WO2013108290A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2013108290A1
WO2013108290A1 PCT/JP2012/000258 JP2012000258W WO2013108290A1 WO 2013108290 A1 WO2013108290 A1 WO 2013108290A1 JP 2012000258 W JP2012000258 W JP 2012000258W WO 2013108290 A1 WO2013108290 A1 WO 2013108290A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heat medium
heat
heat exchanger
refrigerant
Prior art date
Application number
PCT/JP2012/000258
Other languages
English (en)
French (fr)
Inventor
森本 修
嶋本 大祐
幸志 東
孝好 本多
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12866077.6A priority Critical patent/EP2806228B1/en
Priority to CN201280062523.8A priority patent/CN103998870B/zh
Priority to US14/347,798 priority patent/US9897359B2/en
Priority to PCT/JP2012/000258 priority patent/WO2013108290A1/ja
Publication of WO2013108290A1 publication Critical patent/WO2013108290A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi-air conditioner.
  • a heat source side refrigerant that circulates in a refrigeration cycle circuit (refrigerant circulation circuit) configured by connecting a pipe between an outdoor unit and a relay unit, and a heat medium circulation configured by connecting a pipe between the relay unit and the indoor unit
  • a refrigeration cycle circuit refrigerant circulation circuit
  • a heat medium circulation configured by connecting a pipe between the relay unit and the indoor unit
  • an air conditioner that exchanges heat with an indoor-side refrigerant (heat medium) circulating in a circuit.
  • the two circulation circuits are configured so that water or the like that does not adversely affect the health of users in the building can be used as a refrigerant for the heat medium circulating indoors. Because.
  • the heat medium is circulated using a pump.
  • the heat medium leaks, etc. air entrainment occurs due to air inflow or the like, and the circulation of the heat medium is extremely reduced. There is a risk of overheating and damage. If the current supplied to the pump or the temperature of the pump itself is affected, the pump may already be damaged, and in the worst case, the pump may be damaged.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an air conditioner that can more efficiently detect an abnormality in the flow rate of the heat medium flowing through the heat medium circuit. To do.
  • An air conditioner includes a compressor for compressing a heat source side refrigerant, a refrigerant flow switching device for switching a circulation path of the heat source side refrigerant, a heat source side heat exchanger for exchanging heat of the heat source side refrigerant, and a heat source
  • An expansion device for adjusting the pressure of the side refrigerant, a refrigeration cycle circuit configured by connecting one or a plurality of intermediate heat exchangers for exchanging heat with a heat medium different from the heat source side refrigerant and the heat source side refrigerant, One or a plurality of pumps for circulating a heat medium related to heat exchange of the heat exchanger, a use-side heat exchanger that performs heat exchange between the heat medium and the air related to the air-conditioning target space, and heating to the use-side heat exchanger Based on the temperature at the heat medium inlet in the heat exchanger of the heat exchanger in the heat exchanger of the heat medium circuit and the heat medium circuit configured by connecting the flow path switching valve for switching the passage of
  • control device determines whether or not the flow rate abnormality has occurred based on the temperature efficiency related to the heat exchange of the heat exchanger in the heat medium circulation circuit. An abnormal flow rate can be determined.
  • FIG. 1 is a schematic circuit diagram illustrating a configuration of an air conditioner according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 1 is in a cooling only operation mode.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 1 is in a heating only operation mode.
  • FIG. 1 is a schematic circuit diagram illustrating a configuration of an air conditioner according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 1 is in a cooling only operation mode.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 1 is in a heating only operation mode.
  • FIG. 1 is a schematic circuit diagram illustrating a configuration of an
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 1 is in a cooling main operation mode.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus according to Embodiment 1 is in a heating main operation mode. It is a figure which shows the temperature change of the refrigerant
  • FIG. 6 is a schematic circuit diagram showing a configuration of an air conditioner according to Embodiment 4. It is a figure which shows the relationship between the instruction
  • FIG. 10 is a schematic circuit diagram showing a configuration of an air conditioner according to Embodiment 5.
  • FIG. 1 and 2 are overall configuration diagrams illustrating an example of an installation state of the air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 1 and FIG. 2, the structure of an air conditioning apparatus is demonstrated.
  • This air conditioner performs a cooling operation or a heating operation using a refrigeration cycle circuit that circulates a heat source side refrigerant and a heat medium circulation circuit that circulates a heat medium such as water or antifreeze.
  • a heat medium such as water or antifreeze.
  • the size relationship of each component may be different from the actual one.
  • the subscripts may be omitted.
  • the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state, operation, etc. of the system, apparatus, etc.
  • the air conditioner of the present embodiment includes, for example, one heat source device 1 that is a heat source device, a plurality of indoor units 2, and a heat source device 1 and an indoor unit 2.
  • the relay unit 3 to be used.
  • the relay unit 3 performs heat exchange between the heat source side refrigerant and the heat medium.
  • the heat source device 1 and the relay unit 3 are connected by a refrigerant pipe 4 that conducts the heat source side refrigerant, and the relay unit 3 and the indoor unit 2 are connected by a pipe 5 that conducts the heat medium, and are generated by the heat source device 1.
  • the cold or warm heat is delivered to the indoor unit 2.
  • the number of connected heat source devices 1, indoor units 2, and relay units 3 is not limited to the illustrated number.
  • the heat source device 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building, and supplies cold or hot heat to the indoor unit 2 via the relay unit 3.
  • the indoor unit 2 is disposed in a living space 7 such as a living room or a server room in a building 9 that can carry cooling air or heating air, and the cooling air or heating air is supplied to the living space 7 that is an air-conditioning target area.
  • the relay unit 3 is configured to be installed separately from the heat source device 1 and the indoor unit 2 and at a position different from the outdoor space 6 and the living space 7 (hereinafter referred to as a non-residential space 50).
  • the heat source device 1 and the indoor unit 2 are connected, and cold heat or warm heat supplied from the heat source device 1 is transmitted to the indoor unit 2.
  • the outdoor space 6 imagines a place existing outside the building 9, for example, a rooftop as shown in FIG.
  • the non-residential space 50 is a space inside the building 9 but different from the residential space 7, for example, a place where there is no person at all times, such as a hallway, a common zone with a ceiling of the common zone, an elevator, etc.
  • the room, computer room, warehouse, etc. are imaged.
  • the living space 7 is the inside of the building 9 where there are always people or where there are many or a small number of people, such as offices, classrooms, conference rooms, cafeterias, server rooms. Etc.
  • the heat source device 1 and the relay unit 3 are connected using two refrigerant pipes 4.
  • the relay unit 3 and each indoor unit 2 are connected by two pipes 5 respectively.
  • the construction of the air conditioner is facilitated by connecting the heat source device 1 to the relay unit 3 with the two refrigerant pipes 4 and connecting the indoor unit 2 to the relay unit 3 with the two pipes 5. .
  • the relay unit 3 may be divided into one first relay unit 3a and two second relay units 3b derived from the first relay unit 3a. By doing so, a plurality of second relay units 3b can be connected to one first relay unit 3a. In this configuration, there are three refrigerant pipes 4 between the first relay unit 3a and the second relay unit 3b. Details of this pipe line will be described later.
  • the indoor unit 2 is shown as an example of a ceiling cassette type.
  • the indoor unit 2 is not limited to this, and can cool or warm the living space 7 directly or by a duct or the like. Any device may be used as long as it is configured, for example, a ceiling-embedded type or a ceiling-suspended type.
  • FIG. 1 shows an example in which the heat source device 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the heat source device 1 may be installed in an enclosed space such as a machine room with a ventilation opening, and if the waste heat can be exhausted outside the building 9 by an exhaust duct, It may be installed inside, or may be installed inside the building 9 when the water-cooled heat source device 1 is used. Even if the heat source device 1 is installed in such a place, no particular problem occurs.
  • the relay unit 3 can be installed in the vicinity of the heat source device 1. However, if the distance from the relay unit 3 to the indoor unit 2 is too long, the heat transfer power of the heat medium becomes considerably large, and the energy saving effect is reduced.
  • FIG. 3 is a schematic circuit diagram showing the configuration of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 3 shows an example of the configuration of an air conditioner having a refrigeration cycle circuit and a heat medium circulation circuit. Based on FIG. 3, the detailed structure of the air conditioning apparatus 100 is demonstrated.
  • the heat source device 1 and the relay unit 3 are connected via a first intermediate heat exchanger 15a and a second intermediate heat exchanger 15b provided in the second relay unit 3b.
  • the relay unit 3 and the indoor unit 2 are also connected via a first intermediate heat exchanger 15a and a second intermediate heat exchanger 15b provided in the second relay unit 3.
  • FIG. 3 and subsequent figures the case where the relay unit 3 is divided into the first relay unit 3a and the second relay unit 3b is illustrated.
  • Heat source device 1 In the heat source device 1, a compressor 10, a four-way valve 11, a heat source side heat exchanger (outdoor heat exchanger) 12, and an accumulator 17 are connected in series through a refrigerant pipe 4 and accommodated. Further, the heat source device 1 is provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d. By providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d, relay is performed regardless of the operation required by the indoor unit 2. The flow of the heat source side refrigerant flowing into the unit 3 can be in a certain direction.
  • the compressor 10 sucks the heat source side refrigerant and compresses the heat source side refrigerant to be in a high temperature / high pressure state, and may be configured by, for example, an inverter compressor capable of capacity control.
  • the four-way valve 11 switches the flow of the heat source side refrigerant during the heating operation and the flow of the heat source side refrigerant during the cooling operation.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser during cooling operation, and performs heat exchange between air supplied from a blower such as a fan (not shown) and the heat source side refrigerant.
  • the heat source side refrigerant is evaporated or condensed and liquefied.
  • the accumulator 17 is provided on the suction side of the compressor 10 and stores excess refrigerant.
  • the check valve 13d is provided in the refrigerant pipe 4 between the relay unit 3 and the four-way valve 11, and allows the flow of the heat source side refrigerant only in a predetermined direction (direction from the relay unit 3 to the heat source device 1). It is.
  • the check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the relay unit 3, and flows the heat source side refrigerant only in a predetermined direction (direction from the heat source device 1 to the relay unit 3). It is acceptable.
  • the check valve 13b is provided in the first connection pipe 4a and allows the heat source side refrigerant to flow only in the direction from the downstream side of the check valve 13d to the downstream side of the check valve 13a.
  • the check valve 13c is provided in the second connection pipe 4b and allows the heat source side refrigerant to flow only in the direction from the upstream side of the check valve 13d to the upstream side of the check valve 13a.
  • the first connection pipe 4a connects the refrigerant pipe 4 on the downstream side of the check valve 13d and the refrigerant pipe 4 on the downstream side of the check valve 13a in the heat source device 1.
  • the second connection pipe 4b connects the refrigerant pipe 4 on the upstream side of the check valve 13d and the refrigerant pipe 4 on the upstream side of the check valve 13a.
  • FIG. 2 shows an example in which the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d are provided.
  • the present invention is not limited to this, and these are not necessarily provided.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26.
  • the use side heat exchanger 26 is connected to the stop valve 24 and the flow rate adjustment valve 25 of the second relay unit 3b through the pipe 5.
  • the use side heat exchanger 26 exchanges heat between the air flowing in by the driving of the indoor fan 28 and the heat medium, and generates heating air or cooling air to be supplied to the air-conditioning target area.
  • FIG. 3 shows an example in which four indoor units 2 are connected to the second relay unit 3b, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchanger 26d from the lower side of the drawing.
  • the indoor fan 28 is also designated as an indoor fan 28a, an indoor fan 28b, an indoor fan 28c, and an indoor fan 28d from the lower side of the drawing.
  • the number of connected indoor units 2 is not limited to the four shown in FIG. 3.
  • the relay unit 3 is composed of a first relay unit 3a and a second relay unit 3b with separate housings. With this configuration, a plurality of second relay units 3b can be connected to one first relay unit 3a as described above.
  • the first relay unit 3a is provided with a gas-liquid separator 14 and an expansion valve 16e.
  • the second relay unit 3b includes two intermediate heat exchangers 15, four expansion valves 16, two pumps 21, four flow path switching valves 22, four flow path switching valves 23, A stop valve 24 and four flow rate adjustment valves 25 are provided.
  • the gas-liquid separator 14 includes one refrigerant pipe 4 connected to the heat source device 1, and two refrigerant pipes connected to the first intermediate heat exchanger 15a and the second intermediate heat exchanger 15b of the second relay unit 3b. 4, the heat source side refrigerant supplied from the heat source device 1 is separated into a vapor refrigerant and a liquid refrigerant.
  • the expansion valve 16e is provided between the refrigerant pipe 4 connecting the expansion valve 16a and the expansion valve 16b and the gas-liquid separator 14, and functions as a pressure reducing valve or a throttle device to depressurize the heat source side refrigerant. To inflate.
  • the expansion valve 16e may be configured with a valve whose opening degree can be variably controlled, such as an electronic expansion valve.
  • the two intermediate heat exchangers 15 function as a heating device (condenser) or a cooling device (cooler), and include a heat source side refrigerant, a heat medium, and Heat exchange is performed, and the cold or warm heat generated by the heat source device 1 is supplied to the indoor unit 2.
  • the first intermediate heat exchanger 15a is provided between the gas-liquid separator 14 and the expansion valve 16d and serves to heat the heat medium.
  • the second intermediate heat exchanger 15b is provided between the expansion valve 16a and the expansion valve 16c, and serves to cool the heat medium.
  • the four expansion valves 16 function as pressure reducing valves and throttle devices, and expand the heat source side refrigerant by reducing the pressure.
  • the expansion valve 16a is provided between the expansion valve 16e and the second intermediate heat exchanger 15b.
  • the expansion valve 16b is provided in parallel with the expansion valve 16a.
  • the expansion valve 16c is provided between the second intermediate heat exchanger 15b and the first relay unit 3a.
  • the expansion valve 16d is provided between the first intermediate heat exchanger 15a and the expansion valve 16a and the expansion valve 16b.
  • the four expansion valves 16 may be configured by a valve whose opening can be variably controlled, for example, an electronic expansion valve.
  • the two pumps 21 (the first pump 21a and the second pump 21b) circulate a heat medium that conducts through the pipe 5.
  • the first pump 21 a is provided in the pipe 5 between the first intermediate heat exchanger 15 a and the flow path switching valve 22.
  • the second pump 21 b is provided in the pipe 5 between the second intermediate heat exchanger 15 b and the flow path switching valve 22.
  • the types of the first pump 21a and the second pump 21b are not particularly limited.
  • the first pump 21a and the second pump 21b may be configured by a capacity-controllable pump.
  • the four flow path switching valves 22 are constituted by three-way valves and switch the flow path of the heat medium.
  • the flow path switching valve 22 is provided in a number (four here) corresponding to the number of indoor units 2 installed.
  • one of the three sides is connected to the first intermediate heat exchanger 15a
  • one of the three sides is connected to the second intermediate heat exchanger 15b
  • one of the three sides is connected to the stop valve 24, respectively.
  • the flow path switching valve 22a, the flow path switching valve 22b, the flow path switching valve 22c, and the flow path switching valve 22d are illustrated from the lower side of the drawing.
  • the four flow path switching valves 23 are constituted by three-way valves and switch the flow path of the heat medium.
  • the number (four here) of the flow path switching valve 23 is provided according to the number of indoor units 2 installed.
  • one of the three sides is connected to the first intermediate heat exchanger 15a
  • one of the three sides is connected to the second intermediate heat exchanger 15b
  • one of the three sides is connected to the flow rate adjusting valve 25, respectively. It is connected and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • the flow path switching valve 23a, the flow path switching valve 23b, the flow path switching valve 23c, and the flow path switching valve 23d are illustrated from the lower side of the drawing.
  • the four stop valves 24 are constituted by two-way valves and open and close the pipe 5.
  • the stop valve 24 is provided in a number (here, four) according to the number of indoor units 2 installed.
  • One of the stop valves 24 is connected to the use side heat exchanger 26 and the other is connected to the flow path switching valve 22, and is provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the stop valve 24a, the stop valve 24b, the stop valve 24c, and the stop valve 24d are illustrated from the lower side of the drawing.
  • the four flow rate adjustment valves 25 are constituted by three-way valves and switch the flow path of the heat medium.
  • the number (four here) of the flow rate adjustment valves 25 corresponding to the number of installed indoor units 2 is provided.
  • the flow rate adjusting valve 25 is connected to the use side heat exchanger 26, one of the three directions is connected to the bypass 27, and one of the three directions is connected to the flow path switching valve 23. It is provided on the outlet side of the heat medium flow path of the exchanger 26.
  • the flow rate adjustment valve 25a, the flow rate adjustment valve 25b, the flow rate adjustment valve 25c, and the flow rate adjustment valve 25d are illustrated from the lower side of the drawing.
  • the bypass 27 is provided so as to connect the pipe 5 and the flow rate adjustment valve 25 between the stop valve 24 and the use side heat exchanger 26.
  • the number of bypasses 27 according to the number of installed indoor units 2 (here, four, that is, bypass 27a, bypass 27b, bypass 27c, and bypass 27d) is provided.
  • they are illustrated as a bypass 27a, a bypass 27b, a bypass 27c, and a bypass 27d from the lower side of the drawing.
  • the second relay unit 3b includes two first temperature sensors 31, two second temperature sensors 32, four third temperature sensors 33, four fourth temperature sensors 34, and a fifth temperature sensor. 35, a pressure sensor 36, a sixth temperature sensor 37, and a seventh temperature sensor 38 are provided. Each indoor unit is provided with an eighth temperature sensor 39. Signals related to the physical quantities detected by these detection devices are sent to a control device 60 that controls the operation of the air conditioning apparatus 100 described later, such as switching the drive frequency of the pump 21 and the flow path of the heat medium flowing through the pipe 5. It will be used for control.
