JP2010127568A - 異常検出装置およびそれを備えた冷凍サイクル装置 - Google Patents

異常検出装置およびそれを備えた冷凍サイクル装置 Download PDF

Info

Publication number
JP2010127568A
JP2010127568A JP2008304757A JP2008304757A JP2010127568A JP 2010127568 A JP2010127568 A JP 2010127568A JP 2008304757 A JP2008304757 A JP 2008304757A JP 2008304757 A JP2008304757 A JP 2008304757A JP 2010127568 A JP2010127568 A JP 2010127568A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
abnormality detection
degree
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008304757A
Other languages
English (en)
Inventor
Koyu Tanaka
航祐 田中
Hirokuni Shiba
広有 柴
Tatsunori Sakai
達紀 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008304757A priority Critical patent/JP2010127568A/ja
Publication of JP2010127568A publication Critical patent/JP2010127568A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

【課題】熱交換対象の流体の流量が変化するシステムにおいても、安定して正確な異常検出を行うことが可能な異常検出装置等を提供する。
【解決手段】各検出手段からの測定値を取得する測定部101と、少なくとも予め正常時の熱交換効率を記憶する記憶部104と、冷媒循環量、熱源側熱交換器3との熱交換対象の流体の送出量および利用側熱交換器7a、7bとの熱交換対象の流体の送出量をそれぞれ推定する各推定手段を有し、少なくとも、これら各推定手段で推定された各推定値と測定部101で取得された各測定値とを用いて、熱源側熱交換器または利用側熱交換器の少なくとも1つの異常検出対象熱交換器の熱交換効率を演算し、演算して得られた熱交換効率と予め記憶された正常時の熱交換効率との乖離度合いを演算する演算部102と、演算部102で得られた乖離度合いに基づいて異常検出対象の熱交換器の異常を判定する判定部106とを備えた。
【選択図】図1

