いて600℃で単層カーボンナノチューブを合成した試料の走査型電子顕微鏡(SEM)像を示し、各図のBはAの一部を拡大したものである。また、図6〜図9は、これらの試料の透過型電子顕微鏡(TEM)像を示し、各図のBはAの一部を拡大したものである。
X of Fe 1-x Mo x is 0.33 (Fe 0.67 Mo 0.33 ), 0.2 (Fe 0.8 Mo 0.2 ), 0.1 (Fe 0.9 Mo 0.1 ), 0.05 (Fe 0.95 Mo 0.05 ) The composition was changed to the standard.
2 to 5 show scanning electron microscopes of samples of single-walled carbon nanotubes synthesized at 600 ° C. using Fe 0.67 Mo 0.33 catalyst, Fe 0.8 Mo 0.2 catalyst, Fe 0.9 Mo 0.1 catalyst, and Fe 0.95 Mo 0.05 catalyst, respectively. (SEM) image is shown, and B in each figure is an enlarged view of part of A. Moreover, FIGS. 6-9 shows the transmission electron microscope (TEM) image of these samples, B of each figure expands a part of A. FIG.
図2〜図9より、Fe0.67Mo0.33触媒を用いた試料では少量であるが単層カーボンナノチューブと思われるものが観察され、Mo0.2 Fe0.8 触媒、Fe0.9 Mo0.1 触媒、Fe0.95Mo0.05触媒を用いた試料では、単層カーボンナノチューブと思われるマット状に長さのそろったブラシ構造が確認された。比較のために、Fe0.5 Mo0.5 触媒を用いて合成を行った試料をSEMおよびTEMで観察を行ったところ、触媒金属と思われるサブミクロンサイズの粒子は観察されたが、チューブ構造はほとんど観察されなかった。チューブの長さはFe0.95Mo0.05触媒を用いたときに最大10μmになり、xが0.33以上になるとチューブの長さは5μmまで減少した。 From FIG. 2 to FIG. 9, the sample using the Fe 0.67 Mo 0.33 catalyst was observed to have a small amount but seemed to be a single-walled carbon nanotube, and the Mo 0.2 Fe 0.8 catalyst, Fe 0.9 Mo 0.1 catalyst, Fe 0.95 Mo 0.05 catalyst were observed. In the sample using, a brush structure having a uniform length in a mat shape, which seems to be a single-walled carbon nanotube, was confirmed. For comparison, a sample synthesized using an Fe 0.5 Mo 0.5 catalyst was observed with SEM and TEM. Submicron-sized particles that seemed to be catalytic metals were observed, but the tube structure was mostly observed. Was not. When the Fe 0.95 Mo 0.05 catalyst was used, the maximum tube length was 10 μm. When x was 0.33 or more, the tube length was reduced to 5 μm.
比較のために、Fe触媒を用いて600℃で単層カーボンナノチューブの合成を試みた。図10にこの試料のSEM像を示し、BはAの一部を拡大したものである。図10より、約7〜8μmの長さのそろった大量の単層カーボンナノチューブが基板に対して垂直方向に成長していることが分かる。また、図11にこの試料のTEM像を示し、BはAの一部を拡大したものである。図11より、合成された単層カーボンナノチューブは表面にアモルファス成分を含むものの、0.7〜2.0nmの直径を持つ単層カーボンナノチューブからできていることが分かる。 For comparison, an attempt was made to synthesize single-walled carbon nanotubes at 600 ° C. using an Fe catalyst. FIG. 10 shows an SEM image of this sample, and B is an enlarged part of A. From FIG. 10, it can be seen that a large number of single-walled carbon nanotubes having a length of about 7 to 8 μm grow in a direction perpendicular to the substrate. FIG. 11 shows a TEM image of this sample, and B is an enlarged view of part of A. FIG. 11 shows that the synthesized single-walled carbon nanotubes are made of single-walled carbon nanotubes having a diameter of 0.7 to 2.0 nm, although the surface contains an amorphous component.