  • the first temperature sensor 31 (the first temperature sensor 31a and the first temperature sensor 31b) serving as the heat medium outflow temperature detection device detects the temperature of the heat medium at the heat medium flow path outlet side of the intermediate heat exchanger 15.
  • the first temperature sensor 31 a is provided in a portion of the pipe 5 on the inlet side of the first pump 21 a.
  • the first temperature sensor 31b is provided in a portion of the pipe 5 on the inlet side of the second pump 21b.
  • the second temperature sensor 32 (second temperature sensor 32a and second temperature sensor 32b) serving as a heat medium inflow temperature detection device detects the temperature of the heat medium on the heat medium flow path inlet side of the intermediate heat exchanger 15. .
  • the second temperature sensor 32 a is provided at a portion on the heat medium flow path inlet side of the first intermediate heat exchanger 15 a of the pipe 5.
  • the second temperature sensor 32 b is provided at a portion on the heat medium flow path inlet side of the second intermediate heat exchanger 15 b of the pipe 5.
  • a third temperature sensor 33 serving as a use side inflow temperature detecting device is provided at a portion on the inlet side of the heat medium of the use side heat exchanger 26 of each indoor unit 2, and uses side heat. The temperature of the heat medium flowing into the exchanger 26 is detected.
  • the third temperature sensor 33a, the third temperature sensor 33b, the third temperature sensor 33c, and the third temperature sensor 33d are illustrated from the lower side of the drawing corresponding to the indoor units 2a to 2d.
  • the fourth temperature sensor 34 (fourth temperature sensors 34a to 34d) serving as a use side outflow temperature detecting device is provided at a portion on the outlet side of the heat medium of the use side heat exchanger 26 of each indoor unit 2, and uses side heat. The temperature of the heat medium flowing out from the exchanger 26 is detected.
  • the fourth temperature sensor 34a, the fourth temperature sensor 34b, the fourth temperature sensor 34c, and the fourth temperature sensor 34d are illustrated from the lower side of the drawing corresponding to the indoor units 2a to 2d.
  • the fifth temperature sensor 35 is provided on the outlet side of the heat source side refrigerant flow path of the first intermediate heat exchanger 15a, and detects the temperature of the heat source side refrigerant flowing out of the first intermediate heat exchanger 15a.
  • the pressure sensor 36 is provided on the outlet side of the heat source side refrigerant flow path of the first intermediate heat exchanger 15a, and detects the pressure of the heat source side refrigerant flowing out of the first intermediate heat exchanger 15a.
  • the sixth temperature sensor 37 is provided on the inlet side of the heat source side refrigerant flow path of the second intermediate heat exchanger 15b, and detects the temperature of the heat source side refrigerant flowing into the second intermediate heat exchanger 15b.
  • the seventh temperature sensor 38 is provided on the outlet side of the heat source side refrigerant flow path of the second intermediate heat exchanger 15b, and detects the temperature of the heat source side refrigerant flowing out of the second intermediate heat exchanger 15b.
  • the 8th temperature sensor 39 used as an air-conditioning object temperature detection device detects the temperature (room temperature) of air used as an air-conditioning object.
  • the temperature of the air flowing into the use side heat exchanger 26 is detected by driving the indoor fan 28 of each indoor unit 2.
  • the eighth temperature sensor 39a, the eighth temperature sensor 39b, the eighth temperature sensor 39c, and the eighth temperature sensor 39d are illustrated from the lower side of the drawing corresponding to the indoor units 2a to 2d.
  • the 9th temperature sensor 40 used as an outside temperature detection apparatus is provided in the heat source apparatus 1, for example, and detects the temperature (outside temperature) of outdoor air.
  • each temperature sensor described above may be composed of a thermistor or the like.
  • the pipe 5 for conducting the heat medium is connected to the first intermediate heat exchanger 15a (hereinafter referred to as the pipe 5a) and connected to the second intermediate heat exchanger 15b (hereinafter referred to as the pipe 5b). ) And.
  • the pipe 5 a and the pipe 5 b are branched (here, four branches each) according to the number of indoor units 2 connected to the relay unit 3.
  • the pipe 5 a and the pipe 5 b are connected by a flow path switching valve 22, a flow path switching valve 23, and a flow rate adjustment valve 25.
  • the heat medium that conducts the pipe 5a is caused to flow into the use side heat exchanger 26, or the heat medium that conducts the pipe 5b is used as the use side heat exchanger 26. It is decided whether to flow into the.
  • the air conditioner 100 operates the heat source device 1, the relay unit 3, and the respective devices mounted on the indoor unit 2 based on information from each detection means and a remote control for receiving a command from the user.
  • a control device 60 for controlling the above.
  • the control device 60 switches the driving frequency of the compressor 10 mounted on the heat source device 1, the rotational speed (including ON / OFF) of the blower installed in the vicinity of the heat source side heat exchanger 12, and the switching of the four-way valve 11. Etc., and each operation mode described later is executed. Further, the control device 60 controls the rotational speed (including ON / OFF) of the indoor fan 28 installed in the vicinity of the use side heat exchanger 26 mounted in the indoor unit 2.
  • control device 60 drives the pump 21 mounted in the relay unit 3, opens the expansion valves 16a to 16e, switches the flow path switching valve 22 and the flow path switching valve 23, opens and closes the stop valve 24, and The switching of the flow rate adjustment valve 25 is controlled. That is, the control device 60 includes a flow rate control unit that adjusts the flow rate of the heat medium in the relay unit 3, a flow path determination unit that determines a flow path of the heat medium, an ON / OFF control unit that performs ON / OFF of each device, And it has the function as a control target value change means which changes the set target value suitably based on the information from each detection means.
  • processing for protecting the pump 21 is performed by determining an abnormality in the flow rate of the heat medium, particularly in the heat medium circulation circuit.
  • the control device 60 is constituted by, for example, a microcomputer. And it shall have the timer 61 used as a time measuring device, and shall be able to time-measure. Further, it is assumed that a storage device (not shown) for storing data and the like is also provided. Here, a control device may be provided for each unit. In this case, it is preferable that the control devices can communicate with each other.
  • the air conditioning apparatus 100 of the present embodiment has a notification device 62.
  • the notification device 62 is configured by, for example, a display device, a voice output device, etc., and is a device that performs notification by character display, voice output, or the like.
  • the notification device 62 may be included in, for example, a remote controller. In the present embodiment, for example, when the pump 21 is stopped due to an abnormal flow rate of the heat medium or the like, the fact is notified.
  • the compressor 10 In the air conditioner 100, the compressor 10, the four-way valve 11, the heat source side heat exchanger 12, the refrigerant flow path of the first intermediate heat exchanger 15a, the refrigerant flow path of the second intermediate heat exchanger 15b, and an accumulator. 17 is connected by the refrigerant
  • the heating medium flow path of the first intermediate heat exchanger 15a, the first pump 21a, and the use side heat exchanger 26 are connected in order by a pipe 5a that circulates the heating medium, thereby forming a heating medium circulation circuit. is doing.
  • the heat medium flow path of the second intermediate heat exchanger 15b, the second pump 21b, and the use-side heat exchanger 26 are connected in series in order by the pipe 5b that circulates the heat medium, and the heat medium circulation for cooling
  • the circuit is configured. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the intermediate heat exchangers 15, and the heat medium circulation circuit has a plurality of systems.
  • a discharge valve 71a for discharging the heat medium from the heating medium circulation circuit is provided in the pipe 5a.
  • the cooling heat medium circulation circuit is provided with a discharge valve 71b in the pipe 5b for discharging the heat medium from the heat medium circulation circuit.
  • the heat source device 1 and the relay unit 3 are connected via the first intermediate heat exchanger 15a and the second intermediate heat exchanger 15b provided in the relay unit 3, and the relay unit 3 And the indoor unit 2 are connected by a first intermediate heat exchanger 15a and a second intermediate heat exchanger 15b.
  • the first intermediate heat exchanger 15a and the second intermediate heat exchanger 15b are a heat source side refrigerant that is a primary side refrigerant that circulates in the refrigeration cycle circuit and a heat medium that is a secondary side refrigerant that circulates through the heat medium circulation circuit. And heat exchange.
  • refrigerant used in the refrigeration cycle circuit and the heat medium circulation circuit will be described.
  • a non-azeotropic refrigerant mixture such as R407C
  • a pseudo-azeotropic refrigerant mixture such as R410A or R404A
  • a single refrigerant such as R22 or R134a
  • Natural refrigerants such as carbon dioxide and hydrocarbons may be used.
  • the counter flow type can improve the heat exchange performance when heating or cooling the heat medium.
  • the heat medium circulation circuit is connected to the use side heat exchanger 26 of the indoor unit 2 as described above. Therefore, in the air conditioning apparatus 100, it is assumed that a heat medium having high safety is used in consideration of a case where the heat medium leaks into a room or the like where the indoor unit 2 is installed. Therefore, for example, water, antifreeze, a mixture of water and antifreeze, or the like can be used as the heat medium. Moreover, when considering installing the indoor unit 2 in a place where moisture is hated, such as a computer room, a fluorine-based inert liquid having high thermal insulation can be used as a heat medium. Therefore, even if the heat source side refrigerant leaks from the refrigerant pipe 4, the leaked heat source side refrigerant can be prevented from flowing into the room, and high reliability can be obtained.
  • each operation mode which the air conditioning apparatus 100 performs is demonstrated.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. More specifically, the air conditioner 100 can perform the same operation for all of the indoor units 2 and can perform different operations for each of the indoor units 2. That is, the air conditioning apparatus 100 according to the present embodiment is an air conditioning apparatus capable of simultaneous cooling and heating.
  • four operation modes executed by the air conditioner 100 that is, a cooling only operation mode in which all the driven indoor units 2 execute the cooling operation, and all the driven indoor units 2 execute the heating operation.
  • the heating only operation mode, the cooling main operation mode in which the cooling load is larger, and the heating main operation mode in which the heating load is larger will be described together with the refrigerant flow.
  • FIG. 4 to FIG. 7 for explaining the operation mode some temperature sensors and the like are omitted for convenience.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b. That is, FIG. 4 illustrates a case where no cooling load is generated in the use side heat exchanger 26c and the use side heat exchanger 26d.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates. Further, the flow direction of the heat source side refrigerant and the heat medium is indicated by solid arrows.
  • the four-way valve 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the first pump 21a is stopped, the second pump 21b is driven, the stop valve 24a and the stop valve 24b are opened, the stop valve 24c and the stop valve 24d are closed, and the second intermediate heat exchanger 15b And the respective use side heat exchangers 26 (the use side heat exchanger 26a and the use side heat exchanger 26b) are circulated.
  • the operation of the compressor 10 is started.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the four-way valve 11 and flows into the heat source side heat exchanger 12. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the heat source device 1 through the check valve 13a, and flows into the first relay unit 3a through the refrigerant pipe 4.
  • the high-pressure liquid refrigerant that has flowed into the first relay unit 3a flows into the gas-liquid separator 14, and then flows into the second relay unit 3b through the expansion valve 16e.
  • the refrigerant that has flowed into the second relay unit 3b is throttled by the expansion valve 16a to expand, and becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • This gas-liquid two-phase refrigerant flows into the second intermediate heat exchanger 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit, thereby cooling the heat medium, while maintaining a low temperature and low pressure. It becomes a gas refrigerant.
  • the gas refrigerant flowing out from the second intermediate heat exchanger 15b passes through the expansion valve 16c, then flows out from the second relay unit 3b and the first relay unit 3a, and flows into the heat source device 1 through the refrigerant pipe 4.
  • the refrigerant that has flowed into the heat source device 1 passes through the check valve 13d and is re-inhaled into the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16b and the expansion valve 16d have small openings so that the refrigerant does not flow, and the expansion valve 16c is fully opened so that no pressure loss occurs.
  • the heat medium in the heat medium circuit In the cooling only operation mode, since the first pump 21a is stopped, the heat medium circulates through the pipe 5b.
  • the heat medium cooled by the heat source side refrigerant in the second intermediate heat exchanger 15b flows in the pipe 5b by the second pump 21b.
  • the heat medium pressurized and discharged by the second pump 21b passes through the stop valve 24 (stop valve 24a and stop valve 24b) via the flow path switching valve 22 (flow path switching valve 22a and flow path switching valve 22b). Then, it flows into the use side heat exchanger 26 (use side heat exchanger 26a and use side heat exchanger 26b). And heat is absorbed from room air in the use side heat exchanger 26, and the air-conditioning target area such as the room where the indoor unit 2 is installed is cooled.
  • the heat medium flowing out from the use side heat exchanger 26 flows into the flow rate adjusting valve 25 (the flow rate adjusting valve 25a and the flow rate adjusting valve 25b).
  • the heat medium having a flow rate necessary to cover the air conditioning load required in the air-conditioning target area such as the room flows into the use-side heat exchanger 26 by the action of the flow rate adjusting valve 25, and the remaining heat medium.
  • the heat medium passing through the bypass 27 does not contribute to heat exchange, but joins the heat medium that has passed through the use-side heat exchanger 26, and the flow path switching valve 23 (flow path switching valve 23a and flow path switching valve 23b). Then, it flows into the second intermediate heat exchanger 15b and is sucked into the second pump 21b again.
  • the air conditioning load required in the air conditioning target area such as a room can be covered by controlling the temperature difference between the third temperature sensor 33 and the fourth temperature sensor 34 to be a target value.
  • the flow path is closed by the stop valve 24 and the heat medium flows to the use side heat exchanger 26. I am trying not to.
  • a heat medium is flowing because there is a heat load in the use side heat exchanger 26a and the use side heat exchanger 26b, but in the use side heat exchanger 26c and the use side heat exchanger 26d, the heat load is passed.
  • the corresponding stop valve 24c and stop valve 24d are closed.
  • the stop valve 24c or the stop valve 24d may be opened to circulate the heat medium.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b. That is, FIG. 5 illustrates a case where no thermal load is generated in the use side heat exchanger 26c and the use side heat exchanger 26d.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates. Further, the flow direction of the heat source side refrigerant and the heat medium is indicated by solid arrows.
  • the four-way valve 11 causes the heat source side refrigerant discharged from the compressor 10 to flow into the relay unit 3 without passing through the heat source side heat exchanger 12. Switch to. In the relay unit 3, the first pump 21a is driven, the second pump 21b is stopped, the stop valve 24a and the stop valve 24b are opened, the stop valve 24c and the stop valve 24d are closed, and the first intermediate heat exchanger 15a And the respective use side heat exchangers 26 (the use side heat exchanger 26a and the use side heat exchanger 26b) are switched so as to circulate the heat medium. In this state, the operation of the compressor 10 is started.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the four-way valve 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the heat source device 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the heat source device 1 flows into the first relay unit 3 a through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first relay unit 3a flows into the gas-liquid separator 14, and then flows into the first intermediate heat exchanger 15a.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first intermediate heat exchanger 15a is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the first intermediate heat exchanger 15a is expanded by being throttled by the expansion valve 16d, and enters a low-temperature / low-pressure gas-liquid two-phase state.
  • the refrigerant in the gas-liquid two-phase state throttled by the expansion valve 16d is conducted through the refrigerant pipe 4 via the expansion valve 16b and flows into the heat source device 1 again.
  • the refrigerant flowing into the heat source device 1 flows into the heat source side heat exchanger 12 acting as an evaporator through the second connection pipe 4b via the check valve 13c.
  • coolant which flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 returns to the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16a, the expansion valve 16c, and the expansion valve 16e have small openings so that the refrigerant does not flow.
  • the heat medium in the heat medium circuit will be described.
  • the heat medium circulates through the pipe 5a.
  • the heat medium heated by the heat source side refrigerant in the first intermediate heat exchanger 15a flows in the pipe 5a by the first pump 21a.
  • the heat medium pressurized and discharged by the first pump 21a passes through the stop valve 24 (stop valve 24a and stop valve 24b) via the flow path switching valve 22 (flow path switching valve 22a and flow path switching valve 22b).
  • heat is applied to the indoor air in the use side heat exchanger 26 to heat the air-conditioning target area such as a room where the indoor unit 2 is installed.
  • the heat medium flowing out from the use side heat exchanger 26 flows into the flow rate adjusting valve 25 (the flow rate adjusting valve 25a and the flow rate adjusting valve 25b).
  • the heat medium having a flow rate necessary to cover the air conditioning load required in the air-conditioning target area such as the room flows into the use-side heat exchanger 26 by the action of the flow rate adjusting valve 25, and the remaining heat medium.
  • the heat medium passing through the bypass 27 does not contribute to heat exchange, but joins the heat medium that has passed through the use-side heat exchanger 26, and the flow path switching valve 23 (flow path switching valve 23a and flow path switching valve 23b). And then flows into the first intermediate heat exchanger 15a and is sucked into the first pump 21a again.
  • the air conditioning load required in the air conditioning target area such as a room can be covered by controlling the temperature difference between the third temperature sensor 33 and the fourth temperature sensor 34 to be a target value.
  • FIG. 6 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cooling load is generated in the use side heat exchanger 26b. That is, FIG. 6 illustrates a case where neither the heat load nor the heat load is generated in the use side heat exchanger 26c and the use side heat exchanger 26d.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates. Further, the flow direction of the heat source side refrigerant and the heat medium is indicated by solid arrows.
  • the four-way valve 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the first pump 21a and the second pump 21b are driven, the stop valve 24a and the stop valve 24b are opened, the stop valve 24c and the stop valve 24d are closed, and the first intermediate heat exchanger 15a and the use side A heat medium circulates between the heat exchanger 26a and between the second intermediate heat exchanger 15b and the use side heat exchanger 26b.