Description

本発明は、ヒートポンプ熱交換器の性能劣化等の異常を検知する異常検出装置及びそれを備えた冷凍サイクル装置に関する。
一般的に、ヒートポンプ熱交換器は、熱源側及び利用側の熱交換器と、圧縮機とを含むヒートポンプサイクルからなり、このヒートポンプサイクル内において冷媒を循環させることにより、低温側熱交換器では冷却を、高温側熱交換器では加熱を行うものである。ヒートポンプは、圧縮機、凝縮器、膨張弁及び蒸発器から構成される。このヒートポンプを稼動させると、ガスの冷媒は圧縮機により圧縮され、凝縮器において凝縮されて液化した後、液体の冷媒は膨張弁で断熱膨張され、蒸発器において気化されるというサイクルを繰り返す。このとき、凝縮器において、冷媒はほぼ等圧下で液化するとともに外部に熱ΔHhを放出する。一方、蒸発器において、冷媒はほぼ等圧下で気化するとともに外部から熱ΔHlを吸収する。したがって、凝縮器は加熱を、蒸発器は冷却をそれぞれ行うことができる。ここで、ΔHhは冷媒がサイクル外部に対して与える熱量を、ΔHlは冷媒がサイクル外部から吸収する熱量を、ΔHcはコンプレッサが冷媒に対してする仕事量を示しており、ΔHh=ΔHl+ΔHcという関係式が成立する。
従来より、冷凍サイクル装置に用いられるヒートポンプ熱交換器では、冷媒の汚染及び変質、冷凍サイクル内の各機器の異常、配管の汚れなどが発生した場合や、熱交換器(フィン・アンド・チューブ熱交換器)のフィンが経年劣化したり腐食したりして熱交換器の伝熱面積が低下した場合、熱交換器における加熱・冷却能力が劣化する。加熱・冷却能力が劣化すると、所望の加熱・冷却効果を得るためには、より高負荷でヒートポンプサイクルを稼動させなければならなくなり、装置の各機器に多大な負荷をかけることになってしまう。そこで、ヒートポンプサイクル内部における異常を診断するために、外部から計測される様々なデータを監視することが望ましい。
従来、冷凍サイクル装置の熱交換器の異常を検出する技術として、冷凍サイクルの高圧、低圧、冷媒の入口温度、出口温度から回帰式を作成し、正常時に作成された回帰式での理想の圧力との乖離度合いから、熱交換器の性能低下を検出する異常検出装置(例えば、特許文献1参照)等が提案されている。
特許第4049610号公報(図4)
上記従来の異常検出装置では、基準値である理想的な圧力が熱交換量との関係で記憶されており、空気流量を制御して省エネルギーを図る空気流量可変システムに導入する場合は考慮されていない。すなわち、熱交換対象(加熱・冷却対象)の流体(空気)の流量が変化せず一定であることを前提として回帰式を作成している。したがって、その前提の空気流量よりも少ない空気流量の場合、風速および管外熱伝達率が低下するため、正常であっても異常と判定されてしまうという課題があった。
また、外気温が低い場合(例えば5℃)に熱交換器を蒸発器として使用する場合、蒸発器の伝熱管温度が0℃以下となり着霜が発生する。着霜が成長して風路が閉塞されると、熱交換器性能が一時的に低下する。このような着霜による一時的な性能低下は、霜を解かす除霜運転を行うことにより回復することが可能である。しかしながら、上記従来の方法では、着霜による一時的な熱交換器性能低下が生じると、実際には熱交換器自体は性能低下しておらず正常であっても、異常と判定されてしまうという課題があった。
本発明はこのような点に鑑みなされたもので、熱交換対象の流体の流量が変化するシステムにおいても、安定して正確な異常検出を行うことが可能な異常検出装置およびこの異常検出装置を備えた冷凍サイクル装置を提供することを目的とする。
上記目的に加えて、着霜が発生する利用環境においても、安定して正確な異常検出を行うことが可能な異常検出装置およびこの異常検出装置を備えた冷凍サイクル装置を提供することを目的とする。
本発明に係る異常検出装置は、圧縮機と熱源側熱交換器と絞り手段と少なくとも1つの利用側熱交換器とを順次接続して構成される冷媒回路の異常検出を行う異常検出装置であって、熱源側熱交換器の圧力を検出する第1圧力検出手段と、利用側熱交換器の圧力を検出する第2圧力検出手段と、熱源側熱交換器に流入する冷媒の流入温度を検出する冷媒流入温度検出手段と、熱源側熱交換器との熱交換対象の流体の流入温度を検出する第1流体流入温度検出手段と、利用側熱交換器との熱交換対象の流体の流入温度を検出する第2流体流入温度検出手段とを含む各検出手段からの測定値を取得する測定部と、少なくとも予め正常時の熱交換効率を記憶する記憶部と、圧縮機の運転周波数または絞り手段の絞り量から冷媒循環量を推定する冷媒循環量推定手段、熱源側熱交換器との熱交換対象の流体の送出量を推定する第1送出量推定手段および利用側熱交換器との熱交換対象の流体の送出量を推定する第2送出量推定手段を有し、少なくとも、これら各推定手段で推定された各推定値と測定部で取得された各測定値とを用いて、熱源側熱交換器または利用側熱交換器の少なくとも1つの異常検出対象の熱交換器の熱交換効率を演算し、演算して得られた熱交換効率と予め記憶された正常時の熱交換効率との乖離度合いを演算する演算部と、演算部で得られた乖離度合いに基づいて異常検出対象の熱交換器の異常を判定する判定部とを備えたものである。
また、本発明に係る異常検出装置は、熱源側熱交換器および利用側熱交換器のそれぞれに、それぞれに供給する熱交換対象の流体の流量を可変することが可能な送風機が設けられており、判定部は、異常検出対象の熱交換器が蒸発器の場合、演算部で演算した凝縮器の乖離度合いの変化速度に基づいて、異常判定として、異常検出対象の熱交換器の経年劣化、送風機の故障または着霜のいずれかを判定するものである。
本発明の異常検出装置によれば、異常検出対象の熱交換器の熱交換効率を演算し、演算して得られた熱交換効率と予め記憶された正常時の熱交換効率との乖離度合いに基づいて異常判定を行うようにしたので、如何なる環境条件、設置条件下においても精度良く熱交換器の異常検出を行うことができる。
また、本発明の異常検出装置によれば、凝縮器の乖離度合いの変化速度に基づいて、異常判定として、経年劣化、送風機の故障または着霜のいずれかを判定することができる。
実施の形態1.
図1は本発明の実施の形態1に係る異常検出装置を備えた冷凍サイクル装置を概略的に示す冷媒回路図である。
冷凍サイクル装置は、蒸気圧縮式の冷凍サイクル運転を行うことによって、屋内の冷房又は暖房に使用される装置であり、主として並列に接続された複数台(本実施の形態では1台)の熱源ユニット301と、熱源ユニット301に接続配管6および接続配管9を介して並列に接続された複数台(本実施の形態では2台)の利用ユニット302a、302bと、熱源ユニット301および利用ユニット302a、302b内に構成される冷媒回路内の後述の熱交換器の異常を検知する異常検出装置100とを備えている。接続配管6および接続配管9は、冷媒回路を循環する液状態またはガス状態の冷媒を通過させる冷媒連絡配管である。冷凍サイクル装置に用いられる冷媒としては、例えばR410A、R407C、R404AなどのHFC冷媒、R22、R134aなどのHCFC冷媒、または炭化水素、ヘリウムのような自然冷媒などがある。なお、異常検出装置100は、図1に示すように冷凍サイクル装置内に備えていても良いし、冷媒回路から独立した装置として構成してもよい。以下、冷凍サイクル装置を構成する各構成部について順に説明する。
<利用ユニット>
利用ユニット302a、302bは、屋内の天井に埋め込みや吊り下げ等により、または屋内の壁面に壁掛け等により設置され、既述したように接続配管6及び接続配管9を介して熱源ユニット301に接続されて冷媒回路の一部を構成している。
次に、利用ユニット302a、302bの詳細な構成について説明するが、利用ユニット302aと302bとは同様の構成を有しているため、ここでは利用ユニット302aについてのみ説明し、利用ユニット302bについては、各符号にサフィックス「b」を付けて各部の説明を省略する。
利用ユニット302aは、冷媒回路の一部である室内側冷媒回路を構成しており、室内送風機8aと、利用側熱交換器である室内熱交換器7aとを備えている。
室内熱交換器7aは、ここでは伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなり、冷房運転時には冷媒の蒸発器として機能して室内の空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内の空気を加熱する。
室内送風機8aは、室内熱交換器7aに供給する空気の流量を可変することが可能なファン、例えばDCファンモータ(図示せず)によって駆動される遠心ファンや多翼ファン等からなり、これによって利用ユニット302a内に室内空気を吸入し、室内熱交換器7aにより冷媒との間で熱交換した空気を供給空気として室内に供給する機能を有する。
また、利用ユニット302aには、各種のセンサが設置されている。すなわち、室内熱交換器7aの液側には、液状態または気液二相状態の冷媒の温度(暖房運転時における過冷却液温度Tcoまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出する液側温度センサ205aが設けられている。また室内熱交換器7aには、気液二相状態の冷媒の温度(暖房運転時における凝縮温度Tcまたは冷房運転時における蒸発温度Teに対応する冷媒温度)を検出する二相温度センサ207aが設けられている。更に利用ユニット302aの室内空気の吸入口側には、ユニット内に流入する室内空気の温度を検出する室内温度センサ206aが設けられている。なお、ここでは液側温度センサ205a、二相温度センサ207a、及び室内温度センサ206aは、いずれもサーミスタから構成されている。室内送風機8aの動作は、運転制御手段によって制御されるようになっている。
<熱源ユニット>
熱源ユニット301は、屋外に設置されており、接続配管6および接続配管9を介して利用ユニット302a、302bに接続されており、冷媒回路の一部を構成している。
次に、熱源ユニット301の詳細な構成について説明する。熱源ユニット301は、圧縮機1と、四方弁2と、熱源側熱交換器としての室外熱交換器3と、室外送風機4と、絞り手段5aとを備えている。
絞り手段5aは、冷媒回路内を流れる冷媒の流量の調節等を行うために、熱源ユニット301の液側に接続配置されている。
圧縮機1は、運転容量を可変することが可能な圧縮機であり、ここではインバータにより制御されるモータ(図示せず)によって駆動される容積式圧縮機を用いている。なお、圧縮機1は、ここでは1台のみであるが、これに限定されず、利用ユニットの接続台数等に応じて、2台以上の圧縮機が並列に接続されたものであってもよいことは言うまでもない。
四方弁2は、冷媒の流れの方向を切り換えるための弁であり、冷房運転時には、室外熱交換器3を圧縮機1において圧縮される冷媒の凝縮器として、かつ室内熱交換器7a、7bを室外熱交換器3において凝縮される冷媒の蒸発器として機能させるために、圧縮機1の吐出側と室外熱交換器3のガス側とを接続するとともに、圧縮機1の吸入側と接続配管9側とを接続するように(図1の四方弁2の破線を参照)、冷媒流路を切り換える。また四方弁2は、暖房運転時には、室内熱交換器7a、7bを圧縮機1において圧縮される冷媒の凝縮器として、かつ室外熱交換器3を室内熱交換器7a、7bにおいて凝縮される冷媒の蒸発器として機能させるために、圧縮機1の吐出側と接続配管9側とを接続するとともに、圧縮機1の吸入側と室外熱交換器3のガス側とを接続するように(図1の四方弁2の実線を参照)、冷媒流路を切り換える機能を有する。
室外熱交換器3は、そのガス側が四方弁2に接続され、その液側が接続配管6に接続された伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器からなり、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。
室外送風機4は、室外熱交換器3に供給する空気の流量を可変することが可能なファン、例えばDCファンモータ(図示せず)によって駆動されるプロペラファンからなり、これによって熱源ユニット301内に室外空気を吸入し、室外熱交換器3により冷媒との間で熱交換した空気を室外に排出する機能を有する。
また、熱源ユニット301には、各種のセンサが設置されている。すなわち、圧縮機1には、吐出温度Tdを検出する吐出温度センサ201が設けられているとともに、室外熱交換器3には、気液二相状態の冷媒の温度(冷房運転時における凝縮温度Tcまたは暖房運転時における蒸発温度Teに対応する冷媒温度)を検出する二相温度センサ202が設けられている。更に室外熱交換器3の液側には、液状態または気液二相状態の冷媒の温度を検出する液側温度センサ204が設けられている。また、熱源ユニット301の室外空気の吸入口側には、ユニット内に流入する室外空気の温度すなわち外気温度Taを検出する室外温度センサ203が設けられている。
以上のように構成された熱源ユニット301と利用ユニット302a、302bとが接続配管6と接続配管9を介して接続されて、冷凍サイクル装置の冷媒回路が構成されている。
次に、異常検出装置100の構成について説明する。
異常検出装置100は、測定部101と、演算部102と、制御部103と、記憶部104と、比較部105と、判定部106と、報知部107とを備えている。測定部101は、各種温度センサによって検知された各諸量を取得する。演算部102は、測定部101の検出した測定値から運転状態量を演算する。記憶部104は、正常時に予め採取した基準となる熱交換効率や、正常時の乖離度合い(後述する)等を記憶する。制御部103は、演算部102の演算結果や判定部106の判定結果、図示しない入力手段からの操作入力信号に基づいて、圧縮機1の駆動周波数、四方弁2の切替え、室外送風機4の回転数、絞り手段5aの開度、室内送風機8a、8bの回転数が、所望の制御目標範囲に収まるように駆動制御する。
演算部102は更に、圧縮機1の運転周波数または絞り手段5aの絞り量から冷媒循環量を推定する冷媒循環量推定手段、熱源側熱交換器3との熱交換対象の流体の送出量を推定する第1送出量推定手段および利用側熱交換器7a、7bとの熱交換対象の流体の送出量を推定する第2送出量推定手段としての機能も備えている。そして、演算部102は、測定部101の検出した測定値と、前記各推定手段の各推定量とを組み合わせて演算を行ない、異常検出対象の熱交換器の熱交換効率(温度効率、エンタルピー効率)を演算し、演算して得られた熱交換効率と、予め採取した基準となる正常時の熱交換効率とから乖離度合いを演算する。