以上のように、この第1の実施形態によれば、表面が酸化物からなる基板上に担持させたFe1-x Mox (0<x≦0.33)を触媒とし、これを用いてPECVD法により400〜650℃で反応を行うことにより、直径が2nm未満の単層カーボンナノチューブを合成することができる。この場合、合成温度が400〜650℃と低温であるので、ガラス基板の使用も可能となって基板選択の幅が広がり、この単層カーボンナノチューブをFET等のトランジスタに用いる場合にはその電極材料の選択の幅も広がる。また、この場合、ゼオライト等の触媒担持用微粒子を用いないので、この触媒担持用微粒子による不純物の混入がない。 As described above, according to the first embodiment, Fe 1-x Mo x (0 <x ≦ 0.33) supported on a substrate having an oxide surface is used as a catalyst, and this is used. By carrying out the reaction at 400 to 650 ° C. by PECVD method, single-walled carbon nanotubes having a diameter of less than 2 nm can be synthesized. In this case, since the synthesis temperature is as low as 400 to 650 ° C., it is possible to use a glass substrate, and the range of substrate selection is widened. When this single-walled carbon nanotube is used for a transistor such as an FET, its electrode material The range of choices also expands. Further, in this case, since catalyst supporting fine particles such as zeolite are not used, impurities are not mixed by the catalyst supporting fine particles.
次に、この発明の第2の実施形態について説明する。
この第2の実施形態においては、表面が酸化物からなる基板上に、触媒としてCo1-x Mox (ただし、0<x≦0.33)を担持させ、このCo1-x Mox 触媒を用いてPECVD法により単層カーボンナノチューブを合成する。合成温度は400〜650℃とする。
Next explained is the second embodiment of the invention.
In this second embodiment, Co 1-x Mo x (where 0 <x ≦ 0.33) is supported as a catalyst on a substrate having an oxide surface, and this Co 1-x Mo x catalyst is supported. Is used to synthesize single-walled carbon nanotubes by PECVD. The synthesis temperature is 400 to 650 ° C.
具体的には、例えば次のようにして合成を行う。
まず、Co1-x Mox 触媒を次のようにして作製する。
酢酸モリブデンおよび酢酸コバルトをそれぞれエタノールと混合し、これを超音波で一晩処理することにより、0.01wt%Mo溶液および0.01wt%Co溶液を合成する。
次に、これらの0.01wt%Mo溶液および0.01wt%Co溶液を所望の割合で調合することにより、Co1-x Mox 触媒溶液を合成する。
Specifically, for example, synthesis is performed as follows.
First, a Co 1-x Mo x catalyst is produced as follows.
Molybdenum acetate and cobalt acetate are mixed with ethanol, respectively, and this is treated with ultrasound overnight to synthesize 0.01 wt% Mo solution and 0.01 wt% Co solution.
Next, a Co 1-x Mo x catalyst solution is synthesized by preparing these 0.01 wt% Mo solution and 0.01 wt% Co solution in a desired ratio.
次に、このCo1-x Mox 触媒溶液中に酸化膜(SiO2 膜)付きシリコン基板を浸漬し、Co1-x Mox 触媒を基板表面に分散した形で担持させる。
次に、こうして作製されたCo1-x Mox 触媒担持シリコン基板上に、実施例1と同様の手順で、メタンを原料ガスとして、単層カーボンナノチューブをPECVD法により合成する。
合成後、炉から試料を取り出し、観察、評価を行った。
Next, a silicon substrate with an oxide film (SiO 2 film) is immersed in the Co 1-x Mo x catalyst solution, and the Co 1-x Mo x catalyst is supported in a dispersed form on the substrate surface.
Next, on the Co 1-x Mo x catalyst-supported silicon substrate thus produced, single-walled carbon nanotubes are synthesized by PECVD using methane as a source gas in the same procedure as in Example 1.
After the synthesis, a sample was taken out from the furnace and observed and evaluated.
図12に、Co0.95Mo0.05触媒を用いて600℃で単層カーボンナノチューブを合成した試料のSEM像を示す。図12より、長さ0.5μm程の単層カーボンナノチューブが確認できる。
比較のために、Fe0.5 Mo0.5 触媒を用いて600℃および550℃で単層カーボンナノチューブの合成を試みた。これらの試料のSEM像を図13に示す。図13Bに示すように、合成温度550℃では、触媒と思われるサブミクロンサイズの粒子は観察されたが、チューブ構造は確認されなかった。図13Aに示すように、合成温度600℃では、チューブ構造らしきものが観察されるが、非常に少ないことが分かる。図14に、600℃で合成を行った試料のTEM像を示す。図14から分かるように、このチューブ構造中には、単層カーボンナノチューブは見られるものの、半分以上は2層以上の層からなる多層カーボンナノチューブであった。
さらに、比較のために、Co触媒を用いて600℃で単層カーボンナノチューブの合成を試みた。この試料のSEM観察を行ったところ、単層カーボンナノチューブは確認できなかった。
この第2の実施形態によれば、第1の実施形態と同様な利点を得ることができる。
FIG. 12 shows an SEM image of a sample obtained by synthesizing single-walled carbon nanotubes at 600 ° C. using a Co 0.95 Mo 0.05 catalyst. From FIG. 12, single-walled carbon nanotubes having a length of about 0.5 μm can be confirmed.