  • the operation of the compressor 10 is started.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the four-way valve 11 and flows into the heat source side heat exchanger 12. Then, the heat source side heat exchanger 12 condenses while radiating heat to the outdoor air, and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the heat source device 1 through the check valve 13a, and flows into the first relay unit 3a through the refrigerant pipe 4.
  • the gas-liquid two-phase refrigerant that has flowed into the first relay unit 3a flows into the gas-liquid separator 14, is separated into a gas refrigerant and a liquid refrigerant, and flows into the second relay unit 3b.
  • the gas refrigerant separated by the gas-liquid separator 14 flows into the first intermediate heat exchanger 15a.
  • the gas refrigerant that has flowed into the first intermediate heat exchanger 15a is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit, and becomes a liquid refrigerant.
  • the liquid refrigerant flowing out from the second intermediate heat exchanger 15b passes through the expansion valve 16d.
  • the liquid refrigerant separated by the gas-liquid separator 14 is condensed and liquefied by the first intermediate heat exchanger 15a via the expansion valve 16e and merged with the liquid refrigerant that has passed through the expansion valve 16d. It is squeezed and expanded, and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the second intermediate heat exchanger 15b.
  • This gas-liquid two-phase refrigerant absorbs heat from the heat medium circulating in the heat medium circulation circuit in the second intermediate heat exchanger 15b acting as an evaporator, thereby cooling the heat medium, Become.
  • the gas refrigerant flowing out from the second intermediate heat exchanger 15b passes through the expansion valve 16c, then flows out from the second relay unit 3b and the first relay unit 3a, and flows into the heat source device 1 through the refrigerant pipe 4.
  • the refrigerant that has flowed into the heat source device 1 passes through the check valve 13d and is re-inhaled into the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16b has a small opening so that the refrigerant does not flow, and the expansion valve 16c is in a fully open state so that no pressure loss occurs.
  • the heat medium in the heat medium circuit will be described.
  • the heat medium circulates through both the pipe 5a and the pipe 5b.
  • the heat medium heated by the heat source side refrigerant in the first intermediate heat exchanger 15a flows in the pipe 5a by the first pump 21a.
  • the heat medium cooled by the heat source side refrigerant in the second intermediate heat exchanger 15b flows in the pipe 5b by the second pump 21b.
  • the heat medium pressurized and discharged by the first pump 21a passes through the stop valve 24a through the flow path switching valve 22a and flows into the use side heat exchanger 26a. Then, in the use side heat exchanger 26a, the indoor air is heated to heat the air-conditioning target area such as the room where the indoor unit 2 is installed. Further, the heat medium pressurized and discharged by the second pump 21b passes through the stop valve 24b through the flow path switching valve 22b and flows into the use side heat exchanger 26b. And heat is absorbed from room air in the use side heat exchanger 26b, and the air-conditioning target area such as the room where the indoor unit 2 is installed is cooled.
  • the heated heat medium flows into the flow rate adjustment valve 25a.
  • the heat medium having a flow rate necessary to cover the air conditioning load required in the air conditioning target area flows into the use side heat exchanger 26a by the action of the flow rate adjusting valve 25a, and the rest passes through the bypass 27a. It flows so as to bypass the use side heat exchanger 26a.
  • the heat medium passing through the bypass 27a does not contribute to heat exchange, joins the heat medium that has passed through the use side heat exchanger 26a, and flows into the first intermediate heat exchanger 15a through the flow path switching valve 23a. Then, it is sucked into the first pump 21a again.
  • the cooled heat medium flows into the flow rate adjustment valve 25b.
  • the heat medium having a flow rate necessary to cover the air-conditioning load required in the air-conditioning target area flows into the use-side heat exchanger 26b by the action of the flow rate adjusting valve 25b, and the rest passes through the bypass 27b. It flows so as to bypass the use side heat exchanger 26b.
  • the heat medium passing through the bypass 27b does not contribute to heat exchange, joins with the heat medium that has passed through the use side heat exchanger 26b, and flows into the second intermediate heat exchanger 15b through the flow path switching valve 23b. Then, it is sucked into the second pump 21b again.
  • the warm heat medium (the heat medium used for the heat load) and the cold heat medium (the heat medium used for the heat load) are the flow path switching valve 22 (the flow path switching valve 22a and the flow path switching valve 22b), And, by the action of the flow path switching valve 23 (the flow path switching valve 23a and the flow path switching valve 23b), the use side heat exchanger 26a having a thermal load and the use side heat exchanger 26b having a cooling load are not mixed without being mixed. Is flowed into.
  • the air conditioning load required in the air conditioning target area such as a room can be covered by controlling the temperature difference between the third temperature sensor 33 and the fourth temperature sensor 34 to be a target value.
  • FIG. 7 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b. That is, FIG. 7 illustrates a case where neither the heat load nor the heat load is generated in the use side heat exchanger 26c and the use side heat exchanger 26d.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates. Further, the flow direction of the heat source side refrigerant and the heat medium is indicated by solid arrows.
  • the four-way valve 11 causes the heat source side refrigerant discharged from the compressor 10 to flow into the relay unit 3 without passing through the heat source side heat exchanger 12. Switch to.
  • the first pump 21a and the second pump 21b are driven, the stop valve 24a and the stop valve 24b are opened, the stop valve 24c and the stop valve 24d are closed, and the first intermediate heat exchanger 15a and the use side A heat medium circulates between the heat exchanger 26a and between the second intermediate heat exchanger 15b and the use side heat exchanger 26b.
  • the operation of the compressor 10 is started.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 passes through the four-way valve 11, conducts through the first connection pipe 4 a, passes through the check valve 13 b, and flows out of the heat source device 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the heat source device 1 flows into the first relay unit 3 a through the refrigerant pipe 4.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first relay unit 3a flows into the gas-liquid separator 14, and then flows into the first intermediate heat exchanger 15a.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first intermediate heat exchanger 15a is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circuit, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the first intermediate heat exchanger 15a is expanded by being throttled by the expansion valve 16d, and enters a low-temperature / low-pressure gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant throttled by the expansion valve 16d is divided into a flow path passing through the expansion valve 16a and a flow path passing through the expansion valve 16b.
  • the refrigerant that has passed through the expansion valve 16a is further expanded by the expansion valve 16a to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and flows into the second intermediate heat exchanger 15b that functions as an evaporator.
  • the refrigerant flowing into the second intermediate heat exchanger 15b absorbs heat from the heat medium in the second intermediate heat exchanger 15b and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the second intermediate heat exchanger 15b passes through the expansion valve 16c.
  • the refrigerant that has been throttled by the expansion valve 16d and has flowed to the expansion valve 16b merges with the refrigerant that has passed through the second intermediate heat exchanger 15b and the expansion valve 16c, and becomes a low-temperature / low-pressure refrigerant that has a higher dryness.
  • the merged refrigerant flows out of the second relay unit 3b and the first relay unit 3a, and flows into the heat source device 1 through the refrigerant pipe 4.
  • the refrigerant flowing into the heat source device 1 flows into the heat source side heat exchanger 12 acting as an evaporator through the second connection pipe 4b via the check valve 13c.
  • coolant which flowed into the heat source side heat exchanger 12 absorbs heat from outdoor air in the heat source side heat exchanger 12, and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 returns to the compressor 10 via the four-way valve 11 and the accumulator 17.
  • the expansion valve 16e has a small opening so that the refrigerant does not flow.
  • the heat medium in the heat medium circuit will be described.
  • the heat medium circulates through both the pipe 5a and the pipe 5b.
  • the heat medium heated by the heat source side refrigerant in the first intermediate heat exchanger 15a flows in the pipe 5a by the first pump 21a.
  • the heat medium cooled by the heat source side refrigerant in the second intermediate heat exchanger 15b flows in the pipe 5b by the second pump 21b.
  • the heat medium pressurized and discharged by the first pump 21a passes through the stop valve 24a through the flow path switching valve 22a and flows into the use side heat exchanger 26a. Then, in the use side heat exchanger 26a, the indoor air is heated to heat the air-conditioning target area such as the room where the indoor unit 2 is installed. Further, the heat medium pressurized and discharged by the second pump 21b passes through the stop valve 24b through the flow path switching valve 22b and flows into the use side heat exchanger 26b. And heat is absorbed from room air in the use side heat exchanger 26b, and the air-conditioning target area such as the room where the indoor unit 2 is installed is cooled.
  • the heat medium flowing out from the use side heat exchanger 26a flows into the flow rate adjusting valve 25a.
  • the flow rate adjustment valve 25a due to the action of the flow rate adjustment valve 25a, only the heat medium having a flow rate necessary to cover the air conditioning load required in the air-conditioning target area such as the room flows into the use side heat exchanger 26a, and the remaining heat medium.
  • the heat medium passing through the bypass 27a does not contribute to heat exchange, joins the heat medium that has passed through the use side heat exchanger 26a, and flows into the first intermediate heat exchanger 15a through the flow path switching valve 23a. Then, it is sucked into the first pump 21a again.
  • the heat medium flowing out from the use side heat exchanger 26b flows into the flow rate adjusting valve 25b.
  • the flow rate adjustment valve 25b due to the action of the flow rate adjustment valve 25b, only the heat medium having a flow rate necessary to cover the air conditioning load required in the air-conditioning target area such as the room flows into the use side heat exchanger 26b, and the remaining heat medium.
  • the heat medium passing through the bypass 27b does not contribute to heat exchange, joins with the heat medium that has passed through the use side heat exchanger 26b, and flows into the second intermediate heat exchanger 15b through the flow path switching valve 23b. Then, it is sucked into the second pump 21b again.
  • the warm heat medium and the cold heat medium are divided into the flow path switching valve 22 (flow path switching valve 22a and flow path switching valve 22b) and the flow path switching valve 23 (flow path switching valve 23a and flow path switching valve 23b).
  • the air conditioning load required in the air conditioning target area such as a room can be covered by controlling the temperature difference between the third temperature sensor 33 and the fourth temperature sensor 34 to be a target value.
  • the temperature of the heat source side refrigerant that passes through the refrigerant side flow path of the intermediate heat exchanger 15 is TE.
  • the heat-medium entrance side temperature of the intermediate heat exchanger 15 which the 2nd temperature sensor 32 detects be T32.
  • the heat-medium exit side temperature of the intermediate heat exchanger 15 which the 1st temperature sensor 31 detects be T31.
  • FIG. 8 is a diagram showing temperature changes of the refrigerant and the heat medium passing through the intermediate heat exchanger 15 according to Embodiment 1 of the present invention.
  • the vertical axis represents the temperature of the heat medium or the refrigerant
  • the horizontal axis represents the distance from the heat medium inlet side in the intermediate heat exchanger 15.
  • the broken line indicates the refrigerant temperature
  • the solid line indicates the temperature of the heat medium. The description here applies not only to the intermediate heat exchanger 15 but also to a general heat exchanger.
  • the temperature efficiency ⁇ e which is the ratio, is designed to be about 0.7 (70%). For this reason, for example, when the flow rate of the heat medium flowing through the heat medium circulation circuit (the heat medium flow path side of the intermediate heat exchanger 15) is normal, the heat during the cooling operation is related to the refrigerant temperature in the intermediate heat exchanger 15.
  • the medium temperature is indicated by LINE (1) in FIG.
  • FIG. 8 shows changes in the temperature of the heat source side refrigerant and the heat medium in the cooling operation, but the same applies to the case where the heat source side refrigerant is on the high temperature side, such as in the heating operation. ).
  • a reference temperature efficiency ⁇ the which is a reference for temperature efficiency when the heat medium flows in a normal state, is set in advance by measurement or the like.
  • the reference temperature efficiency ⁇ the is uniform, the reference temperature efficiency ⁇ the increases and decreases depending on, for example, the flow rate of the heat medium (flow rate per unit time). Therefore, when performing the detection process, the control device 60 may set the reference temperature efficiency ⁇ the corresponding to the flow rate by estimating the flow rate of the heat medium based on the rotational speed of the pump 21.
  • the actual temperature efficiency (hereinafter referred to as actual temperature efficiency) ⁇ e is calculated. Then, it is determined whether or not the difference between the actual temperature efficiency ⁇ e and the reference temperature efficiency ⁇ the is within a predetermined range. If it is determined that the temperature is within the predetermined range, it is assumed that the heat medium circulates through the heat medium circulation circuit at a normal flow rate without decreasing the flow rate due to, for example, heat medium leakage or failure of the pump 21.
  • the air conditioner 100 detects that the flow rate of the heat medium in the heat medium circuit is extremely reduced during heating operation due to, for example, refrigerant leakage.
  • the temperature of the refrigerant passing through the refrigerant side flow path of the intermediate heat exchanger 15 is TC.
  • the refrigerant temperature TE cannot be detected, and the actual temperature efficiency ⁇ e cannot be calculated from the refrigerant temperature TE to determine the heat medium flow rate abnormality. Therefore, as described above, using the fact that the temperature efficiency due to the heat exchange between the heat medium and the air also changes when the flow rate of the heat medium decreases, the determination based on the intake air temperature Ta related to the detection of the eighth temperature sensor 39.
  • the intake air temperature Ta may be the average temperature of the intake air related to the indoor unit 2 that is performing the cooling operation.
  • FIG. 9 is a diagram for explaining the heat medium flow rate abnormality determination process during the cooling operation performed by the control device 60 according to Embodiment 1 of the present invention. Specific protection control of the heat medium circulation circuit will be described with reference to FIG.
  • the control device 60 determines in STEP 2 whether a predetermined time has elapsed since the pump 21 was activated. If it is determined that the predetermined time has elapsed, the process proceeds to STEP3.
  • the predetermined rotational speed of the pump 21 serving as a reference is determined in advance. Since the pipe distance (for example, the total distance), the pipe diameter, and the like in the heat medium circulation circuit may vary depending on the air conditioner 100, the predetermined number of rotations may be determined based on the configuration of the air conditioner 100 and the like.
  • the process proceeds to STEP4. If it is determined that the rotation speed is not equal to or higher than the predetermined rotation speed (less than the predetermined rotation speed), the process proceeds to STEP8. In STEP4, the reference temperature efficiencies ⁇ the and ⁇ tha are set according to the number of revolutions instructed to the pump 21, and the process proceeds to STEP5.
  • STEP5 it is determined whether the thermostat is OFF (in a state where the operation is not performed in the refrigeration cycle circuit). If it is determined that the thermostat is OFF, the process proceeds to STEP6. If it is determined that the thermostat is not OFF, the process proceeds to STEP7.
  • the actual temperature efficiency ⁇ a is calculated based on the intake air temperature Ta, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32 as described above. Then, it is compared with a preset reference temperature efficiency ⁇ tha, and if it is determined that the difference is smaller than the predetermined value ka1, the process proceeds to STEP8. If it is determined that the difference between the actual temperature efficiency ⁇ a and the reference temperature efficiency ⁇ tha is greater than or equal to a predetermined value, the process proceeds to STEP 14 as abnormal.
  • the actual temperature efficiency ⁇ e is calculated based on the refrigerant temperature TE, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32. Then, it is compared with the set reference temperature efficiency ⁇ the, and if it is determined that the difference is smaller than the predetermined value ke1, the process proceeds to STEP8. If the difference between the actual temperature efficiency ⁇ e and the reference temperature efficiency ⁇ the is determined to be greater than or equal to a predetermined value, the process proceeds to STEP 14 as being abnormal.
  • Step 8 it is determined whether or not the rotational speed of the pump 21 is equal to or lower than a predetermined rotational speed.
  • the rotational speed of the pump 21 serving as a reference is determined in advance. If it is determined that the rotational speed of the pump 21 is equal to or lower than the predetermined rotational speed, the process proceeds to STEP9. If it is determined that the rotational speed of the pump 21 is not less than or equal to the predetermined rotational speed (the rotational speed of the pump 21 is greater than the predetermined rotational speed), the process proceeds to STEP12. In STEP 9, it is determined whether or not the operation is thermo OFF. If it is determined that the thermostat is OFF, the process proceeds to STEP10. If it is determined that the thermo is not OFF, the process proceeds to STEP 11.
  • the actual temperature efficiency ⁇ a is calculated based on the intake air temperature Ta, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32. Then, it is compared with a preset reference temperature efficiency ⁇ tha, and if it is determined that the difference is smaller than the predetermined value ka2, the process proceeds to STEP12. If it is determined that the difference between the actual temperature efficiency ⁇ a and the reference temperature efficiency ⁇ tha is greater than or equal to a predetermined value, the process proceeds to STEP 14 as abnormal.
  • the actual temperature efficiency ⁇ e is calculated based on the refrigerant temperature TE, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32. Then, it is compared with the set reference temperature efficiency ⁇ the, and if it is determined that the difference is smaller than the predetermined value ke2, the process proceeds to STEP12. If the difference between the actual temperature efficiency ⁇ e and the reference temperature efficiency ⁇ the is determined to be greater than or equal to a predetermined value, the process proceeds to STEP 14 as being abnormal.
  • STEP 12 it is determined whether or not to continue the air conditioning operation. If it is determined to continue, the process returns to STEP 2 to repeat the determination. If it is determined that the air-conditioning operation is not continued, the process proceeds to STEP 13 where the air-conditioning operation is stopped and the process is terminated.
  • FIG. 10 is a diagram for explaining the heat medium flow rate abnormality determination process during the heating operation performed by the control device 60 according to Embodiment 1 of the present invention. Specific protection control of the heat medium circulation circuit will be described with reference to FIG.
  • the control device 60 determines in STEP 22 whether a predetermined time has elapsed since the pump 21 was activated. If it is determined that the predetermined time has elapsed, the process proceeds to STEP23.