比較部105は、演算部102で演算された現在の冷凍サイクルの乖離度合いと、記憶部104に予め記憶された正常時の乖離度合いとを比較したり、現在の冷凍サイクルの乖離度合いの変化速度と、後述の速度閾値とを比較する。判定部106は、比較部105の比較結果に基づき、後述の方法にしたがって冷凍サイクル装置の異常検出の発生を判定する。なお、本発明でいう「異常検出」とは、熱交換器性能劣化、ファン故障やロック状態(異物や氷等でファンが回転不能な状態)の有無、着霜を含むものとする。
報知部107は、判定部106の判定結果を外部に報知する部分で、例えばLED(発光ダイオード)や、液晶ディスプレイ等の表示装置、遠隔地のモニター等に表示させたり、音声メッセージやブザー等で報知したりする。
このように構成された異常検出装置100は、具体的にはマイコンなどのコンピュータで構成され、内部にCPU、RAM及びROMを備えており、CPUがRAM及びROMに記憶されているプログラムにしたがって動作し、上記各構成部を機能的に構成している。
以下、本発明の特徴部分である異常検出装置100の動作を説明するに先立ち、まず、冷凍サイクル装置の冷媒回路部分の運転動作について説明する。
本実施の形態の冷凍サイクル装置の運転モードとしては、利用ユニット302a、302bの運転負荷に応じて熱源ユニット301及び利用ユニット302a、302bの各機器の制御を行う通常運転モードと、冷凍サイクル装置の設置後に機器診断を行う際に行われる特殊運転モードとしての機器診断モードとがある。なお、通常運転、機器診断モードには、それぞれ冷房運転と暖房運転とが含まれる。
次に、冷凍サイクル装置の各運転モードにおける動作について説明する。
<通常運転モード>
まず、通常運転モードにおける冷房運転について、図1を用いて説明する。
冷房運転時は、四方弁2が図1の破線で示される状態、すなわち、圧縮機1の吐出側が室外熱交換器3の液側に接続され、かつ圧縮機1の吸入側が室内熱交換器7a、7bのガス側に接続された状態となっている。また、絞り手段5aは圧縮機1の吸入側における冷媒の過熱度が所定値になるように開度調節されるようになっている。本実施の形態において、圧縮機1の吸入における冷媒の過熱度は、まず圧縮機吸入温度Tsより、二相温度センサ207a、207bにより検出される冷媒の蒸発温度Teを差し引くことによって求められる。ここで、圧縮機吸入温度Tsは、二相温度センサ207a、207bにより検出される冷媒の蒸発温度を低圧の飽和圧力Psに換算し、二相温度センサ202により検出される冷媒の凝縮温度を高圧の飽和圧力Pdに換算し、圧縮機1の吐出温度センサ201により検出される冷媒の吐出温度Tdより、圧縮機1の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定し、下記(1)式より算出することができる。
Figure 2010127568
ここで、Ts、Tdは温度[K]、Ps、Pdは圧力[MPa]、nはポリトロープ指数[−]である。ポリトロープ指数は一定値(例えばn=1.2)としてもよいが、Ps、Pdの関数として定義することで、より精度よく圧縮機吸入温度Tsを推測することができる。
なお、図2の冷媒回路図に示すように、圧縮機1の吸入側に吸入圧力センサ10と吸入温度センサ208を設け、吸入圧力センサ10により検出される圧縮機1の吸入圧力Psより蒸発温度Teに対応する飽和温度値に換算し、吸入温度センサ208により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって冷媒の過熱度を検出するようにしてもよい。
なお、高圧の圧力および低圧の圧力を算出するのに、ここでは冷媒の凝縮温度および蒸発温度より換算しているが、圧縮機1の吸入側、吐出側に直接圧力センサを付加し求めるようにしてもよいことは言うまでもない。
この冷媒回路の状態で、圧縮機1、室外送風機4および室内送風機8a、8bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となる。その後、高圧のガス冷媒は、四方弁2を経由して室外熱交換器3に送られて、室外送風機4によって供給される室外空気と熱交換を行って凝縮されて高圧の液冷媒となる。
そして、この高圧の液冷媒は、絞り手段5aによって減圧されて、低温低圧の気液二相冷媒となり、接続配管6を経由して利用ユニット302a、302bに送られ、室内熱交換器7a、7bで室内空気と熱交換を行って蒸発されて低圧のガス冷媒となる。ここで、絞り手段5aは、圧縮機1の吸入における過熱度が所定値になるように室内熱交換器内7a、7bを流れる冷媒の流量を制御しているため、室内熱交換器7a、7bにおいて蒸発された低圧のガス冷媒は、所定の過熱度を有する状態となる。このように、各室内熱交換器7a、7bには、利用ユニット302a、302bが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。
この低圧のガス冷媒は、接続配管9を経由して熱源ユニット301に送られ、四方弁2を経由して、再び、圧縮機1に吸入される。
次に、通常運転モードにおける暖房運転について説明する。
暖房運転時は、四方弁2が図1の実線で示される状態、すなわち、圧縮機1の吐出側が室内熱交換器7a、7bのガス側に接続され、かつ圧縮機1の吸入側が室外熱交換器3のガス側に接続された状態となっている。また、絞り手段5aは圧縮機1の吸入における冷媒の過熱度が所定値になるように開度調節されるようになっている。本実施の形態において、圧縮機1の吸入における冷媒の過熱度は、まず圧縮機吸入温度Tsより、二相温度センサ202により検出される冷媒の蒸発温度Teを差し引くことによって求められる。ここで、圧縮機吸入温度Tsは、二相温度センサ202により検出される冷媒の蒸発温度を低圧の飽和圧力Psに換算し、二相温度センサ207a、207bにより検出される冷媒の凝縮温度を高圧の飽和圧力Pdに換算し、圧縮機1の吐出温度センサ201により検出される冷媒の吐出温度Tdより、圧縮機1の圧縮工程はポリトロープ指数nのポリトロープ変化と仮定し、前述の(1)式より算出することができる。
なお、冷房運転と同様に図2に示すように、圧縮機1の吸入側に吸入圧力センサ10と吸入温度センサ208を設け、吸入圧力センサ10により検出される圧縮機1の吸入圧力Psより蒸発温度Teに対応する飽和温度値に換算し、吸入温度センサ208により検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって冷媒の過熱度を検出するようにしてもよい。
なお、冷房運転と同様に高圧の圧力および低圧の圧力を算出するのに、ここでも冷媒の凝縮温度および蒸発温度より換算しているが、圧縮機1の吸入側、吐出側に直接圧力センサを付加し求めるようにしてもよいことは言うまでもない。
この冷媒回路の状態で、圧縮機1、室外送風機4および室内送風機8a、8bを起動すると、低圧のガス冷媒は、圧縮機1に吸入されて圧縮されて高圧のガス冷媒となり、四方弁2および接続配管9を経由して、利用ユニット302a、302bに送られる。
そして、利用ユニット302a、302bに送られた高圧のガス冷媒は、室内熱交換器7a、7bにおいて、室内空気と熱交換を行って凝縮されて高圧の液冷媒となった後、接続配管6を経由して、絞り手段5aによって減圧されて低圧の気液二相状態の冷媒となる。ここで、絞り手段5aは、圧縮機1の吸入における過熱度が所定値になるように室内熱交換器7a、7b内を流れる冷媒の流量を制御しているため、室内熱交換器7a、7bにおいて凝縮された高圧の液冷媒は、所定の過冷却度を有する状態となる。このように、各室内熱交換器7a、7bには、各利用ユニット302a、302bが設置された空調空間において要求される運転負荷に応じた流量の冷媒が流れている。
この低圧の気液二相状態の冷媒は、熱源ユニット301の室外熱交換器3に流入する。そして、室外熱交換器3に流入した低圧の気液二相状態の冷媒は、室外送風機4によって供給される室外空気と熱交換を行って凝縮されて低圧のガス冷媒となり、四方弁2を経由して再び、圧縮機1に吸入される。
このように、冷房運転及び暖房運転を含む通常運転を行う通常運転制御手段として機能する制御部103により、上記の冷房運転および暖房運転を含む通常運転処理が行われる。
<機器診断モード>
次に、機器診断モード時の動作について図1を参照しながら説明する。ここでは現地において、熱源ユニット301と、利用ユニット302a、302bとを設置し、接続配管6及び接続配管9を介して接続して冷媒回路を構成した後に運転する場合を例に挙げて説明する。
機器診断モードには、運転を行う者が、制御部103に対して直接に、又はリモコン(図示せず)等を通じて遠隔に、機器診断運転を開始する指令を出すことによって移行する。これにより、制御部103によって機器診断モードの運転が開始される。
例えば、暖房運転に設定されている状態で、機器診断運転の開始指令がなされると、熱源ユニット301の四方弁2が図1の実線で示される状態となるように冷媒回路が切り換えられ、かつ利用ユニット302a、302bの室内送風機8a、8bが起動されるとともに、絞り手段5aが開けられた状態となり、更に圧縮機1、室外送風機4が起動されて、利用ユニット302a、302bの全てについて強制的に暖房運転が行われる。
すると、冷媒回路において、圧縮機1から室内熱交換器7a、7bまでの流路には、圧縮機1において圧縮・吐出された高圧のガス冷媒が供給される。この高圧のガス冷媒は、接続配管9を経て、凝縮器として機能する室内熱交換器7a、7b内を通過する間に室内空気との熱交換によってガス状態から液状態に相変化する高圧の冷媒となり、室内熱交換器7a、7bから絞り手段5aまでの接続配管6を含む流路に高圧の液冷媒として流れる。この高圧の液冷媒は、絞り手段5aから蒸発器として機能する室外熱交換器3内を通過する間に、室外空気との熱交換によって気液二相状態からガス状態に相変化し、室外熱交換器3から圧縮機1までの流路には低圧のガス冷媒となって流れるようになる。
次に、下記のような機器制御を行って、冷媒回路内を循環する冷媒の状態を安定させる運転に移行する。具体的には、以下の(a)〜(d)を行う。
(a)圧縮機1のモータの回転数を所定値で一定になるように制御する(圧縮機回転数一定制御)。
(b)蒸発器として機能する熱交換器(暖房運転の場合、室外熱交換器3)の過熱度SHが所定値(正値でなるべく小さい値)で一定となるように絞り手段5aを制御(以下、これを「過熱度一定制御」という)するか、または凝縮器として機能する熱交換器(暖房運転の場合、室内熱交換器7a、7b)の過冷却度SCが所定値(正値でなるべく小さい値)で一定になるように絞り手段5aを制御(以下、「過冷却度一定制御」という)する。
(c)絞り手段5aの開度を所定の開度で一定となるように制御する(絞り手段開度制御)。
(d)熱源ユニット301の室外送風機4および利用ユニット302a、302bの室内送風機8a、8bの送風量を固定する。
ここで、冷凍サイクル装置の各種アクチュエータの操作量を一定にするのは、冷媒の流量を安定させ、冷媒回路の冷媒分布を一定にすることで、冷凍サイクルを安定化させるためである。これにより、以下に説明する熱交換器の異常検出精度を向上させることができる。なお、上記(b)については、蒸発器の異常判定を行う場合には「過熱度一定制御」を行い、凝縮器の異常判定を行う場合には「過冷却度一定制御」を行う。ここで、過熱度または過冷却度を一定となるように制御するとしたが、少なくとも正値となるように制御すればよい。なお、機器診断モード(特殊運転モード)では、少なくとも上記(a)〜(c)のいずれかの運転を行うものとし、その上で(d)の制御も適宜行うものとする。
この機器診断モードの運転は、例えば通常運転モードで運転中に、ある所定の間隔毎に行うようにしてもよいし、定期的にメンテナンス時に行ってもよい。
<熱交換器性能劣化検知方法>
次に、熱交換器の性能劣化の判定方法について図3を用いて述べる。図3は冷凍サイクルの冷媒の状態変化を表すp−h線図である。
図1に示す各センサと図3に示すp−h線図の対応関係についてまず説明する。圧縮機1より吐出された冷媒温度Tdは圧縮機吐出温度センサ201にて検出される。その後、凝縮器での凝縮温度Tcは、冷房時は二相温度センサ202にて、暖房時は二相温度センサ207a、207bにて検出され、凝縮器流入空気温度Tcaiは、冷房時は室外温度センサ203にて検出され、暖房時は室内温度センサ206a、206bにて検出される。その後、凝縮器出口の冷媒温度Tcoは、冷房時は液側温度センサ204にて、暖房時は液側温度センサ205a、205bにて検出される。その後、絞り手段5aを通過し減圧され、蒸発器に流入する冷媒温度Teiは、冷房時は液側温度センサ205a、205bにて、暖房時は液側温度センサ204にて検出される。その後、蒸発器での蒸発温度Teは、冷房時は二相温度センサ207a、207bにて、暖房時は二相温度センサ202にて検出され、蒸発器流入空気温度Teaiは、冷房時は室内温度センサ206a、206bにて検出され、暖房時は室外温度センサ203にて検出される。
ここで、熱交換器の熱収支の関係式に基づき、凝縮器での熱収支の関係について説明する。なお、この関係式は、例えば次の文献Aに記載がある。文献A:瀬下裕・藤井雅雄著「コンパクト熱交換器」日刊工業新聞社、1992年
冷媒側が放出する熱量Qcr[kW]は(2)式にて表せ、空気側が吸熱する熱量Qca[kW]は(3)式にて表せる。
Figure 2010127568
Figure 2010127568
ここで、(2)式のGcrは、凝縮器を流れる冷媒の質量流量[kg/s]であり、Hdは、凝縮器入口の冷媒のエンタルピー[kJ/kg]であり、Hcoは、凝縮器出口の冷媒のエンタルピー[kJ/kg]である。(3)式のGcaは、凝縮器に流入する空気の質量流量[kg/s]であり、Cpは空気の定圧比熱[kJ/kg・K]であり、εcは、温度効率[−]であり、Tcは凝縮温度[℃]であり、Tcaiは、凝縮器に流入する空気の入口空気温度[℃]である。
定常状態では、Qcr=Qcaの関係が成り立つため、εcについて解くと、εcは次式で表せる。
Figure 2010127568