For comparison, an attempt was made to synthesize single-walled carbon nanotubes at 600 ° C. and 550 ° C. using an Fe 0.5 Mo 0.5 catalyst. SEM images of these samples are shown in FIG. As shown in FIG. 13B, at a synthesis temperature of 550 ° C., submicron-sized particles that seem to be a catalyst were observed, but a tube structure was not confirmed. As shown in FIG. 13A, at the synthesis temperature of 600 ° C., what seems to be a tube structure is observed, but it can be seen that there are very few. FIG. 14 shows a TEM image of a sample synthesized at 600 ° C. As can be seen from FIG. 14, although single-walled carbon nanotubes are observed in this tube structure, more than half are multi-walled carbon nanotubes composed of two or more layers.
Furthermore, for comparison, an attempt was made to synthesize single-walled carbon nanotubes at 600 ° C. using a Co catalyst. When SEM observation of this sample was performed, single-walled carbon nanotubes could not be confirmed.
According to the second embodiment, the same advantages as those of the first embodiment can be obtained.
以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施形態において挙げた数値、材料、原料、プロセス等はあくまでも例に過ぎず、必要に応じてこれらと異なる数値、材料、原料、プロセス等を用いてもよい。
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, The various deformation | transformation based on the technical idea of this invention is possible.
For example, the numerical values, materials, raw materials, processes, and the like given in the above-described embodiment are merely examples, and different numerical values, materials, raw materials, processes, and the like may be used as necessary.
ところで、直径0.7〜1.3nmの単層カーボンナノチューブは、高い移動度を示す半導体材料として知られている。現在、この直径を持つ単層カーボンナノチューブを大量に、かつ長さをそろえて合成する手法が望まれている。そこで次に、600℃以下の低温で、長さのそろった直径が0.7〜1.3nmの単層カーボンナノチューブを大量に合成する手法について説明する。従来の熱CVD法では、600℃以下の低温では、高純度の単層カーボンナノチューブ(ラマン測定(レーザー波長532nm)によるG/Dバンド比5以上)を成長させることは困難であり、また、ゼオライト担持触媒による単層カーボンナノチューブ合成では、長さをそろえることが困難であり、また、Fe薄膜を触媒前駆体として利用したPECVD法では、直径が1nm以下の単層カーボンナノチューブを合成することは困難である。 Incidentally, single-walled carbon nanotubes having a diameter of 0.7 to 1.3 nm are known as semiconductor materials exhibiting high mobility. At present, there is a demand for a method for synthesizing a large number of single-walled carbon nanotubes having this diameter in a uniform length. Then, next, a method for synthesizing a large amount of single-walled carbon nanotubes having a uniform diameter of 0.7 to 1.3 nm at a low temperature of 600 ° C. or less will be described. In the conventional thermal CVD method, it is difficult to grow high-purity single-walled carbon nanotubes (G / D band ratio of 5 or more by Raman measurement (laser wavelength 532 nm)) at a low temperature of 600 ° C. or lower. It is difficult to make single-walled carbon nanotubes with a supported catalyst, and it is difficult to synthesize single-walled carbon nanotubes with a diameter of 1 nm or less by PECVD using Fe thin film as a catalyst precursor. It is.