  • the predetermined rotational speed of the pump 21 serving as a reference is determined in advance. Since the pipe distance (for example, the total distance), the pipe diameter, and the like in the heat medium circulation circuit may vary depending on the air conditioner 100, the predetermined number of rotations may be determined based on the configuration of the air conditioner 100 and the like.
  • the process proceeds to STEP24. If it is determined that the rotation speed is not equal to or higher than the predetermined rotation speed (less than the predetermined rotation speed), the process proceeds to STEP28. In STEP 24, the values of the reference temperature efficiencies ⁇ thc and ⁇ tha according to the number of revolutions instructed to the pump 21 are set, and the process proceeds to STEP25.
  • STEP 25 it is determined whether or not the thermostat is OFF (the operation is not performed in the refrigeration cycle circuit). If it is determined that the thermostat is OFF, the process proceeds to STEP26. If it is determined that the thermostat is not OFF, the process proceeds to STEP27.
  • the actual temperature efficiency ⁇ a is calculated based on the intake air temperature Ta, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32 as described above. Then, it is compared with the preset reference temperature efficiency ⁇ tha, and if it is determined that the difference is smaller than the predetermined value ka1, the process proceeds to STEP28. If it is determined that the difference between the actual temperature efficiency ⁇ a and the reference temperature efficiency ⁇ tha is equal to or greater than a predetermined value, the process proceeds to STEP 34 as being abnormal.
  • the actual temperature efficiency ⁇ c is calculated based on the refrigerant temperature TC, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32. Then, it is compared with the set reference temperature efficiency ⁇ thc, and if it is determined that the difference is smaller than the predetermined value kc1, the process proceeds to STEP28. If the difference between the actual temperature efficiency ⁇ c and the reference temperature efficiency ⁇ thc is determined to be greater than or equal to a predetermined value, the process proceeds to STEP 34 as being abnormal.
  • STEP 28 it is determined whether the rotational speed of the pump 21 is equal to or lower than a predetermined rotational speed.
  • the rotational speed of the pump 21 serving as a reference is determined in advance. If it is determined that the rotational speed of the pump 21 is equal to or lower than the predetermined rotational speed, the process proceeds to STEP29. If it is determined that the rotational speed of the pump 21 is not less than or equal to the predetermined rotational speed (the rotational speed of the pump 21 is greater than the predetermined rotational speed), the process proceeds to STEP32. Further, in STEP 29, it is determined whether or not the operation is thermo OFF. If it is determined that the thermo is OFF, the process proceeds to STEP 30. If it is determined that the thermo is not OFF, the process proceeds to STEP 31.
  • the actual temperature efficiency ⁇ a is calculated based on the intake air temperature Ta, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32. Then, it is compared with a preset reference temperature efficiency ⁇ tha, and if it is determined that the difference is smaller than the predetermined value ka2, the process proceeds to STEP32. If it is determined that the difference between the actual temperature efficiency ⁇ a and the reference temperature efficiency ⁇ tha is equal to or greater than a predetermined value, the process proceeds to STEP 34 as being abnormal.
  • the actual temperature efficiency ⁇ c is calculated based on the refrigerant temperature TE, the heat medium outlet side temperature T31, and the heat medium inlet side temperature T32. Then, it is compared with the set reference temperature efficiency ⁇ thc, and if it is determined that the difference is smaller than the predetermined value kc2, the process proceeds to STEP32. If the difference between the actual temperature efficiency ⁇ c and the reference temperature efficiency ⁇ thc is determined to be greater than or equal to a predetermined value, the process proceeds to STEP 34 as being abnormal.
  • STEP 32 it is determined whether or not to continue the air conditioning operation. If it is determined to continue, the process returns to STEP 22 to repeat the determination. If it is determined that the air conditioning operation is not continued, the process proceeds to STEP 33, where the air conditioning operation is stopped, and the process is terminated.
  • the heat medium is divided into the pipe 5a and the pipe 5b.
  • an abnormality in the flow rate of the heat medium is determined for each system.
  • circulation of a heat medium may be stopped etc., and in the system
  • control device 60 informs the notification device 62 that an abnormality has occurred.
  • the control device 60 is based on the temperature efficiency related to the heat exchange in the intermediate heat exchanger 15 and the use side heat exchanger 26. Since it is determined whether or not the flow rate abnormality has occurred, it is possible to accurately and efficiently determine the flow rate abnormality. For this reason, for example, when the leakage of the heat medium has occurred, it can be expected to respond quickly to an increase in the load on the pump 21 due to a decrease in the flow rate. Further, in the case of a breakage of the pump 21, it can be expected that the occurrence of breakage or the like will be discovered early. In addition, since it is possible to make an abnormal flow rate determination using a sensor that is normally used for air conditioning control, it is possible to make an efficient determination in terms of cost.
  • Embodiment 2 the heat medium inlet side temperature T32 of the intermediate heat exchanger 15 detected by the second temperature sensor 32 and the intermediate heat exchanger detected by the first temperature sensor 31 are also used for calculating the actual temperature efficiency ⁇ a.
  • the heat medium outlet side temperature T31 of 15 was utilized, it is not limited to this.
  • the heat medium inflow side temperature of the use side heat exchanger 26 related to the detection of the third temperature sensor 33 and the heat medium outflow side temperature of the use side heat exchanger 26 related to the detection of the fourth temperature sensor 34 are used. You may make it do.
  • the first intermediate heat exchanger 15a is a heat medium heating side and the second intermediate heat exchanger 15b is a heat medium cooling side.
  • the configuration on the refrigeration cycle circuit side is not limited to the configuration of the first embodiment.
  • the first intermediate heat exchanger 15a and the second intermediate heat exchanger 15b can be heat exchangers that can heat and cool the heat medium.
  • both the first intermediate heat exchanger 15a and the second intermediate heat exchanger 15b can be used as heating equipment and cooling equipment in the heating only operation mode and the cooling only operation mode.
  • the cooling operation performed in the other system is switched to the heating operation. It may be (or vice versa).
  • priority can be given to the operation specified earlier, priority can be given to the operation with the larger total heat exchange amount of the use side heat exchanger 26, and so on. .
  • the air conditioner 100 having two or more intermediate heat exchangers 15 is used in order to enable a mixed operation of air conditioning and the like.
  • the air conditioner 100 includes one intermediate heat exchanger.
  • the present invention can also be applied to an air conditioner.
  • the indoor unit 2 can also be applied to one air conditioner.
  • the heating medium is heated and cooled using the refrigeration cycle circuit that circulates the heat source side refrigerant.
  • the device that heats and cools the heating medium is not particularly limited. .
  • FIG. FIG. 11 is a schematic circuit diagram showing the configuration of the air-conditioning apparatus 100 according to Embodiment 4 of the present invention.
  • the pump 21 is not particularly defined.
  • the pump 21 has a rotation speed detection sensor 41 (41a, 41b) serving as a rotation speed detection device for detecting the actual rotation speed (actual rotation speed) of the pump 21.
  • the pump 21 is a centrifugal pump.
  • the centrifugal pump can control the rotational speed by controlling the inverter.
  • the rotational speed of the pump 21 generally varies depending on the head applied to the pump 21, but the actual rotational speed of the pump 21 varies within a limited range due to, for example, a product restriction range.
  • FIG. 12 is a diagram showing the relationship between the command rotational speed and the actual rotational speed in the pump 21.
  • the pump 21 when the pump 21 is driven normally, the pump 21 is driven in a normal region in the figure with the commanded rotation speed and the actual rotation speed as axes.
  • the actual rotational speed rises beyond the normal range with respect to the rotational speed, it is understood that it is abnormal.
  • the work amount of the pump 21 is reduced according to the amount of air mixed in, so the same power supply as in the state where no air is mixed is supplied. If this is done, the rotational speed of the pump 21 tends to increase.
  • the motor is driven at an actual rotational speed that is not normal, and the relationship between the command rotational speed and the actual rotational speed is, for example, the position of an abnormal region in FIG. become.
  • mapping a region in which the relationship between the command rotational speed and the actual rotational speed is normal and abnormal as shown in FIG. 12 is stored in the control device 60 in advance. Then, the control device 60 periodically determines whether the actual rotational speed of the pump 21 related to the detection by the rotational speed detection sensor 41 is normal or abnormal. If it is determined that there is an abnormality, for example, the operation of the relay unit 3 is stopped (the pump 21 is stopped), and the notification device 62 notifies the fact.
  • the fourth embodiment by detecting the actual rotational speed of the pump 21 by the rotational speed detection sensor 41, it is possible to control the pump 21 by directly monitoring the operation state to determine whether it is abnormal. As a result, it is possible to accurately determine whether there is an abnormality. Further, for example, since it can be seen that air has entered the heat medium circulation device before the pump 21 is damaged, a quick countermeasure can be taken.
  • FIG. FIG. 13 is a schematic circuit diagram showing the configuration of the air-conditioning apparatus 100 according to Embodiment 5 of the present invention.
  • a tenth temperature sensor (pump temperature detection device) 42 is provided in the vicinity of the heat medium inlet / outlet of the pump 21 to control the temperature of the pump 21.
  • the wings of the pump 21 continue to rotate by driving the motor unless the heat medium is stopped. For this reason, a motor etc. generate heat and the internal temperature of pump 21 rises.
  • the temperature near the refrigerant outlet of the pump 21 also rises due to the influence of convection and heat conduction.
  • an upper limit temperature at which the pump 21 is not damaged is determined in advance by a test or the like, and stored in the control device 60 as limit value data. Then, it is periodically determined whether or not the value of the temperature related to detection by the tenth temperature sensor 42 provided in the vicinity of the heat medium inlet / outlet of the pump 21 exceeds the limit value. If it is determined that the abnormal state exceeds the limit value, for example, the operation of the relay unit 3 is stopped (the pump 21 is stopped), and the notification device 62 is notified of this.
  • the installation position of the tenth temperature sensor 42 may be either the heat medium inlet or the outlet of the pump 21 or both. Further, the temperature may be directly detected by providing the pump 21 at a position where it can be easily installed.
  • the temperature of the pump 21 is monitored based on the temperature detected by the tenth temperature sensor 42 to determine whether it is abnormal, and the pump 21 can be controlled. It is possible to accurately determine whether or not. Further, for example, since it can be seen that air has entered the heat medium circulation device before the pump 21 is damaged, a quick countermeasure can be taken.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 熱源側冷媒と熱源側冷媒とは異なる熱媒体との熱交換を行う1又は複数の中間熱交換器15を配管接続して構成する冷凍サイクル回路と、中間熱交換器15の熱交換に係る熱媒体を循環させるための1又は複数のポンプ21、熱媒体と空調対象空間に係る空気との熱交換を行う利用側熱交換器26および利用側熱交換器26に対する加熱された熱媒体の通過または冷却された熱媒体の通過を切り替える流路切替弁22、23を配管接続して構成する熱媒体循環回路と、熱媒体循環回路の熱交換器における熱媒体流入口における温度に基づいて、実際の温度効率を算出し、設定した基準温度効率と実際の温度効率とに基づいて、熱媒体循環回路における熱媒体の流量が異常であるかどうかを判断処理する制御装置60とを備える。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用する空気調和装置に関するものである。
 たとえば室外機と中継ユニットとの間を配管接続して構成する冷凍サイクル回路(冷媒循環回路)を循環する熱源側冷媒と、中継ユニットと室内機との間を配管接続して構成する熱媒体循環回路を循環する屋内側冷媒(熱媒体)とを熱交換させる空気調和装置がある。そして、このような構成の空気調和装置をビル用マルチエアコン等に適用する際、たとえば熱媒体の搬送動力を低減させるようにして省エネルギーをはかっているものがある(たとえば、特許文献1参照)。このように、2つの循環回路を構成しているのは、屋内を循環する熱媒体には、ビル内の利用者の健康等に悪影響を及ぼさないような水等を冷媒として利用できるようにするためである。
WO2010/049998号公報(第3頁、図1等)
 ここで、熱媒体を利用せずに空気調和を行なう通常の空気調和装置等では、利用者への影響を考慮し、冷媒の漏洩を素早く検出し、対応するための提案がなされている。一方で、上述した特許文献1のような空気調和装置では、屋内を循環する熱媒体が利用者に及ぼす悪影響が少ないこと等から、熱媒体循環回路からの熱媒体の漏洩検出に着目することが少なかった。
 しかしながら、たとえば熱媒体が漏洩すると空気調和制御、機器等に影響が及ぶことになる。たとえば、熱媒体循環回路ではポンプを用いて熱媒体を循環させているが、熱媒体が漏洩等すると、空気流入等によりエア噛みが発生して、熱媒体の循環が極端に低下し、ポンプが過熱して破損する恐れがある。また、ポンプに供給する電流やポンプ自身の温度に影響が出た場合には、既にポンプがダメージを受けている場合があり、最悪の場合にはポンプが破損に至る可能性がある。
 ここで、熱媒体の漏洩等を、熱媒体の温度変化に基づいて検出することも可能であるが、熱媒体の温度変化は、水量によって、その度合いが異なるため、検出を正確に行なうのは困難である。
 本発明は上述のような課題を解決するためになされたものであり、熱媒体循環回路を流れる熱媒体の流量における異常を、より効率よく検出することができる空気調和装置を得ることを目的とする。
 本発明に係る空気調和装置は、熱源側冷媒を圧縮する圧縮機、熱源側冷媒の循環経路を切り替えるための冷媒流路切替装置、熱源側冷媒を熱交換させるための熱源側熱交換器、熱源側冷媒を圧力調整するための絞り装置および熱源側冷媒と熱源側冷媒とは異なる熱媒体との熱交換を行なう1または複数の中間熱交換器を配管接続して構成する冷凍サイクル回路と、中間熱交換器の熱交換に係る熱媒体を循環させるための1または複数のポンプ、熱媒体と空調対象空間に係る空気との熱交換を行なう利用側熱交換器および利用側熱交換器に対する加熱された熱媒体の通過または冷却された熱媒体の通過を切り替える流路切替弁を配管接続して構成する熱媒体循環回路と、熱媒体循環回路の熱交換器における熱媒体流入口における温度に基づいて、実際の温度効率を算出し、設定した基準温度効率と実際の温度効率とに基づいて、熱媒体循環回路における熱媒体の流量が異常であるかどうかを判断処理する制御装置とを備える。
 本発明の空気調和装置では、制御装置が、熱媒体循環回路における熱交換器の熱交換に係る温度効率に基づいて、流量異常が発生したかどうかを判断するようにしたので、正確に効率よく流量異常を判断することができる。
実施の形態1に係る空気調和装置の設置状態の一例を示す全体構成図である。 実施の形態1に係る空気調和装置の設置状態の一例を示す全体構成図である。 実施の形態1に係る空気調和装置の構成を示す概略回路図である。 実施の形態1に係る空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 実施の形態1に係る空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 実施の形態1に係る空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 実施の形態1に係る空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 本発明の実施の形態1に係る中間熱交換器15を通過する冷媒および熱媒体の温度変化を示す図である。 本発明の実施の形態1に係る制御装置60が行なう冷房運転時の熱媒体流量異常判断処理を説明するための図である。 本発明の実施の形態1に係る制御装置60が行なう暖房運転時の熱媒体流量異常判断処理を説明するための図である。 実施の形態4に係る空気調和装置の構成を示す概略回路図である。 ポンプ21における指令回転数と実回転数との関係を示す図である。 実施の形態5に係る空気調和装置の構成を示す概略回路図である。
 実施の形態1.