ここで、Gcrは、冷房であれば、室外熱交換器3に流入する冷媒流量であるため、圧縮機1の運転容量から冷媒循環量を推測することが可能である。暖房であれば、各室内機(利用ユニット302a,302b)への冷媒流量は、絞り手段5aの開度と、絞り手段5aの前後の高低圧差から冷媒循環量を推測することが可能である。Hdは、凝縮器入口の温度と凝縮圧力から冷媒物性値より演算することが可能である。Hcoは、凝縮器出口の温度と凝縮圧力から冷媒物性値より演算することが可能である。Gcaは、凝縮器に流入する空気の質量流量であり、ファン回転数に比例するため、ファン回転数制御指示値より推測することが可能である。Cpaは、空気の比熱であるため、吸込み空気温度より空気物性にて演算可能である。Tc、Tcaiはそれぞれ直接温度センサにて検出しているため、εcを冷凍サイクルの運転状態から推測可能である。
一方、(4)式のεcは、次式にて表されることが知られている(上記文献A)。
Figure 2010127568
ここで、(5)式のAcは、凝縮器の伝熱面積[m2]であり、Kcは、温度差基準の熱通過率[kW/m2・K]であり、図4に示すように、一般的に風速が大きいほど指数関数的に増加する。熱交換性能の低下要因として考えられる、フィンや伝熱管の腐食やフィンが汚れや、異物の詰まりが発生すると、伝熱面積Acが低下し、同一風速に対して、熱通過率Kcが低下するため、図5に示すように(5)式で表される温度効率εcが正常値に対し、低下する。逆に、外風や雨により熱通過率Kcが向上する場合は、ファン回転数指示値での風速に対してKcが増加するため、温度効率εcが正常値に対し、増加する。
したがって、(4)式にて、冷凍サイクルの運転状態より、εcが演算可能であるため、初期の正常時のεcをεc_STDとして予め記憶部104に記憶しておき、時々刻々計測されるεcのεc_STDとの乖離度合いRDc[%]を(6)式にて表すことにより、ある所定の乖離度以上となった場合を熱交性能劣化と判定することが可能となる。
Figure 2010127568
図6は、横軸に運転日数[day]、縦軸に乖離度合いRDcをとったグラフであり、経年劣化により乖離度合いが増していく場合のRDcの時間経過による推移を表した図である。図のように経年劣化(CASE1)によりRDcの値が正値となって増加していく。このまま運転を継続すると、いずれ正常範囲(熱交性能劣化の判定閾値CLc以下)を超えるものと予測される。なお、外風、雨の影響により熱通過率Kxが増加する場合は、RDc値が負値になる。したがって、乖離度合いRDcの変化傾向と熱交性能劣化の判定閾値CLcとの関係から故障に至るまでの時間が推測可能であり、推測された故障時期の前に的確なメンテナンスを行うことにより能力の低下または運転効率の低下を未然に防ぐことが可能となる。例えば、初期設置時の正常時の乖離度合いRDcを記憶部104に記憶しておき、正常状態に対して異常時のRDcの判定閾値の半分の値に到達するまでに1ヶ月かかったとすると、故障に陥るまでにあと1ヶ月かかるものと予想できる。このように、乖離度合いRDcの経年的なトレンド変化から熱交性能劣化の要因となる能力不足に至る時期を事前に予測することが可能となる。
また、図7は、横軸に起動時間[sec]、縦軸に乖離度合いRDcをとったグラフであり、凝縮器送風ファン故障により乖離度合いが増していく場合のRDcの時間経過による推移を表した図である。図のようにファン故障・ロック時(CASE2)は、Kcがほぼ0に近いため、起動時からRDcが急激に変化する。したがって、乖離度合いRDcの時間に対する変化速度から熱交性能劣化の要因が、経年劣化によるものか、ファン故障によるものかが判別可能であり、RDcの変化速度のトレンドから的確なメンテナンスを行うことにより、迅速に機器の故障に対応することが可能となる。
次に、蒸発器での熱収支の関係について説明する。冷媒側が吸熱する熱量Qer[kW]は(7)式にて表せ、空気側が放熱する熱量Qea[kW]は(8)式にて表せる。
Figure 2010127568
Figure 2010127568
ここで、(7)式のGerは、蒸発器を流れる冷媒の質量流量[kg/s]であり、Heoは、蒸発器出口の冷媒のエンタルピー[kJ/kg]であり、Heiは、蒸発器入口の冷媒のエンタルピー[kJ/kg]である。(8)式のGeaは、蒸発器に流入する空気の質量流量[kg/s]であり、εeは、エンタルピー効率[−]であり、Ieaiは蒸発器に流入する空気のエンタルピー[kJ/kg]であり、Ieは、蒸発温度Teの温度に相当する飽和空気のエンタルピー[kJ/kg]である。
定常状態では、Qer=Qeaの関係が成り立つため、εeについて解くと、εeは次式で表せる。
Figure 2010127568
ここで、Gerは、暖房であれば、室外熱交換器3に流入する冷媒流量であるため、圧縮機1の運転容量から冷媒循環量を推測することが可能である。冷房であれば、各室内機への冷媒流量は、絞り手段5aの開度と、絞り手段5aの前後の高低圧差から冷媒循環量を推測することが可能である。Heoは、蒸発器出口の温度と蒸発圧力から冷媒物性値より演算することが可能である。Heiは、凝縮器出口の温度と凝縮圧力から冷媒物性値より演算することが可能である。Geaは、蒸発器に流入する空気の質量流量であり、ファン回転数に比例するため、ファン回転数制御指示値より推測することが可能である。
なお、蒸発器では、蒸発器へ流入する空気の相対湿度を変化させることから、相対湿度も加味した演算が必要となる。よって、蒸発器では、凝縮器の場合の(3)式のように蒸発器へ流入する空気の温度ではなく、(8)式のようにエンタルピーIeaiを用いた演算としている。したがって、相対湿度の情報が必要となり、相対湿度を計測するセンサが必要であるが、空気のエンタルピー変化は温度変化と比例すると仮定し、流入する空気の相対湿度を例えば50%と仮定する。この仮定の基でエンタルピーを推測しても、検知精度への誤差影響は小さい。Ieは、蒸発温度Teの相対湿度100%での空気のエンタルピーであるため空気物性より演算可能である。したがって、εeを冷凍サイクルの運転状態から推測可能である。
一方、(9)式のεeは、次式にて表されることが知られている(上記文献A)。
Figure 2010127568
ここで、(10)式のAeは、凝縮器の伝熱面積[m2]であり、Keは、エンタルピー差基準の熱通過率[kW/(kJ/kg)]であり、図8に示すように、一般的に風速が大きいほど指数関数的に増加する。熱交換性能の低下要因として考えられる、フィンや伝熱管の腐食やフィンが汚れや、異物の詰まりや、着霜が発生すると、伝熱面積Aeが低下し、同一風速に対して、熱通過率Keが低下するため、図9に示すように(10)式で表されるエンタルピー効率εeが正常値に対し、低下する。逆に、外風や雨により熱通過率Keが向上する場合は、ファン回転数指示値での風速に対してKeが増加するため、エンタルピー効率εeが正常値に対し、増加する。
したがって、(9)式にて、冷凍サイクルの運転状態より、εeが演算可能であるため、初期の正常時のεeをεe_STDとして予め記憶部104に記憶しておき、時々刻々計測されるεeのεe_STDとの乖離度合いRDe[%]を(11)式にて表すことにより、ある所定の乖離度合い以上となった場合を熱交性能劣化と判定することが可能となる。
Figure 2010127568
図10は、横軸に運転日数[day]、縦軸に乖離度合いRDeをとったグラフであり、経年劣化により乖離度合いが増していく場合のRDeの時間経過による推移を表した図である。凝縮器の場合と同様、経年劣化(CASE1)によりRDeの値が正値となって増加していく。このまま運転を継続すると、いずれ正常範囲(熱交性能劣化の判定閾値CLe以下)を超えるものと予測される。乖離度合いRDeの経年的なトレンド変化から熱交性能劣化の要因となる能力不足に至る時期を事前に予測することが可能となる。
また、図11は、横軸に起動時間[sec]、縦軸に乖離度合いRDeをとったグラフであり、蒸発器送風ファン故障および蒸発器の伝熱管の温度が0℃以下になり、着霜した場合のRDeの時間経過による推移を表した図である。図11のようにファン故障・ロック時(CASE2)は、熱通過率Keがほぼ0に近いため、起動時からRDeが急激に変化する。一方、着霜時(CASE3)は、ファン故障時よりもRDeの変化速度が緩やかであるが、経年劣化時の変化速度よりも変化速度が速い。このため、乖離度合いRDeの時間に対する変化速度に応じて、熱交性能劣化の要因が、経年劣化によるものか、ファン故障によるものか、着霜によるものかが判別可能である。そして、RDeの変化速度のトレンドから的確なメンテナンスを行うことにより、迅速に機器の故障に対応することが可能となると同時に、着霜度合いを定量的に評価することが可能となるため、熱交換器の着霜による性能低下度合いに応じて、適切なタイミングで除霜運転を行うことが可能となる。
また、除霜後の次の運転時のRDeの値が、正常状態のRDeに対して、所定の範囲内に入っていない場合は、前回の除霜が不完全であり残霜している可能性がある。このため、再度除霜運転を強制的に行うことにより、確実な除霜運転を行い、熱交換器の性能回復を行う運転が可能となる。
以上より、凝縮器、蒸発器の熱交換性能を正常状態との温度効率εcまたはエンタルピー効率εeとの乖離度合いを逐次演算することによって、その乖離度合いの変化速度や、乖離度合いによって、熱交換器の性能劣化度合いを定量的に推測することが可能となる。
以上に説明した本検知方法であれば、通常運転時においても熱交換器の性能劣化を常時検知可能であるが、更に高精度に熱交換器の性能劣化を検知する運転方法について述べる。
次に、熱交換器性能低下の検知動作について図12〜図14を参照しながら説明する。図12は機器診断モード時および熱交換器の性能劣化の判定動作を示すフローチャートである。図13および図14は図12の熱交換器性能劣化検知処理の処理の流れを示すフローチャートで、図13は凝縮器、図14は蒸発器の場合を示している。
機器診断モードでは、制御部103によってステップS1の機器診断モードの運転(特殊運転)が開始される。機器診断モードの運転の詳細は上述した通りである。すなわち、冷媒回路内を循環する冷媒の状態を安定させるように上記(a)〜(d)の運転を行う。なお、(b)については、上述したように、蒸発器の異常判定を行う場合には「過熱度一定制御」を行い、凝縮器の異常判定を行う場合には「過冷却度一定制御」を行う。一定とする所定値は、正値でなるべく小さい値(正値で0に近い値)としている。このようにすることで、熱交換器の温度分布が均一となるため、熱通過率が均一となり、空気との熱交換の熱バランスが均一化され、判定精度が向上する。
次に、ステップS2にて外気温度や室内空気温度などの環境条件や、熱源ユニット301および利用ユニット302a、302bの温度センサや、圧縮機1の運転周波数、絞り手段5aの開度などの冷凍サイクル装置の運転状態を測定部101にて計測し、演算部102にてεc、εeを演算する。そして、予め記憶してある、εc_STD、εe_STDより乖離度合いRDc、RDeを演算する。
次に、ステップS3にて初期学習実施済か否かを判定する。ここで、初期学習とは初期設置状態での熱交性能劣化度合い(乖離度合い)であるRDcまたはRDeを記憶部104に記憶することを意味しており、初期学習が未実施である場合は、ステップS4に移行する。ステップS4以降の処理は、冷凍サイクル装置の初回据付時を想定した処理であり、まず、ステップS2で演算した乖離度合いRDcまたはRDeと、予め記憶部104に記憶してある正常状態でのRDc_STDまたはRDe_STDとを比較部105にて比較する。そして、比較部105で比較された乖離度合い同士の乖離度合いが所定の乖離度合いよりも小さいと判定部106にて判定された場合、ステップS5に移行する。すなわち、制御部103は、予め記憶部104に記憶してある前記RDc_STDまたはRDe_STDに代えて、ステップS2で演算した初期設置状態でのRDcまたはRDeの値を、正常状態の乖離度合いRDc_STDまたはRDe_STDとして記憶(初期学習)させる。このように、機器設置時に初期学習(補正)を行うことで、機器の個体ばらつきや、センサばらつきを補正できるため、精度の高い異常検出が可能となる。
ステップS4で乖離度合いが大きいと判定された場合は、ステップS6に移行し、報知部107にて異常報知を行う。
一方、ステップS3で熱交性能劣化度合いの初期学習が実施済みと判定された場合は、ステップS7に移行する。ステップS7では、熱交換器性能劣化検知処理を行う。この処理は、前述の<熱交換器性能劣化検知方法>に基づく熱交換器の性能劣化の判定を行う処理であり、性能判定対象の熱交換器が、凝縮器として機能している場合は図13の処理を行い、蒸発器として機能している場合は図14の処理を行う。以下、図13および図14を用いて凝縮器および蒸発器のそれぞれの場合について説明する。なお、測定部101における計測は、機器診断モードの実行タイミングの他、ある一定間隔、例えば1分という分単位や時間単位間隔等に定期的に行なわれており、演算部102による乖離度合いRDc、RDeの演算結果の履歴が記憶部104に記憶されているものとして以下の説明を行う。
(凝縮器の性能劣化の判定)
記憶部104に記憶された乖離度合いRDcの履歴に基づいて乖離度合いRDcの変化速度を演算し、演算して得られた変化速度と予め設定された速度閾値vcとを比較する(S71)。変化速度が速度閾値vcより遅ければ経年劣化(CASE1)(図6参照)と判定し(S72)、速度閾値vcよりも速ければファン故障・ロック時(CASE2)(図7参照)と判定する(S73)。
(蒸発器の性能劣化の判定)
記憶部104に記憶された乖離度合いRDeの履歴に基づいて乖離度合いRDeの変化速度を演算し、演算して得られた変化速度と予め設定された速度閾値ve1とを比較する(S74)。変化速度が速度閾値ve1より遅ければ経年劣化(CASE1)(図10参照)と判定し(S75)、速度閾値ve1よりも速ければ、続いて予め設定された速度閾値ve2とを比較する(S76)。変化速度が速度閾値ve2よりも遅ければ着霜(CASE3)(図11参照)と判定し(S77)、速度閾値ve2より速ければファン故障・ロック時(CASE2)(図10参照)と判定する(S78)。