600℃以下の低温で、長さのそろった直径が0.7〜1.3nmの単層カーボンナノチューブを大量に合成する手法は次のとおりである。すなわち、サブナノスケールの細孔を持つ材料、例えばゼオライトに、Fe、Co、Niまたはそれらを含む合金を担持させた粉末触媒を合成する。合成後、直径0.1μm以下の粉末触媒だけを取り出し、基板上にマット状に分散させる。次に、炭素系ガスを炭素源として、ガスの分解のためのエネルギーを高周波プラズマにより供給するPECVD法を用いることにより、合成温度400〜650℃、好ましくは450〜600℃で単層カーボンナノチューブ合成を行う。こうすることで、直径0.7〜1.3nmの単層カーボンナノチューブを大量に、しかも長さのそろったマット状に成長させることができる。 A method for synthesizing a large amount of single-walled carbon nanotubes having a uniform diameter of 0.7 to 1.3 nm at a low temperature of 600 ° C. or lower is as follows. That is, a powder catalyst in which Fe, Co, Ni or an alloy containing them is supported on a material having sub-nanoscale pores, such as zeolite, is synthesized. After the synthesis, only the powder catalyst having a diameter of 0.1 μm or less is taken out and dispersed in a mat shape on the substrate. Next, a single-walled carbon nanotube is synthesized at a synthesis temperature of 400 to 650 ° C., preferably 450 to 600 ° C., by using a PECVD method in which carbon-based gas is used as a carbon source and energy for gas decomposition is supplied by high-frequency plasma. I do. By doing so, single-walled carbon nanotubes having a diameter of 0.7 to 1.3 nm can be grown in a large amount and in a mat shape having a uniform length.
具体例について説明する。
まず、触媒を次のようにして作製する。
酢酸コバルトをそれぞれFe:2.5wt%、Co:2.5wt%、ゼオライト1gの割合でエタノール40mlと混合し、超音波で10分間処理する。これを乾燥させた後、エタノール40mlに分散する。
次に、こうして合成した分散溶液を濾過し、直径0.1μm以上のゼオライト粉末を取り除く。
次に、この分散溶液中に酸化膜付きシリコン基板を浸漬し、ゼオライトに担持させたFe/Co触媒を基板表面に担持させる。
A specific example will be described.
First, a catalyst is prepared as follows.
Cobalt acetate is mixed with 40 ml of ethanol at a ratio of Fe: 2.5 wt%, Co: 2.5 wt% and 1 g of zeolite, respectively, and treated with ultrasonic waves for 10 minutes. This is dried and then dispersed in 40 ml of ethanol.
Next, the dispersion solution thus synthesized is filtered to remove zeolite powder having a diameter of 0.1 μm or more.
Next, a silicon substrate with an oxide film is immersed in this dispersion solution, and the Fe / Co catalyst supported on zeolite is supported on the substrate surface.
次に、メタンを原料ガスとして、単層カーボンナノチューブをPECVD法により合成する。その詳細を以下に説明する。まず、Fe/Co触媒担持シリコン基板を石英管状炉にセットする。そして、まず、触媒表面の有機物を除去するために、空気中400℃で5分間酸化処理した後、炉内をロータリーポンプ、ターボ分子ポンプにより2×10-2Paまで真空引きし、室温から550℃間まで10分間でFe/Co触媒担持シリコン基板加熱を行う。次に、炉内にH2 を150sccmで導入し、炉内の圧力を500Paに調整し、20分間維持する。この過程で触媒表面の酸化膜は除去される。 Next, single-walled carbon nanotubes are synthesized by PECVD using methane as a source gas. Details thereof will be described below. First, the Fe / Co catalyst supporting silicon substrate is set in a quartz tubular furnace. First, in order to remove organic substances on the catalyst surface, after oxidizing for 5 minutes at 400 ° C. in the air, the inside of the furnace is evacuated to 2 × 10 −2 Pa by a rotary pump and a turbo molecular pump, and from room temperature to 550 The Fe / Co catalyst-supported silicon substrate is heated for 10 minutes until the temperature is between the temperatures. Next, H 2 is introduced into the furnace at 150 sccm, and the pressure in the furnace is adjusted to 500 Pa and maintained for 20 minutes. In this process, the oxide film on the catalyst surface is removed.
次に、炉内へのH2 の導入を停止し、真空引きした後、再びH2 を70sccmで導入し、さらにメタンを30sccmで導入し、炉内の圧力を40Paに調節し、70Wの高周波プラズマを10分間立てることにより、基板表面にマット状に分散したゼオライト担持Fe/Mo触媒からマット状単層カーボンナノチューブを合成する。
合成後、炉から試料を取り出し、観察、評価を行った。
図15に、上記のマット状単層カーボンナノチューブ合成時の温度−時間変化を示す。
Next, after stopping the introduction of H 2 into the furnace and evacuating, H 2 was introduced again at 70 sccm, methane was introduced at 30 sccm, the pressure in the furnace was adjusted to 40 Pa, and a high frequency of 70 W By standing the plasma for 10 minutes, the mat-like single-walled carbon nanotubes are synthesized from the zeolite-supported Fe / Mo catalyst dispersed in a mat-like manner on the substrate surface.