 図1および図2は、本発明の実施の形態1に係る空気調和装置の設置状態の一例を示す全体構成図である。図1および図2に基づいて、空気調和装置の構成について説明する。この空気調和装置は、熱源側冷媒を循環させる冷凍サイクル回路および水や不凍液等の熱媒体を循環させる熱媒体循環回路を利用し、冷房運転または暖房運転を実行するものである。ここで、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合もある。また、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。
 図1に示すように、本実施の形態の空気調和装置は、たとえば熱源機である1台の熱源装置1と、複数台の室内機2と、熱源装置1と室内機2との間に介在する中継ユニット3と、を有している。中継ユニット3は、熱源側冷媒と熱媒体とで熱交換を行なうものである。熱源装置1と中継ユニット3とは、熱源側冷媒を導通する冷媒配管4で接続され、中継ユニット3と室内機2とは、熱媒体を導通する配管5で接続され、熱源装置1で生成された冷熱あるいは温熱を室内機2に配送するようになっている。なお、熱源装置1、室内機2および中継ユニット3の接続台数を図示してある台数に限定するものではない。
 熱源装置1は、通常、ビル等の建物9の外の空間である室外空間6に配置され、中継ユニット3を介して室内機2に冷熱または温熱を供給するものである。室内機2は、冷房用空気あるいは暖房用空気を搬送できる建物9の内部の居室やサーバールーム等の居住空間7に配置され、空調対象域となる居住空間7に冷房用空気あるいは暖房用空気を供給するものである。中継ユニット3は、熱源装置1および室内機2とは別体として、室外空間6および居住空間7とは別の位置(以下、非居住空間50と称する)に設置できるように構成されており、熱源装置1と室内機2とを接続し、熱源装置1から供給される冷熱または温熱を室内機2に伝達するものである。
 室外空間6は、建物9の外部に存在する場所、たとえば図1に示すような屋上をイメージしている。非居住空間50は、建物9の内部ではあるが居住空間7とは別の空間、たとえば廊下の上等の人が常時存在しない場所や、共用ゾーンの天井裏、エレベータ等がある共用部、機械室、電算室、倉庫等をイメージしている。また、居住空間7とは、建物9の内部であって、常に人が存在する場所や一時的にも多数あるいは小数の人が存在する場所、たとえば、オフィス、教室、会議室、食堂、サーバールーム等をイメージしている。
 熱源装置1と中継ユニット3とは、2本の冷媒配管4を用いて接続されている。また、中継ユニット3と各室内機2とは、それぞれ2本の配管5で接続されている。このように、熱源装置1を2本の冷媒配管4で中継ユニット3に接続し、室内機2を2本の配管5で中継ユニット3に接続することにより、空気調和装置の施工が容易になる。
 図2に示すように、中継ユニット3を、1つの第1中継ユニット3aと、第1中継ユニット3aから派生した2つの第2中継ユニット3bと、に分けて構成するようにしてもよい。このようにすることにより、1つの第1中継ユニット3aに対し、第2中継ユニット3bを複数接続できるようになる。この構成においては、第1中継ユニット3aと第2中継ユニット3bとの間の冷媒配管4は、3本になっている。この配管路の詳細については、後に詳述するものとする。
 なお、図1および図2においては、室内機2は、天井カセット型を例に示してあるが、これに限定するものではなく、居住空間7に直接またはダクト等により、冷熱または温熱を吹き出せるようになっていればどんなものでもよく、たとえば天井埋込型、または、天井吊下式等であってもよい。
 また、図1においては、熱源装置1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、熱源装置1は、換気口付の機械室等の囲まれた空間に設置するようにしてもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置するようにしてもよく、あるいは、水冷式の熱源装置1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に熱源装置1を設置するとしても、特段の問題が発生することはない。
 また、中継ユニット3は、熱源装置1の近傍に設置することもできる。ただし、中継ユニット3から室内機2までの距離が長すぎると、熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れる。
 図3は、本発明の実施の形態1に係る空気調和装置100の構成を示す概略回路図である。図3は冷凍サイクル回路と熱媒体循環回路とを有する空気調和装置の構成の一例を示している。図3に基づいて、空気調和装置100の詳しい構成について説明する。図3に示すように、熱源装置1と中継ユニット3とは、第2中継ユニット3bに備えられている第1中間熱交換器15aおよび第2中間熱交換器15bを介して接続されている。中継ユニット3と室内機2とも、第2中継ユニット3に備えられている第1中間熱交換器15aおよび第2中間熱交換器15bを介して接続されている。以下、空気調和装置100に設けられている各構成機器の構成および機能について説明する。なお、図3以降では、中継ユニット3を第1中継ユニット3aと第2中継ユニット3bとに分けている場合について図示している。
(熱源装置1)
 熱源装置1には、圧縮機10と、四方弁11と、熱源側熱交換器(室外熱交換器)12と、アキュムレーター17とが冷媒配管4で直列に接続されて収容されている。また、熱源装置1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、および、逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、および、逆止弁13dを設けることで、室内機2の要求する運転に関わらず、中継ユニット3に流入させる熱源側冷媒の流れを一定方向にすることができる。
 圧縮機10は、熱源側冷媒を吸入し、その熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。四方弁11は、暖房運転時における熱源側冷媒の流れと冷房運転時における熱源側冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能し、図示省略のファン等の送風機から供給される空気と熱源側冷媒との間で熱交換を行ない、その熱源側冷媒を蒸発ガス化または凝縮液化するものである。アキュムレーター17は、圧縮機10の吸入側に設けられており、過剰な冷媒を貯留するものである。
 逆止弁13dは、中継ユニット3と四方弁11との間における冷媒配管4に設けられ、所定の方向(中継ユニット3から熱源装置1への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13aは、熱源側熱交換器12と中継ユニット3との間における冷媒配管4に設けられ、所定の方向(熱源装置1から中継ユニット3への方向)のみに熱源側冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、逆止弁13dの下流側から逆止弁13aの下流側の方向のみに熱源側冷媒の流通を許容するものである。逆止弁13cは、第2接続配管4bに設けられ、逆止弁13dの上流側から逆止弁13aの上流側の方向のみに熱源側冷媒の流通を許容するものである。
 第1接続配管4aは、熱源装置1内において、逆止弁13dの下流側における冷媒配管4と逆止弁13aの下流側における冷媒配管4とを接続するものである。第2接続配管4bは、熱源装置1内において、逆止弁13dの上流側における冷媒配管4と逆止弁13aの上流側における冷媒配管4とを接続するものである。なお、図2では、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び、逆止弁13dを設けた場合を例に示しているが、これに限定するものではなく、これらを必ずしも設ける必要はない。
(室内機2)
 室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、配管5を介して第2中継ユニット3bの止め弁24および流量調整弁25と接続するようになっている。この利用側熱交換器26は、室内ファン28の駆動により流入する空気と熱媒体との間で熱交換を行ない、空調対象域に供給するための暖房空気あるいは冷房空気を生成するものである。
 この図3では、4台の室内機2が第2中継ユニット3bに接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。同様に、室内ファン28についても、紙面下側から室内ファン28a、室内ファン28b、室内ファン28c、室内ファン28dとしている。なお、図1と同様に、室内機2の接続台数を図3に示す4台に限定するものではない。
(中継ユニット3)
 中継ユニット3は、第1中継ユニット3aと、第2中継ユニット3bとで、筐体を分けて構成されている。このように構成することにより、上述したように1つの第1中継ユニット3aに対し、複数の第2中継ユニット3bを接続することができる。第1中継ユニット3aには、気液分離器14と、膨張弁16eと、が設けられている。第2中継ユニット3bには、2つの中間熱交換器15と、4つの膨張弁16と、2つのポンプ21と、4つの流路切替弁22と、4つの流路切替弁23と、4つの止め弁24と、4つの流量調整弁25と、が設けられている。
 気液分離器14は、熱源装置1と接続する1本の冷媒配管4と、第2中継ユニット3bの第1中間熱交換器15aおよび第2中間熱交換器15bと接続する2本の冷媒配管4とに接続され、熱源装置1から供給される熱源側冷媒を蒸気状冷媒と液冷媒とに分離するものである。膨張弁16eは、膨張弁16aおよび膨張弁16bを接続している冷媒配管4と、気液分離器14と、の間に設けられ、減圧弁や絞り装置として機能し、熱源側冷媒を減圧して膨張させるものである。膨張弁16eは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 2つの中間熱交換器15(第1中間熱交換器15aおよび第2中間熱交換器15b)は、加熱機器(凝縮器)または冷却機器(冷却器)として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、熱源装置1で生成された冷熱または温熱を室内機2に供給するものである。熱源側冷媒の流れにおいて、第1中間熱交換器15aは、気液分離器14と膨張弁16dとの間に設けられており、熱媒体の加熱に供するものである。熱源側冷媒の流れにおいて、第2中間熱交換器15bは、膨張弁16aと膨張弁16cとの間に設けられており、熱媒体の冷却に供するものである。
 4つの膨張弁16(膨張弁16a~16d)は、減圧弁や絞り装置として機能し、熱源側冷媒を減圧して膨張させるものである。膨張弁16aは、膨張弁16eと第2中間熱交換器15bとの間に設けられている。膨張弁16bは、膨張弁16aと並列となるように設けられている。膨張弁16cは、第2中間熱交換器15bと第1中継ユニット3aとの間に設けられている。膨張弁16dは、第1中間熱交換器15aと膨張弁16aおよび膨張弁16bとの間に設けられている。4つの膨張弁16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 2つのポンプ21(第1ポンプ21aおよび第2ポンプ21b)は、配管5を導通する熱媒体を循環させるものである。第1ポンプ21aは、第1中間熱交換器15aと流路切替弁22との間における配管5に設けられている。第2ポンプ21bは、第2中間熱交換器15bと流路切替弁22との間における配管5に設けられている。なお、第1ポンプ21aおよび第2ポンプ21bの種類を特に限定するものではなく、たとえば容量制御可能なポンプ等で構成するとよい。
 4つの流路切替弁22(流路切替弁22a~22d)は、三方弁で構成されており、熱媒体の流路を切り替えるものである。流路切替弁22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられる。流路切替弁22は、三方のうちの一つが第1中間熱交換器15aに、三方のうちの一つが第2中間熱交換器15bに、三方のうちの一つが止め弁24に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から流路切替弁22a、流路切替弁22b、流路切替弁22c、流路切替弁22dとして図示している。
 4つの流路切替弁23(流路切替弁23a~23d)は、三方弁で構成されており、熱媒体の流路を切り替えるものである。流路切替弁23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられる。流路切替弁23は、三方のうちの一つが第1中間熱交換器15aに、三方のうちの一つが第2中間熱交換器15bに、三方のうちの一つが流量調整弁25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から流路切替弁23a、流路切替弁23b、流路切替弁23c、流路切替弁23dとして図示している。
 4つの止め弁24(止め弁24a~24d)は、二方弁で構成されており、配管5を開閉するものである。止め弁24は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられる。止め弁24は、一方が利用側熱交換器26に、他方が流路切替弁22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から止め弁24a、止め弁24b、止め弁24c、止め弁24dとして図示している。
 4つの流量調整弁25(流量調整弁25a~25d)は、三方弁で構成されており、熱媒体の流路を切り替えるものである。流量調整弁25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられる。流量調整弁25は、三方のうちの一つが利用側熱交換器26に、三方のうちの一つがバイパス27に、三方のうちの一つが流路切替弁23に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から流量調整弁25a、流量調整弁25b、流量調整弁25c、流量調整弁25dとして図示している。
 バイパス27は、止め弁24と利用側熱交換器26との間における配管5と流量調整弁25とを接続するように設けられている。バイパス27は、室内機2の設置台数に応じた個数(ここでは4つ、つまりバイパス27a、バイパス27b、バイパス27cおよびバイパス27d)が設けられる。なお、室内機2に対応させて、紙面下側からバイパス27a、バイパス27b、バイパス27c、バイパス27dとして図示している。
 また、第2中継ユニット3bには、2つの第1温度センサー31と、2つの第2温度センサー32と、4つの第3温度センサー33と、4つの第4温度センサー34と、第5温度センサー35と、圧力センサー36と、第6温度センサー37と、第7温度センサー38と、が設けられている。また、各室内機にはそれぞれ第8温度センサー39が設けられている。これらの検出装置が検出する物理量に係る信号は、後述する空気調和装置100の動作を制御する制御装置60に送られ、ポンプ21の駆動周波数、配管5を流れる熱媒体の流路の切替等の制御に利用されることになる。
 熱媒体流出温度検出装置となる第1温度センサー31(第1温度センサー31aおよび第1温度センサー31b)は、中間熱交換器15の熱媒体流路出口側における熱媒体の温度を検出する。ここで、第1温度センサー31aは、配管5の第1ポンプ21aの入口側の部分に設けられている。第1温度センサー31bは、配管5の第2ポンプ21bの入口側の部分に設けられている。
 また、熱媒体流入温度検出装置となる第2温度センサー32(第2温度センサー32aおよび第2温度センサー32b)は、中間熱交換器15の熱媒体流路入口側における熱媒体の温度を検出する。第2温度センサー32aは、配管5の第1中間熱交換器15aの熱媒体流路入口側の部分に設けられている。第2温度センサー32bは、配管5の第2中間熱交換器15bの熱媒体流路入口側の部分に設けられている。
 利用側流入温度検出装置となる第3温度センサー33(第3温度センサー33a~33d)は、各室内機2の利用側熱交換器26の熱媒体の入口側の部分に設けられ、利用側熱交換器26に流入する熱媒体の温度を検出する。図3では、室内機2a~2dに対応して紙面下側から第3温度センサー33a、第3温度センサー33b、第3温度センサー33c、第3温度センサー33dとして図示している。
 利用側流出温度検出装置となる第4温度センサー34(第4温度センサー34a~34d)は、各室内機2の利用側熱交換器26の熱媒体の出口側の部分に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出する。図3では、室内機2a~2dに対応して紙面下側から第4温度センサー34a、第4温度センサー34b、第4温度センサー34c、第4温度センサー34dとして図示している。
 第5温度センサー35は、第1中間熱交換器15aの熱源側冷媒流路の出口側に設けられ、第1中間熱交換器15aから流出した熱源側冷媒の温度を検出するものである。圧力センサー36は、第1中間熱交換器15aの熱源側冷媒流路の出口側に設けられ、第1中間熱交換器15aから流出した熱源側冷媒の圧力を検出するものである。
 第6温度センサー37は、第2中間熱交換器15bの熱源側冷媒流路の入口側に設けられ、第2中間熱交換器15bに流入する熱源側冷媒の温度を検出するものである。第7温度センサー38は、第2中間熱交換器15bの熱源側冷媒流路の出口側に設けられ、第2中間熱交換器15bから流出した熱源側冷媒の温度を検出するものである。
 空調対象温度検出装置となる第8温度センサー39(第8温度センサー39a~39d)は、空調対象となる空気の温度(室内温度)を検出する。ここでは、各室内機2の室内ファン28の駆動により利用側熱交換器26に流入する空気の温度(吸い込み空気温度)を検出する。図3では、室内機2a~2dに対応して紙面下側から第8温度センサー39a、第8温度センサー39b、第8温度センサー39c、第8温度センサー39dとして図示している。また、外気温度検出装置となる第9温度センサー40は、たとえば熱源装置1に設けられ、屋外の空気の温度(外気温度)を検出する。ここで、以上に説明した各温度センサーについては、サーミスター等で構成するとよい。
 熱媒体を導通する配管5は、第1中間熱交換器15aに接続されるもの(以下、配管5aと称する)と、第2中間熱交換器15bに接続されるもの(以下、配管5bと称する)と、で構成されている。配管5aおよび配管5bは、中継ユニット3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、配管5aおよび配管5bは、流路切替弁22、流路切替弁23および流量調整弁25で接続されている。流路切替弁22および流路切替弁23を制御することで、配管5aを導通する熱媒体を利用側熱交換器26に流入させるか、配管5bを導通する熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
 また、空気調和装置100には、各検出手段および利用者からの指令を受け付けるためのリモコンからの情報に基づいて熱源装置1、中継ユニット3、および、室内機2に搭載される各機器の動作を制御する制御装置60が設けられている。制御装置60は、熱源装置1に搭載されている圧縮機10の駆動周波数、熱源側熱交換器12の近傍に設置される送風機の回転数(ON/OFF含む)、および、四方弁11の切り替え等を制御し、後述する各運転モードを実行するようになっている。また、制御装置60は、室内機2に搭載されている利用側熱交換器26の近傍に設置される室内ファン28の回転数(ON/OFF含む)を制御するようになっている。
 さらに、制御装置60は、中継ユニット3に搭載されているポンプ21の駆動、膨張弁16a~16eの開度、流路切替弁22および流路切替弁23の切り替え、止め弁24の開閉、および、流量調整弁25の切り替えを制御するようになっている。つまり、制御装置60は、中継ユニット3における熱媒体の流量を調整する流量制御手段、熱媒体の流路を決定する流路決定手段、各機器のON/OFFを実行するON/OFF制御手段、および、設定した目標値を各検出手段からの情報に基づいて適宜変更する制御目標値変更手段としての機能を有している。特に本実施の形態では、特に熱媒体循環回路における熱媒体の流量異常を判断して、ポンプ21の保護をはかる処理を行なう。制御装置60は、たとえばマイクロコンピュータ等で構成されている。そして、計時装置となるタイマー61を有し、計時を行えるものとする。また、データ等を記憶するための記憶装置(図示せず)も有しているものとする。ここで、ユニット毎に制御装置を設けるようにしてもよい。この場合には、各制御装置を互いに通信可能にしておくとよい。
 また、本実施の形態の空気調和装置100は報知装置62を有している。報知装置62は、たとえば表示装置、音声出力装置等で構成し、文字表示、音声出力等により報知を行なう装置である。報知装置62は、たとえばリモートコントローラ等が有するようにしてもよい。本実施の形態においては、たとえば熱媒体の流量異常等によりポンプ21を停止すると、その旨を報知する。