以上のようにして得られた判定結果を、報知部107から報知する(S8)。また、図13および図14のフローチャートには図示していないが、凝縮器および蒸発器のそれぞれにおいて、乖離度合いRDc、RDeの変化傾向と、熱交性能劣化判定閾値CLc、CLeとから、能力不足に至る時期を予測し、予測結果を報知部107から報知することも可能である。
報知部107での異常表示は、LED等により報知可能であるが、乖離度合いに応じて色分けして表示してもよいし、乖離度合いそのものの値を定量的に表示してもよい。このようにすることで、メンテナンス時に熱交性能劣化の度合いを作業者に認識させ易くなり、その状態に応じて、点検箇所を特定できるため操作性が向上する。また、報知部107での予測結果表示は、例えば「故障まであと1ヶ月」等を表示するようにしてもよい。
このように、本実施の形態によれば、異常検出対象の熱交換器の熱交換効率を演算し、演算して得られた熱交換効率と予め記憶された正常時の熱交換効率との乖離度合いに基づいて異常判定を行うようにしたので、熱交換対象である空気の流量変化も加味した判定が可能となり、安定して正確な異常検出を行うことが可能となる。
また、異常検出対象の熱交換器が凝縮器の場合には、異常判定として、凝縮器の乖離度合いの変化速度に基づいて、経年劣化またはファン故障を判定することができる。
また、異常検出対象の熱交換器が蒸発器の場合には、異常判定として、蒸発器の乖離度合いの変化速度に基づいて、経年劣化、ファン故障または着霜を判定することができる。
また、蒸発器の除霜運転を必要に応じて行った後、演算部102で演算された乖離度合いの値が、予め記憶している正常時の乖離度合いの値を含む所定の範囲内に入っていない場合、蒸発器の除霜運転を再度行うようにしたので、蒸発器の性能回復を行うことが可能となる。
また、過去に演算された乖離度合いと、現在の演算値である乖離度合いと、予め記憶された正常時の乖離度合いとを用いて熱交換器の性能劣化傾向を判断し、その性能劣化傾向に基づき、熱交換器の性能が所定の性能より低下する時期(例えば、所望の能力が得られない時期や、故障時期)を事前に予測することが可能である。熱交換器の性能が低下すると、運転効率が悪くなり、必要な性能を得ようとして無駄なエネルギー消費が必要となるが、事前に性能低下時期を予測可能となることにより、適切なメンテナンスを行うことが可能となり、エネルギー消費量削減にも効果がある。
また、初期設置時において初期学習(演算部102で得られた乖離度合いと予め記憶された正常時の乖離度合いとを比較し、比較された乖離度合い同士の乖離度合いが所定の乖離度合いよりも小さい場合、予め記憶された正常時の乖離度合いを、演算部102で得られた乖離度合いに補正)を行うようにしたので、機器の個体ばらつきや、センサばらつきを補正できるため、異常検出精度が向上する。
また、判定部106において判定を行う際には、冷媒回路を循環する冷媒の状態を安定させる特殊運転を行うようにしたので、異常検出の判定精度が向上する。
また、特殊運転として、過冷却度または過熱度が正値で0に近い所定値に一定となるように冷媒回路を制御するようにしたので、熱交換器の温度分布が均一となるため、熱通過率が均一となる。したがって、空気との熱交換の熱バランスが均一化され、判定精度が向上する。
また、異常検出のための機器診断モードを定期的に行うようにすることで、冷媒回路の異常を早期に発見することが可能である。この機器診断モードは、上述したように、制御部103に対して直接に、又はリモコン(図示せず)等を通じて遠隔に、機器診断運転を開始する指令を出すことによって開始される。
なお、上記実施の形態では、冷凍サイクル装置内に異常検出装置100を設けた例を示したが、冷凍サイクル装置に、電話回線、LAN回線、無線などの通信手段を介して冷凍サイクルの管理装置としてのローカルコントローラを接続し、ローカルコントローラ内に異常検出装置100の各構成部を設けた構成としてもよい。また、このローカルコントローラを、冷凍サイクル装置の運転データを受信して管理する遠隔地の情報管理センターの遠隔サーバにネットワークを介して接続し、ローカルコントローラと遠隔サーバとに異常検出装置100の各構成部を分散して設けた構成としてもよい。例えば、ローカルコントローラ内に、異常検出装置100の測定部101、演算部102、制御部103および記憶部104を設け、遠隔サーバ内に比較部105、判定部106および報知部107を設ける等の構成が考えられる。この場合には、冷凍サイクル装置に現在の運転状態量と正常時の運転状態量とを演算比較する機能を有しておく必要がなくなる。また、このように遠隔監視できるシステムを構成することによって、定期メンテナンス時に、作業者が現地に赴いて熱交換器の状態を確認する作業の必要が無くなるため、機器の信頼性、操作性が向上する。
また、本実施の形態の記憶部104は、異常検出装置100内部の基板内に設けたマイコンのメモリとしたが、これに限られたものではなく、圧縮機付属のメモリ、異常検出装置100外部に設置されて異常検出装置100と有線または無線で接続された機器内のメモリとしてもよく、書き換え可能なメモリで構成されればよい。
以上、本実施の形態について図面に基づいて説明したが、具体的な構成は、これに限られるものでなく、発明の要旨を逸脱しない範囲で変更可能である。例えば前述の実施の形態では、冷暖切り換え可能な冷凍サイクル装置に本発明を適用したものを例に挙げて説明したが、これに限定されず、暖房専用の冷凍サイクル装置や冷房専用の冷凍サイクル装置や冷暖同時運転可能な冷凍サイクル装置に本発明を適用してもよい。また、家庭用のルームエアコンや冷蔵庫などの小型の冷凍サイクル装置や、冷蔵倉庫の冷却用の冷凍機やヒートポンプチラーなどの大型の冷凍サイクル装置に本発明を適用してもよい。
また、前述の実施の形態では、1台の熱源ユニットを備えた冷凍サイクル装置に本発明を適用したものを例に挙げて説明したが、これに限定されず、複数台の熱源ユニットを備えた冷凍サイクル装置に本発明を適用してもよい。
また、本発明の異常検出装置は、如何なる設置条件(例えば、配管長など)や環境条件(例えば、空気温度など)下においても精度良く熱交換器の異常検出を行うことを可能としたものであり、図1に示した冷媒回路に限られず、他の構成の冷媒回路にも適用可能である。他の構成の冷媒回路に本発明を適用した場合について、以下の実施の形態2〜4により説明する。
実施の形態2.
図15は本発明の実施の形態2に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。
本実施の形態の冷凍サイクル装置の冷媒回路は、図15に示すように、絞り手段5aと利用側熱交換器7a、7bとの間の接続配管6に、絞り手段5a側から順に、冷房と暖房の必要冷媒量の差である余剰冷媒量を溜めるレシーバ20と絞り手段(利用側絞り手段)5bとをこの順に新たに設けたものである。それ以外の構成は前述の実施の形態1のものと同様である。この構成は、現地での接続配管6および接続配管9の配管長が長く、冷房と暖房の差での余剰冷媒が多量に発生するタイプの冷凍サイクル装置に好適な構成であり、従来公知の構成である。なお、レシーバ20を設けることによって、凝縮器出口の冷媒の温度は凝縮温度と同じになるため、上記(4)式においてHcoの演算に際し、凝縮温度と凝縮圧力から冷媒物性値より演算することが可能である。
実施の形態2の冷凍サイクル装置では、絞り手段5a、絞り手段5bの弁開度をそれぞれ制御することにより、凝縮器出口の過冷却度制御、蒸発器出口の過熱度制御をそれぞれ独立して同時に行うことが可能となるので、凝縮器、蒸発器の熱交換器の性能劣化を同時に高精度に判定することが可能となる。
実施の形態3.
図16は本発明の実施の形態3に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。
本実施の形態の冷凍サイクル装置は、図16に示すように、実施の形態1に示した室外熱交換器3と液側温度センサ204との間に、室外熱交換器3側から順に、レシーバ20と、冷媒−冷媒熱交換器210とをこの順に新たに設けている。また、冷房運転時に、高圧側の冷媒−冷媒熱交換器210通過後の冷媒の一部を絞り手段5dによって減圧した後、再度冷媒−冷媒熱交換器210に導くバイパス回路12を設けている。そして、冷媒−冷媒熱交換器210の入口及び出口に冷媒−冷媒熱交換器入口温度センサ208a、冷媒−冷媒熱交換器出口温度センサ209を設けたものである。それ以外の構成は前述の実施の形態1のものと同様である。このような構成の冷凍サイクル装置においても、実施の形態1と同様の異常検出が可能である。
この冷媒回路構成では、冷媒−冷媒熱交換器210に流入した冷媒の一部は、絞り手段5dによって減圧され、再度冷媒−冷媒熱交換器210に導びかれた後、圧縮機1に戻る。ここで、再度冷媒−冷媒熱交換器210に導びかれた低温低圧の冷媒は冷媒−冷媒熱交換器210に直接流入した残りの冷媒と熱交換し、絞り手段5aに向かう冷媒の過冷却度を増加させる。この結果、冷房能力が増加するため、凝縮器出口は飽和液冷媒(凝縮器出口の過冷却度が0)となる。したがって、凝縮器の伝熱管温度が均一化するため、判定精度が向上する。
また、冷媒−冷媒熱交換器210に関しても、異常検出が可能であり、冷媒−冷媒熱交換器210での温度効率εscは(12)式で定義できるので、εscの初期状態からの低下度合いによって、冷媒−冷媒熱交換器210の性能低下が推定可能となる。このように、如何なる設置条件(例えば、配管長など)や環境条件(例えば、空気温度など)下にあっても、精度良く、熱交換器の性能劣化の判定を行うことができる。
Figure 2010127568
ここで、Tscは冷媒−冷媒熱交換器210の高圧側出口温度を検出する液側温度センサ204の温度であり、Teは、冷媒−冷媒熱交換器210の低圧側入口温度を検出する冷媒−冷媒熱交換器入口温度センサ208aの温度である。
なお、冷媒−冷媒熱交換器210は、例えばプレート式熱交換器や二重管式熱交換器等で構成される。
実施の形態4.
図17は本発明の実施の形態4に係る冷凍サイクル装置を概略的に示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。
本実施の形態の冷凍サイクル装置は、図1に示した実施の形態1の冷凍サイクル装置の圧縮機1の吐出部分に、高圧圧力を検出する圧力センサ400を備えている。また、利用ユニット302aを、利用側熱交換器であるプレート式熱交換器401と、プレート式熱交換器内を流れる冷媒と熱交換する流体を送出する送出手段404と、送出される流体の熱交換前後の温度を検出する流体入口温度センサ402と、流体出口温度センサ403とを備えた構成としたものである。それ以外の構成は前述の実施の形態1のものと同様である。
ここで、プレート式熱交換器401内を流れる冷媒と熱交換を行う流体は冷媒の凝縮熱の吸熱対象となるものであり、これは水、冷媒、ブライン等でも構わず、流体の送出手段404は圧縮機やポンプ等でもよい。また、プレート式熱交換器401もこの形態に限るものではなく、冷媒と流体間で熱交換できるものであれば、二重管熱交換器やマイクロチャネル等でもよい。
この冷媒回路構成でも、冷凍サイクルは、前述の実施の形態1と同じ冷媒回路になるため熱交換器の性能劣化等の異常検出が可能となる。
以上の実施の形態1〜実施の形態4で説明したように、本発明の異常検出装置は、冷凍サイクル装置の冷媒回路構成によらず、如何なる設置条件、環境条件下にあっても、精度良く熱交換器の異常検出を行うことができる。
本発明を利用すれば、熱源ユニットと利用ユニットとが接続配管を介して接続された冷凍サイクル装置において、設置条件や環境条件によらず、熱交換器の性能劣化度合いを精度よく判定できるようになるため、メンテナンス性および製品信頼性が向上する。
本発明の実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態1に係る異常検出装置を備えた冷凍サイクル装置の他の冷媒回路図である。 本発明の実施の形態1に係る冷凍サイクル装置のp−h線図である。 本発明の実施の形態1に係る風速と熱通過率Kcとの関係を示すグラフである。 本発明の実施の形態1に係る冷凍サイクル装置の熱交換器性能と温度効率εcの関係を示すグラフである。 本発明の実施の形態1に係る冷凍サイクル装置の凝縮器の経年劣化時の正常時の性能との乖離度合いを示すグラフである。 本発明の実施の形態1に係る冷凍サイクル装置の凝縮器のファン故障時・ロック時の正常時の性能との乖離度合いを示すグラフである。 本発明の実施の形態1に係る風速と熱通過率Keとの関係を示すグラフである。 本発明の実施の形態1に係る冷凍サイクル装置の熱交換器性能と温度効率εeの関係を示すグラフである。 本発明の実施の形態1に係る冷凍サイクル装置の蒸発器の経年劣化時の正常時の性能との乖離度合いを示すグラフである。 本発明の実施の形態1に係る冷凍サイクル装置の蒸発器のファン故障時・ロック時および着霜時の正常時の性能との乖離度合いを示すグラフである。 機器診断モード時および熱交換器の性能劣化の判定動作を示すフローチャートである。 図12の熱交換器性能劣化検知処理の凝縮器の判定処理の流れを示すフローチャートである。 図12の熱交換器性能劣化検知処理の蒸発器の判定処理の流れを示すフローチャートである。 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路図である。 本発明の実施の形態4に係る冷凍サイクル装置の冷媒回路図である。
符号の説明
1 圧縮機、2 四方弁、3 室外熱交換器、4 室外送風機、5a 絞り手段、5b 絞り手段、5d 絞り手段、6 接続配管、7a,7b 利用側熱交換器、8a,8b 室内送風機、9 接続配管、10 吸入圧力センサ、12 バイパス回路、20 レシーバ、100 異常検出装置、101 測定部、102 演算部、103 制御部、104 記憶部、105 比較部、106 判定部、107 報知部、201 圧縮機吐出温度センサ、202 二相温度センサ、203 室外温度センサ、204 液側温度センサ、205a 液側温度センサ、206a 室内温度センサ、207a 二相温度センサ、208 吸入温度センサ、208a 冷媒−冷媒熱交換器入口温度センサ、209 冷媒−冷媒熱交換器出口温度センサ、210 冷媒熱交換器、301 熱源ユニット、302a,302b 利用ユニット、400 圧力センサ、401 プレート式熱交換器、402 流体入口温度センサ、403 流体出口温度センサ、404 送出手段。