After the synthesis, a sample was taken out from the furnace and observed and evaluated.
FIG. 15 shows a temperature-time change during the synthesis of the mat-like single-walled carbon nanotube.
図16に、上記の方法で単層カーボンナノチューブの合成を行った試料のSEM像を示し、(B)は(A)の一部を拡大したものである。図16より、約4〜5μmの長さのそろった大量の単層カーボンナノチューブが、基板に対して垂直方向に成長していることが分かる。
図17に、この単層カーボンナノチューブのラマン測定を行った結果を示す。図17Aは単層カーボンナノチューブのRBM(Radial Breathing Mode)ピークを示す。210cm-1付近のピークはラマンシステムに由来するものである。単層カーボンナノチューブに由来するRBMピークが223cm-1、264cm-1、281cm-1、299cm-1あたりに見られ、直径dは、d=248/λの式から計算すると、0.8〜1.2nmの範囲で存在していることが分かる。図17Bは、Gバンド(1580cm-1付近)、Dバンド(1300cm-1付近)を示す。合成されたカーボンナノチューブの純度の指標として、Gバンド/Dバンドの比(G/D)として15以上を示していることが分かる。
FIG. 16 shows an SEM image of a sample obtained by synthesizing single-walled carbon nanotubes by the above method, and (B) is an enlarged view of a part of (A). FIG. 16 shows that a large number of single-walled carbon nanotubes having a length of about 4 to 5 μm are grown in a direction perpendicular to the substrate.
FIG. 17 shows the results of Raman measurement of this single-walled carbon nanotube. FIG. 17A shows an RBM (Radial Breathing Mode) peak of a single-walled carbon nanotube. The peak around 210 cm −1 is derived from the Raman system. RBM peaks derived from single-walled carbon nanotubes 223cm -1, 264cm -1, 281cm -1 , observed per 299cm -1, the diameter d, is calculated from the equations of d = 248 / λ, 0.8~1 It can be seen that it exists in the range of 2 nm. FIG. 17B shows the G band (near 1580 cm −1 ) and the D band (near 1300 cm −1 ). It can be seen that the ratio of G band / D band (G / D) is 15 or more as an indicator of the purity of the synthesized carbon nanotubes.
比較のために、合成を850℃の高温熱CVD法により行うこと以外は上記と同様の方法により単層カーボンナノチューブを合成し、そのラマン測定を行った。その結果を図18に示す。600℃よりも高い温度で合成しているため、直径1.2nm以上の太い単層カーボンナノチューブが存在していることが分かる。
図19に、図16に示すSEM像を得たものと同一の試料のTEM像を示す。図19より、単層カーボンナノチューブの直径は約1nmである。
なお、上記のようにして合成したマット状単層カーボンナノチューブのマット状構造を分解し、単層カーボンナノチューブ1本または束構造に分離して使用することもできる。
For comparison, single-walled carbon nanotubes were synthesized by the same method as described above except that the synthesis was performed by a high-temperature thermal CVD method at 850 ° C., and the Raman measurement was performed. The result is shown in FIG. Since the synthesis is performed at a temperature higher than 600 ° C., it can be seen that thick single-walled carbon nanotubes having a diameter of 1.2 nm or more exist.
FIG. 19 shows a TEM image of the same sample from which the SEM image shown in FIG. 16 was obtained. From FIG. 19, the diameter of the single-walled carbon nanotube is about 1 nm.
Note that the mat-like structure of the mat-like single-walled carbon nanotubes synthesized as described above can be decomposed and separated into single-walled carbon nanotubes or a bundle structure.
Claims (10)
上記触媒として、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)を用いる
ことを特徴とする炭素系一次元材料の合成方法。 In a method for synthesizing a carbon-based one-dimensional material by using a catalyst supported on a substrate and synthesizing a carbon-based one-dimensional material by reacting in a plasma using a compound containing carbon as a source gas,
As the above catalyst, (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, 0 ≦ p ≦ 1, and 0 ≦ q ≦ 1). A method for synthesizing a carbon-based one-dimensional material.