 この空気調和装置100では、圧縮機10、四方弁11、熱源側熱交換器12、第1中間熱交換器15aの冷媒流路、および、第2中間熱交換器15bの冷媒流路、アキュムレーター17を、冷媒が流通する冷媒配管4で接続して冷凍サイクル回路を構成している。また、第1中間熱交換器15aの熱媒体流路、第1ポンプ21a、および、利用側熱交換器26を、熱媒体を流通する配管5aで順に接続して暖房用熱媒体循環回路を構成している。同様に、第2中間熱交換器15bの熱媒体流路、第2ポンプ21b、および、利用側熱交換器26を、熱媒体を流通する配管5bで順に直列に接続されて冷房用熱媒体循環回路を構成している。つまり、中間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路を複数系統としているのである。暖房用の熱媒体循環回路には、この熱媒体循環回路から熱媒体を排出するための排出弁71aが、配管5aに設けられている。また、冷房用の熱媒体循環回路には、この熱媒体循環回路から熱媒体を排出するための排出弁71bが、配管5bに設けられている。
 すなわち、空気調和装置100では、熱源装置1と中継ユニット3とが、中継ユニット3に設けられている第1中間熱交換器15aおよび第2中間熱交換器15bを介して接続され、中継ユニット3と室内機2とが、第1中間熱交換器15aおよび第2中間熱交換器15bで接続されている。そして、第1中間熱交換器15aおよび第2中間熱交換器15bで冷凍サイクル回路を循環する一次側の冷媒である熱源側冷媒と熱媒体循環回路を循環する二次側の冷媒である熱媒体とが熱交換するようになっているのである。
 ここで、冷凍サイクル回路および熱媒体循環回路に使用する冷媒の種類について説明する。冷凍サイクル回路には、たとえばR407C等の非共沸混合冷媒、R410AやR404A等の擬似共沸混合冷媒、またはR22やR134a等の単一冷媒等を使用することができる。また、二酸化炭素や炭化水素等の自然冷媒を使用してもよい。熱源側冷媒として自然冷媒を使用することにより、冷媒漏洩による地球の温室効果を抑制できる効果がある。特に、二酸化炭素は、高圧側が超臨界状態で凝縮せずに熱交換を行なうため、図2に示すように第1中間熱交換器15aおよび第2中間熱交換器15bで熱源側冷媒と熱媒体とを対向流形式とすると、熱媒体を加熱あるいは冷却する際の熱交換性能を向上することができる。
 熱媒体循環回路は、上述したように室内機2の利用側熱交換器26に接続されている。そのために、空気調和装置100では、熱媒体が、室内機2が設置される部屋等に漏洩した場合に配慮して、熱媒体に安全性の高いものを使用することを前提としている。したがって、熱媒体には、たとえば水、不凍液、水と不凍液の混合液等を使用することができる。また、電算室等の水分を嫌う場所に室内機2を設置することを考慮した場合には、熱媒体として熱絶縁性の高いフッ素系不活性液体を使用することもできる。したがって、熱源側冷媒が冷媒配管4から漏れたとしても、漏れた熱源側冷媒が室内に流入するのを抑制でき、高い信頼性を得られる。
<空気調和装置100の運転モード>
 続いて、空気調和装置100が実行する各運転モードについて説明する。
 この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。より具体的には、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。つまり、本実施の形態に係る空気調和装置100は、冷暖同時運転可能な空気調和装置である。以下に、空気調和装置100が実行する4つの運転モード、つまり駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房主体運転モード、および、暖房負荷の方が大きい暖房主体運転モードについて、冷媒の流れとともに説明する。ここで、運転モードを説明するための図4~図7については、便宜上、一部の温度センサー等を省略している。
(全冷房運転モード)
 図4は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26aおよび利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。つまり、図4では、利用側熱交換器26cおよび利用側熱交換器26dで冷熱負荷が発生していない場合を図示しているのである。なお、図4では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示す。また、熱源側冷媒及び熱媒体の流れ方向を実線矢印で示している。
 図4に示す全冷房運転モードの場合、熱源装置1では、四方弁11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。中継ユニット3では、第1ポンプ21aを停止し、第2ポンプ21bを駆動し、止め弁24aおよび止め弁24bを開放し、止め弁24cおよび止め弁24dを閉止し、第2中間熱交換器15bと各利用側熱交換器26(利用側熱交換器26aおよび利用側熱交換器26b)との間を熱媒体が循環するようにしている。この状態で、圧縮機10の運転を開始する。
 まず始めに、冷凍サイクル回路における熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、四方弁11を通り、熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って熱源装置1から流出し、冷媒配管4を通って第1中継ユニット3aに流入する。第1中継ユニット3aに流入した高圧液冷媒は、気液分離器14へ流入した後、膨張弁16eを経由してから第2中継ユニット3bに流入する。
 第2中継ユニット3bに流入した冷媒は、膨張弁16aで絞られて膨張し、低温・低圧の気液二相冷媒になる。この気液二相冷媒は、蒸発器として作用する第2中間熱交換器15bに流入し、熱媒体循環回路を循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。第2中間熱交換器15bから流出したガス冷媒は、膨張弁16cを経由した後、第2中継ユニット3bおよび第1中継ユニット3aから流出し、冷媒配管4を通って熱源装置1に流入する。熱源装置1に流入した冷媒は、逆止弁13dを通って、四方弁11およびアキュムレーター17を介して、圧縮機10へ再吸入される。なお、膨張弁16bおよび膨張弁16dは、冷媒が流れないような小さい開度となっており、膨張弁16cは全開状態とし圧力損失が起きないようにしている。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。
 全冷房運転モードでは、第1ポンプ21aは停止しているために、配管5bを介して熱媒体が循環する。第2中間熱交換器15bで熱源側冷媒によって冷却された熱媒体は、第2ポンプ21bによって配管5b内を流動する。第2ポンプ21bで加圧され流出した熱媒体は、流路切替弁22(流路切替弁22aおよび流路切替弁22b)を介して、止め弁24(止め弁24aおよび止め弁24b)を通り、利用側熱交換器26(利用側熱交換器26aおよび利用側熱交換器26b)に流入する。そして、利用側熱交換器26において室内空気から吸熱し、室内機2が設置されている室内等の空調対象域の冷房を行なう。
 その後、利用側熱交換器26から流出した熱媒体は、流量調整弁25(流量調整弁25aおよび流量調整弁25b)に流入する。このとき、流量調整弁25の作用により、室内等の空調対象域で必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26に流入し、残りの熱媒体がバイパス27(バイパス27aおよびバイパス27b)を通って利用側熱交換器26をバイパスするように流れる。
 バイパス27を通る熱媒体は、熱交換には寄与せず、利用側熱交換器26を経由してきた熱媒体と合流し、流路切替弁23(流路切替弁23aおよび流路切替弁23b)を通って、第2中間熱交換器15bへ流入し、再び第2ポンプ21bへと吸い込まれる。なお、室内等の空調対象域で必要とされる空調負荷は、第3温度センサー33と第4温度センサー34との温度差を目標値に保つように制御することにより、賄うことができる。
 この際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにしている。図4においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する止め弁24cおよび止め弁24dを閉状態としている。利用側熱交換器26cあるいは利用側熱交換器26dから冷熱負荷の発生があった場合には、止め弁24cあるいは止め弁24dを開放し、熱媒体を循環させればよい。
(全暖房運転モード)
 図5は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aおよび利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。つまり、図5では、利用側熱交換器26cおよび利用側熱交換器26dで温熱負荷が発生していない場合を図示しているのである。なお、図5では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示す。また、熱源側冷媒及び熱媒体の流れ方向を実線矢印で示している。
 図5に示す全暖房運転モードの場合、熱源装置1では、四方弁11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット3へ流入させるように切り替える。中継ユニット3では、第1ポンプ21aを駆動し、第2ポンプ21bを停止し、止め弁24aおよび止め弁24bを開放し、止め弁24cおよび止め弁24dを閉止し、第1中間熱交換器15aと各利用側熱交換器26(利用側熱交換器26aおよび利用側熱交換器26b)との間を熱媒体が循環するように切り替える。この状態で、圧縮機10の運転を開始する。
 まず始めに、冷凍サイクル回路における熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、四方弁11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、熱源装置1から流出する。熱源装置1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って第1中継ユニット3aに流入する。第1中継ユニット3aに流入した高温・高圧のガス冷媒は、気液分離器14へ流入した後、第1中間熱交換器15aに流入する。第1中間熱交換器15aに流入した高温・高圧のガス冷媒は、熱媒体循環回路を循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。
 第1中間熱交換器15aから流出した高圧の液冷媒は、膨張弁16dで絞られて膨張し、低温・低圧の気液二相状態になる。膨張弁16dで絞られた気液二相状態の冷媒は、膨張弁16bを経由し、冷媒配管4を導通し、再び熱源装置1に流入する。熱源装置1に流入した冷媒は、逆止弁13cを介し第2接続配管4bを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、四方弁11及びアキュムレーター17を介して圧縮機10に戻ることになる。なお、膨張弁16a、膨張弁16c及び膨張弁16eは、冷媒が流れないような小さい開度としている。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。
 全暖房運転モードでは、第2ポンプ21bは停止しているために、配管5aを介して熱媒体が循環する。第1中間熱交換器15aで熱源側冷媒によって加熱された熱媒体は、第1ポンプ21aによって配管5a内を流動する。第1ポンプ21aで加圧され流出した熱媒体は、流路切替弁22(流路切替弁22aおよび流路切替弁22b)を介して、止め弁24(止め弁24aおよび止め弁24b)を通り、利用側熱交換器26(利用側熱交換器26aおよび利用側熱交換器26b)に流入する。そして、利用側熱交換器26において室内空気に熱を与え、室内機2が設置されている室内等の空調対象域の暖房を行なう。
 その後、利用側熱交換器26から流出した熱媒体は、流量調整弁25(流量調整弁25aおよび流量調整弁25b)に流入する。このとき、流量調整弁25の作用により、室内等の空調対象域で必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26に流入し、残りの熱媒体がバイパス27(バイパス27aおよびバイパス27b)を通って利用側熱交換器26をバイパスするように流れる。
 バイパス27を通る熱媒体は、熱交換には寄与せず、利用側熱交換器26を経由してきた熱媒体と合流し、流路切替弁23(流路切替弁23aおよび流路切替弁23b)を通って、第1中間熱交換器15aへ流入し、再び第1ポンプ21aへと吸い込まれる。なお、室内等の空調対象域で必要とされる空調負荷は、第3温度センサー33と第4温度センサー34との温度差を目標値に保つように制御することにより、賄うことができる。
 この際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにしている。図5においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する止め弁24cおよび止め弁24dを閉状態としている。利用側熱交換器26cあるいは利用側熱交換器26dから温熱負荷の発生があった場合には、止め弁24cあるいは止め弁24dを開放し、熱媒体を循環させればよい。
(冷房主体運転モード)
 図6は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に冷房主体運転モードについて説明する。つまり、図6では、利用側熱交換器26cおよび利用側熱交換器26dでは温熱負荷および冷熱負荷のいずれも発生していない場合を図示しているのである。なお、図6では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示す。また、熱源側冷媒及び熱媒体の流れ方向を実線矢印で示している。
 図6に示す冷房主体運転モードの場合、熱源装置1では、四方弁11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。中継ユニット3では、第1ポンプ21aおよび第2ポンプ21bを駆動し、止め弁24aおよび止め弁24bを開放し、止め弁24cおよび止め弁24dを閉止し、第1中間熱交換器15aと利用側熱交換器26aとの間を、第2中間熱交換器15bと利用側熱交換器26bとの間を熱媒体が循環するようにしている。この状態で、圧縮機10の運転を開始する。
 まず始めに、冷凍サイクル回路における熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、四方弁11を通り、熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、気液二相冷媒となる。熱源側熱交換器12から流出した気液二相冷媒は、逆止弁13aを通って熱源装置1から流出し、冷媒配管4を通って第1中継ユニット3aに流入する。第1中継ユニット3aに流入した気液二相冷媒は、気液分離器14へ流入し、ガス冷媒と液冷媒とに分離され、第2中継ユニット3bに流入する。
 気液分離器14で分離されたガス冷媒は、第1中間熱交換器15aに流入する。第1中間熱交換器15aに流入したガス冷媒は、熱媒体循環回路を循環する熱媒体に放熱しながら凝縮液化し、液冷媒となる。第2中間熱交換器15bから流出した液冷媒は、膨張弁16dを通る。一方、気液分離器14で分離された液冷媒は、膨張弁16eを経由し、第1中間熱交換器15aで凝縮液化して膨張弁16dを通った液冷媒と合流し、膨張弁16aで絞られて膨張し、低温・低圧の気液二相冷媒となって第2中間熱交換器15bに流入する。
 この気液二相冷媒は、蒸発器として作用する第2中間熱交換器15bで熱媒体循環回路を循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。第2中間熱交換器15bから流出したガス冷媒は、膨張弁16cを経由した後、第2中継ユニット3bおよび第1中継ユニット3aから流出し、冷媒配管4を通って熱源装置1に流入する。熱源装置1に流入した冷媒は、逆止弁13dを通って、四方弁11およびアキュムレーター17を介して、圧縮機10へ再吸入される。なお、膨張弁16bは冷媒が流れないような小さい開度となっており、膨張弁16cは全開状態となっており、圧力損失が起きないようにしている。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。
 冷房主体運転モードでは、第1ポンプ21aおよび第2ポンプ21bともに駆動しているために、配管5aおよび配管5bの双方を介して熱媒体が循環する。第1中間熱交換器15aで熱源側冷媒によって加熱された熱媒体は、第1ポンプ21aによって配管5a内を流動する。また、第2中間熱交換器15bで熱源側冷媒によって冷却された熱媒体は、第2ポンプ21bによって配管5b内を流動する。
 第1ポンプ21aで加圧され流出した熱媒体は、流路切替弁22aを介して、止め弁24aを通り、利用側熱交換器26aに流入する。そして、利用側熱交換器26aにおいて室内空気に熱を与え、室内機2が設置されている室内等の空調対象域の暖房を行なう。また、第2ポンプ21bで加圧され流出した熱媒体は、流路切替弁22bを介して、止め弁24bを通り、利用側熱交換器26bに流入する。そして、利用側熱交換器26bにおいて室内空気から吸熱し、室内機2が設置されている室内等の空調対象域の冷房を行なう。
 暖房を行なった熱媒体は、流量調整弁25aに流入する。このとき、流量調整弁25aの作用により、空調対象域で必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26aに流入し、残りがバイパス27aを通って利用側熱交換器26aをバイパスするように流れる。バイパス27aを通る熱媒体は、熱交換には寄与せず、利用側熱交換器26aを経由してきた熱媒体と合流し、流路切替弁23aを通って、第1中間熱交換器15aへ流入し、再び第1ポンプ21aへと吸い込まれる。
 同様に、冷房を行なった熱媒体は、流量調整弁25bに流入する。このとき、流量調整弁25bの作用により、空調対象域で必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26bに流入し、残りがバイパス27bを通って利用側熱交換器26bをバイパスするように流れる。バイパス27bを通る熱媒体は、熱交換には寄与せず、利用側熱交換器26bを経由してきた熱媒体と合流し、流路切替弁23bを通って、第2中間熱交換器15bへ流入し、再び第2ポンプ21bへと吸い込まれる。
 この間、暖かい熱媒体(温熱負荷に利用される熱媒体)と冷たい熱媒体(冷熱負荷に利用される熱媒体)は、流路切替弁22(流路切替弁22aおよび流路切替弁22b)、および、流路切替弁23(流路切替弁23aおよび流路切替弁23b)の作用により、混合することなく、温熱負荷がある利用側熱交換器26a、冷熱負荷がある利用側熱交換器26bに流入される。なお、室内等の空調対象域で必要とされる空調負荷は、第3温度センサー33と第4温度センサー34との温度差を目標値に保つように制御することにより、賄うことができる。
 この際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにしている。図6においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する止め弁24cおよび止め弁24dを閉状態としている。利用側熱交換器26cあるいは利用側熱交換器26dから温熱負荷あるいは冷熱負荷の発生があった場合には、止め弁24cあるいは止め弁24dを開放し、熱媒体を循環させればよい。
(暖房主体運転モード)
 図7は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図7では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。つまり、図7では、利用側熱交換器26cおよび利用側熱交換器26dでは温熱負荷および冷熱負荷のいずれも発生していない場合を図示しているのである。なお、図7では、太線で表された配管が冷媒(熱源側冷媒および熱媒体)の循環する配管を示す。また、熱源側冷媒及び熱媒体の流れ方向を実線矢印で示している。
 図7に示す暖房主体運転モードの場合、熱源装置1では、四方弁11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに中継ユニット3へ流入させるように切り替える。中継ユニット3では、第1ポンプ21aおよび第2ポンプ21bを駆動し、止め弁24aおよび止め弁24bを開放し、止め弁24cおよび止め弁24dを閉止し、第1中間熱交換器15aと利用側熱交換器26aとの間を、第2中間熱交換器15bと利用側熱交換器26bとの間を熱媒体が循環するようにしている。この状態で、圧縮機10の運転を開始する。
 まず始めに、冷凍サイクル回路における熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、四方弁11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、熱源装置1から流出する。熱源装置1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って第1中継ユニット3aに流入する。第1中継ユニット3aに流入した高温・高圧のガス冷媒は、気液分離器14へ流入した後、第1中間熱交換器15aに流入する。第1中間熱交換器15aに流入した高温・高圧のガス冷媒は、熱媒体循環回路を循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。