Claims (15)

  1. 圧縮機と熱源側熱交換器と絞り手段と少なくとも1つの利用側熱交換器とを順次接続して構成される冷媒回路の異常検出を行う異常検出装置であって、
    前記熱源側熱交換器の圧力を検出する第1圧力検出手段と、前記利用側熱交換器の圧力を検出する第2圧力検出手段と、前記熱源側熱交換器に流入する冷媒の流入温度を検出する冷媒流入温度検出手段と、前記熱源側熱交換器との熱交換対象の流体の流入温度を検出する第1流体流入温度検出手段と、前記利用側熱交換器との熱交換対象の流体の流入温度を検出する第2流体流入温度検出手段とを少なくとも含む各検出手段からの測定値を取得する測定部と、
    少なくとも予め正常時の熱交換効率を記憶する記憶部と、
    前記圧縮機の運転周波数または前記絞り手段の絞り量から冷媒循環量を推定する冷媒循環量推定手段、前記熱源側熱交換器との熱交換対象の流体の送出量を推定する第1送出量推定手段および前記利用側熱交換器との熱交換対象の流体の送出量を推定する第2送出量推定手段を有し、少なくとも、これら各推定手段で推定された各推定値と前記測定部で取得された各測定値とを用いて、前記熱源側熱交換器または前記利用側熱交換器の少なくとも1つの異常検出対象の熱交換器の熱交換効率を演算し、演算して得られた熱交換効率と予め記憶された正常時の熱交換効率との乖離度合いを演算する演算部と、
    該演算部で得られた乖離度合いに基づいて前記異常検出対象の熱交換器の異常を判定する判定部とを備えたことを特徴とする異常検出装置。
  2. 前記熱源側熱交換器および前記利用側熱交換器のそれぞれに、それぞれに供給する前記熱交換対象の流体の流量を可変することが可能な送風機が設けられており、
    前記判定部は、前記異常検出対象の熱交換器が凝縮器の場合、前記演算部で演算した凝縮器の乖離度合いの変化速度に基づいて、前記異常判定として、前記異常検出対象の熱交換器の経年劣化または前記送風機の故障を判定することを特徴とする請求項1記載の異常検出装置。
  3. 前記熱源側熱交換器および前記利用側熱交換器のそれぞれに、それぞれに供給する前記熱交換対象の流体の流量を可変することが可能な送風機が設けられており、
    前記判定部は、前記異常検出対象の熱交換器が蒸発器の場合、前記演算部で演算した凝縮器の乖離度合いの変化速度に基づいて、前記異常判定として、前記異常検出対象の熱交換器の経年劣化、前記送風機の故障または着霜のいずれかを判定することを特徴とする請求項1乃至請求項2記載の異常検出装置。
  4. 前記冷媒回路の運転を制御する制御部を備え、該制御部は、前記異常検出対象の熱交換器が蒸発器の場合において当該蒸発器の除霜運転を必要に応じて行った後、前記演算部により演算された蒸発器の乖離度合いの値が、予め記憶している正常時の乖離度合いの値を含む所定の範囲内に入っていない場合、当該蒸発器の除霜運転を再度行うことを特徴とする請求項3記載の異常検出装置。
  5. 前記判定部は、過去に演算された乖離度合いと、現在の演算値である乖離度合いと、予め記憶された正常時の乖離度合いとを用いて異常検出対象の熱交換器の性能劣化傾向を判断し、その性能劣化傾向に基づき、当該熱交換器の性能が所定の性能より低下する時期を予測することを特徴とする請求項1乃至請求項4のいずれかに記載の異常検出装置。
  6. 初期設置時において前記演算部で得られた乖離度合いと予め記憶された正常時の乖離度合いとを比較する比較部を備え、前記判定部は、前記比較部で比較された乖離度合い同士の乖離度合いが所定の乖離度合いよりも小さい場合、予め記憶された正常時の乖離度合いを、前記演算部で得られた乖離度合いに補正する補正手段を備えたことを特徴とする請求項1乃至請求項5のいずれかに記載の異常検出装置。
  7. 前記冷媒回路の運転を制御する制御部を備え、該制御部は、前記判定部において判定を行う際には、前記冷媒回路を循環する冷媒の状態を安定させる特殊運転を前記冷媒回路に行わせることを特徴とする請求項1乃至請求項6のいずれかに記載の異常検出装置。
  8. 前記制御部は、前記圧縮機の回転数を制御する圧縮機回転数制御手段を有し、
    前記特殊運転として、
    前記冷凍サイクル装置の圧縮機の運転周波数を所定値で一定になるように制御する圧縮機回転数一定制御、
    前記利用側熱交換器または前記熱源側熱交換器のうち、蒸発器として機能する熱交換器の出口の冷媒の過熱度が正値になるように制御する過熱度制御、
    前記利用側熱交換器または前記熱源側熱交換器のうち、凝縮器として機能する熱交換器の出口の冷媒の過冷却度が正値になるように制御する過冷却度制御、
    前記絞り手段を所定の開度で一定になるように制御する絞り手段開度制御
    のうち少なくともいずれか一つの制御を前記冷媒回路に行わせることを特徴とする請求項7記載の異常検出装置。
  9. 前記制御部は、前記特殊運転として、過冷却度または過熱度が正値で、0に近い所定値に一定となる運転を前記冷媒回路に行わせることを特徴とする請求項7記載の異常検出装置。
  10. 前記制御部は、前記特殊運転を定期的に前記冷媒回路に行わせることを特徴とする請求項7乃至請求項9のいずれかに記載の異常検出装置。
  11. 前記制御部は、外部からの操作信号によって前記特殊運転を前記冷媒回路に行わせることを特徴とする請求項7乃至請求項10のいずれかに記載の異常検出装置。
  12. 前記記憶部は、異常検出装置内部の基板内のメモリ、圧縮機付属のメモリ、異常検出装置外部に設置されて異常検出装置と有線または無線で接続された機器内のメモリのいずれかであり、書き換え可能なメモリで構成されてなることを特徴とする請求項1乃至請求項11のいずれかに記載の異常検出装置。
  13. 前記冷媒回路が、前記絞り手段と前記利用側熱交換器との間の接続配管に、前記絞り手段側から順に、レシーバと利用側絞り手段とがこの順に新たに設けられた構成を有し、前記制御部は、前記判定部で判定する際には、前記絞り手段と前記利用側絞り手段とをそれぞれ独立して制御し、前記過熱度制御および前記過冷却度制御を同時に行うことを特徴とする請求項8乃至請求項12のいずれかに記載の異常検出装置。
  14. 圧縮機と熱源側熱交換器と絞り手段と少なくとも1つの利用側熱交換器とを順次接続して構成される冷媒回路と、請求項1乃至請求項13のいずれかに記載の異常検出装置とを備えたことを特徴とする冷凍サイクル装置。
  15. 前記冷媒回路において、前記熱源側熱交換器と前記絞り手段との間の接続配管に、前記熱源側熱交換器側から順に、レシーバと冷媒−冷媒熱交換器とがこの順に新たに設けられ、更に、前記熱源側熱交換器を凝縮器として機能させる運転に際し、前記冷媒−冷媒熱交換器通過後の冷媒の一部を減圧手段によって減圧した後、再度前記冷媒−冷媒熱交換器に導くバイパス回路が設けられていることを特徴とする請求項14記載の冷凍サイクル装置。
JP2008304757A 2008-11-28 2008-11-28 異常検出装置およびそれを備えた冷凍サイクル装置 Pending JP2010127568A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304757A JP2010127568A (ja) 2008-11-28 2008-11-28 異常検出装置およびそれを備えた冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304757A JP2010127568A (ja) 2008-11-28 2008-11-28 異常検出装置およびそれを備えた冷凍サイクル装置