上記触媒が、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)である
ことを特徴とする炭素系一次元材料。 A carbon-based one-dimensional material synthesized using a catalyst supported on a substrate,
The catalyst is (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, 0 ≦ p ≦ 1, 0 ≦ q ≦ 1) A carbon-based one-dimensional material characterized by the following.
上記触媒として、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)を用いる
ことを特徴とする電子素子の製造方法。 In a method for producing an electronic device having a step of synthesizing a carbon-based one-dimensional material by reacting in a plasma using a compound containing carbon as a source gas, using a catalyst supported on a substrate,
As the catalyst, (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, 0 ≦ p ≦ 1, 0 ≦ q ≦ 1) is used.
上記触媒が、(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)である
ことを特徴とする電子素子。 In an electronic device having a carbon-based one-dimensional material synthesized using a catalyst supported on a substrate,
The catalyst is (Fe 1-pq Co p Ni q ) 1-xy Mo x C y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q.ltoreq.1, 0.ltoreq.p.ltoreq.1, 0.ltoreq.q.ltoreq.1).
(Fe1-p-q Cop Niq )1-x-y Mox Cry (ただし、0<x+y≦0.33、0≦x≦0.33、0≦y≦0.33、0≦p+q≦1、0≦p≦1、0≦q≦1)からなる
ことを特徴とする炭素系一次元材料合成用触媒。 A catalyst for synthesizing a carbon-based one-dimensional material used when synthesizing a carbon-based one-dimensional material by reacting in a plasma using a compound containing carbon as a source gas,
(Fe 1-pq Co p Ni q ) 1-xy Mo x Cr y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, 0 ≦ p ≦ 1, 0 ≦ q ≦ 1). A catalyst for synthesizing a carbon-based one-dimensional material, characterized by comprising:
Fe、CoおよびNiからなる群より選ばれた少なくとも一種の金属とMoおよびCrからなる群より選ばれた少なくとも一種の金属とを含む溶液を基体上に塗布した後、加熱処理を行うことによりこれらの金属を上記基体上に担持させるようにした
ことを特徴とする炭素系一次元材料合成用触媒の合成方法。
(Fe 1-pq Co p Ni q ) 1-xy Mo x Cr y (where 0 <x + y ≦ 0.33, 0 ≦ x ≦ 0.33, 0 ≦ y ≦ 0.33, 0 ≦ p + q ≦ 1, A method for synthesizing a carbon-based one-dimensional material synthesis catalyst comprising 0 ≦ p ≦ 1, 0 ≦ q ≦ 1),
By applying a solution containing at least one metal selected from the group consisting of Fe, Co and Ni and at least one metal selected from the group consisting of Mo and Cr on the substrate, and then performing a heat treatment, these are performed. A method for synthesizing a catalyst for synthesizing a carbon-based one-dimensional material, wherein the metal is supported on the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005120461A JP2006298684A (en) | 2005-04-19 | 2005-04-19 | Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005120461A JP2006298684A (en) | 2005-04-19 | 2005-04-19 | Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006298684A true JP2006298684A (en) | 2006-11-02 |
Family
ID=37467195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005120461A Pending JP2006298684A (en) | 2005-04-19 | 2005-04-19 | Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006298684A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169092A (en) * | 2007-01-12 | 2008-07-24 | National Institute Of Advanced Industrial & Technology | Carbon nanotube production method |
JP2009295378A (en) * | 2008-06-04 | 2009-12-17 | Sony Corp | Light transmissive conductor and its manufacturing method, electrostatic charge removing sheet, and electronic device |
JP2011519808A (en) * | 2008-05-01 | 2011-07-14 | 本田技研工業株式会社 | Synthesis of high-quality carbon single-walled nanotubes |
WO2013191253A1 (en) * | 2012-06-22 | 2013-12-27 | 国立大学法人東京大学 | Carbon nanotubes and production method thereof |
JP2014058439A (en) * | 2012-08-24 | 2014-04-03 | Showa Denko Kk | Carbon fiber, catalyst for manufacturing carbon finer and evaluation method of carbon fiber |
-
2005
- 2005-04-19 JP JP2005120461A patent/JP2006298684A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169092A (en) * | 2007-01-12 | 2008-07-24 | National Institute Of Advanced Industrial & Technology | Carbon nanotube production method |