 第1中間熱交換器15aから流出した高圧の液冷媒は、膨張弁16dで絞られて膨張し、低温・低圧の気液二相状態になる。膨張弁16dで絞られた気液二相状態の冷媒は、膨張弁16aを通る流路と、膨張弁16bを通る流路とに分けられる。膨張弁16aを経由した冷媒は、この膨張弁16aによって更に膨張させられて低温・低圧の気液二相冷媒となり、蒸発器として作用する第2中間熱交換器15bへ流入する。そして、第2中間熱交換器15bに流入した冷媒は、第2中間熱交換器15bで熱媒体から吸熱して、低温・低圧のガス冷媒となる。第2中間熱交換器15bから流出した低温・低圧のガス冷媒は、膨張弁16cを経由する。
 一方、膨張弁16dで絞られて膨張弁16bに流れた冷媒は、第2中間熱交換器15bおよび膨張弁16cを経由した冷媒と合流して、より乾き度の大きい低温・低圧の冷媒となる。そして、合流された冷媒は、第2中継ユニット3bおよび第1中継ユニット3aから流出し、冷媒配管4を通って熱源装置1へ流入する。熱源装置1に流入した冷媒は、逆止弁13cを介し第2接続配管4bを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、四方弁11およびアキュムレーター17を介して圧縮機10に戻ることになる。なお、膨張弁16eは、冷媒が流れないような小さい開度としている。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。
 暖房主体運転モードでは、第1ポンプ21aおよび第2ポンプ21bともに駆動しているために、配管5aおよび配管5bの双方を介して熱媒体が循環する。第1中間熱交換器15aで熱源側冷媒によって加熱された熱媒体は、第1ポンプ21aによって配管5a内を流動する。また、第2中間熱交換器15bで熱源側冷媒によって冷却された熱媒体は、第2ポンプ21bによって配管5b内を流動する。
 第1ポンプ21aで加圧され流出した熱媒体は、流路切替弁22aを介して、止め弁24aを通り、利用側熱交換器26aに流入する。そして、利用側熱交換器26aにおいて室内空気に熱を与え、室内機2が設置されている室内等の空調対象域の暖房を行なう。また、第2ポンプ21bで加圧され流出した熱媒体は、流路切替弁22bを介して、止め弁24bを通り、利用側熱交換器26bに流入する。そして、利用側熱交換器26bにおいて室内空気から吸熱し、室内機2が設置されている室内等の空調対象域の冷房を行なう。
 利用側熱交換器26aから流出した熱媒体は、流量調整弁25aに流入する。このとき、流量調整弁25aの作用により、室内等の空調対象域で必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26aに流入し、残りの熱媒体がバイパス27aを通って利用側熱交換器26aをバイパスするように流れる。バイパス27aを通る熱媒体は、熱交換には寄与せず、利用側熱交換器26aを経由してきた熱媒体と合流し、流路切替弁23aを通って、第1中間熱交換器15aへ流入し、再び第1ポンプ21aへと吸い込まれる。
 同様に、利用側熱交換器26bから流出した熱媒体は、流量調整弁25bに流入する。このとき、流量調整弁25bの作用により、室内等の空調対象域で必要とされる空調負荷を賄うのに必要な流量の熱媒体だけが利用側熱交換器26bに流入し、残りの熱媒体がバイパス27bを通って利用側熱交換器26bをバイパスするように流れる。バイパス27bを通る熱媒体は、熱交換には寄与せず、利用側熱交換器26bを経由してきた熱媒体と合流し、流路切替弁23bを通って、第2中間熱交換器15bへ流入し、再び第2ポンプ21bへと吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体は、流路切替弁22(流路切替弁22aおよび流路切替弁22b)、および、流路切替弁23(流路切替弁23aおよび流路切替弁23b)の作用により、混合することなく、温熱負荷がある利用側熱交換器26a、冷熱負荷がある利用側熱交換器26bに流入される。なお、室内等の空調対象域で必要とされる空調負荷は、第3温度センサー33と第4温度センサー34との温度差を目標値に保つように制御することにより、賄うことができる。
 この際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、止め弁24により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにしている。図7においては、利用側熱交換器26aおよび利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26cおよび利用側熱交換器26dにおいては熱負荷がなく、対応する止め弁24cおよび止め弁24dを閉状態としている。利用側熱交換器26cあるいは利用側熱交換器26dから温熱負荷あるいは冷熱負荷の発生があった場合には、止め弁24cあるいは止め弁24dを開放し、熱媒体を循環させればよい。
(熱媒体の異常な流量低下の検出処理)
 次に、本実施の形態の空気調和装置100において、たとえば冷房運転時に配管閉塞する等して、熱媒体循環回路における熱媒体の流量が極端に少なくなったことを検出する処理について説明する。
 ここで、中間熱交換器15の冷媒側流路を通過する熱源側冷媒の温度(たとえば蒸発温度等、熱源側冷媒が低温側となるときの冷媒側流路を通過する冷媒温度)をTEとする。また、第2温度センサー32が検出する中間熱交換器15の熱媒体入口側温度をT32とする。そして、第1温度センサー31が検出する中間熱交換器15の熱媒体出口側温度をT31とする。
 図8は本発明の実施の形態1に係る中間熱交換器15を通過する冷媒および熱媒体の温度変化を示す図である。図8において、縦軸は熱媒体または冷媒の温度を示し、横軸は中間熱交換器15における熱媒体入口側からの距離を示している。また、破線は冷媒温度を示し、実線は熱媒体の温度を示している。ここでの説明は、中間熱交換器15だけでなく、一般的な熱交換器においても同様である。
 通常、空気調和装置では、中間熱交換器15における熱媒体入口側温度と冷媒温度との温度差(T32-TE)と中間熱交換器15出入口における熱媒体の温度差(T32-T31)との比率である温度効率εeが0.7(70%)程度となるように設計される。このため、たとえば熱媒体循環回路(中間熱交換器15の熱媒体流路側)を流れる熱媒体の流量が正常である場合、中間熱交換器15における冷媒温度との関係において、冷房運転時における熱媒体温度は図8のLINE(1)で示すものとなる。
 ところが、熱媒体の流量が低下すると、熱媒体と冷媒との間で熱交換する熱量が多くなるため、中間熱交換器15の熱媒体出口側温度が冷媒の温度に近づき、図8のLINE(2)で示すように、温度効率εeが大きくなる傾向がある。さらに、熱媒体の流量が0(ゼロ)になる(熱媒体が流れなくなる)と、中間熱交換器15の熱媒体出入口側における温度は周囲の温度の影響を大きく受ける。そして、第2温度センサー32が検出する熱媒体入口側温度T32も、第1温度センサー31が検出する熱媒体出口側温度T31も、熱媒体の温度というよりむしろ、周囲の空気温度を検出することになる。このため、中間熱交換器15の熱媒体出入口における熱媒体の温度差(T32-T31)はほとんどまたは全く無くなるようになり、図8のLINE(3)で示すように、温度効率εeは小さくなる傾向がある。
 以上のことから、温度効率εeには適正な範囲が存在することがわかる。そこで、その適正な範囲を越えた場合には、熱媒体循環回路における熱媒体の流れが異常であると判断することができる。この傾向は熱媒体と空気との熱交換の場合であっても概ね共通である。このため、たとえば、第8温度センサー39の検出に係る吸い込み空気温度Taに基づいて熱媒体流量異常の判断を行なうことができる。また、図8は冷房運転における熱源側冷媒および熱媒体の温度変化について示したものであるが、暖房運転等、熱源側冷媒が高温側の場合についても同様である(温度の高低関係は逆転する)。
 そして、比較のため、正常な状態で熱媒体が流れている場合の温度効率の基準となる基準温度効率εtheを予め測定等により設定しておく。基準温度効率εtheは一律とすることも考えられるが、たとえば熱媒体の流量(単位時間あたりの流量)によって、基準温度効率εtheは上下する。そこで、検出処理を行なう際、制御装置60はポンプ21の回転数に基づいて熱媒体の流量を推定等することにより、流量に対応した基準温度効率εtheを設定するようにしてもよい。
 以上のことから、制御装置60は、実際の検出等に係る冷媒温度TE、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて、εe=(T32-T31)/(T32-TE)となる実際の温度効率(以下、実温度効率という)εeを算出する。そして、実温度効率εeと基準温度効率εtheとの差が所定範囲内であるかどうか判断する。所定範囲内であると判断すると、たとえば熱媒体漏洩、ポンプ21の故障等により流量が少なくなることなく、熱媒体が正常な流量で熱媒体循環回路を循環しているものとする。
 また、空気調和装置100において、たとえば、冷媒漏れ等により、暖房運転時に熱媒体循環回路における熱媒体の流量が極端に少なくなったことを検知する場合についても同様である。たとえば、中間熱交換器15の冷媒側流路を通過する冷媒の温度(たとえば凝縮温度等、冷媒が高温側となるときの冷媒側流路を通過する冷媒温度)をTCとする。
 制御装置60は、実際の検出等に係る冷媒温度TE、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて、εc=(T31-T32)/(TC-T32)となる実温度効率εcを算出する。そして、実温度効率εcと基準温度効率εthcとの差が所定範囲内であると判断すると、熱媒体が正常な流量で熱媒体循環回路を循環しているものとする。
 ここで、たとえば冷凍サイクル回路側の運転を停止している場合、冷媒温度TEの検出ができず、冷媒温度TEから実温度効率εeを算出して熱媒体流量異常の判断を行なうことができない。そこで、前述したように、熱媒体の流量が低下すると熱媒体と空気との熱交換による温度効率も変化することを利用して、第8温度センサー39の検出に係る吸い込み空気温度Taに基づく判断を行なう。ここで、吸い込み空気温度Taについては、冷房運転している室内機2に係る吸い込み空気の平均温度としてもよい。また、冷房運転を行なっているいずれかの室内機2に係る吸い込み空気温度を代表して吸い込み空気温度Taとしてもよい。
 制御装置60は、吸い込み空気温度Ta、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて、εa=(T31-T32)/(Ta-T32)となる実温度効率εaを算出する。そして、実温度効率εaと基準温度効率εthaとの差が所定範囲内であるかどうかを判断し、所定範囲内であれば熱媒体が正常の流量で流れているものとする。
 図9は本発明の実施の形態1に係る制御装置60が行なう冷房運転時の熱媒体流量異常判断処理を説明するための図である。図9に基づいて、熱媒体循環回路の具体的な保護制御について説明する。STEP1において空気調和装置100の運転を開始した後、制御装置60は、STEP2において、ポンプ21を起動してから所定時間が経過しているかどうかを判断する。所定時間が経過したものと判断するとSTEP3へ進む。
 STEP3では、ポンプ21の回転数が所定回転数以上であるかどうかを判断する。ここで基準となるポンプ21の所定回転数は予め決定しておく。熱媒体循環回路における配管距離(たとえば総距離)、配管径等が、空気調和装置100により異なることがあるため、所定回転数は空気調和装置100の構成等に基づいて決定するとよい。
 ポンプ21の回転数が所定回転数以上であると判断するとSTEP4に進む。また、所定回転数以上でない(所定回転数より小さい)と判断するとSTEP8に進む。STEP4では、ポンプ21に指示した回転数に応じた基準温度効率εtheおよびεthaの値を設定し、STEP5へ進む。
 STEP5では、サーモOFF(冷凍サイクル回路では運転を行なっていない状態)かどうかを判断する。サーモOFFであると判断するとSTEP6へ進む。また、サーモOFFでないと判断するとSTEP7へ進む。
 STEP6では、冷凍サイクル回路において運転を行なっていないため、前述したように、吸い込み空気温度Ta、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εaを算出する。そして、予め設定している基準温度効率εthaと比較し、その差が所定値ka1より小さいと判断するとSTEP8へ進む。また、実温度効率εaと基準温度効率εthaの差が所定値以上と判断すると、異常であるものとしてSTEP14へ進む。
 一方、STEP7では、冷凍サイクル回路において運転を行なっているため、冷媒温度TE、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εeを算出する。そして、設定した基準温度効率εtheと比較し、その差が所定値ke1より小さいと判断するとSTEP8へ進む。実温度効率εeと基準温度効率εtheの差が所定値以上と判断すると、異常であるものとしてSTEP14へ進む。
 STEP8では、ポンプ21の回転数が所定回転数以下になっているかどうかを判断する。ここで基準となるポンプ21の回転数は予め決定しておく。ポンプ21の回転数が所定回転数以下であると判断するとSTEP9に進む。ポンプ21の回転数が所定回転数以下でない(ポンプ21の回転数が所定回転数より大きい)と判断するとSTEP12に進む。また、STEP9では、運転がサーモOFFであるかどうかを判断する。サーモOFFであると判断するとSTEP10に進む。サーモOFFでないと判断するとSTEP11へ進む。
 STEP10では、冷凍サイクル回路では運転を行なっていないため、前述したように、吸い込み空気温度Ta、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εaを算出する。そして、予め設定している基準温度効率εthaと比較し、その差が所定値ka2より小さいと判断するとSTEP12へ進む。また、実温度効率εaと基準温度効率εthaの差が所定値以上と判断すると、異常であるものとしてSTEP14へ進む。
 一方、STEP11では、冷凍サイクル回路において運転を行なっているため、冷媒温度TE、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εeを算出する。そして、設定した基準温度効率εtheと比較し、その差が所定値ke2より小さいと判断するとSTEP12へ進む。実温度効率εeと基準温度効率εtheの差が所定値以上と判断すると、異常であるものとしてSTEP14へ進む。
 STEP12では、空調運転を継続するかどうかを判断する。継続するものと判断すると、STEP2に戻り判断を繰り返す。空調運転を継続しないと判断すると、STEP13へ進み空調運転を停止し、処理を終了する。
 図10は本発明の実施の形態1に係る制御装置60が行なう暖房運転時の熱媒体流量異常判断処理を説明するための図である。図10に基づいて、熱媒体循環回路の具体的な保護制御について説明する。STEP21において空気調和装置100の運転を開始した後、制御装置60は、STEP22において、ポンプ21を起動してから所定時間が経過しているかどうかを判断する。所定時間が経過したものと判断するとSTEP23へ進む。
 STEP23では、ポンプ21の回転数が所定回転数以上であるかどうかを判断する。ここで基準となるポンプ21の所定回転数は予め決定しておく。熱媒体循環回路における配管距離(たとえば総距離)、配管径等が、空気調和装置100により異なることがあるため、所定回転数は空気調和装置100の構成等に基づいて決定するとよい。
 ポンプ21の回転数が所定回転数以上であると判断するとSTEP24に進む。また、所定回転数以上でない(所定回転数より小さい)と判断するとSTEP28に進む。STEP24では、ポンプ21に指示した回転数に応じた基準温度効率εthcおよびεthaの値を設定し、STEP25へ進む。
 STEP25では、サーモOFF(冷凍サイクル回路では運転を行なっていない状態)かどうかを判断する。サーモOFFであると判断するとSTEP26へ進む。また、サーモOFFでないと判断するとSTEP27へ進む。
 STEP26では、冷凍サイクル回路において運転を行なっていないため、前述したように、吸い込み空気温度Ta、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εaを算出する。そして、予め設定している基準温度効率εthaと比較し、その差が所定値ka1より小さいと判断するとSTEP28へ進む。また、実温度効率εaと基準温度効率εthaの差が所定値以上と判断すると、異常であるものとしてSTEP34へ進む。
 一方、STEP27では、冷凍サイクル回路において運転を行なっているため、冷媒温度TC、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εcを算出する。そして、設定した基準温度効率εthcと比較し、その差が所定値kc1より小さいと判断するとSTEP28へ進む。実温度効率εcと基準温度効率εthcの差が所定値以上と判断すると、異常であるものとしてSTEP34へ進む。
 STEP28では、ポンプ21の回転数が所定回転数以下になっているかどうかを判断する。ここで基準となるポンプ21の回転数は予め決定しておく。ポンプ21の回転数が所定回転数以下であると判断するとSTEP29に進む。ポンプ21の回転数が所定回転数以下でない(ポンプ21の回転数が所定回転数より大きい)と判断するとSTEP32に進む。また、STEP29では、運転がサーモOFFであるかどうかを判断する。サーモOFFであると判断するとSTEP30に進む。サーモOFFでないと判断するとSTEP31へ進む。
 STEP30では、冷凍サイクル回路では運転を行なっていないため、前述したように、吸い込み空気温度Ta、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εaを算出する。そして、予め設定している基準温度効率εthaと比較し、その差が所定値ka2より小さいと判断するとSTEP32へ進む。また、実温度効率εaと基準温度効率εthaの差が所定値以上と判断すると、異常であるものとしてSTEP34へ進む。
 一方、STEP31では、冷凍サイクル回路において運転を行なっているため、冷媒温度TE、熱媒体出口側温度T31および熱媒体入口側温度T32に基づいて実温度効率εcを算出する。そして、設定した基準温度効率εthcと比較し、その差が所定値kc2より小さいと判断するとSTEP32へ進む。実温度効率εcと基準温度効率εthcとの差が所定値以上と判断すると、異常であるものとしてSTEP34へ進む。
 STEP32では、空調運転を継続するかどうかを判断する。継続するものと判断すると、STEP22に戻り判断を繰り返す。空調運転を継続しないと判断すると、STEP33へ進み空調運転を停止し、処理を終了する。
 ここで、たとえば、冷房運転と暖房運転とが混在する運転を行なっている場合は、配管5aと配管5bとに熱媒体の系統に分かれることになる。このような場合には、各系統について熱媒体の流量異常を判断するようにする。そして、異常と判断した系統については、熱媒体の循環を停止させる等し、異常と判断しなかった系統ではポンプ21を駆動させて空気調和運転を継続させるようにしてもよい。
 以上の処理を行い、熱媒体流量異常として1台以上のポンプ21を停止させた場合には、制御装置60は、報知装置62に異常が発生していることを報知させる。
 このように、運転を継続しつつ、異常が発生していることを外部に報知して、たとえばメンテナンスを促すようにすることで、異常状態に対する対応を素早く行なうことが期待でき、正常な状態に復旧させる動きを早くとることができる。
 以上のように本実施の形態の空気調和装置100においては、制御装置60が、中間熱交換器15、利用側熱交換器26における熱交換に係る温度効率に基づいて、熱媒体循環回路において、流量異常が発生したかどうかを判断するようにしたので、正確に効率よく流量異常を判断することができる。このため、たとえば熱媒体の漏洩が発生しているような場合には、流量低下によるポンプ21の負荷増大に対してはやく対応することが期待できる。また、ポンプ21の破損等の場合においては、破損等の発生を早く発見することが期待できる。また、通常、空気調和の制御のために用いるセンサーを利用した流量異常判断を行なうことができるので、コスト的にも効率よく判断等を行なうことができる。
 実施の形態2.
 上述した実施の形態1では、実温度効率εaの算出にも、第2温度センサー32が検出する中間熱交換器15の熱媒体入口側温度T32、第1温度センサー31が検出する中間熱交換器15の熱媒体出口側温度T31を利用したが、これに限定するものではない。たとえば、第3温度センサー33の検出に係る利用側熱交換器26の熱媒体流入側温度、第4温度センサー34の検出に係る利用側熱交換器26の熱媒体流出側温度を利用して算出するようにしてもよい。
 実施の形態3.