Publications (1)

Publication Number Publication Date
JP2010127568A true JP2010127568A (ja) 2010-06-10

Family

ID=42328098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304757A Pending JP2010127568A (ja) 2008-11-28 2008-11-28 異常検出装置およびそれを備えた冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP2010127568A (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020752A1 (ja) * 2010-08-10 2012-02-16 株式会社日立プラントテクノロジー 冷却システムの異常時運転装置
JP2012037196A (ja) * 2010-08-11 2012-02-23 Miura Co Ltd ヒートポンプ式蒸気発生装置
WO2012049820A1 (ja) * 2010-10-14 2012-04-19 三菱電機株式会社 冷凍サイクル装置
JP2012159251A (ja) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp 冷凍サイクル装置、流量算定方法及びプログラム
JP2012172925A (ja) * 2011-02-22 2012-09-10 Kurita Water Ind Ltd 冷凍システムにおける冷却水ラインの汚れ評価方法
JP2012207832A (ja) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd 冷凍システムにおける冷却水ラインの汚れ評価方法
WO2013108290A1 (ja) * 2012-01-18 2013-07-25 三菱電機株式会社 空気調和装置
JP2014021126A (ja) * 2012-07-20 2014-02-03 Eps Bio Technology Corp 電子鼻装置
WO2014064792A1 (ja) * 2012-10-25 2014-05-01 三菱電機株式会社 監視システム
JP2014214970A (ja) * 2013-04-25 2014-11-17 三菱電機株式会社 空気調和装置及び空気調和装置監視システム
JP2016508590A (ja) * 2013-02-28 2016-03-22 三菱電機株式会社 空気調和装置
JP2016065660A (ja) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 冷凍サイクル装置
JP2017032259A (ja) * 2015-08-06 2017-02-09 株式会社Nttファシリティーズ 凝縮器診断方法
WO2017212606A1 (ja) * 2016-06-09 2017-12-14 三菱電機株式会社 冷凍サイクル装置
WO2018127969A1 (ja) * 2017-01-06 2018-07-12 三菱電機株式会社 熱源システム
JP2018204920A (ja) * 2017-06-09 2018-12-27 株式会社日立ビルシステム 吸収式冷凍機の性能診断装置及び性能診断方法
JP2019052828A (ja) * 2017-09-19 2019-04-04 株式会社前川製作所 冷却装置の性能評価方法
JP6514422B1 (ja) * 2018-06-29 2019-05-15 日立ジョンソンコントロールズ空調株式会社 空調管理システム、空調管理方法、及びプログラム
JP2020003202A (ja) * 2019-04-05 2020-01-09 日立ジョンソンコントロールズ空調株式会社 空調管理システム、空調管理方法、及びプログラム
JP2020051723A (ja) * 2018-09-28 2020-04-02 ダイキン工業株式会社 輸送用冷凍装置の異常判定装置、この異常判定装置を備えた輸送用冷凍装置、及び輸送用冷凍装置の異常判定方法
JP2020051722A (ja) * 2018-09-28 2020-04-02 ダイキン工業株式会社 異常判定装置、この異常判定装置を備える冷凍装置、及び圧縮機の異常判定方法
JP2020056509A (ja) * 2018-09-28 2020-04-09 ダイキン工業株式会社 冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法
JPWO2019234824A1 (ja) * 2018-06-05 2021-04-01 三菱電機株式会社 冷凍サイクルシステム
JP2021105456A (ja) * 2019-12-26 2021-07-26 三菱電機株式会社 空気調和システム
WO2021245792A1 (ja) * 2020-06-02 2021-12-09 三菱電機株式会社 冷却装置
CN114279108A (zh) * 2021-12-29 2022-04-05 中山市爱美泰电器有限公司 一种防止热泵制冷过程中水流缺失导致失效的控制方法
EP4067765A4 (en) * 2019-11-29 2022-11-30 Mitsubishi Electric Corporation AIR CONDITIONING SYSTEM AND CONTROL METHOD
WO2023145016A1 (ja) * 2022-01-28 2023-08-03 三菱電機株式会社 診断装置およびそれを有する冷凍サイクル装置
WO2023223444A1 (ja) * 2022-05-18 2023-11-23 三菱電機株式会社 冷凍サイクル状態予測装置、冷凍サイクル制御装置、及び冷凍サイクル装置

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115057A (ja) * 1984-07-02 1986-01-23 株式会社日立製作所 冷凍サイクルの冷媒流量測定装置
JPS61259043A (ja) * 1985-05-13 1986-11-17 Mitsubishi Electric Corp 空気調和機の制御装置
JPH04131645A (ja) * 1990-09-20 1992-05-06 Daikin Ind Ltd 空気調和装置の除霜運転制御装置
JPH074730A (ja) * 1992-12-22 1995-01-10 Fujitsu Syst Constr Kk 風量設定制御方式
JPH07270020A (ja) * 1994-03-31 1995-10-20 Toshiba Corp 冷蔵庫
JPH09318209A (ja) * 1996-05-28 1997-12-12 Mitsubishi Heavy Ind Ltd 熱交換装置
JP2001280770A (ja) * 2000-03-15 2001-10-10 Carrier Corp 冷凍システムの凝縮器コイルの運転状態を判定する方法および装置
JP2002147904A (ja) * 2000-11-13 2002-05-22 Daikin Ind Ltd 熱交換器の着霜検知方法および冷凍装置
JP2002147907A (ja) * 2000-11-13 2002-05-22 Daikin Ind Ltd 冷凍装置
JP2003194438A (ja) * 2001-12-25 2003-07-09 Saginomiya Seisakusho Inc 空気調和機の制御装置及び空気調和機
JP2005249384A (ja) * 2005-04-08 2005-09-15 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005345096A (ja) * 2005-07-07 2005-12-15 Mitsubishi Electric Corp 冷凍サイクル装置および冷凍サイクル監視システム
JP2005345046A (ja) * 2004-06-07 2005-12-15 Hitachi Ltd 熱源機器の劣化診断システム
JP2007225158A (ja) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp 除霜運転制御装置および除霜運転制御方法
JP2007255818A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP2008224135A (ja) * 2007-03-13 2008-09-25 Mitsubishi Electric Corp 冷凍装置
JP2008249234A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115057A (ja) * 1984-07-02 1986-01-23 株式会社日立製作所 冷凍サイクルの冷媒流量測定装置
JPS61259043A (ja) * 1985-05-13 1986-11-17 Mitsubishi Electric Corp 空気調和機の制御装置
JPH04131645A (ja) * 1990-09-20 1992-05-06 Daikin Ind Ltd 空気調和装置の除霜運転制御装置
JPH074730A (ja) * 1992-12-22 1995-01-10 Fujitsu Syst Constr Kk 風量設定制御方式
JPH07270020A (ja) * 1994-03-31 1995-10-20 Toshiba Corp 冷蔵庫
JPH09318209A (ja) * 1996-05-28 1997-12-12 Mitsubishi Heavy Ind Ltd 熱交換装置
JP2001280770A (ja) * 2000-03-15 2001-10-10 Carrier Corp 冷凍システムの凝縮器コイルの運転状態を判定する方法および装置
JP2002147907A (ja) * 2000-11-13 2002-05-22 Daikin Ind Ltd 冷凍装置
JP2002147904A (ja) * 2000-11-13 2002-05-22 Daikin Ind Ltd 熱交換器の着霜検知方法および冷凍装置
JP2003194438A (ja) * 2001-12-25 2003-07-09 Saginomiya Seisakusho Inc 空気調和機の制御装置及び空気調和機
JP2005345046A (ja) * 2004-06-07 2005-12-15 Hitachi Ltd 熱源機器の劣化診断システム
JP2005249384A (ja) * 2005-04-08 2005-09-15 Mitsubishi Electric Corp 冷凍サイクル装置
JP2005345096A (ja) * 2005-07-07 2005-12-15 Mitsubishi Electric Corp 冷凍サイクル装置および冷凍サイクル監視システム
JP2007225158A (ja) * 2006-02-21 2007-09-06 Mitsubishi Electric Corp 除霜運転制御装置および除霜運転制御方法
JP2007255818A (ja) * 2006-03-24 2007-10-04 Mitsubishi Electric Corp 冷凍サイクル装置の診断装置並びにその診断装置を有する熱源側ユニット、利用側ユニット及び冷凍サイクル装置
JP2008224135A (ja) * 2007-03-13 2008-09-25 Mitsubishi Electric Corp 冷凍装置
JP2008249234A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020752A1 (ja) * 2010-08-10 2012-02-16 株式会社日立プラントテクノロジー 冷却システムの異常時運転装置
JP2012037185A (ja) * 2010-08-10 2012-02-23 Hitachi Plant Technologies Ltd 冷却システムの異常時運転装置
JP2012037196A (ja) * 2010-08-11 2012-02-23 Miura Co Ltd ヒートポンプ式蒸気発生装置
WO2012049820A1 (ja) * 2010-10-14 2012-04-19 三菱電機株式会社 冷凍サイクル装置
US9829231B2 (en) 2010-10-14 2017-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN103154625A (zh) * 2010-10-14 2013-06-12 三菱电机株式会社 冷冻循环装置
JP2012159251A (ja) * 2011-02-01 2012-08-23 Mitsubishi Electric Corp 冷凍サイクル装置、流量算定方法及びプログラム
JP2012172925A (ja) * 2011-02-22 2012-09-10 Kurita Water Ind Ltd 冷凍システムにおける冷却水ラインの汚れ評価方法
JP2012207832A (ja) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd 冷凍システムにおける冷却水ラインの汚れ評価方法
WO2013108290A1 (ja) * 2012-01-18 2013-07-25 三菱電機株式会社 空気調和装置
CN103998870A (zh) * 2012-01-18 2014-08-20 三菱电机株式会社 空气调节装置
US20140305152A1 (en) * 2012-01-18 2014-10-16 Mitsubishi Electric Corporation Air-conditioning apparatus
US9897359B2 (en) 2012-01-18 2018-02-20 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2014021126A (ja) * 2012-07-20 2014-02-03 Eps Bio Technology Corp 電子鼻装置
WO2014064792A1 (ja) * 2012-10-25 2014-05-01 三菱電機株式会社 監視システム
JPWO2014064792A1 (ja) * 2012-10-25 2016-09-05 三菱電機株式会社 監視システム
JP2016508590A (ja) * 2013-02-28 2016-03-22 三菱電機株式会社 空気調和装置
US9829230B2 (en) 2013-02-28 2017-11-28 Mitsubishi Electric Corporation Air conditioning apparatus
JP2014214970A (ja) * 2013-04-25 2014-11-17 三菱電機株式会社 空気調和装置及び空気調和装置監視システム
JP2016065660A (ja) * 2014-09-24 2016-04-28 東芝キヤリア株式会社 冷凍サイクル装置
JP2017032259A (ja) * 2015-08-06 2017-02-09 株式会社Nttファシリティーズ 凝縮器診断方法
WO2017212606A1 (ja) * 2016-06-09 2017-12-14 三菱電機株式会社 冷凍サイクル装置
JPWO2017212606A1 (ja) * 2016-06-09 2019-01-17 三菱電機株式会社 冷凍サイクル装置
WO2018127969A1 (ja) * 2017-01-06 2018-07-12 三菱電機株式会社 熱源システム
JPWO2018127969A1 (ja) * 2017-01-06 2019-07-11 三菱電機株式会社 熱源システム
JP2018204920A (ja) * 2017-06-09 2018-12-27 株式会社日立ビルシステム 吸収式冷凍機の性能診断装置及び性能診断方法
JP2019052828A (ja) * 2017-09-19 2019-04-04 株式会社前川製作所 冷却装置の性能評価方法
JP7004811B2 (ja) 2018-06-05 2022-02-04 三菱電機株式会社 冷凍サイクルシステム
JPWO2019234824A1 (ja) * 2018-06-05 2021-04-01 三菱電機株式会社 冷凍サイクルシステム
CN112074691A (zh) * 2018-06-29 2020-12-11 日立江森自控空调有限公司 空调管理***、空调管理方法及程序
CN112074691B (zh) * 2018-06-29 2021-12-14 日立江森自控空调有限公司 空调管理***、空调管理方法及程序
WO2020003528A1 (ja) * 2018-06-29 2020-01-02 日立ジョンソンコントロールズ空調株式会社 空調管理システム、空調管理方法、及びプログラム
JP6514422B1 (ja) * 2018-06-29 2019-05-15 日立ジョンソンコントロールズ空調株式会社 空調管理システム、空調管理方法、及びプログラム
JP2020051722A (ja) * 2018-09-28 2020-04-02 ダイキン工業株式会社 異常判定装置、この異常判定装置を備える冷凍装置、及び圧縮機の異常判定方法
WO2020067297A1 (ja) * 2018-09-28 2020-04-02 ダイキン工業株式会社 輸送用冷凍装置の異常判定装置、この異常判定装置を備えた輸送用冷凍装置、及び輸送用冷凍装置の異常判定方法
JP2020056509A (ja) * 2018-09-28 2020-04-09 ダイキン工業株式会社 冷媒漏洩判定装置、この冷媒漏洩判定装置を備える冷凍装置、及び冷媒漏洩判定方法
JP2020051723A (ja) * 2018-09-28 2020-04-02 ダイキン工業株式会社 輸送用冷凍装置の異常判定装置、この異常判定装置を備えた輸送用冷凍装置、及び輸送用冷凍装置の異常判定方法
US11454442B2 (en) 2018-09-28 2022-09-27 Daikin Industries, Ltd. Abnormality determination device for transporting freezing device, transporting freezing device including this abnormality determination device, and abnormality determination method for transporting freezing device
JP2020003202A (ja) * 2019-04-05 2020-01-09 日立ジョンソンコントロールズ空調株式会社 空調管理システム、空調管理方法、及びプログラム
EP4067765A4 (en) * 2019-11-29 2022-11-30 Mitsubishi Electric Corporation AIR CONDITIONING SYSTEM AND CONTROL METHOD
JP2021105456A (ja) * 2019-12-26 2021-07-26 三菱電機株式会社 空気調和システム
JP7433043B2 (ja) 2019-12-26 2024-02-19 三菱電機株式会社 空気調和システム
WO2021245792A1 (ja) * 2020-06-02 2021-12-09 三菱電機株式会社 冷却装置
CN114279108A (zh) * 2021-12-29 2022-04-05 中山市爱美泰电器有限公司 一种防止热泵制冷过程中水流缺失导致失效的控制方法
CN114279108B (zh) * 2021-12-29 2023-09-12 中山市爱美泰电器有限公司 一种防止热泵制冷过程中水流缺失导致失效的控制方法
WO2023145016A1 (ja) * 2022-01-28 2023-08-03 三菱電機株式会社 診断装置およびそれを有する冷凍サイクル装置
WO2023223444A1 (ja) * 2022-05-18 2023-11-23 三菱電機株式会社 冷凍サイクル状態予測装置、冷凍サイクル制御装置、及び冷凍サイクル装置

Similar Documents

Publication Publication Date Title
JP2010127568A (ja) 異常検出装置およびそれを備えた冷凍サイクル装置
JP6257801B2 (ja) 冷凍サイクル装置及び冷凍サイクル装置の異常検知システム
JP5213966B2 (ja) 冷凍サイクル装置
US9651267B2 (en) Cooling and hot water supply system and cooling and hot water supply method
EP3026371B1 (en) Refrigeration cycle apparatus
JP5334909B2 (ja) 冷凍空調装置並びに冷凍空調システム
US20130312443A1 (en) Refrigeration cycle apparatus and refrigeration cycle control method
US20110100042A1 (en) Refrigerating cycle device and air conditioner
WO2014188575A1 (ja) 冷凍サイクル装置
JP5077414B2 (ja) 冷凍装置の室外ユニット
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
JP7190682B2 (ja) 冷凍サイクルシステム
JP5078817B2 (ja) 冷凍サイクル装置
JP2009079842A (ja) 冷凍サイクル装置およびその制御方法
JP6328276B2 (ja) 冷凍空調装置
JP2011099591A (ja) 冷凍装置
JP2011163729A (ja) 冷却装置
JP5505477B2 (ja) 空気調和装置および空気調和装置の冷媒量判定方法
JP2002147905A (ja) 冷凍装置
JP2011242097A (ja) 冷凍装置
JP5245576B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP2020085280A (ja) 冷媒サイクル装置、冷媒量判断システム、及び、冷媒量判断方法
JP5245575B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JPWO2017094172A1 (ja) 空気調和装置
US20240085042A1 (en) Refrigeration cycle device and refrigerant leakage determination system

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20110310

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Effective date: 20110512

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A02 Decision of refusal

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A02