JP2011519808A (en) * | 2008-05-01 | 2011-07-14 | 本田技研工業株式会社 | Synthesis of high-quality carbon single-walled nanotubes |
US9174847B2 (en) | 2008-05-01 | 2015-11-03 | Honda Motor Co., Ltd. | Synthesis of high quality carbon single-walled nanotubes |
US10850984B2 (en) | 2008-05-01 | 2020-12-01 | Honda Motor Co., Ltd. | Synthesis of high quality carbon single-walled nanotubes |
JP2009295378A (en) * | 2008-06-04 | 2009-12-17 | Sony Corp | Light transmissive conductor and its manufacturing method, electrostatic charge removing sheet, and electronic device |
WO2013191253A1 (en) * | 2012-06-22 | 2013-12-27 | 国立大学法人東京大学 | Carbon nanotubes and production method thereof |
CN104395233A (en) * | 2012-06-22 | 2015-03-04 | 国立大学法人东京大学 | Carbon nanotubes and production method thereof |
JPWO2013191253A1 (en) * | 2012-06-22 | 2016-05-26 | 国立大学法人 東京大学 | Carbon nanotube and method for producing the same |
US9463981B2 (en) | 2012-06-22 | 2016-10-11 | The University Of Tokyo | Carbon nanotubes and production method thereof |
CN110002430A (en) * | 2012-06-22 | 2019-07-12 | 国立大学法人东京大学 | Carbon nanotube and its manufacturing method |
JP2014058439A (en) * | 2012-08-24 | 2014-04-03 | Showa Denko Kk | Carbon fiber, catalyst for manufacturing carbon finer and evaluation method of carbon fiber |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4474502B2 (en) | Method for producing carbon nanotube array | |
JP3850380B2 (en) | Carbon nanotube matrix growth method | |
JP6048591B2 (en) | carbon nanotube | |
CN101039873B (en) | Carbon nanotube aggregate and process for producing the same | |
US20040022719A1 (en) | Process for the mass production of multiwalled carbon nanotubes | |
JP2006007213A (en) | Production method of catalyst for producing carbon nanotube | |
JP2006015342A (en) | Method for manufacturing catalyst base for carbon nanotubes production, and method for manufacturing carbon nanotubes using this catalyst base formation method | |
JP5059589B2 (en) | Boron nitride nanofiber and method for producing the same | |
JP6492598B2 (en) | Method for producing carbon nanotube | |
JP2007015890A (en) | Substrate for carbon nanotube formation, its manufacturing method, and carbon nanotube | |
WO2012057229A1 (en) | Process for production of carbon nanotubes | |
JP2006298684A (en) | Carbon-based one-dimensional material and method for synthesizing the same, catalyst for synthesizing carbon-based one-dimensional material and method for synthesizing the catalyst, and electronic element and method for manufacturing the element | |
Zhang et al. | Synthesis of 3C-SiC nanowires from a graphene/Si configuration obtained by arc discharge method | |
JP2007182374A (en) | Method for manufacturing single-walled carbon nanotube | |
JP4977982B2 (en) | Method for producing linear carbon material and method for producing functional device | |
Mansoor et al. | Optimization of ethanol flow rate for improved catalytic activity of Ni particles to synthesize MWCNTs using a CVD reactor | |
KR102283872B1 (en) | Method for manufacturing carbon nanotube catalyst and carbon nanotube using the same | |
Shukrullah et al. | Effect of ferrocene concentration on the quality of multiwalled CNTs grown by floating catalytic chemical vapor deposition technique | |
JP2007284336A (en) | Method for growing carbon nanotube and method for manufacturing carbon nanotube structure | |
KR101679693B1 (en) | Method for preparing carbon nanotube and hybrid carbon nanotube composite | |
JP4556015B2 (en) | Zinc sulfide / silicon core / shell nanowire and method for producing the same | |
JP2005279624A (en) | Catalyst, method and apparatus for producing carbon nanotube | |
JP2005139044A (en) | Single crystal silicon nanotube and its manufacturing method | |
JP6623512B2 (en) | Carbon nanostructure aggregate and method for producing the same | |
JP6476759B2 (en) | Method of manufacturing aligned carbon nanotube assembly |