 上述した実施の形態では、たとえば第1中間熱交換器15aを熱媒体加熱側とし、第2中間熱交換器15bを熱媒体冷却側とする熱交換器とした。ただ、冷凍サイクル回路側の構成については実施の形態1の構成に限定するものではない。たとえば、第1中間熱交換器15a、第2中間熱交換器15bを、熱媒体を加熱、冷却できる熱交換器とすることができる。このような構成にした場合、たとえば全暖房運転モード、全冷房運転モードにおいて第1中間熱交換器15a、第2中間熱交換器15bの両方を加熱機器、冷却機器として利用することができる。
 また、冷暖房混在運転を行なっている場合に、流量異常との判断によりポンプ21を停止した方の系統において暖房運転を行なっていた場合、他方の系統で行なっている冷房運転を暖房運転に切り替えるようにしてもよい(逆も可能である)。このとき、切り替えを行なうかどうかの判断の基準としては、先に指定のあった運転を優先する、利用側熱交換器26の総熱交換量が多い方の運転を優先する等することができる。
 また、上述の実施の形態では、冷暖房混在運転等を可能とするために、2台以上の中間熱交換器15を有する空気調和装置100としたが、たとえば、1台の中間熱交換器を有する空気調和装置についても適用することができる。また、室内機2が1台の空気調和装置にも適用することができる。
 また、上述の実施の形態では、熱源側冷媒を循環させる冷凍サイクル回路を利用して熱媒体の加熱、冷却を行なったが、熱媒体に加熱、冷却を行なう機器については特に限定するものではない。
 実施の形態4.
 図11は本発明の実施の形態4に係る空気調和装置100の構成を示す概略回路図である。上述した実施の形態1ではポンプ21について特に規定していなかった。本実施の形態では、例えば、ポンプ21の内部に、ポンプ21の実際の回転数(実回転数)を検出するための回転数検出装置となる回転数検出センサー41(41a、41b)を有するものとする。また、ポンプ21を遠心形のポンプとする。遠心形のポンプは回転数の制御をインバータの制御で行うことができる。ここで、ポンプ21の回転数は、一般的にはポンプ21にかかる揚程によって変化するが、例えば製品の制約範囲などによって、実際のポンプ21の回転数は限られた範囲での変化となる。
 図12はポンプ21における指令回転数と実回転数との関係を示す図である。例えば、図12に示すように、正常にポンプ21が駆動している場合には、ポンプ21の指令回転数と実回転数とを軸に取った図においては正常な領域で駆動するが、指令回転数に対して、実回転数が正常な領域を超えて上昇すると、異常であることがわかる。
 ここで、例えば、熱媒体循環回路中に空気が混入した場合には、空気の混入量に応じてポンプ21の仕事量が低下するため、空気が混入していない状態のときと同じ電力供給を行った場合には、ポンプ21の回転数が増加する傾向がある。特に、空気の混入量が一定以上となった場合には、通常ではありえない実回転数で駆動するようになり、指令回転数と実回転数との関係は、例えば図12において異常な領域の位置になる。
 そこで、図12に示すような指令回転数と実回転数との関係が正常な領域と異常な領域とをマッピングしたデータを制御装置60に予め記憶させておく。そして、制御装置60は、回転数検出センサー41の検出に係るポンプ21の実回転数が正常であるか又は異常であるかを定期的に判断するようにする。異常であると判断すると、例えば中継ユニット3の運転を停止(ポンプ21を停止)し、報知装置62にその旨を報知させるようにする。
 以上のように、実施の形態4によれば、回転数検出センサー41によりポンプ21の実回転数を検出することで、動作状況を直接監視して異常かどうかを判断し、ポンプ21を制御できるようにしたので、異常かどうかの判断を精度よく行うことができる。また、例えばポンプ21がダメージを受ける前に熱媒体循環装置に空気が混入したことがわかるので、素早い対処を図ることができる。
 実施の形態5.
 図13は本発明の実施の形態5に係る空気調和装置100の構成を示す概略回路図である。上述した実施の形態1では特に示していなかったが、本実施の形態では、例えばポンプ21の熱媒体流出入口の近傍に第10温度センサー(ポンプ温度検出装置)42を設け、ポンプ21の温度を間接的に検出できるようにする。例えば、熱媒体循環回路が閉塞し、熱媒体が循環しない状態でも、停止させない限り、ポンプ21は、モータ駆動により羽が回転し続ける。このため、モータ等が発熱し、ポンプ21の内部温度が上昇する。内部温度が上昇すると、対流や熱伝導の影響により、ポンプ21の冷媒流出入口付近の温度も上昇する。
 この特性を考え、ポンプ21が破損等しない上限温度を予め試験などで決定しておき、限界値のデータとして制御装置60に記憶させておく。そして、ポンプ21の熱媒体流出入口の近傍に設けた第10温度センサー42の検出に係る温度の値が、限界値を超えかどうかを定期的に判断するようにする。そして、限界値を超えた異常な状態であるものと判断すると、例えば中継ユニット3の運転を停止(ポンプ21を停止)し、報知装置62にその旨を報知させるようにする。
 ここで、第10温度センサー42の設置位置については、ポンプ21の熱媒体流入口、流出口のいずれか一方であってもよいし、両方でもよい。また、ポンプ21の内部において設置しやすい位置に設け、直接温度を検出するようにしてもよい。
 以上のように、実施の形態5によれば、第10温度センサー42の検出に係る温度によりポンプ21の温度を監視して異常かどうかを判断し、ポンプ21を制御できるようにしたので、異常かどうかの判断を精度よく行うことができる。また、例えばポンプ21がダメージを受ける前に熱媒体循環装置に空気が混入したことがわかるので、素早い対処を図ることができる。
 1 熱源装置(室外機)、2,2a,2b,2c,2d 室内機、3 中継ユニット、3a 第1中継ユニット、3b 第2中継ユニット、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5,5a,5b 配管、6 室外空間、7 居住空間、9 建物、10 圧縮機、11 四方弁、12 熱源側熱交換器、13a,13b,13c,13d 逆止弁、14 気液分離器、15 中間熱交換器、15a 第1中間熱交換器、15b 第2中間熱交換器、16,16a,16b,16c,16d,16e 膨張弁、17 アキュムレーター、21 ポンプ、21a 第1ポンプ、21b 第2ポンプ、22,22a,22b,22c,22d,23,23a,23b,23c,23d 流路切替弁、24,24a,24b,24c,24d 止め弁、25,25a,25b,25c,25d 流量調整弁、26,26a,26b,26c,26d 利用側熱交換器、27,27a,27b,27c,27d バイパス、28,28a,28b,28c,28d 室内ファン、31,31a,31b 第1温度センサー、32,32a,32b 第2温度センサー、33,33a,33b,33c,33d 第3温度センサー、34,34a,34b,34c,34d 第4温度センサー、35 第5温度センサー、36 圧力センサー、37 第6温度センサー、38 第7温度センサー、39,39a,39b,39c,39d 第8温度センサー、40 第9温度センサー、41,41a,41b 回転数検出センサー、42,42a,42b 第10温度センサー、50 非居住空間、60 制御装置、71a,71b 排出弁、100 空気調和装置。

Claims (10)

  1.  熱源側冷媒を圧縮する圧縮機、前記熱源側冷媒の循環経路を切り替えるための冷媒流路切替装置、前記熱源側冷媒を熱交換させるための熱源側熱交換器、前記熱源側冷媒を圧力調整するための絞り装置および前記熱源側冷媒と前記熱源側冷媒とは異なる熱媒体との熱交換を行なう1または複数の中間熱交換器を配管接続して構成する冷凍サイクル回路と、
     前記中間熱交換器の熱交換に係る前記熱媒体を循環させるための1または複数のポンプ、前記熱媒体と空調対象空間に係る空気との熱交換を行なう利用側熱交換器および該利用側熱交換器に対する前記加熱された前記熱媒体の通過または前記冷却された前記熱媒体の通過を切り替える流路切替弁を配管接続して構成する熱媒体循環回路と、
     熱媒体循環回路の熱交換器における前記熱媒体流入口における温度に基づいて、実際の温度効率を算出し、設定した基準温度効率と前記実際の温度効率とに基づいて、前記熱媒体循環回路における熱媒体の流量が異常であるかどうかを判断処理する制御装置と
    を備える空気調和装置。
  2.  前記中間熱交換器の熱媒体流入口における温度を検出する熱媒体流入温度検出装置と、
     前記中間熱交換器の熱媒体流出口における温度を検出する熱媒体流出温度検出装置とをさらに備え、
     前記制御装置は、前記熱媒体流入口における温度、前記熱媒体流出口における温度および前記中間熱交換器を通過する前記熱源側冷媒の温度に基づいて実際の温度効率を算出し、該実際の温度効率と設定した基準温度効率とに基づいて、前記熱媒体循環回路における熱媒体の流量が異常であるかどうかを判断処理する請求項1に記載の空気調和装置。
  3.  前記中間熱交換器の熱媒体流入口における温度を検出する熱媒体流入温度検出装置と、
     前記中間熱交換器の熱媒体流出口における温度を検出する熱媒体流出温度検出装置と、
     前記利用側熱交換器に流入する空気の温度を検出する空調対象温度検出装置とをさらに備え、
     前記制御装置は、前記熱媒体流入口における温度、前記熱媒体流出口における温度および前記利用側熱交換器に流入する空気の温度に基づいて実際の温度効率を算出し、該実際の温度効率と設定した基準温度効率とに基づいて、前記熱媒体循環回路における熱媒体の流量が異常であるかどうかを判断処理する請求項1に記載の空気調和装置。
  4.  前記利用側熱交換器の熱媒体流入口における温度を検出する利用側流入温度検出装置と、
     前記利用側熱交換器の熱媒体流出口における温度を検出する利用側流出温度検出装置と、
     前記利用側熱交換器に流入する空気の温度を検出する空調対象温度検出装置とをさらに備え、
     前記制御装置は、前記熱媒体流入口における温度、前記熱媒体流出口における温度および前記利用側熱交換器に流入する空気の温度に基づいて実際の温度効率を算出し、該実際の温度効率と設定した基準温度効率とに基づいて、前記熱媒体循環回路における熱媒体の流量が異常であるかどうかを判断処理する請求項1に記載の空気調和装置。
  5.  前記制御装置は、異常であると判断すると前記ポンプを停止させる請求項1乃至請求項4のいずれか一項に記載の空気調和装置。
  6.  前記制御装置は、前記ポンプの回転数に基づいて、前記基準温度効率を設定する請求項1乃至請求項5のいずれか一項に記載の空気調和装置。
  7.  前記制御装置は、前記ポンプを起動させた後、所定時間経過したものと判断すると、ポンプを停止させるかどうかの判断処理を行なう請求項1乃至請求項6のいずれか一項に記載の空気調和装置。
  8.  前記ポンプの実回転数を検出する回転数検出装置をさらに備え、
     前記制御装置は、回転数検出装置の検出に係る実回転数と指示回転数との関係に基づいて、前記ポンプが異常であるかどうかを判断処理を行う請求項1乃至請求項7のいずれか一項に記載の空気調和装置。
  9.  前記ポンプの温度を検出するポンプ温度検出装置をさらに備え、
     前記制御装置は、前記ポンプ温度検出装置の検出に係る温度に基づいて、前記ポンプが異常であるかどうかを判断処理を行う請求項1乃至請求項7のいずれか一項に記載の空気調和装置。
  10.  異常である旨の報知を行なう報知装置をさらに備え、
     前記制御装置は、異常であると判断すると前記報知装置に報知させる請求項1乃至請求項9に記載の空気調和装置。
PCT/JP2012/000258 2012-01-18 2012-01-18 空気調和装置 WO2013108290A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12866077.6A EP2806228B1 (en) 2012-01-18 2012-01-18 Air conditioner
CN201280062523.8A CN103998870B (zh) 2012-01-18 2012-01-18 空气调节装置
US14/347,798 US9897359B2 (en) 2012-01-18 2012-01-18 Air-conditioning apparatus
PCT/JP2012/000258 WO2013108290A1 (ja) 2012-01-18 2012-01-18 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000258 WO2013108290A1 (ja) 2012-01-18 2012-01-18 空気調和装置

Publications (1)

Publication Number Publication Date
WO2013108290A1 true WO2013108290A1 (ja) 2013-07-25

Family

ID=48798750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000258 WO2013108290A1 (ja) 2012-01-18 2012-01-18 空気調和装置

Country Status (4)

Country Link
US (1) US9897359B2 (ja)
EP (1) EP2806228B1 (ja)
CN (1) CN103998870B (ja)
WO (1) WO2013108290A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106016619A (zh) * 2016-06-13 2016-10-12 安徽省恒胜机电工程股份有限公司 一种中央空调智能检测方法
WO2017179210A1 (ja) * 2016-04-15 2017-10-19 三菱電機株式会社 冷凍装置
WO2019211905A1 (ja) * 2018-05-02 2019-11-07 三菱電機株式会社 空気調和装置
JPWO2021106193A1 (ja) * 2019-11-29 2021-06-03
JP2022535197A (ja) * 2019-05-23 2022-08-05 エルジー エレクトロニクス インコーポレイティド 空気調整装置及びその制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2890940B1 (en) * 2012-08-31 2018-01-10 Danfoss A/S A method for controlling a chiller system
JP2018128167A (ja) * 2017-02-06 2018-08-16 パナソニックIpマネジメント株式会社 空気調和装置
KR20210094213A (ko) * 2020-01-21 2021-07-29 엘지전자 주식회사 공기조화장치
KR20210100337A (ko) 2020-02-06 2021-08-17 엘지전자 주식회사 공기조화장치 및 그 제어방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243828A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 冷却装置および冷却装置監視システム
WO2010049998A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置
JP2010127568A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp 異常検出装置およびそれを備えた冷凍サイクル装置
WO2010109617A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 空気調和装置
JP2010223542A (ja) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp 冷凍空調装置
JP2011226704A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 冷凍空調装置並びに冷凍空調システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6085532A (en) * 1999-02-05 2000-07-11 American Standard Inc. Chiller capacity control with variable chilled water flow compensation
JP4182539B2 (ja) * 2002-09-30 2008-11-19 日本精工株式会社 位置決め装置
KR100599114B1 (ko) * 2004-07-21 2006-07-12 삼성전자주식회사 현상제유로 이상상태 검출장치, 그것을 갖는 화상형성장치및 그 제어방법
JP3834577B2 (ja) * 2005-03-24 2006-10-18 日立ホーム・アンド・ライフ・ソリューション株式会社 ヒートポンプ式暖房装置
US8353173B2 (en) * 2007-07-18 2013-01-15 Mitsubishi Electric Corporation Refrigerating cycle apparatus and operation control method therefor
JP4885901B2 (ja) * 2008-03-31 2012-02-29 株式会社山武 流量制御システム
JP2010091181A (ja) 2008-10-08 2010-04-22 Corona Corp 貯湯式給湯暖房装置およびヒートポンプ給湯装置
EP2341295B1 (en) * 2008-10-29 2018-05-30 Mitsubishi Electric Corporation Air conditioner
JP5150472B2 (ja) * 2008-12-17 2013-02-20 日立アプライアンス株式会社 ヒートポンプ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243828A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 冷却装置および冷却装置監視システム
WO2010049998A1 (ja) 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置及び中継装置
JP2010127568A (ja) * 2008-11-28 2010-06-10 Mitsubishi Electric Corp 異常検出装置およびそれを備えた冷凍サイクル装置
JP2010223542A (ja) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp 冷凍空調装置
WO2010109617A1 (ja) * 2009-03-26 2010-09-30 三菱電機株式会社 空気調和装置
JP2011226704A (ja) * 2010-04-20 2011-11-10 Mitsubishi Electric Corp 冷凍空調装置並びに冷凍空調システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017179210A1 (ja) * 2016-04-15 2017-10-19 三菱電機株式会社 冷凍装置
JPWO2017179210A1 (ja) * 2016-04-15 2018-11-08 三菱電機株式会社 冷凍装置
CN106016619A (zh) * 2016-06-13 2016-10-12 安徽省恒胜机电工程股份有限公司 一种中央空调智能检测方法
CN106016619B (zh) * 2016-06-13 2019-06-04 合肥智权信息科技有限公司 一种中央空调智能检测方法
WO2019211905A1 (ja) * 2018-05-02 2019-11-07 三菱電機株式会社 空気調和装置
JPWO2019211905A1 (ja) * 2018-05-02 2021-02-18 三菱電機株式会社 空気調和装置
US11300309B2 (en) 2018-05-02 2022-04-12 Mitsubishi Electric Corporation Air conditioning apparatus
JP2022535197A (ja) * 2019-05-23 2022-08-05 エルジー エレクトロニクス インコーポレイティド 空気調整装置及びその制御方法
JPWO2021106193A1 (ja) * 2019-11-29 2021-06-03
WO2021106193A1 (ja) * 2019-11-29 2021-06-03 三菱電機株式会社 空気調和システムおよびその制御方法
JP7233568B2 (ja) 2019-11-29 2023-03-06 三菱電機株式会社 空気調和システムおよびその制御方法

Also Published As

Publication number Publication date
CN103998870B (zh) 2016-09-14
US20140305152A1 (en) 2014-10-16
EP2806228A1 (en) 2014-11-26
CN103998870A (zh) 2014-08-20
EP2806228A4 (en) 2015-10-14
EP2806228B1 (en) 2020-06-03
US9897359B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
JP5306449B2 (ja) 空気調和装置
JP5774128B2 (ja) 空気調和装置
WO2013108290A1 (ja) 空気調和装置
JP5178842B2 (ja) 空気調和装置
JP5127931B2 (ja) 空気調和装置
JP5474048B2 (ja) 空気調和装置
JP5933031B2 (ja) 空気調和装置
JP5911590B2 (ja) 空気調和装置
JP5931189B2 (ja) 空気調和装置
JP5984960B2 (ja) 空気調和装置
JP5689079B2 (ja) 冷凍サイクル装置
US9651287B2 (en) Air-conditioning apparatus
WO2010050001A1 (ja) 空気調和装置
JP5959716B2 (ja) 空気調和装置
JP5420057B2 (ja) 空気調和装置
JPWO2014132433A1 (ja) 空気調和装置
WO2014141381A1 (ja) 空気調和装置
WO2016157481A1 (ja) 空気調和装置
WO2011099059A1 (ja) 空気調和装置
JPWO2013108290A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14347798

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012866077

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013554069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE