WO2018110776A1 - 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터 - Google Patents

구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터 Download PDF

Info

Publication number
WO2018110776A1
WO2018110776A1 PCT/KR2017/003433 KR2017003433W WO2018110776A1 WO 2018110776 A1 WO2018110776 A1 WO 2018110776A1 KR 2017003433 W KR2017003433 W KR 2017003433W WO 2018110776 A1 WO2018110776 A1 WO 2018110776A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
composite
carbon nanotube
crumpled
mixed solution
Prior art date
Application number
PCT/KR2017/003433
Other languages
English (en)
French (fr)
Inventor
장희동
장한권
최지혁
길대섭
김형석
배인국
서주범
조은희
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160169022A external-priority patent/KR101744122B1/ko
Priority claimed from KR1020160174818A external-priority patent/KR101742593B1/ko
Priority claimed from KR1020170001353A external-priority patent/KR101753129B1/ko
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to CN201780076905.9A priority Critical patent/CN110073458B/zh
Publication of WO2018110776A1 publication Critical patent/WO2018110776A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method of manufacturing a graphene composite having a crumpled shape, a graphene composite produced thereby and a supercapacitor comprising the same, and more particularly to a method of spraying and heat treating a solution containing graphene oxide and a conductive material , A graphene composite produced thereby, and a supercapacitor including the graphene composite.
  • supercapacitors become one of the next generation eco-friendly energy storage devices. These super capacitors have higher power density, charge / discharge efficiency, and semi-permanent cycle life than conventional secondary batteries, and have the advantage that they are stable to current changes and thus do not have an explosion hazard. Therefore, it is actively used as a power source for instantaneous acceleration and memory backup of portable electronic devices, auxiliary batteries, and electric vehicles that require stable energy supply.
  • supercapacitors are carbon next generation energy backup and storage devices with environmentally friendly and safe characteristics using carbon material as electrode active material.
  • the electrochemical performance of supercapacitors can be determined by the electrode material, which must meet the requirements of high electrical conductivity, wide specific surface area, high temperature stability, uniform pore structure, and low cost.
  • Carbon-based materials including mainly activated carbon, carbon nanotubes and graphene are widely used as electrode materials for supercapacitors.
  • activated carbon is widely used as a material for supercapacitors due to its wide specific surface area and low cost.
  • the activated carbon electrode has a large amount of micro / macro voids, the electrolyte adsorption performance to the electrode surface is low, which shows a problem of low specific capacity.
  • graphene which has a wide specific surface area (theoretical value 2,600 m 2 / g), fast electron mobility and excellent mechanical properties, is attracting attention as a material for energy storage devices.
  • graphene is also being used in the fields of solar cells and electrochemical sensors.
  • Korean Patent Laid-Open No. 10-2015-0044359 discloses a method for adjusting the spacing of graphene layers and a supercapacitor using the method. Specifically, a surfactant is added to a solution containing the oxidized graphene to disperse the oxidized graphene ; Adding a reducing agent to the solution containing the dispersed oxidized graphene to form reduced oxidized graphene; And a pillar material activated at both ends by N 2 + is added to the solution containing the reduced graphene oxide, and the reduced graphene graphene and the pillar
  • the material is coupled to control the layer spacing between the reduced graphene grains, and depending on the number of aryl groups or the number of carbon atoms of the alkyl groups connected between two or more aryl groups, Wherein the layer spacing between the fins is controlled by controlling the distance between the fins.
  • the above manufacturing method requires additional reducing agent such as hydrazine for reducing oxidized graphene, and it is troublesome to perform various steps, and when a structure manufactured through the method is applied to a capacitor, a high current density 2 A / g or more) is lowered.
  • additional reducing agent such as hydrazine for reducing oxidized graphene
  • a first aspect of the present invention is a method for manufacturing a carbon nanotube, comprising the steps of: (1) preparing a colloid mixed solution obtained by mixing an acid-treated carbon nanotube, graphene oxide and a solvent; And a step of spray-drying and heat-treating the mixed solution (step 2).
  • the graphene-carbon nanotube composite is produced in the form of a crumpled shape.
  • the carbon nanotubes may be multiwall carbon nanotubes (MWCNTs).
  • the acid treatment of the carbon nanotubes may be performed by dispersing the carbon nanotubes in an acid solution containing sulfuric acid and nitric acid.
  • the mixing weight ratio of the carbon nanotube and the graphene oxide in the step 1 may be 0.01 to 0.4: 1.
  • the graphene oxide concentration of the mixed solution of step 1 may be 0.10 wt% to 0.50 wt%.
  • step 2 comprises spraying the mixed solution of step 1 into an aerosol droplet through an adiabatic nozzle (step 2a); And a step (step 2b) of transferring the sprayed droplets to a heating furnace, followed by drying and heat treatment to form a self-assembled graphene-carbon nanotube composite having a crumpled shape.
  • the diameter of the adiabatic nozzle of step 2a may be 1.0 mm to 3.0 mm.
  • the heat treatment of step 2 or step 2b may be performed at a temperature of 200 ° C to 500 ° C.
  • the heat treatment of step 2 or step 2b may be performed for 1 to 10 hours.
  • another first aspect of the present invention is a graphene sheet produced by the above method and having a crumpled shape; And a graphene-carbon nanotube composite including a carbon nanotube contained in the graphene sheet, the graphene carbon nanotube composite having a spherical shape and an average particle size of 1 ⁇ to 10 ⁇ .
  • the carbon nanotubes may be multiwall carbon nanotubes (MWCNTs).
  • a supercapacitor electrode including the crumpled graphene-carbon nanotube composite.
  • a plasma display panel comprising: a pair of electrodes arranged opposite to each other and including an active material; An electrolyte disposed between the pair of electrodes; And a separator provided between the pair of electrodes and suppressing electrical shorting, wherein the active material comprises the crumpled graphene-carbon nanotube composite of the crumpled shape.
  • a second aspect of the present invention is a method for manufacturing a semiconductor device, comprising the steps of: (i) preparing a mixed solution obtained by mixing an acid-treated carbon nanotube, graphene oxide, a conductive polymer monomer and a solvent; Polymerizing the monomer of the mixed solution (step ii); And spray-drying and heat-treating the polymerized mixed solution (step iii).
  • the mixing weight ratio of carbon nanotubes and graphene oxide in step i may be 0.01 to 0.5: 1.
  • the monomer concentration of the mixed solution of step i may be from 5 mM to 50 mM.
  • the conductive polymer monomer in step i may be at least one selected from the group consisting of aniline, pyrrole, thiophene, acetylene, furan, phenylene, and derivatives thereof.
  • the step ii may be carried out by adding a polymerization initiator to the mixed solution and ultrasonic treatment.
  • step iii comprises the steps of spraying the polymerized mixed solution through the air nozzle into an aerosol droplet (step iiia); And a step (iiii) of transferring the sprayed droplets to a heating furnace, followed by drying and heat treatment to form a self-assembled crumpled graphene-carbon nanotube-polymer complex (step iiib).
  • the diameter of the adiabatic nozzle of step iiia may be 1.0 mm to 3.0 mm.
  • the heat treatment of step iii or iiib may be performed at a temperature of 200 ° C to 500 ° C for 1 hour to 10 hours.
  • another second aspect of the present invention is a graphene sheet produced by the above method and having a crumpled shape; Carbon nanotubes contained in the graphene sheet; Carbon nanotube-polymer composite including a conductive polymer and a spherical shape and having an average particle size of 1 ⁇ ⁇ to 10 ⁇ ⁇ .
  • the conductive polymer may be one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polyfuran, and polyparaphenylene.
  • a supercapacitor electrode including the crumpled graphene-carbon nanotube-polymer composite.
  • a plasma display panel comprising: a pair of electrodes arranged opposite to each other and including an active material; An electrolyte disposed between the pair of electrodes; And a separator provided between the pair of electrodes and suppressing an electrical short circuit, wherein the active material comprises the crumpled graphene-carbon nanotube-polymer complex of the crumpled shape.
  • a third aspect of the present invention provides a method of manufacturing a semiconductor device, comprising: preparing a mixed solution obtained by mixing an acid-treated carbon nanotube, graphene oxide, a conductive polymer monomer, and a solvent (step i); Polymerizing the monomer of the mixed solution (step ii); Spray-drying and heat-treating the polymerized mixed solution to prepare a crumpled graphene composite (step iii); And a step (iv) of mixing the complex, graphene oxide and a solvent, applying the mixture on a current collector, and then heat-treating the graphene composite.
  • the present invention also provides a method of manufacturing a supercapacitor electrode.
  • step iv may be such that the weight ratio of the composite: graphene oxide is from 1: 0.02 to 0.5.
  • the heat treatment of step iv may be performed at a temperature of 200 ° C to 500 ° C for 1 hour to 10 hours.
  • a graphene sheet having a crumpled shape; Carbon nanotubes contained in the graphene sheet; A graphene-carbon nanotube-polymer complex including a spherical shape and an average particle size of 1 ⁇ to 10 ⁇ ; A plurality of collectors formed on one surface of the composite body; And a graphene sheet for fixing the composite with the current collector and fixing the composite and the composite.
  • a plasma display panel comprising: a pair of electrodes arranged opposite to each other; An electrolyte disposed between the pair of electrodes; And a separator provided between the pair of electrodes and suppressing an electrical short circuit, wherein the electrode is provided as the electrode.
  • the first aspect of the present invention it is possible to produce a self-assembled crumpled graphene-carbon nanotube composite by spray-drying and heat-treating a mixed solution of carbon nanotube and graphene colloid,
  • the carbon nanotubes can form a physical cross-linking point between the graphenes and increase the graphene spacing.
  • the electrode including the composite thus prepared when applied to a capacitor, it can exhibit a low interface resistance with an electrolyte, has a good conductivity, and has an excellent non-storage capacity maintaining ability at a high current density.
  • graphene oxide, carbon nanotubes, and conductive polymeric monomer are crosslinked between graphene sheets of a composite in which carbon nanotubes are produced, It is possible to improve the accessibility of the electrolytes when the capacitors are applied.
  • the graphene-carbon nanotube-polymer complex having a three-dimensional spherical shape and a uniform pore formed therein has high electric conductivity and oxidation-reduction reaction of the conductive polymer, and the capacitor using the same has high output density and energy Density can be displayed at the same time.
  • a method of manufacturing a graphene-carbon nanotube-polymer composite having a three-dimensional spherical shape and having a uniform pore formed therein, And it can exhibit high power density and energy density at the same time when used in a capacitor.
  • FIG. 1 is a schematic view showing an example of a crumpled graphene-carbon nanotube composite manufacturing method according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing an example of a method for manufacturing a crumpled graphene-carbon nanotube composite according to the first embodiment of the present invention.
  • Figs. 3 (a1) to (d1) are photographs taken by a scanning electron microscope (FE-SEM) of the composite prepared in Examples 1 to 3 and Comparative Example 1 of the present invention.
  • XRD X-ray diffraction
  • FIG. 6 is a graph showing the results of analyzing cyclic voltammetry, charge-discharge and impedance characteristics of the super capacitors manufactured in Examples 4 to 6 and Comparative Example 2 of the present invention.
  • FIG. 7 is a schematic view showing an example of a crumpled carbon nanotube-polymer composite manufacturing method according to a second embodiment of the present invention.
  • FIG. 8 is a schematic view showing another example of a crumpled graphene-carbon nanotube-polymer composite according to the second embodiment of the present invention.
  • Figures 9a-9c are photographs taken with a scanning electron microscope (FE-SEM) of the materials prepared in Example i, Comparative Example i and Comparative Example ii of the present invention.
  • FIGS. 9D to 9F are photographs of a material prepared in Example i, Comparative Example i, and Comparative Example ii of the present invention by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • 10A is a graph showing X-ray diffraction (XRD) analysis results of the materials prepared in Example i, Comparative Example i and Comparative Example ii of the present invention.
  • XRD X-ray diffraction
  • 10 b is a graph showing the results of Raman spectroscopy analysis of the materials prepared in Example i, Comparative Example i and Comparative Example ii of the present invention.
  • FIG. 11 is a graph showing mercury porosimeter analysis results of the materials manufactured in Examples i, Comparative Examples i and Comparative Example ii of the present invention.
  • FIGS. 12A to 12D are graphs showing results of analyzing cyclic voltage, charge-discharge, and impedance characteristics of the super capacitor manufactured in Example iv, Comparative Example iii, and Comparative Example iv.
  • FIGS. 13A to 13D are graphs showing results of analyzing cyclic voltage, charge-discharge, and impedance characteristics of the super capacitor manufactured in Examples iv to vi according to the present invention.
  • FIG. 14 is a schematic view showing an example of a method of manufacturing a supercapacitor electrode including a crumpled graphene composite according to a third aspect of the present invention.
  • FIG. 15 is a schematic view showing still another example of a method of manufacturing a supercapacitor electrode including a crumpled composite of a graphene composite according to a third embodiment of the present invention.
  • Figures 16a-f are photographs taken with a scanning electron microscope (FE-SEM) of the materials produced in Examples i + to iii + of the present invention.
  • 17A to 17F are photographs of a material prepared in Examples i + to iii + of the present invention by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Fig. 18a is a graph showing the X-ray diffraction analysis results of the material, crumpled graphene and polyaniline prepared in Examples i + to iii + of the present invention.
  • 18B is a graph showing the results of Raman spectroscopy analysis of the materials, crumpled graphene and polyaniline prepared in Examples i + to iii + of the present invention.
  • 19A to 19C are graphs showing the results of analysis of the cyclic voltage and charge-discharge characteristics of the super capacitor manufactured in Examples iv + to vi + of the present invention.
  • FIGS. 20A to 20C are graphs showing the results of analyzing the cyclic voltage and charge-discharge characteristics of the supercapacitors manufactured in Examples iv +, vii + and viii + of the present invention.
  • Step 1 (S10) of preparing a colloid mixed solution obtained by mixing an acid-treated carbon nanotube, graphene oxide and a solvent;
  • the step 1 (S10) is a method of preparing a colloid mixed solution obtained by mixing an acid-treated carbon nanotube, do.
  • the carbon nanotubes of step 1 may be one kind of carbon nanotubes selected from the group consisting of single wall carbon nanotubes (SWCNTs), double wall carbon nanotubes (DWCNTs), and multiwall carbon nanotubes (MWCNTs) It is preferable to use a multi-walled carbon nanotube (MWCNT).
  • SWCNTs single wall carbon nanotubes
  • DWCNTs double wall carbon nanotubes
  • MWCNTs multiwall carbon nanotubes
  • the carbon nanotubes acid treatment in step 1 may be performed by dispersing carbon nanotubes in an acid solution containing sulfuric acid and nitric acid.
  • the carbon nanotubes can be dispersed in an acid solution mixed with sulfuric acid: nitric acid at a volume ratio of 2: 4: 1, and stirred at a temperature of 50 to 80 DEG C for 1 hour to 10 hours.
  • the carbon nanotube: acid solution may have a solid ratio (g / mL) of 1: 150 to 250.
  • the step 1 may further include washing the acid-treated carbon nanotubes with a hydrochloric acid solution and drying the acid-treated carbon nanotubes.
  • the acid-treated carbon nanotubes of step 1 above can be improved in water dispersibility compared to those before acid treatment.
  • the mixing weight ratio of the carbon nanotube and the graphene oxide in the step 1 may be 0.01 to 0.4: 1, and preferably 0.05 to 0.1: 1.
  • the weight ratio of the carbon nanotube to the graphene oxide is less than 0.01: 1, the carbon nanotube may not sufficiently form a physical cross-linking point in graphene in the crumpled graphene-carbon nanotube composite to be produced, A super capacitor having such a problem may cause a problem that the non-storage capacity retention rate may be lowered.
  • the weight ratio of the carbon nanotubes to the graphene oxide is more than 0.4: 1
  • the carbon nanotubes can be agglomerated in the crumpled graphene-carbon nanotube composite to be manufactured, and the supercapacitor including the graphene-
  • the interfacial resistance between the electrodes may increase.
  • the solvent of step 1 is selected from the group consisting of distilled water, acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N Methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline and dimethylsulfoxide , And distilled water may be preferably used.
  • the graphene oxide concentration of the mixed solution of step 1 may be 0.10 wt% to 0.50 wt%, preferably 0.15 wt% to 0.35 wt%. If the concentration of the graphene oxide in the mixed solution is less than 0.10 wt%, the production efficiency may be reduced due to a small amount of the complex formed per unit time in the following step. If the concentration of graphene oxide in the mixed solution exceeds 0.50 wt% There is a problem that the graphene-carbon nanotube composite can not be formed in the crushed shape through the step.
  • the step 1 may further include dispersing the prepared colloid mixed solution through ultrasonic treatment.
  • the step 2 (S20) spray-dries and heat-treats the mixed solution.
  • the spray drying and heat treatment of step 2 may specifically include the following steps 2a and 2b.
  • the step 2 is a step (step 2a) of spraying the mixed solution of the step 1 into an aerosol droplet through the adiabatic nozzle;
  • Step 2b of transferring the sprayed droplets to a heating furnace, followed by drying and heat treatment to form a self-assembled graphene-carbon nanotube composite in a crumpled shape.
  • the diameter of the adiabatic nozzle in the step 2a may be 1.0 mm to 3.0 mm, and preferably 1.0 mm to 2.0 mm. If the diameter of the adiabatic nozzle is less than 1.0 mm, there may be a problem that droplets are not smoothly generated from the nozzle. If the diameter of the adiabatic nozzle is more than 3.0 mm, the fine particles There is a possibility that it can not be created.
  • the adiabatic nozzle of step 2a can atomize the liquid by mixing and dispersing by collision of liquid and gas. Unlike the conventional direct pressurizing nozzle, the air nozzle has the advantage of being capable of maintaining an ultra fine spray even at a low pressure.
  • the heating furnace transfer of the droplet of step 2b may be carried through one or more gases selected from the group consisting of argon, helium and nitrogen, and preferably may be transferred through argon gas.
  • the flow rate of the gas at the time of transfer to the heating furnace of the droplet in the step 2b may be 5 L / min to 15 L / min, preferably 5 L / min to 10 L / min.
  • the temperature of the heating furnace in the step 2b may be 150 ° C to 250 ° C, preferably 180 ° C to 220 ° C. If the temperature of the heating furnace is lower than 150 ° C, the solvent in the droplet can not be evaporated partially and remains, a problem that the graphene oxide-carbon nanotube composite can not be formed in a wrinkled shape may occur, Exceeding 250 DEG C may result in excessive energy dissipation in forming the crumbly shaped graphene oxide-carbon nanotube composite.
  • the graphene oxide sheet is collected by capillary molding, and the graphene oxide-carbon nanotube composite Can be produced.
  • the composite subjected to drying in step 2b may be collected in a filter through a cyclone and then subjected to a heat treatment for reduction of graphene oxide.
  • the heat treatment in step 2b may be performed at a temperature of 200 ° C to 500 ° C, preferably 200 ° C to 300 ° C. If the heat treatment temperature is lower than 200 ° C, a problem that graphene oxide is not effectively reduced may occur. If the heat treatment temperature is higher than 500 ° C, excessive energy may be wasted in reducing graphene oxide.
  • the heat treatment in step 2b may be performed in a muffle furnace and may be performed in at least one gas atmosphere selected from the group consisting of argon, helium, and nitrogen, preferably in an argon gas atmosphere .
  • the heat treatment of step 2b may be performed for 1 hour to 10 hours, preferably for 1 hour to 3 hours. If the heat treatment time is less than 1 hour, graphene oxide may not be effectively reduced. If the heat treatment time exceeds 10 hours, excess energy may be wasted in reducing graphene oxide.
  • the crumpled graphene-carbon nanotube composite finally formed through the above steps 1 to 2 may be inhibited from aggregation of graphene re-layer and carbon nanotubes due to complementary bonding due to the above- have.
  • the carbon nanotubes provided on the surface and the edge of the graphene can perform a function of bridging between the graphene sheets. Therefore, when the electrode including the composite is applied to the capacitor, the electrical conductivity and the electrolyte Accessibility can be promoted.
  • the present invention provides a graphene-carbon nanotube composite having a spherical shape and an average particle size of 1 ⁇ to 10 ⁇ .
  • the carbon nanotube is preferably a multiwall carbon nanotube (MWCNT).
  • MWCNT multiwall carbon nanotube
  • the crumpled graphene-carbon nanotube composite may serve as a physical cross-linking point between the grafted carbon nanotubes.
  • the crumpled graphene-carbon nanotube composite may satisfy the following formula (1).
  • I d is the peak intensity of Raman spectroscopy showing the defect, substitution or disorder of the graphene sp 2 structure in the crumpled graphene-carbon nanotube complex
  • I g is the peak intensity of graphite Raman spectroscopic peak intensity for carbon.
  • the crumpled graphene-carbon nanotube composite may exhibit increased interlayer spacing, which may be due to oxygen functional groups and carbon nanotubes that may remain in the graphene of the composite have.
  • the graphene-surface interval of the crumpled graphene-carbon nanotube composite may be 0.35 nm to 0.38 nm.
  • a supercapacitor electrode including the graphene-carbon nanotube composite having a crumpled shape is provided.
  • the contact resistance with the water-soluble electrolyte can be reduced due to the high contact area due to an increase in the graphene spacing of the composite.
  • the electrode may further comprise a binder for supporting the composite, wherein the binder is selected from the group consisting of polyvinylidene fluoride (PVDF), polyvinylidene fluoride hexafluoropropene (PVDF-HFP), carboxymethyl cellulose (CMC) , Styrene butadiene rubber (SBR), polyimide (PI), and polyvinyl alcohol (PVA), but the present invention is not limited thereto.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride hexafluoropropene
  • CMC carboxymethyl cellulose
  • SBR Styrene butadiene rubber
  • PI polyimide
  • PVA polyvinyl alcohol
  • a pair of electrodes disposed opposite to each other and including an active material
  • the active material comprises the crumpled graphene-carbon nanotube composite as described above.
  • the pair of electrodes may further include a current collector disposed in electrical contact with one surface of each of the pair of electrodes.
  • the electrolyte may be one selected from the group consisting of an acidic electrolyte including sulfuric acid, an alkaline electrolyte containing potassium hydroxide, and a neutral electrolyte containing sodium sulfate, but the present invention is not limited thereto.
  • the current collector may be a metal foil or a metal foil containing at least one metal selected from the group consisting of copper, nickel, aluminum, and stainless steel, and may be a carbon-based porous paper having conductivity, It is not limited thereto as long as it is corrosion-resistant.
  • the separation membrane may be a nonwoven fabric, polytetrafluoroethylene (PTFE), a porous film, a kraft paper, a cellulose-based electrolytic paper, or a rayon fiber.
  • PTFE polytetrafluoroethylene
  • the supercapacitor according to the first aspect of the present invention can reduce the interfacial resistance between the electrode and the electrolyte due to the high contact area due to the increase of the graphene spacing of the composite, and the stockpile amount can be increased accordingly.
  • the non-storage capacity of the supercapacitor according to the first aspect of the present invention can be 130 F / g to 200 F / g at a current density of 0.1 A / g, and the above non- .
  • the non-storage capacity at a current density of 4 A / g can represent 70% to 90% of the storage capacity at a current density of 0.1 A / g.
  • the graphene-carbon nanotube-polymer composite manufacturing method of the present invention includes the steps of:
  • the step i (S100) may include mixing the acid-treated carbon nanotube, graphene oxide, a conductive polymer monomer, Prepare one mixed solution.
  • the carbon nanotubes of step i may be one kind of carbon nanotubes selected from the group consisting of single wall carbon nanotubes (SWCNTs), double wall carbon nanotubes (DWCNTs), and multiwall carbon nanotubes (MWCNTs) It is preferable to use a multi-walled carbon nanotube (MWCNT).
  • SWCNTs single wall carbon nanotubes
  • DWCNTs double wall carbon nanotubes
  • MWCNTs multiwall carbon nanotubes
  • the carbon nanotubes acid treatment in step i may be performed by dispersing the carbon nanotubes in an acid solution containing sulfuric acid and nitric acid.
  • the carbon nanotubes can be dispersed in an acid solution mixed with sulfuric acid: nitric acid at a volume ratio of 2: 4: 1, and stirred at a temperature of 50 to 80 DEG C for 1 hour to 10 hours.
  • the carbon nanotube: acid solution may have a solid ratio (g / mL) of 1: 150 to 250.
  • the step i may further include washing the acid-treated carbon nanotubes with a hydrochloric acid solution and drying the acid-treated carbon nanotubes.
  • the acid-treated carbon nanotubes of step i may have better dispersibility in water than before acid treatment.
  • the mixing weight ratio of the carbon nanotubes and the graphene oxide in the step i may be 0.01 to 0.5: 1, and preferably 0.05 to 0.1: 1. If the weight ratio of the carbon nanotubes to the graphene oxide is less than 0.01: 1, the carbon nanotubes may not sufficiently form a physical crosslinking point in graphene in the crumpled graphene-carbon nanotube-polymer complex to be produced And a super capacitor including the same may cause a problem that the non-storage capacity retention rate may be lowered.
  • the carbon nanotubes can be agglomerated in the crumpled graphene-carbon nanotube-polymer complex to be produced, and the supercapacitor including the graphene- And the interface resistance between the electrodes may be increased.
  • the solvent of step i may be selected from the group consisting of distilled water, an acid solution, acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethyl formamide, Amides such as N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, And sulfoxide, and a hydrochloric acid solution can be preferably used.
  • the graphene oxide concentration of the mixed solution in the step i may be 0.10 wt% to 0.50 wt%, preferably 0.15 wt% to 0.35 wt%. If the concentration of the graphene oxide in the mixed solution is less than 0.10 wt%, the production efficiency may be reduced due to a small amount of the complex formed per unit time in the following step. If the concentration of graphene oxide in the mixed solution exceeds 0.50 wt% A problem that the graphene-carbon nanotube-polymer complex having a crushed shape can not be formed may occur.
  • the monomer concentration of the mixed solution of step i may be 5 mM to 50 mM, preferably 10 mM to 30 mM. If the concentration of the monomer is less than 5 mM, the amount of the conductive polymer is low in the composite to be produced, and when the monomer concentration is more than 50 mM, the conductive polymer in the composite The contact resistance with the electrolyte may be increased when the electrolyte is excessively generated and applied to the capacitor.
  • the conductive polymer monomer in step i may be at least one selected from the group consisting of aniline, pyrrole, thiophene, acetylene, furan, phenylene and derivatives thereof, and may be at least one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, And polyparaphenylene can be used as a monomer for forming one kind of polymer.
  • the monomer of the mixed solution is polymerized in the step ii (S200).
  • the step ii may be carried out by adding a polymerization initiator to the mixed solution and ultrasonic treatment.
  • the ultrasonic treatment in step ii may be performed for 0.5 to 10 hours, preferably for 1 to 3 hours. If the ultrasonic treatment is less than 0.5 hour, there is a problem that the mixed solution prepared in the step i is not sufficiently dispersed, and a part of polymerization of the monomer may not be achieved. If the ultrasonic treatment is performed for more than 10 hours, Excessive energy waste can occur in dispersion and polymerization.
  • the polymerization initiator of step ii) may be a known initiator that can be used to polymerize the monomer.
  • the general initiator used for polymerizing the monomer may be used.
  • the polymerization initiator is at least one polymerization selected from the group consisting of ammonium persulfate, potassium persulfate, sodium persulfate, and lithium persulfate Initiators may be used.
  • the amount of the polymerization initiator added in step ii may be 10 to 100 parts by weight, preferably 20 to 80 parts by weight based on 100 parts by weight of the monomer.
  • one kind of conductive polymer selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polyfuran and polyparaphenylene can be formed in the mixed solution.
  • the polymerized mixed solution is spray dried and heat-treated in the step iii (S300).
  • step iii may specifically include the following steps iiia and iiib.
  • Step iii) spraying the polymerized mixed solution through the air nozzle into an aerosol droplet (step iiia);
  • the sprayed droplets are transferred to a heating furnace, dried and heat-treated to form a graphene-carbon nanotube-polymer complex in a self-assembled crumpled shape (step iiib).
  • the diameter of the adiabatic nozzle of step iiia may be 1.0 mm to 3.0 mm, and preferably 1.0 mm to 2.0 mm. If the diameter of the adiabatic nozzle is less than 1.0 mm, droplets may not be generated smoothly from the nozzle. If the diameter of the adiabatic nozzle is more than 3.0 mm, the step ii may be easily performed There is a possibility that the particulate can not be generated.
  • the adiabatic nozzle of step iiia can atomize the liquid by mixed dispersion by collision of liquid and gas.
  • the air nozzle has the advantage of being capable of maintaining an ultra fine spray even at a low pressure.
  • the heating furnace transfer of the droplet of step iiib can be carried through one or more gases selected from the group consisting of argon, helium and nitrogen, and preferably transported through argon gas.
  • the flow rate of the gas during the transfer of the droplet of the step iiib may be 5 L / min to 15 L / min, preferably 5 L / min to 10 L / min.
  • the temperature of the heating furnace in the step iiib may be 150 to 250 ° C, and preferably 180 to 220 ° C. If the temperature of the heating furnace is lower than 150 ° C, the solvent in the droplet can not be partially vaporized and remains, and a problem that a crumpled graphene oxide-carbon nanotube-polymer complex can not be formed may occur. If the temperature exceeds 250 DEG C, excessive energy may be wasted in forming a crumpled graphene oxide-carbon nanotube-polymer complex.
  • the graphene oxide sheets are gathered together by capillary molding, and the graphene oxide-carbon nanotube- Polymer complexes can be produced.
  • the composite on which the drying of step iiib has been performed can be collected in a filter through a cyclone and then subjected to a heat treatment for reduction of graphene oxide.
  • the heat treatment of the step iiib may be performed at a temperature of 200 ° C to 500 ° C, preferably 200 ° C to 300 ° C. If the heat treatment temperature is lower than 200 ° C, a problem that graphene oxide is not effectively reduced may occur. If the heat treatment temperature is higher than 500 ° C, excessive energy may be wasted in reducing graphene oxide.
  • the heat treatment in step iiib may be performed in a muffle furnace and may be performed in at least one gas atmosphere selected from the group consisting of argon, helium, and nitrogen, preferably in an argon gas atmosphere .
  • the heat treatment of step iiib may be performed for 1 hour to 10 hours, preferably for 1 hour to 3 hours. If the heat treatment time is less than 1 hour, graphene oxide may not be effectively reduced. If the heat treatment time exceeds 10 hours, excess energy may be wasted in reducing graphene oxide.
  • the crumpled graphene-carbon nanotube-polymer composite finally formed through the above steps i to iii has the effect of suppressing aggregation of the graphene layer and carbon nanotubes due to mutually complementary bonding due to the above- .
  • the carbon nanotubes provided on the surface and the edge of the graphene can perform a function of bridging between the graphene sheets. Therefore, when the electrode including the composite is applied to the capacitor, the electrical conductivity and the electrolyte Accessibility can be promoted.
  • the output density and the energy density of the capacitor can be improved by the conductive polymer included in the composite.
  • Carbon nanotubes contained in the graphene sheet and a conductive polymer
  • the present invention provides a graphene-carbon nanotube-polymer composite having a spherical shape and an average particle size of 1 ⁇ to 10 ⁇ .
  • the carbon nanotubes may be one kind of carbon nanotubes selected from the group consisting of single wall carbon nanotubes (SWCNTs), double wall carbon nanotubes (DWCNTs), and multiwall carbon nanotubes (MWCNTs) Preferably a multi-walled carbon nanotube (MWCNT).
  • SWCNTs single wall carbon nanotubes
  • DWCNTs double wall carbon nanotubes
  • MWCNTs multiwall carbon nanotubes
  • MWCNTs multi-walled carbon nanotube
  • the conductive polymer may be one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polyfuran, and polyparaphenylene, and may be preferably polyaniline.
  • the crumpled graphene-carbon nanotube-polyaniline composite may exhibit increased interlayer spacing, which may include oxygen functional groups, carbon nanotubes, and conductive particles that may remain in the graphene of the composite. Polymer or the like.
  • the contact resistance with the water-soluble electrolyte can be reduced due to a high contact area due to an increase in the graphene spacing of the composite, and the high- Density and high non-storage capacity.
  • the electrode may further comprise a binder for supporting the composite, wherein the binder is selected from the group consisting of polyvinylidene fluoride (PVDF), polyvinylidene fluoride hexafluoropropene (PVDF-HFP), carboxymethyl cellulose (CMC) , Styrene butadiene rubber (SBR), polyimide (PI), and polyvinyl alcohol (PVA), but the present invention is not limited thereto.
  • PVDF polyvinylidene fluoride
  • PVDF-HFP polyvinylidene fluoride hexafluoropropene
  • CMC carboxymethyl cellulose
  • SBR Styrene butadiene rubber
  • PI polyimide
  • PVA polyvinyl alcohol
  • a pair of electrodes disposed opposite to each other and including an active material
  • the active material includes the graphene-carbon nanotube-polymer complex having a crumpled shape.
  • the pair of electrodes may further include a current collector disposed in electrical contact with one surface of each of the pair of electrodes.
  • the electrolyte may be one selected from the group consisting of an acidic electrolyte including sulfuric acid, an alkaline electrolyte containing potassium hydroxide, and a neutral electrolyte containing sodium sulfate, but the present invention is not limited thereto.
  • the current collector may be a metal foil or a metal foil containing at least one metal selected from the group consisting of copper, nickel, aluminum, and stainless steel, and may be a carbon-based porous paper having conductivity, It is not limited thereto as long as it is corrosion-resistant.
  • the separation membrane may be a nonwoven fabric, polytetrafluoroethylene (PTFE), a porous film, a kraft paper, a cellulose-based electrolytic paper, or a rayon fiber.
  • PTFE polytetrafluoroethylene
  • the pore volume in the electrode may decrease and the accessibility of the electrolyte may be deteriorated.
  • polyaniline is grown on porous graphene-carbon nanotubes prepared by using polystyrene (PS) as an organic template to produce an active material electrode including a composite having pores.
  • PS polystyrene
  • this process has a disadvantage that the process is somewhat complicated due to the necessity of a high-temperature heat treatment for removing the polystyrene organic mold used for pore formation.
  • the super capacitor according to the second aspect of the present invention can reduce the interfacial resistance between the electrode and the electrolyte due to the high contact area due to the increase of the graphene spacing of the composite, .
  • the conductive polymer in the composite can simultaneously exhibit electric double layer and pseudocapacitor performance.
  • the non-storage capacity of the supercapacitor can be 200 F / g to 350 F / g at a current density of 0.1 A / g, and the non-storage capacity can be substantially maintained even at a high current density.
  • the non-storage capacity at a current density of 4 A / g can represent 70% to 90% of the storage capacity at a current density of 0.1 A / g.
  • Step iiii) (S400) of mixing the complex, graphene oxide and a solvent, applying the mixture on a current collector, and heat treating the mixture (step S400), wherein the crushed graphene composite comprises a graphene composite .
  • the above steps i to iii may be the same as the steps i to iii of the second aspect.
  • the third aspect of the present invention carries out the following steps to fabricate a capacitor electrode without using a binder and to manufacture a supercapacitor exhibiting a high non-storage capacity and a non-storage capacity retention rate by increasing the electron mobility and the active material content.
  • the step iv (S400) comprises mixing the composite, graphene oxide and a solvent, Heat treatment.
  • step iv may be performed such that the weight ratio of the composite: graphene oxide is 1: 0.02 to 0.5, preferably the weight ratio of the composite: graphene oxide is 1: 0.05 to 0.3 .
  • the weight ratio of the composite: graphene oxide is less than 1: 0.02
  • the composite may not be effectively fixed on the current collector, and some of the complexes may not be immobilized. Is more than 1: 0.5, there is a fear that the active surface area of the electrode to be produced decreases, and the amount of the capacitor reserved for the capacitor is reduced.
  • the heat treatment of step iv may be performed at a temperature of 200 ° C to 500 ° C, preferably 200 ° C to 300 ° C. If the heat treatment temperature is lower than 200 ° C, the graphene oxide mixed in the step iv may not be effectively reduced. If the heat treatment temperature is higher than 500 ° C, the graphene oxide mixed in the step iv may be reduced Excessive waste of energy may occur.
  • the heat treatment of step iv may be performed for 1 hour to 10 hours, preferably for 1 to 3 hours. If the heat treatment time is less than 1 hour, the graphene oxide mixed in the step iv may not be effectively reduced. If the heat treatment time exceeds 10 hours, the graphene oxide mixed in the step iv may be reduced Excessive waste of energy may occur.
  • the collector of step iv may be a metal foil or a metal foil containing at least one metal selected from the group consisting of copper, nickel, aluminum, and stainless steel, and may be a carbon-based porous paper having conductivity, It is not limited thereto as long as it is electrochemically corrosion resistant.
  • the solvent of step iv may be selected from the group consisting of distilled water, an acid solution, acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethyl formamide, Amides such as N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, And sulfoxide, and preferably N-methyl-2-pyrrolidone solvent can be used.
  • the application of the step iv may be performed so as to have a thickness of 50 to 200 mu m on the current collector, preferably to be a thickness of 75 to 125 mu m. If the coating thickness is less than 50 ⁇ , the interface resistance between the electrode to be produced and the water-soluble electrolyte may increase. If the coating thickness exceeds 200 ⁇ , the electrode to be produced may not increase the non- And waste of graphene.
  • the electrode manufactured through steps i to iv may exhibit a high electron mobility and may increase the non-storage capacity and the non-storage capacity retention ratio when the capacitor is applied due to the increase of the active material content due to the non-use of the binder.
  • a crumpled graphene sheet Carbon nanotubes contained in the graphene sheet;
  • a graphene-carbon nanotube-polymer complex including a spherical shape and an average particle size of 1 ⁇ to 10 ⁇ ;
  • a plurality of collectors formed on one surface of the composite body
  • the carbon nanotubes may be one kind of carbon nanotubes selected from the group consisting of single wall carbon nanotubes (SWCNTs), double wall carbon nanotubes (DWCNTs), and multiwall carbon nanotubes (MWCNTs) Preferably a multi-walled carbon nanotube (MWCNT).
  • SWCNTs single wall carbon nanotubes
  • DWCNTs double wall carbon nanotubes
  • MWCNTs multiwall carbon nanotubes
  • MWCNTs multi-walled carbon nanotube
  • the conductive polymer may be one selected from the group consisting of polyaniline, polypyrrole, polythiophene, polyacetylene, polyfuran, and polyparaphenylene, and may be preferably polyaniline.
  • the crumpled graphene-carbon nanotube-polyaniline composite may exhibit increased interlayer spacing, which may include oxygen functional groups, carbon nanotubes, and conductive particles that may remain in the graphene of the composite. Polymer or the like.
  • the contact resistance with the water-soluble electrolyte can be reduced due to the high contact area due to an increase in the graphene spacing of the composite.
  • the electrode may be fixed on the current collector through graphene instead of a conventional binder for supporting the composite, thereby improving the non-storage capacity of the capacitor and the non-storage capacity retention rate.
  • a pair of electrodes disposed opposite to each other;
  • the electrode is provided as the supercapacitor electrode.
  • the electrolyte may be one selected from the group consisting of an acidic electrolyte including sulfuric acid, an alkaline electrolyte containing potassium hydroxide, and a neutral electrolyte containing sodium sulfate, but the present invention is not limited thereto.
  • the separation membrane may be a nonwoven fabric, polytetrafluoroethylene (PTFE), a porous film, a kraft paper, a cellulose-based electrolytic paper, or a rayon fiber.
  • PTFE polytetrafluoroethylene
  • the supercapacitor according to the third aspect of the present invention can reduce the interfacial resistance between the electrode and the electrolyte due to the high contact area due to an increase in the graphene spacing of the composite, thereby increasing the amount of stockpile.
  • the conductive polymer in the composite can simultaneously exhibit electric double layer and pseudocapacitor performance. Furthermore, by manufacturing the electrode by fixing the composite on the current collector through the graphene without a binder, it is possible to exhibit higher non-storage capacity and non-storage capacity retention rate when applied to a capacitor.
  • the non-storage capacity of the supercapacitor according to the third aspect of the present invention may be from 250 F / g to 500 F / g at a current density of 0.1 A / g and may be from 400 F / g to 500 F / have.
  • the above non-storage capacity can be substantially maintained even at a high current density.
  • the non-storage capacity at a current density of 4 A / g can represent 85% to 95% of the non-storage capacity at a current density of 0.1 A / g.
  • the graphene oxide (GO) used as a raw material for graphene production was prepared from graphite according to the improved Hummer's method and dispersed in distilled water.
  • Step 1 Multi-walled carbon nanotubes (MWCNT, 95% purity, NANOLAB) were acid treated to improve water dispersibility.
  • the MWCNT 1 g of sulfuric acid in 150 mL (H 2 SO 4, 99.5%) and 50 mL of nitric acid (HNO 3 ), and the mixture was stirred at 70 ° C for 2 hours. It was then filtered and washed with 5% hydrochloric acid (HCl) solution and dried in air.
  • the weight ratio of the acid-treated MWCNT and GO was set to 0.01: 1, and a mixed solution containing distilled water as a solvent was prepared. At this time, the GO concentration of the mixed solution was adjusted to 0.25 wt%.
  • Step 2a An aerosol reactor was used to prepare the MWCNT-GO complex, and a schematic diagram of the reaction is shown in FIG.
  • the mixed solution containing the acid-treated MWCNT and the GO was aerosolized through a 1.4 mm diameter air nozzle to form droplets.
  • Step 2b The injected droplets were transferred to a heating furnace at a temperature of 200 DEG C through an argon gas at a flow rate of 8 L / min, and the solvent was evaporated.
  • the prepared sample was collected on a filter through a cyclone to obtain a MWCNT-GO complex produced in a three-dimensional crumpled shape.
  • the MWCNT-GO composite was annealed in a muffle furnace at 250 ° C for 2 hours in an argon gas atmosphere (1 L / min)
  • Multi-wall carbon nanotube (MWCNT-GR) composites were prepared.
  • Multi-walled carbon nanotube composite of crumpled shape was prepared in the same manner as in Example 1, except that the mixed solution was prepared by changing the MWCNT: GO weight ratio to 0.05: 1 in the step 1 of Example 1 above. .
  • Multi-walled carbon nanotube composite material having a crumpled shape was produced in the same manner as in Example 1, except that the mixed solution was prepared by changing the MWCNT: GO weight ratio to 0.1: 1 in the step 1 of Example 1 above. .
  • Multi-walled carbon nanotube composite having a crumpled shape was prepared in the same manner as in Example 1, except that the mixed solution was prepared by changing the weight ratio of MWCNT: GO to 0.5: 1 in the step 1 of Example 1 above. .
  • the graphene-carbon nanotube composite and the polyvinylidene difluoride (PVDF, KUREHA Co., Japan) binder in a crushed shape prepared in Example 1 were mixed in a weight ratio of 9: 1, 2-pyrrolidone (NMP, Micropure-EG) solvent with a mixer for 20 minutes.
  • the agitated active material solution was coated on carbon paper (AvCarb P50, FuelCellsEtc, USA) as a current collector to a thickness of 100 mu m.
  • the coated active material was dried at 80 ° C for 2 hours and cut to an area of 2 cm 2.
  • the weight per unit electrode was measured to be about 5 mg.
  • Filter paper (Whatman 1822-110 Grade GF / C) was cut into a diameter of 14 mm as a separator and 5 M potassium hydroxide was used as an electrolyte. Finally, a supercapacitor was fabricated using a two-electrode HS FLAT CELL (HOHSEN Corp., Japan).
  • a supercapacitor was manufactured in the same manner as in Example 4 except that the composite prepared in Example 2 was used for the production of active material in Example 4 above.
  • a supercapacitor was manufactured in the same manner as in Example 4 except that the composite prepared in Example 3 was used for the production of active material in Example 4 above.
  • a supercapacitor was manufactured in the same manner as in Example 4 except that the composite prepared in Comparative Example 1 was used for the production of active material in Example 4 above.
  • the structure and shape of the crumpled multi-walled carbon nanotubes of the crushed shape prepared in Examples 1 to 3 and Comparative Example 1 were measured by field emission scanning electron microscopy (FE-SEM, Sirion, FEI) and transmission electron microscope TEM, JEM-ARM200F, JEOL). The results are shown in Figs. 3 (a1) to (d1) and Figs. 3 (a2) to (d2).
  • the XRD peaks of all of the MWCNT-GR composites produced are broad at around 23.5 ° and 42.9 °. This is because the GO peak existing at 10 ° was reduced and shifted to the GR peak. In addition, the XRD peak of the reduced MWCNT-GR composites is shifted to the left of the graphite peaks because of the increase in interlayer spacing of the composite due to the introduction of various oxygen functionalities and MWCNT remaining in graphene .
  • the MWCNT-GR composites of Example 1, Example 2, Example 3, and Comparative Example 1 had surface spacings of 0.37 nm, 0.37 nm and 0.36 nm, respectively, according to the Bragg's law equation (Equation 2) 0.34 nm.
  • the degree of defects of graphene can be confirmed from the intensity ratio of D peak and G peak.
  • the D / G band ratio of the MWCNT-GR composites was decreased as the MWCNT / GO weight ratio increased. This suggests that the degree of defects of the composite is reduced due to the introduction of MWCNT, which is relatively less defective than the graphene sheet.
  • electric double layer capacitors using an aqueous solution of potassium hydroxide as an electrolyte show an electric double layer effect due to adsorption of surface ions as a graph shape close to a rectangular shape.
  • the results of the cyclic voltammetry test for evaluating the performance of the supercapacitors made from the MWCNT-GR composite showed an ideal electric double layer capacitor behavior in all the electrodes .
  • the area of the cyclic current - voltage curve was increased as the MWCNT / GO weight ratio increased from 0.01 to 0.1 in the composite preparation, but the area decreased at 0.5. This is presumably because the increase in the amount of MWCNT introduced into the graphene leads to a high electrical conductivity and an increase in the plane spacing of the graphene, so that the electrolyte ions do not feel a large resistance and are well arranged at the interface of the electrode material.
  • the weight ratio of MWCNT / GO is 0.5 or more, it is considered that the aggregation between MWCNTs reduces the gap distance of graphene and slows the ion transfer rate of the electrolyte.
  • Fig. 6 (b) shows the charge / discharge test results and the non-capacitances calculated therefrom as a function of scan speed.
  • all electrodes exhibited a symmetrical charge / discharge curve indicating reversibility, and the non-storage capacity can be obtained by the following equation (3).
  • Example 6 In the case of Example 6 in which the weight ratio of MWCNT / GO was 0.1 in the preparation of the composite, the non-accumulating capacity was high and the non-accumulating capacity was kept high as the scanning speed was increased. From this, it was found that the optimal conditions of MWCNT and GO mixing ratio existed. This is because, as mentioned in the above-mentioned cyclic voltammetry results, the increase in the spacing due to the introduction of MWCNT improves the penetration of electrolyte ions to the inside of the electrode and improves the electric conductivity, thereby maintaining the non-storage capacity even at a high scanning speed.
  • the graphene-multiwalled carbon nanotube (MWCNT-GR) composite according to the embodiment of the first aspect of the present invention was produced in a spherical three-dimensional shape having an average particle size of 1 to 10 mu m, Multiwalled carbon nanotubes were dispersed between graphene sheets.
  • MWCNT-GR composite As a result of evaluating the performance of supercapacitor including MWCNT-GR composite, the highest non-storage capacity was obtained at 192 F / g when MWCNT / GO weight ratio was 0.1 at the time of preparing the composite. . Therefore, it was concluded that the introduction of MWCNT into graphene can improve the properties such as electrical conductivity, ionic conductivity, and graphene surface spacing. In particular, even at high current densities (4 A / g), MWCNTs have a good physical crosslinking point in the graphene, and the pores in the MWCNT-GR composites prepared in the three- This is thought to be due to reduced resistance.
  • the graphene oxide (GO) used as a raw material for graphene production was prepared from graphite according to the improved Hummer's method and dispersed in distilled water.
  • Step i Multi-walled carbon nanotubes (MWCNT, 95% purity, NANOLAB) were acid treated to improve dispersibility in water.
  • 1 g of MWCNT was dispersed in a mixed solution of 150 mL of sulfuric acid (H 2 SO 4 , 99.5%) and 50 mL of nitric acid (HNO 3 ), followed by stirring at 70 ° C. for 2 hours. It was then filtered and washed with 5% hydrochloric acid (HCl) solution and dried in air.
  • the mixed weight ratio of acid-treated MWCNT and GO was adjusted to 0.01: 1 and added to a 1 M hydrochloric acid solution. At this time, the GO concentration of the hydrochloric acid solution was adjusted to 0.25 wt%.
  • aniline was added to the hydrochloric acid solution so as to have a concentration of 20 mM as a conductive polymer monomer to prepare a mixed solution.
  • Step ii Ammonium persulfate (APS; 98% purity, Sigma-Aldrich) was added as an initiator so that the weight ratio of aniline monomer to initiator in the mixed solution was 4: 1, and the mixed solution was polymerized by ultrasonication for 1 hour .
  • APS ammonium persulfate
  • Step iiia An aerosol reactor was used to prepare the MWCNT-GO-PANI complex, and a schematic diagram of the reaction is shown in FIG.
  • the mixed solution containing the acid-treated MWCNT, GO, and PANI was aerosolized by means of a 1.4 mm diameter air nozzle to form droplets.
  • Step iiib The injected droplets were transferred to a heating furnace at a temperature of 200 ⁇ through an argon gas at a flow rate of 8 L / min, and the solvent was evaporated.
  • the prepared sample was collected in a filter through a cyclone to obtain a MWCNT-GO-PANI complex produced in a three-dimensional crumpled shape.
  • the MWCNT-GO-PANI composite was annealed in a muffle furnace at 250 ° C for 2 hours in an argon gas atmosphere (1 L / min) Pin-multiwalled carbon nanotube-polyaniline (MWCNT-GR-PANI) complex was prepared.
  • Multi-walled carbon nanotube-like carbon nanotubes were formed in the same manner as in Example i, except that the mixed solution was prepared by changing the weight ratio of MWCNT: GO to 0.05: 1 in the step i of Example i. To prepare a polyaniline composite.
  • Multi-walled carbon nanotube-like carbon nanotubes were formed in the same manner as in Example i, except that the mixed solution was prepared by changing the MWCNT: GO weight ratio to 0.1: 1 in the step i of Example i. To prepare a polyaniline composite.
  • a graphene ball (CGR) having a crumpled shape was prepared in the same manner as in Example i except that step ii was omitted, without adding the carbon nanotubes and the conductive polymer monomer, in Step i of Example i .
  • step i of Example i a graphene-carbon nanotube composite having a crumpled shape was produced in the same manner as in Example i except that the conductive polymeric monomer was not added and step ii was omitted.
  • the graphene-carbon nanotube-polymer composite and the polyvinylidene difluoride (PVDF, KUREHA Co., Japan) binder having the crushed shape prepared in Example 1 were mixed so as to have a weight ratio of 9: 1 to prepare an active material.
  • methyl-2-pyrrolidone (NMP, Micropure-EG) solvent with a mixer for 20 minutes.
  • the agitated active material solution was coated on carbon paper (AvCarb P50, FuelCellsEtc, USA) as a current collector to a thickness of 100 mu m.
  • the coated active material was dried at 80 ° C for 2 hours and cut to an area of 2 cm 2.
  • the weight per unit electrode was measured to be about 5 mg.
  • Filter paper (Whatman 1822-110 Grade GF / C) was cut into a diameter of 14 mm as a separator and 5 M potassium hydroxide was used as an electrolyte. Finally, a supercapacitor was fabricated using a two-electrode HS FLAT CELL (HOHSEN Corp., Japan).
  • a supercapacitor was prepared in the same manner as in Example iv except that the composite prepared in Example ii was used for the preparation of the active material in Example iv.
  • a supercapacitor was prepared in the same manner as in Example iv except that the complex prepared in Example iii was used for the preparation of the active material in Example iv.
  • a supercapacitor was manufactured in the same manner as in Example iv, except that graphene of the crushed shape prepared in Comparative Example i was used for the preparation of the active material in Example iv.
  • a supercapacitor was prepared in the same manner as in Example iv except that the composite prepared in Comparative Example ii was used for the preparation of the active material in Example iv.
  • Example i The materials prepared in Example i, Comparative Example i and Comparative Example ii were analyzed by XRD (SmartLab, Rigaku Co.), and the results are shown in Fig. 10a.
  • the crumpled graphene (CGR) of Comparative Example i, the GR-CNT of Comparative Example ii and the GR-MWCNT-PANI composite of Example i had average pore diameters (nm) 340, 657, and 824 nm, respectively. At this time, it is believed that the introduction of CNT and PANI improved the pore size in the composite, and the improved pore size was expected to improve the electrolyte accessibility to the composite electrode.
  • electric double layer capacitors using an aqueous solution of potassium hydroxide as an electrolyte show an electric double layer effect due to adsorption of surface ions as a graph shape close to a rectangular shape.
  • FIG. 12C shows the non-storage capacity calculated from the charge / discharge test results as a function of the scan speed.
  • the crumbled graphene (CGR), GR-CNT and GR-CNT-PANI samples showed a specific storage capacity of 121, 192 and 294 F / g at 0.1 A / g, respectively.
  • GR-CNT-PANI composite has the spherical shape, the increase of the surface area due to the introduction of CNT, and the excellent electric conductivity property improve the penetration of the electrolyte ion to the electrode surface and the highest ratio from the introduction of the pseudo- It was judged that the storage capacity was shown.
  • Figs. 13 b and c show charge and discharge tests and the non-capacitances calculated therefrom as a function of scan speed.
  • charge / discharge test it was confirmed that electric double layer and pseudo capacitor characteristics were exhibited at all electrodes.
  • the non-storage capacity was 250 F / g, 266 F / g and 294 F / g at current density of 0.1 A / g, respectively. It can be seen that as the CNT addition amount increases, the non-storage capacity also increases. The non-storage capacity according to the increase of the current density also showed the highest maintenance rate when the addition amount was 0.1 at the MWCNT / GO weight ratio in the preparation of the composite.
  • Fig. 13 (d) the impedances of the electrode and the electrolyte were measured to show a straight line in the low frequency region and a small semicircle in the high frequency region as the CNT addition amount increased. This indicates that the resistance of the CNTs due to the rapid electrical conductivity decreases and that the inhibition of recombination between the graphene sheets increases the contact area with the electrolyte, thereby greatly reducing the interfacial resistance due to ion conduction.
  • the present inventors have developed an aerosol spray pyrolysis (ASP) from a colloid solution mixed with Multi-Wall Carbon Nanotube (CNT), Graphene Oxide (GO) Process, a graphene-multiwalled carbon nanotube-polyaniline spherical composite having a three-dimensional structure was prepared by a single process.
  • the multi-walled carbon nanotubes injected into the mixed colloid solution of step i were found to improve the electrical conductivity and improve the accessibility of the electrolyte due to the increase in the spacing of the surfaces by performing the crosslinking function between the graphene sheets.
  • the composite prepared by adding polyaniline had three- It was confirmed that the uniformity of pore formation inside the composite and the high electrical conductivity and oxidation-reduction reaction of polyaniline improve the output density and energy density simultaneously.
  • the graphene oxide (GO) used as a raw material for graphene production was prepared from graphite according to the improved Hummer's method and dispersed in distilled water.
  • Step i Multi-walled carbon nanotubes (MWCNT, 95% purity, NANOLAB) were acid treated to improve dispersibility in water.
  • 1 g of MWCNT was dispersed in a mixed solution of 150 mL of sulfuric acid (H 2 SO 4 , 99.5%) and 50 mL of nitric acid (HNO 3 ), followed by stirring at 70 ° C. for 2 hours. It was then filtered and washed with 5% hydrochloric acid (HCl) solution and dried in air.
  • the weight ratio of acid-treated MWCNT and GO was adjusted to 0.1: 1 and added to a 1 M hydrochloric acid solution. At this time, the GO concentration of the hydrochloric acid solution was adjusted to 0.25 wt%.
  • aniline was added to the hydrochloric acid solution so as to have a concentration of 20 mM as a conductive polymer monomer to prepare a mixed solution.
  • Step ii Ammonium persulfate (APS; 98% purity, Sigma-Aldrich) was added as an initiator so that the weight ratio of aniline monomer to initiator in the mixed solution was 4: 1, and the mixed solution was polymerized by ultrasonication for 1 hour .
  • APS ammonium persulfate
  • Step iiia An aerosol reactor was used to prepare the MWCNT-GO-PANI complex, and a schematic diagram of the reaction is shown in FIG.
  • the mixed solution containing the acid-treated MWCNT, GO, and PANI was aerosolized by means of a 1.4 mm diameter air nozzle to form droplets.
  • Step iiib The injected droplets were transferred to a heating furnace at a temperature of 200 ⁇ through an argon gas at a flow rate of 8 L / min, and the solvent was evaporated.
  • the prepared sample was collected in a filter through a cyclone to obtain a MWCNT-GO-PANI complex produced in a three-dimensional crumpled shape.
  • the MWCNT-GO-PANI composite was annealed in a muffle furnace at 250 ° C for 2 hours in an argon gas atmosphere (1 L / min) Pin-multiwalled carbon nanotube-polyaniline (MWCNT-GR-PANI) complex was prepared.
  • Multi-walled carbon nanotube-polyaniline composite having a crumpled shape was prepared in the same manner as in Example i + except that the aniline concentration of the mixed solution was 10 mM in the step i of Example i + .
  • Multi-walled carbon nanotube-polyaniline composite having a crumpled shape was prepared in the same manner as in Example i + except that the aniline concentration of the mixed solution was 40 mM in the step i of Example i + .
  • Step iv In order to produce an electrode, the graphene-carbon nanotube-polymer complex and graphene oxide having a crumpled shape prepared in Example i + were mixed in a weight ratio of 9.5: 0.5 (1: 0.053) -2-pyrrolidone (NMP, Micropure-EG) solvent with a mixer for 20 minutes. The stirred solution was coated on carbon paper (AvCarb P50, Fuel Cells, USA) as a current collector to a thickness of 100 mu m. The coated material was heat treated at 250 ° C. for 2 hours and cut to an area of 2 cm 2. The weight per unit electrode was measured to be about 1.5 mg.
  • NMP -2-pyrrolidone
  • Filter paper (Whatman 1822-110 Grade GF / C) was cut into a diameter of 14 mm as a separator and 5 M potassium hydroxide was used as an electrolyte. Finally, a supercapacitor was fabricated using a two-electrode HS FLAT CELL (HOHSEN Corp., Japan).
  • a supercapacitor was produced in the same manner as in Example iv + except that the complex was used in the step iv + of Example iv + as that in Example ii +.
  • a supercapacitor was produced in the same manner as in Example iv + except that the complex was used in the step iv + of Example iv + as that used in Example iii +.
  • a supercapacitor was prepared in the same manner as in Example iv + except that the complex and graphene oxide were changed to a weight ratio of 9: 1 (1: 0.111) in the step iv of Example iv +.
  • a supercapacitor was prepared in the same manner as in Example iv + except that the complex and graphene oxide were changed to a weight ratio of 8: 2 (1: 0.25) in the step iv of Example iv +.
  • the composites prepared in Examples i + to iii + have D and G peaks at graphene peaks at 1350 cm -1 and 1600 cm -1 . Also, peaks indicating CH bonds of PANI were observed at 1163 cm -1 , 1250 cm -1 , and 1478 cm -1 , and it was confirmed from these results that PANI was successfully generated in the sample.
  • the charge-discharge curve shows that the plateau of the curve becomes prominent with an increase in the amount of aniline injected during the preparation of the electrode.
  • the present inventors conducted an aerosol spray pyrolysis (ASP) process from a colloid solution mixed with multiwall carbon nanotube (CNT), graphene oxide (GO) and aniline GR-CNT-PANI-GR composite electrode was fabricated by adding graphene oxide (GO) to the GR-CNT-PANI-GR composite electrode.
  • the effect of the complex electrode on the performance of the supercapacitor according to the change of the aniline concentration and the control of the graphene oxide injection amount were investigated.
  • the GR-CNT-PANI-GR composite electrode improved the total capacitance of the supercapacitor due to the smooth electron transfer inside the electrode and the increase of the electrode active material content.
  • the physical properties (shape, crystal phase, defect) of GR-CNT-PANI were investigated by SEM, TEM, XRD and Raman analysis.

Abstract

본 발명은 그래핀 옥사이드 및 전도성 물질을 포함하는 용액을 분무 건조 및 열처리하는 단계를 포함하는 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조된 그래핀 복합체 및 이를 포함하는 전극을 적용한 슈퍼커패시터에 관한 것이다.

Description

구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터
본 발명은 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조된 그래핀 복합체 및 이를 포함하는 슈퍼커패시터에 관한 것으로, 더욱 상세하게는 그래핀 옥사이드 및 전도성 물질을 포함하는 용액을 분무 건조 및 열처리하는 단계를 포함하는 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조된 그래핀 복합체 및 이를 포함하는 슈퍼커패시터에 관한 것이다.
고에너지 및 고출력 밀도를 가지는 에너지 저장장치에 대한 요구가 증가함에 따라 차세대 친환경 에너지 저장소자 중 하나로 슈퍼커패시터가 주목을 받기 시작하였다. 이러한 슈퍼커패시터는 기존의 이차전지에 비해 높은 출력밀도와 충방전 효율, 반영구적인 사이클 수명을 가지고 있으며 전류변화에 안정적이어서 폭발의 위험이 없는 장점을 가진다. 따라서, 안정적인 에너지 공급을 필요로 하는 휴대전자기기나 보조배터리, 전기자동차의 순간가속 및 메모리백업을 위한 전원으로 활발히 이용되고 있다. 또한, 슈퍼커패시터는 전극 활물질로서 탄소소재를 사용하여 환경친화적이면서도 안전성이 우수한 특성을 가진 차세대 에너지 백업 및 저장장치라 할 수 있다.
슈퍼커패시터의 전기화학적 성능은 전극물질에 의해 결정될 수 있는데, 높은 전기전도도, 넓은 비표면적, 고온 안정성, 균일한 기공구조, 낮은 가격 등의 요구조건을 충족시켜야 한다. 주로 활성탄, 탄소나노튜브, 그래핀을 포함한 탄소계 소재가 슈퍼커패시터의 전극재료로 널리 이용되고 있다. 그 중, 활성탄이 넓은 비표면적과 저렴한 비용으로 인하여 슈퍼커패시터용 소재로 많이 이용되고 있다. 하지만 활성탄 전극은 다량의 마이크로/매크로 공극을 가지고 있음에도 전극표면으로 전해질 흡착 성능이 낮아 비축전용량이 낮은 문제점을 나타낸다. 따라서, 넓은 비표면적(이론치 2,600 m2/g), 빠른 전자 이동도 및 우수한 기계적 특성을 가지는 그래핀이 에너지 저장 장치를 위한 소재로 주목받고 있다. 이러한 그래핀은 슈퍼커패시터 외에도 태양전지 및 전기화학 센서 등의 분야에서도 유망하게 사용되고 있다.
최근, 전해질과 전극물질 표면간 접근성을 향상시키기 위하여 기공을 가진 그래핀 전극을 제조한 연구들이 보고되었다. 하지만, 이러한 전극들은 광범위한 기공과 그래핀 시트의 무분별한 적층으로 인하여 기존 활성탄 전극보다 부피당 축전용량이 낮은 것으로 나타났다.
한국 공개특허 제10-2015-0044359호에는 그래핀 층 간격 조절 방법 및 이를 이용한 슈퍼 커패시터를 제공하고 있으며, 구체적으로 산화 그래핀을 포함하는 용액에 계면활성제를 첨가하여 상기 산화 그래핀을 분산시키는 단계; 상기 분산된 산화 그래핀을 포함하는 용액에 환원제를 첨가하여 환원된 산화 그래핀을 형성하는 단계; 및, 상기 환원된 산화 그래핀을 포함하는 용액에 N2 +에 의해 양 말단이 활성화된 기둥 물질(pillar material)을 첨가하여 상기 기둥 물질에 포함되는 아릴기에 의해 상기 환원된 산화 그래핀과 상기 기둥 물질이 연결되어, 상기 환원된 산화 그래핀 사이의 층 간격을 조절하는 단계를 포함하며, 상기 아릴기의 수에 따라, 또는 두개 이상의 아릴기 사이에 연결되는 알킬기의 탄소수에 따라 상기 환원된 산화 그래핀 사이의 층 간격이 조절되는 것인, 슈퍼 커패시터용 층 간격이 조절된 그래핀의 제조 방법을 제공하고 있다. 다만, 상기의 제조 방법은 산화 그래핀을 환원시키기 위한 하이드라진과 같은 환원제가 추가적으로 필요하고, 여러 단계의 공정을 거쳐야 하는 번거로움이 존재하며, 이를 통해 제조된 구조체를 커패시터에 적용 시 높은 전류밀도(2 A/g 이상)에서의 비축전용량이 저하되는 문제점이 있다.
한편, 슈퍼커패시터의 비축전용량을 향상시키기 위한 접근 방법으로, 탄소나노튜브와 활성탄과 같은 탄소계 소재를 포함한 그래핀 복합체 제조에 대한 연구가 진행되었다. 다만, 2 차원 구조의 그래핀 시트 사이의 재적층과 응집 현상이 계속해서 발생됨에 따라 복합체 전극으로의 전해질 침투가 어려운 문제점을 유발하였다. 나아가, 탄소나노튜브 사이의 반데르발스 인력으로 인하여 탄소나노튜브 간의 군집현상이 발생하여 전류밀도 증가에 따른 비축전용량이 감소하는 경향을 보였다.
따라서, 2차원 그래핀과 탄소나노튜브를 적용하였을 때 발생되는 재적층과 응집 문제를 해결하여, 높은 전류밀도에서의 비축전용량 유지와 이에 따른 출력밀도를 향상시키기 위한 연구가 필요한 실정이다.
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 분무건조 및 열처리의 공정을 통한 자가조립된 구겨진 형상의 그래핀 복합체 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 탄소나노튜브가 그래핀 내에서 물리적 가교점을 형성시키고 높은 비표면적을 나타내는 구겨진 형상의 그래핀 복합체를 제공하는 데 있다.
본 발명의 또 다른 목적은 높은 전류밀도에서도 비축전용량이 효과적으로 유지되는 상기의 복합체를 적용한 슈퍼커패시터를 제공하는 데 있다.
본 발명의 또 다른 목적은 보다 간단한 공정으로 기공이 확보된 구겨진 그래핀 복합체를 제조하고, 이를 그래핀으로 집전체 상에 고정화시킨 전극의 제조방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 제1양태는 산 처리된 탄소나노튜브, 그래핀 옥사이드 및 용매를 혼합한 콜로이드 혼합용액을 준비하는 단계(단계 1); 및 상기 혼합용액을 분무 건조하고, 열처리하는 단계(단계 2);를 포함하는, 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법을 제공한다.
일 실시예에 있어서, 상기 탄소나노튜브는 다중벽 탄소나노튜브(MWCNT)일 수 있다.
일 실시예에 있어서, 상기 탄소나노튜브의 산 처리는 탄소나노튜브를 황산 및 질산을 포함하는 산 용액에 분산시켜 수행될 수 있다.
일 실시예에 있어서, 상기 단계 1의 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비는 0.01 내지 0.4 : 1일 수 있다.
일 실시예에 있어서, 상기 단계 1의 혼합용액의 그래핀 옥사이드 농도는 0.10 wt% 내지 0.50 wt%일 수 있다.
일 실시예에 있어서, 상기 단계 2는 상기 단계 1의 혼합용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 2a); 및 상기 분무된 액적을 가열로로 이송하여 건조하고, 열처리하여 자가-조립된 구겨진 형상의 그래핀-탄소나노튜브 복합체를 형성하는 단계(단계 2b);를 포함할 수 있다.
일 실시예에 있어서, 상기 단계 2a의 이류체 노즐의 직경은 1.0 mm 내지 3.0 mm일 수 있다.
일 실시예에 있어서, 상기 단계 2 또는 단계 2b의 열처리는 200 ℃ 내지 500 ℃의 온도에서 수행될 수 있다.
일 실시예에 있어서, 상기 단계 2 또는 단계 2b의 열처리는 1 시간 내지 10 시간 동안 수행될 수 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 제1양태는 상기의 방법으로 제조되어, 구겨진 형상의 그래핀 시트; 및 상기 그래핀 시트 내부에 포함된 탄소나노튜브;를 포함하고, 구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브 복합체를 제공한다.
일 실시예에 있어서, 상기 탄소나노튜브는 다중벽 탄소나노튜브(MWCNT)일 수 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 제1양태는 상기의 구겨진 형상의 그래핀-탄소나노튜브 복합체를 포함하는 슈퍼커패시터 전극을 제공한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 제1양태는 상호 대향 배치되고, 활물질을 포함하는 한 쌍의 전극; 상기 한 쌍의 전극 사이에 구비되는 전해질; 및 상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고, 상기 활물질은 상기의 구겨진 형상의 그래핀-탄소나노튜브 복합체를 포함하는, 슈퍼커패시터를 제공한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 제2양태는 산 처리된 탄소나노튜브, 그래핀 옥사이드, 전도성 고분자 단량체 및 용매를 혼합한 혼합용액을 준비하는 단계(단계 i); 상기 혼합용액의 단량체를 중합 반응시키는 단계(단계 ii); 및 상기 중합 반응된 혼합용액을 분무 건조하고, 열처리하는 단계(단계 iii);를 포함하는, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법을 제공한다.
일 실시예에 있어서, 상기 단계 i의 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비는 0.01 내지 0.5 : 1일 수 있다.
일 실시예에 있어서, 상기 단계 i의 혼합용액의 단량체 농도는 5 mM 내지 50 mM일 수 있다.
일 실시예에 있어서, 상기 단계 i의 전도성 고분자 단량체는 아닐린, 피롤, 티오펜, 아세틸렌, 퓨란, 페닐렌 및 이들의 유도체로 이루어지는 군으로부터 선택된 1종 이상일 수 있다.
일 실시예에 있어서, 상기 단계 ii는 상기 혼합용액에 중합 개시제를 첨가하고 초음파 처리하여 수행될 수 있다.
일 실시예에 있어서, 상기 단계 iii은 상기 중합 반응된 혼합용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 iiia); 및 상기 분무된 액적을 가열로로 이송하여 건조하고, 열처리하여 자가-조립된 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 형성하는 단계(단계 iiib);를 포함할 수 있다.
일 실시예에 있어서, 상기 단계 iiia의 이류체 노즐의 직경은 1.0 mm 내지 3.0 mm일 수 있다.
일 실시예에 있어서, 상기 단계 iii 또는 단계 iiib의 열처리는 200 ℃ 내지 500 ℃의 온도에서 1 시간 내지 10 시간 동안 수행될 수 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 제2양태는 상기의 방법으로 제조되어, 구겨진 형상의 그래핀 시트; 상기 그래핀 시트 내부에 포함된 탄소나노튜브; 및 전도성 고분자;를 포함하고, 구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 제공한다.
일 실시예에 있어서, 상기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리퓨란 및 폴리파라페닐렌으로 이루어지는 군으로부터 선택된 1종일 수 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 제2양태는 상기의 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 포함하는 슈퍼커패시터 전극을 제공한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 제2양태는 상호 대향 배치되고, 활물질을 포함하는 한 쌍의 전극; 상기 한 쌍의 전극 사이에 구비되는 전해질; 및 상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고, 상기 활물질은 상기의 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 포함하는, 슈퍼커패시터를 제공한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 제3양태는 산 처리된 탄소나노튜브, 그래핀 옥사이드, 전도성 고분자 단량체 및 용매를 혼합한 혼합용액을 준비하는 단계(단계 i); 상기 혼합용액의 단량체를 중합 반응시키는 단계(단계 ii); 상기 중합 반응된 혼합용액을 분무 건조하고, 열처리하여 구겨진 형상의 그래핀 복합체를 제조하는 단계(단계 iii); 및 상기 복합체, 그래핀 옥사이드 및 용매를 혼합하고 집전체 상에 도포한 다음 열처리하는 단계(iv);를 포함하는, 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법을 제공한다.
일 실시예에 있어서, 상기 단계 iv의 혼합은 상기 복합체 : 그래핀 옥사이드의 중량비가 1 : 0.02 내지 0.5일 수 있다.
일 실시예에 있어서, 상기 단계 iv의 열처리는 200 ℃ 내지 500 ℃의 온도에서 1 시간 내지 10 시간 동안 수행될 수 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 제3양태는 구겨진 형상의 그래핀 시트; 상기 그래핀 시트 내부에 포함된 탄소나노튜브; 및 전도성 고분자;를 포함하고, 구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체; 상기 복합체가 일면에 복수 개 형성된 집전체; 및 상기 집전체와 복합체를 고정하고, 상기 복합체와 복합체를 고정하는 그래핀 시트;를 포함하는, 슈퍼커패시터 전극을 제공한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 제3양태는 상호 대향 배치된 한 쌍의 전극; 상기 한 쌍의 전극 사이에 구비되는 전해질; 및 상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고, 상기 전극은 상기의 전극으로 구비되는, 슈퍼커패시터를 제공한다.
본 발명의 제1양태에 따르면, 탄소나노튜브 및 그래핀 혼합 콜로이드 용액을 분무건조 및 열처리함으로써 자가-조립된 구겨진 형상의 그래핀-탄소나노튜브 복합체를 제조할 수 있고, 이에 따라 제조된 복합체는 탄소나노튜브가 그래핀 간의 물리적 가교점을 형성함과 동시에 그래핀 면 간격을 증대시킬 수 있다. 또한, 상기 제조된 복합체를 포함하는 전극을 커패시터에 적용할 시 전해질과의 낮은 계면저항을 나타낼 수 있고, 전도도가 양호하며, 높은 전류밀도에서 비축전용량 유지 능력이 우수한 효과가 있다.
본 발명의 제2양태에 따르면, 그래핀 옥사이드, 탄소나노튜브 및 전도성 고분자 단량체를 혼합합 콜로이드 용액 내에 투입된 탄소나노튜브가 제조되는 복합체의 그래핀 시트간의 가교역할을 함으로써 전기전도도 향상과 면간격 증대로 인한 커패시터 적용 시 전해질 접근성을 향상시킬 수 있다. 또한, 3 차원 구형 형상이며 내부에 균일한 기공이 형성된 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체는 전도성 고분자의 높은 전기전도도와 산화-환원 반응을 통하여, 이를 적용한 커패시터는 높은 출력밀도와 에너지 밀도를 동시에 나타낼 수 있다.
본 발명의 제3양태에 따르면, 3차원 구형 형상이며 내부에 균일한 기공이 형성된 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 그래핀을 통해 집전체 상에 고정화시켜, 바인더 없이 전극을 제조할 수 있고, 이를 커패시터에 활용 시 높은 출력밀도와 에너지 밀도를 동시에 나타낼 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 제1양태에 의한 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법의 일례를 나타낸 개략도이다.
도 2는 본 발명의 제1양태에 의한 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법의 일례를 나타낸 모식도이다.
도 3 (a1) 내지 (d1)은 본 발명의 실시예 1 내지 실시예 3 및 비교예 1에서 제조된 복합체를 주사전자현미경(FE-SEM)으로 촬영한 사진이다.
도 3 (a2) 내지 (d2)는 본 발명의 실시예 1 내지 실시예 3 및 비교예 1에서 제조된 복합체를 투과전자현미경(TEM)으로 촬영한 사진이다.
도 4는 본 발명의 실시예 1 내지 실시예 3 및 비교예 1에서 제조된 복합체와, 그래핀 옥사이드 및 다중벽 탄소나노튜브의 X선 회절(XRD) 분석 결과를 나타내는 그래프이다.
도 5은 본 발명의 실시예 1 내지 실시예 3 및 비교예 1에서 제조된 복합체의 라만 분광법(raman spectroscopy) 분석 결과를 나타내는 그래프이다.
도 6은 본 발명의 실시예 4 내지 실시예 6 및 비교예 2에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 및 임피던스 특성을 분석한 결과를 나타낸 그래프이다.
도 7은 본 발명의 제2양태에 의한 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법의 일례를 나타낸 개략도이다.
도 8은 본 발명의 제2양태에 의한 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법의 또 다른 일례를 나타낸 모식도이다.
도 9 a 내지 도 9 c는 본 발명의 실시예 i, 비교예 i 및 비교예 ii에서 제조된 물질을 주사전자현미경(FE-SEM)으로 촬영한 사진이다.
도 9 d 내지 도 9 f는 본 발명의 실시예 i, 비교예 i 및 비교예 ii에서 제조된 물질을 투과전자현미경(TEM)으로 촬영한 사진이다.
도 10 a는 본 발명의 실시예 i, 비교예 i 및 비교예 ii에서 제조된 물질의 X선 회절(XRD) 분석 결과를 나타내는 그래프이다.
도 10 b는 본 발명의 실시예 i, 비교예 i 및 비교예 ii에서 제조된 물질의 라만 분광법(raman spectroscopy) 분석 결과를 나타내는 그래프이다.
도 11은 본 발명의 실시에 i, 비교예 i 및 비교예 ii에서 제조된 물질의 수은 세공계 (mercury porosimeter) 분석 결과를 나타내는 그래프이다.
도 12 a 내지 d는 본 발명의 실시예 iv, 비교예 iii 및 비교예 iv에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 및 임피던스 특성을 분석한 결과를 나타낸 그래프이다.
도 13 a 내지 d는 본 발명의 실시예 iv 내지 실시예 vi에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 및 임피던스 특성을 분석한 결과를 나타낸 그래프이다.
도 14는 본 발명의 제3양태에 의한 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법의 일례를 나타낸 개략도이다.
도 15는 본 발명의 제3양태에 의한 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법의 또 다른 일례를 나타낸 모식도이다.
도 16 a 내지 도 16 f는 본 발명의 실시예 i+ 내지 실시예 iii+에서 제조된 물질을 주사전자현미경(FE-SEM)으로 촬영한 사진이다.
도 17 a 내지 도 17 f는 본 발명의 실시예 i+ 내지 실시예 iii+에서 제조된 물질을 투과전자현미경(TEM)으로 촬영한 사진이다.
도 18 a는 본 발명의 실시예 i+ 내지 실시예 iii+에서 제조된 물질, 구겨진 그래핀 및 폴리아닐린의 X선 회절 분석 결과를 나타낸 그래프이다.
도 18 b는 본 발명의 실시예 i+ 내지 실시예 iii+에서 제조된 물질, 구겨진 그래핀 및 폴리아닐린의 라만 분광법(raman spectroscopy) 분석 결과를 나타낸 그래프이다.
도 19a 내지 c는 본 발명의 실시예 iv+ 내지 vi+에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 특성을 분석한 결과를 나타낸 그래프이다.
도 20a 내지 c는 본 발명의 실시예 iv+, 실시예 vii+ 및 실시예 viii+에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 특성을 분석한 결과를 나타낸 그래프이다.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
나아가, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
본 발명의 제1양태는,
산 처리된 탄소나노튜브, 그래핀 옥사이드 및 용매를 혼합한 콜로이드 혼합용액을 준비하는 단계(단계 1)(S10); 및
상기 혼합용액을 분무 건조하고, 열처리하는 단계(단계 2)(S20);를 포함하는, 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법을 제공한다.
기존의 그래핀-탄소나노튜브 복합체 연구에서, 2 차원 구조의 그래핀 시트 사이의 재적층과 응집 현상이 계속해서 발생됨에 따라 복합체 전극으로의 전해질 침투가 어려운 문제점을 유발하였다. 또한, 탄소나노튜브 사이의 반데르발스 인력으로 인하여 탄소나노튜브 간의 군집현상이 발생하여, 커패시터에 적용 시 전류밀도 증가에 따른 비축전용량이 감소하는 경향을 보였다.
본 발명자들은 2차원 그래핀과 탄소나노튜브의 재적층과 응집 문제를 해결하고자, 커패시터에 적용 시 높은 전류밀도에서의 비축전용량 유지와 이에 따른 출력밀도를 향상시킬 수 있는 구겨진 형상의 그래핀-탄소나노튜브 복합체를 제조하는 방법을 개발하고 본 발명을 완성하였다.
이하, 본 발명의 제1양태에 따른 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법에 대하여 각 단계별로 상세히 설명한다.
본 발명의 제1양태에 따른 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법에 있어서, 상기 단계 1(S10)은 산 처리된 탄소나노튜브, 그래핀 옥사이드 및 용매를 혼합한 콜로이드 혼합용액을 준비한다.
상기 단계 1의 탄소나노튜브는, 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 및 다중벽 탄소나노튜브(MWCNT)로 이루어지는 군으로부터 선택된 1종의 탄소나노튜브일 수 있고, 다중벽 탄소나노튜브(multi-walled carbon nanotube; MWCNT)인 것이 바람직하다.
상기 단계 1의 탄소나노튜브 산 처리는 탄소나노튜브를 황산 및 질산을 포함하는 산 용액에 분산시켜 수행될 수 있다. 구체적으로, 황산 : 질산이 2 내지 4 : 1의 체적비로 혼합된 산 용액에 탄소나노튜브를 분산시키고, 50 ℃ 내지 80 ℃의 온도에서 1 시간 내지 10 시간 동안 교반하여 수행될 수 있다.
상기 단계 1의 탄소나노튜브 산 처리 시, 탄소나노튜브 : 산 용액의 고액비(g/mL)는 1 : 150 내지 250일 수 있다.
상기 단계 1은 상기 산 처리된 탄소나노튜브를 염산 용액으로 세척하고 건조하는 단계를 더 포함할 수 있다.
상기 단계 1의 산 처리된 탄소나노튜브는 산 처리 전에 비해 물에 대한 분산성이 향상될 수 있다.
상기 단계 1의 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비는 0.01 내지 0.4 : 1일 수 있고, 바람직하게는 0.05 내지 0.1 : 1일 수 있다. 상기 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비가 0.01 : 1 미만인 경우, 제조되는 구겨진 형상의 그래핀-탄소나노튜브 복합체에서 탄소나노튜브가 그래핀 내에서 물리적 가교점을 충분히 형성시키지 못할 수 있고, 이를 포함하는 슈퍼커패시터는 비축전용량 유지율이 저하될 수 있는 문제가 발생할 수 있다. 상기 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비가 0.4 : 1 초과인 경우, 제조되는 구겨진 형상의 그래핀-탄소나노튜브 복합체에서 탄소나노튜브가 응집될 수 있고, 이를 포함하는 슈퍼커패시터는 전해질 및 전극 간의 계면저항이 증가되는 문제가 발생할 수 있다.
상기 단계 1의 용매는 증류수, 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린 및 디메틸설폭사이드로 이루어지는 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 증류수를 사용할 수 있다.
상기 단계 1의 혼합용액의 그래핀 옥사이드 농도는 0.10 wt% 내지 0.50 wt%일 수 있고, 바람직하게는 0.15 wt % 내지 0.35 wt%일 수 있다. 상기 혼합용액의 그래핀 옥사이드 농도가 0.10 wt% 미만이라면, 하기 단계에서 단위시간당 생성되는 복합체량이 적어 제조효율이 저하될 수 있고, 상기 혼합용액의 그래핀 옥사이드 농도가 0.50 wt% 초과라면, 하기 분무 단계를 통해 구겨진 형상의 그래핀-탄소나노튜브 복합체를 형성하지 못하는 문제가 발생할 수 있다.
상기 단계 1은 상기 준비된 콜로이드 혼합용액을 초음파 처리를 통해 분산시키는 단계를 더 포함할 수 있다.
본 발명의 제1양태에 따른 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법에 있어서, 상기 단계 2(S20)는 상기 혼합용액을 분무 건조하고 열처리한다.
상기 단계 2의 분무 건조 및 열처리는 구체적으로 하기 단계 2a 및 단계 2b를 포함할 수 있다.
상기 단계 2는 상기 단계 1의 혼합용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 2a); 및
상기 분무된 액적을 가열로로 이송하여 건조하고, 열처리하여 자가-조립된 구겨진 형상의 그래핀-탄소나노튜브 복합체를 형성하는 단계(단계 2b);를 포함할 수 있다.
상기 단계 2a의 이류체 노즐의 직경은 1.0 mm 내지 3.0 mm일 수 있고, 바람직하게는 1.0 mm 내지 2.0 mm일 수 있다. 상기 이류체 노즐의 직경이 1.0 mm 미만이라면, 노즐로부터 액적들이 원활하게 발생하지 못하는 문제가 있을 수 있고, 상기 이류체 노즐의 직경이 3.0 mm 초과라면, 상기 단계 1의 혼합용액으로부터 용이하게 미립자를 생성하지 못할 가능성이 있다.
상기 단계 2a의 이류체 노즐은 액체와 기체의 충돌에 의한 혼합 분산에 의해 액체를 미립화할 수 있다. 상기 이류체 노즐은 종래의 직접 가압방식에 의한 노즐과는 달리 낮은 압력에서도 초미세 분무를 유지할 수 있는 장점이 있다.
상기 단계 2b의 액적의 가열로 이송은 아르곤, 헬륨 및 질소로 이루어지는 군으로부터 선택된 1종 이상의 가스를 통해 이송될 수 있고, 바람직하게는 아르곤 가스를 통해 이송될 수 있다.
상기 단계 2b의 액적의 가열로 이송 시 가스의 유량은 5 L/min 내지 15 L/min일 수 있고, 바람직하게는 5 L/min 내지 10 L/min일 수 있다.
상기 단계 2b의 가열로의 온도는 150 ℃ 내지 250 ℃의 일 수 있고, 바람직하게는 180 ℃ 내지 220 ℃일 수 있다. 상기 가열로의 온도가 150 ℃ 미만이라면, 액적 내 용매가 일부 증발되지 못하고 잔류하는 문제, 구겨진 형상의 그래핀 산화물-탄소나노튜브 복합체를 형성하지 못하는 문제가 발생할 수 있고, 상기 가열로의 온도가 250 ℃ 초과라면, 구겨진 형상의 그래핀 산화물-탄소나노튜브 복합체를 형성하는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 2b의 가열로 이송을 통한 건조로 액적 내에 존재하는 용매가 증발되면, 그래핀 산화물 시트가 모세관 몰딩(capillary molding) 현상에 의해 서로 모이게 되며, 이에 구겨진 형상의 그래핀 산화물-탄소나노튜브 복합체를 제조할 수 있다.
상기 단계 2b의 건조가 수행된 복합체는 사이클론을 통해 필터에 포집될 수 있고, 이후 그래핀 산화물의 환원을 위한 열처리를 수행할 수 있다.
상기 단계 2b의 열처리는 200 ℃ 내지 500 ℃의 온도에서 수행될 수 있고, 바람직하게는 200 ℃ 내지 300 ℃의 온도에서 수행될 수 있다. 상기 열처리 온도가 200 ℃ 미만이라면, 그래핀 옥사이드가 효과적으로 환원되지 못하는 문제가 발생할 수 있고, 상기 열처리 온도가 500℃ 초과라면, 그래핀 옥사이드를 환원시키는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 2b의 열처리는 머플로(muffle furnace)에서 수행될 수 있고, 아르곤, 헬륨 및 질소로 이루어지는 군으로부터 선택된 1종 이상의 가스 분위기에서 수행될 수 있으며, 바람직하게는 아르곤 가스 분위기에서 수행될 수 있다.
상기 단계 2b의 열처리는 1 시간 내지 10 시간 동안 수행될 수 있고, 바람직하게는 1 시간 내지 3 시간 동안 수행될 수 있다. 상기 열처리 시간이 1 시간 미만이라면, 그래핀 옥사이드가 효과적으로 환원되지 못하는 문제가 발생할 수 있고, 상기 열처리 시간이 10 시간 초과라면, 그래핀 옥사이드를 환원시키는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 1 내지 단계 2를 통해 최종적으로 제조되는 구겨진 형상의 그래핀-탄소나노튜브 복합체는 상기의 제조방법으로 인한 상호보완적 결합으로 인하여 그래핀의 재적층과 탄소나노튜브의 응집이 억제될 수 있다. 또한, 그래핀 표면과 가장자리에 구비되는 탄소나노튜브가 그래핀 시트 간의 가교역할을 수행할 수 있으며, 이로 인해 상기 복합체를 포함하는 전극을 커패시터에 적용할 시 전기전도도 향상과 면간격 증대로 인한 전해질 접근성을 촉진시킬 수 있다.
본 발명의 다른 제1양태는,
상기의 방법(단계 1 및 단계 2, S10 및 S20)으로 제조되어,
구겨진 형상의 그래핀 시트; 및
상기 그래핀 시트 내부에 포함된 탄소나노튜브;를 포함하고,
구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브 복합체를 제공한다.
본 발명의 제1양태에 따른 구겨진 형상의 그래핀-탄소나노튜브 복합체에 있어서, 상기 탄소나노튜브는, 다중벽 탄소나노튜브(MWCNT)인 것이 바람직하다.
상기 구겨진 형상의 그래핀-탄소나노튜브 복합체는 내부에 포함된 탄소나노튜브가 그래핀 시트 간의 물리적 가교점 역할을 할 수 있다.
상기 구겨진 형상의 그래핀-탄소나노튜브 복합체는 하기 수학식 1을 만족할 수 있다.
[수학식 1]
0.70 < Id/Ig < 0.95
(상기 수학식 1에서, Id는 상기 구겨진 형상의 그래핀-탄소나노튜브 복합체 내 그래핀 sp2 구조의 결손, 치환 또는 무질서도(disorder)를 나타내는 라만 분광법 피크 강도이고, Ig는 흑연의 탄소를 나타내는 라만 분광법 피크 강도이다.)
상기 구겨진 형상의 그래핀-탄소나노튜브 복합체는 그래핀 면간격(interlayer spacing)이 증대된 특성을 나타낼 수 있고, 이는 상기 복합체의 그래핀 내에 잔류할 수 있는 산소 작용기 및 탄소나노튜브 등에 의한 것일 수 있다. 구체적으로 상기 구겨진 형상의 그래핀-탄소나노튜브 복합체의 그래핀 면간격은 0.35 nm 내지 0.38 nm일 수 있다.
본 발명의 또 다른 제1양태는,
상기의 구겨진 형상의 그래핀-탄소나노튜브 복합체를 포함하는 슈퍼커패시터 전극을 제공한다.
상기의 복합체를 포함하는 전극은 커패시터에 적용될 시, 복합체의 그래핀 면간격 증가로 인한 높은 접촉면적으로 인해 수용성 전해질과의 접촉저항이 감소된 특성을 나타낼 수 있다.
상기 전극은 상기 복합체를 지지하는 바인더를 더 포함할 수 있고, 상기 바인더는 폴리비닐리덴 플로라이드(PVDF), 폴리비닐리덴 플로라이드 헥사플루오로프로펜(PVDF-HFP), 카르복시메틸셀룰로오즈(CMC), 스티렌부타디엔 러버(SBR), 폴리이미드(PI) 및 폴리비닐알콜(PVA)로 이루어지는 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한하는 것은 아니다.
본 발명의 또 다른 제1양태는,
상호 대향 배치되고, 활물질을 포함하는 한 쌍의 전극;
상기 한 쌍의 전극 사이에 구비되는 전해질; 및
상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고,
상기 활물질은 상기의 구겨진 형상의 그래핀-탄소나노튜브 복합체를 포함하는, 슈퍼커패시터를 제공한다.
상기 한 쌍의 전극은 각각의 일면에 전기적으로 접촉하며 배치되는 집전체를 더 포함할 수 있다.
상기 전해질은 황산을 포함하는 산계 전해질, 수산화칼륨을 포함하는 알칼리계 전해질 및 황산나트륨을 포함하는 중성 전해질로 이루어지는 군으로부터 선택된 1종을 사용할 수 있으나, 이에 제한하는 것은 아니다.
상기 집전체는 구리, 니켈, 알루미늄, 스테인레스 강으로 이루어지는 군으로부터 선택된 1종 이상의 금속을 포함하는 금속 호일 또는 금속 박막일 수 있고, 전도도를 갖는 탄소 기반의 다공성 페이퍼일 수 있으나, 화학적, 전기 화학적으로 내식성이 있는 것이라면 이에 제한하는 것은 아니다.
상기 분리막은 부직포, 폴리테트라플루오르에틸렌(PTFE), 다공성 필름, 크래프트지, 셀룰로스계 전해지, 레이온 섬유 등을 사용할 수 있으나, 이에 제한하는 것은 아니다.
본 발명의 제1양태에 따른 슈퍼커패시터는 상기 복합체의 그래핀 면간격 증가로 인한 높은 접촉면적으로 인해 상기 전극 및 전해질 간의 계면저항이 감소될 수 있고, 이에 비축전용량이 증대될 수 있다. 구체적으로, 본 발명의 제1양태에 따른 슈퍼커패시터의 비축전용량은 0.1 A/g의 전류밀도에서 130 F/g 내지 200 F/g 일 수 있고, 높은 전류밀도에서도 상기의 비축전용량을 거의 유지할 수 있다. 구체적으로, 4 A/g의 전류밀도에서의 비축전용량은 0.1 A/g의 전류밀도에서 비축전용량 대비 70 % 내지 90 %를 나타낼 수 있다.
본 발명의 제2양태는,
산 처리된 탄소나노튜브, 그래핀 옥사이드, 전도성 고분자 단량체 및 용매를 혼합한 혼합용액을 준비하는 단계(단계 i)(S100);
상기 혼합용액의 단량체를 중합 반응시키는 단계(단계 ii)(S200); 및
상기 중합 반응된 혼합용액을 분무 건조하고, 열처리하는 단계(단계 iii)(S300);를 포함하는, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법을 제공한다.
이하, 본 발명의 제2양태에 따른 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법에 대하여, 각 단계별로 상세히 설명한다.
본 발명의 제2양태에 따른 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법에 있어서, 상기 단계 i(S100)은 산 처리된 탄소나노튜브, 그래핀 옥사이드, 전도성 고분자 단량체 및 용매를 혼합한 혼합용액을 준비한다.
상기 단계 i의 탄소나노튜브는, 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 및 다중벽 탄소나노튜브(MWCNT)로 이루어지는 군으로부터 선택된 1종의 탄소나노튜브일 수 있고, 다중벽 탄소나노튜브(multi-walled carbon nanotube; MWCNT)인 것이 바람직하다.
상기 단계 i의 탄소나노튜브 산 처리는 탄소나노튜브를 황산 및 질산을 포함하는 산 용액에 분산시켜 수행될 수 있다.
구체적으로, 황산 : 질산이 2 내지 4 : 1의 체적비로 혼합된 산 용액에 탄소나노튜브를 분산시키고, 50 ℃ 내지 80 ℃의 온도에서 1 시간 내지 10 시간 동안 교반하여 수행될 수 있다.
상기 단계 i의 탄소나노튜브 산 처리 시, 탄소나노튜브 : 산 용액의 고액비(g/mL)는 1 : 150 내지 250일 수 있다.
상기 단계 i는 상기 산 처리된 탄소나노튜브를 염산 용액으로 세척하고 건조하는 단계를 더 포함할 수 있다.
상기 단계 i의 산 처리된 탄소나노튜브는 산 처리 전에 비해 물에 대한 분산성이 향상될 수 있다.
상기 단계 i의 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비는 0.01 내지 0.5 : 1일 수 있고, 바람직하게는 0.05 내지 0.1 : 1일 수 있다. 상기 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비가 0.01 : 1 미만인 경우, 제조되는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체에서 탄소나노튜브가 그래핀 내에서 물리적 가교점을 충분히 형성시키지 못할 수 있고, 이를 포함하는 슈퍼커패시터는 비축전용량 유지율이 저하될 수 있는 문제가 발생할 수 있다. 상기 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비가 0.5 : 1 초과인 경우, 제조되는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체에서 탄소나노튜브가 응집될 수 있고, 이를 포함하는 슈퍼커패시터는 전해질 및 전극 간의 계면저항이 증가되는 문제가 발생할 수 있다.
상기 단계 i의 용매는 증류수, 산 용액, 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린 및 디메틸설폭사이드로 이루어지는 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 염산 용액을 사용할 수 있다.
상기 단계 i의 혼합용액의 그래핀 옥사이드 농도는 0.10 wt% 내지 0.50 wt%일 수 있고, 바람직하게는 0.15 wt % 내지 0.35 wt%일 수 있다. 상기 혼합용액의 그래핀 옥사이드 농도가 0.10 wt% 미만이라면, 하기 단계에서 단위시간당 생성되는 복합체량이 적어 제조효율이 저하될 수 있고, 상기 혼합용액의 그래핀 옥사이드 농도가 0.50 wt% 초과라면, 하기 분무 단계를 통해 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 형성하지 못하는 문제가 발생할 수 있다.
상기 단계 i의 혼합용액의 단량체 농도는 5 mM 내지 50 mM일 수 있고, 바람직하게는 10 mM 내지 30 mM일 수 있다. 상기 단량체 농도가 5 mM 미만이라면, 제조되는 복합체에서 전도성 고분자의 함량이 적어 이를 커패시터에 적용할 시 비축전용량이 저하될 우려가 있고, 상기 단량체 농도가 50 mM 초과라면, 제조되는 복합체 내 전도성 고분자가 과도하게 생성되어 이를 커패시터에 적용할 시 전해질과의 접촉저항이 증가되는 문제가 발생할 수 있다.
상기 단계 i의 전도성 고분자 단량체는 아닐린, 피롤, 티오펜, 아세틸렌, 퓨란, 페닐렌 및 이들의 유도체로 이루어지는 군으로부터 선택된 1종 이상일 수 있고, 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리퓨란 및 폴리파라페닐렌으로 이루어지는 군으로부터 선택된 1종의 고분자를 형성하기 위한 단량체를 사용할 수 있다.
본 발명의 제2양태에 따른 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법에 있어서, 상기 단계 ii(S200)는 상기 혼합용액의 단량체를 중합 반응시킨다.
상기 단계 ii는 상기 혼합용액에 중합 개시제를 첨가하고 초음파 처리하여 수행될 수 있다.
상기 단계 ii의 초음파 처리는 0.5 시간 내지 10 시간동안 수행될 수 있고, 바람직하게는 1 시간 내지 3 시간 동안 수행될 수 있다. 상기 초음파 처리가 0.5 시간 미만이라면, 상기 단계 i에서 준비된 혼합용액이 충분히 분산되지 못하는 문제, 단량체의 중합이 일부 이루어지지 못하는 문제가 발생할 수 있고, 상기 초음파 처리가 10 시간 초과라면, 상기 혼합용액의 분산 및 중합에 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 ii의 중합 개시제는 상기 단량체가 중합되는 데 사용될 수 있는 공지된 개시제를 사용할 수 있다.
상기 단계 ii는 상기 단량체가 아닐린일 경우, 이를 중합하는데 사용되는 일반적인 개시제가 사용될 수 있고, 바람직하게는 암모늄 퍼설페이트, 포타슘 퍼설페이트, 나트륨 퍼설페이트, 리튬 퍼설페이트로 이루어지는 군으로부터 선택된 1종 이상의 중합 개시제를 사용할 수 있다.
상기 단계 ii의 중합 개시제 첨가량은 단량체 100 중량부에 대하여 10 내지 100 중량부, 바람직하게는 20 내지 80 중량부를 첨가할 수 있다.
상기 단계 ii를 통해 상기 혼합용액 내 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리퓨란 및 폴리파라페닐렌으로 이루어지는 군으로부터 선택된 1종의 전도성 고분자가 형성될 수 있다.
본 발명의 제2양태에 따른 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법에 있어서, 상기 단계 iii(S300)은 상기 중합 반응된 혼합용액을 분무 건조하고, 열처리한다.
상기 단계 iii의 분무 건조 및 열처리는 구체적으로 하기 단계 iiia 및 단계 iiib를 포함할 수 있다.
상기 단계 iii는 상기 중합 반응된 혼합용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 iiia); 및
상기 분무된 액적을 가열로로 이송하여 건조하고, 열처리하여 자가-조립된 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 형성하는 단계(단계 iiib);를 포함할 수 있다.
상기 단계 iiia의 이류체 노즐의 직경은 1.0 mm 내지 3.0 mm일 수 있고, 바람직하게는 1.0 mm 내지 2.0 mm일 수 있다. 상기 이류체 노즐의 직경이 1.0 mm 미만이라면, 노즐로부터 액적들이 원할하게 발생하지 못하는 문제가 발생할 수 있고, 상기 이류체 노즐의 직경이 3.0 mm 초과라면, 상기 단계 ii가 수행된 혼합용액으로부터 용이하게 미립자를 생성하지 못할 가능성이 있다.
상기 단계 iiia의 이류체 노즐은 액체와 기체의 충돌에 의한 혼합 분산에 의해 액체를 미립화할 수 있다. 상기 이류체 노즐은 종래의 직접 가압방식에 의한 노즐과는 달리 낮은 압력에서도 초미세 분무를 유지할 수 있는 장점이 있다.
상기 단계 iiib의 액적의 가열로 이송은 아르곤, 헬륨 및 질소로 이루어지는 군으로부터 선택된 1종 이상의 가스를 통해 이송될 수 있고, 바람직하게는 아르곤 가스를 통해 이송될 수 있다.
상기 단계 iiib의 액적의 가열로 이송 시 가스의 유량은 5 L/min 내지 15 L/min일 수 있고, 바람직하게는 5 L/min 내지 10 L/min일 수 있다.
상기 단계 iiib의 가열로의 온도는 150 ℃ 내지 250 ℃의 일 수 있고, 바람직하게는 180 ℃ 내지 220 ℃일 수 있다. 상기 가열로의 온도가 150 ℃ 미만이라면, 액적 내 용매가 일부 증발되지 못하고 잔류하는 문제, 구겨진 형상의 그래핀 산화물-탄소나노튜브-고분자 복합체를 형성하지 못하는 문제가 발생할 수 있고, 상기 가열로의 온도가 250 ℃ 초과라면, 구겨진 형상의 그래핀 산화물-탄소나노튜브-고분자 복합체를 형성하는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 iiib의 가열로 이송을 통한 건조로 액적 내에 존재하는 용매가 증발되면, 그래핀 옥사이드 시트가 모세관 몰딩(capillary molding) 현상에 의해 서로 모이게 되며, 이에 구겨진 형상의 그래핀 산화물-탄소나노튜브-고분자 복합체를 제조할 수 있다.
상기 단계 iiib의 건조가 수행된 복합체는 사이클론을 통해 필터에 포집될 수 있고, 이후 그래핀 옥사이드의 환원을 위한 열처리를 수행할 수 있다.
상기 단계 iiib의 열처리는 200 ℃ 내지 500 ℃의 온도에서 수행될 수 있고, 바람직하게는 200 ℃ 내지 300 ℃의 온도에서 수행될 수 있다. 상기 열처리 온도가 200 ℃ 미만이라면, 그래핀 옥사이드가 효과적으로 환원되지 못하는 문제가 발생할 수 있고, 상기 열처리 온도가 500℃ 초과라면, 그래핀 옥사이드를 환원시키는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 iiib의 열처리는 머플로(muffle furnace)에서 수행될 수 있고, 아르곤, 헬륨 및 질소로 이루어지는 군으로부터 선택된 1종 이상의 가스 분위기에서 수행될 수 있으며, 바람직하게는 아르곤 가스 분위기에서 수행될 수 있다.
상기 단계 iiib의 열처리는 1 시간 내지 10 시간 동안 수행될 수 있고, 바람직하게는 1 시간 내지 3 시간 동안 수행될 수 있다. 상기 열처리 시간이 1 시간 미만이라면, 그래핀 옥사이드가 효과적으로 환원되지 못하는 문제가 발생할 수 있고, 상기 열처리 시간이 10 시간 초과라면, 그래핀 옥사이드를 환원시키는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 i 내지 단계 iii를 통해 최종적으로 제조되는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체는 상기의 제조방법으로 인한 상호보완적 결합으로 인하여 그래핀의 재적층과 탄소나노튜브의 응집이 억제될 수 있다. 또한, 그래핀 표면과 가장자리에 구비되는 탄소나노튜브가 그래핀 시트 간의 가교역할을 수행할 수 있으며, 이로 인해 상기 복합체를 포함하는 전극을 커패시터에 적용할 시 전기전도도 향상과 면간격 증대로 인한 전해질 접근성을 촉진시킬 수 있다. 또한, 상기 복합체 내 포함된 전도성 고분자로 인해 커패시터의 출력밀도와 에너지밀도가 향상될 수 있다.
본 발명의 다른 제2양태는,
상기의 방법(단계 i 내지 iii, 단계 S100 내지 S300)으로 제조되어,
구겨진 형상의 그래핀 시트;
상기 그래핀 시트 내부에 포함된 탄소나노튜브; 및 전도성 고분자;를 포함하고,
구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 제공한다.
상기 탄소나노튜브는 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 및 다중벽 탄소나노튜브(MWCNT)로 이루어지는 군으로부터 선택된 1종의 탄소나노튜브일 수 있고, 다중벽 탄소나노튜브(multi-walled carbon nanotube; MWCNT)인 것이 바람직하다.
상기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리퓨란 및 폴리파라페닐렌으로 이루어지는 군으로부터 선택된 1종일 수 있고, 바람직하게는 폴리아닐린일 수 있다.
상기 구겨진 형상의 그래핀-탄소나노튜브-폴리아닐린 복합체는 그래핀 면간격(interlayer spacing)이 증대된 특성을 나타낼 수 있고, 이는 상기 복합체의 그래핀 내에 잔류할 수 있는 산소 작용기, 탄소나노튜브 및 전도성 고분자 등에 의한 것일 수 있다.
본 발명의 또 다른 제2양태는,
상기의 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 포함하는 슈퍼커패시터 전극을 제공한다.
상기의 복합체를 포함하는 전극은 커패시터에 적용될 시, 복합체의 그래핀 면간격 증가로 인한 높은 접촉면적으로 인해 수용성 전해질과의 접촉저항이 감소된 특성을 나타낼 수 있고, 복합체 내 전도성 고분자로 인하여 고 출력밀도와 높은 비축전용량을 나타낼 수 있다.
상기 전극은 상기 복합체를 지지하는 바인더를 더 포함할 수 있고, 상기 바인더는 폴리비닐리덴 플로라이드(PVDF), 폴리비닐리덴 플로라이드 헥사플루오로프로펜(PVDF-HFP), 카르복시메틸셀룰로오즈(CMC), 스티렌부타디엔 러버(SBR), 폴리이미드(PI) 및 폴리비닐알콜(PVA)로 이루어지는 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한하는 것은 아니다.
본 발명의 또 다른 제2양태는,
상호 대향 배치되고, 활물질을 포함하는 한 쌍의 전극;
상기 한 쌍의 전극 사이에 구비되는 전해질; 및
상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고,
상기 활물질은 상기의 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 포함하는, 슈퍼커패시터를 제공한다.
상기 한 쌍의 전극은 각각의 일면에 전기적으로 접촉하며 배치되는 집전체를 더 포함할 수 있다.
상기 전해질은 황산을 포함하는 산계 전해질, 수산화칼륨을 포함하는 알칼리계 전해질 및 황산나트륨을 포함하는 중성 전해질로 이루어지는 군으로부터 선택된 1종을 사용할 수 있으나, 이에 제한하는 것은 아니다.
상기 집전체는 구리, 니켈, 알루미늄, 스테인레스 강으로 이루어지는 군으로부터 선택된 1종 이상의 금속을 포함하는 금속 호일 또는 금속 박막일 수 있고, 전도도를 갖는 탄소 기반의 다공성 페이퍼일 수 있으나, 화학적, 전기 화학적으로 내식성이 있는 것이라면 이에 제한하는 것은 아니다.
상기 분리막은 부직포, 폴리테트라플루오르에틸렌(PTFE), 다공성 필름, 크래프트지, 셀룰로스계 전해지, 레이온 섬유 등을 사용할 수 있으나, 이에 제한하는 것은 아니다.
단순 액상반응을 통하여 제조된 환원그래핀-탄소나노튜브 복합체에 폴리아닐린을 성장시켜 제조되는 폴리아닐린-탄소나노튜브-그래핀옥사이드와 환원그래핀-탄소나노튜브-폴리아닐린 복합체를 이용한 슈퍼커패시터는 환원그래핀-탄소나노튜브 표면으로 폴리아닐린이 성장함에 따라 전극 내 기공부피가 감소하여 전해질 접근성이 저하될 수 있고, 또한 폴리아닐린에서의 산화-환원 반응으로 인한 활성표면적 감소로 인해 비축전용량이 50 % 이하의 낮은 값을 나타낼 수 있다.
더불어, 액상반응에서 폴리스티렌(PS)을 유기주형으로 이용하여 제조된 다공성 그래핀-탄소나노튜브에, 폴리아닐린을 성장시켜 기공이 존재하는 복합체를 포함하는 활물질전극을 제조할 수 있다. 하지만, 이 공정은 기공형성을 위해 사용된 폴리스티렌 유기주형을 제거하기 위한 고온 열처리가 추가로 필요함에 따라 공정이 다소 복잡한 단점을 나타내고 있다.
이에 반해, 본 발명의 제2양태에 따른 슈퍼커패시터는 상기 복합체의 그래핀 면간격 증가로 인한 높은 접촉면적으로 인해 상기 전극 및 전해질 간의 계면저항이 감소될 수 있고, 이에 비축전용량이 증대될 수 있다. 또한, 복합체 내 전도성 고분자로 인하여 전기이중층 및 슈도커패시터적 성능을 동시에 나타낼 수 있다. 구체적으로, 상기 슈퍼커패시터의 비축전용량은 0.1 A/g의 전류밀도에서 200 F/g 내지 350 F/g 일 수 있고, 높은 전류밀도에서도 상기의 비축전용량을 거의 유지할 수 있다. 구체적으로, 4 A/g의 전류밀도에서의 비축전용량은 0.1 A/g의 전류밀도에서 비축전용량 대비 70 % 내지 90 %를 나타낼 수 있다.
본 발명의 제3양태는,
산 처리된 탄소나노튜브, 그래핀 옥사이드, 전도성 고분자 단량체 및 용매를 혼합한 혼합용액을 준비하는 단계(단계 i)(S100);
상기 혼합용액의 단량체를 중합 반응시키는 단계(단계 ii)(S200);
상기 중합 반응된 혼합용액을 분무 건조하고, 열처리하여 구겨진 형상의 그래핀 복합체를 제조하는 단계(단계 iii)(S300); 및
상기 복합체, 그래핀 옥사이드 및 용매를 혼합하고 집전체 상에 도포한 다음 열처리하는 단계(단계 iiii)(S400);를 포함하는, 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법을 제공한다.
이하, 본 발명의 제3양태에 따른 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법에 대하여 각 단계별로 상세히 설명한다.
본 발명의 제3양태에 따른 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법에 있어서, 상기 단계 i 내지 단계 iii는 상기 제2양태의 단계 i 내지 단계 iii와 동일할 수 있다.
본 발명의 제3양태는 바인더 사용 없이 커패시터 전극을 제조하여, 빠른 전자이동과 활물질 함량을 증가시켜 높은 비축전용량 및 비축전용량 유지율을 나타내는 슈퍼커패시터를 제조하기 위해, 하기 단계를 수행한다.
본 발명의 제3양태에 따른 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법에 있어서, 상기 단계 iv(S400)는 상기 복합체, 그래핀 옥사이드 및 용매를 혼합하고 집전체 상에 도포한 다음 열처리한다.
상기 단계 iv의 혼합은 상기 복합체 : 그래핀 옥사이드의 중량비가 1 : 0.02 내지 0.5가 되도록 수행될 수 있고, 바람직하게는 상기 복합체 : 그래핀 옥사이드의 중량비가 1 : 0.05 내지 0.3이 되도록 수행될 수 있다. 상기 복합체 : 그래핀 옥사이드의 중량비가 1 : 0.02 미만인 경우, 상기 복합체가 집전체 상에 효과적으로 고정되지 못하는 문제, 일부 복합체와 복합체 간의 고정화가 이루어지지 못하는 문제가 발생할 수 있고, 상기 복합체 : 그래핀 옥사이드의 중량비가 1 : 0.5 초과인 경우, 제조되는 전극의 활성 표면적이 감소하여 커패시터의 비축전용량이 감소할 우려가 있다.
상기 단계 iv의 열처리는 200 ℃ 내지 500 ℃의 온도에서 수행될 수 있고, 바람직하게는 200 ℃ 내지 300 ℃의 온도에서 수행될 수 있다. 상기 열처리 온도가 200 ℃ 미만이라면, 상기 단계 iv에서 혼합된 그래핀 옥사이드가 효과적으로 환원되지 못하는 문제가 발생할 수 있고, 상기 열처리 온도가 500℃ 초과라면, 상기 단계 iv에서 혼합된 그래핀 옥사이드를 환원시키는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 iv의 열처리는 1 시간 내지 10 시간 동안 수행될 수 있고, 바람직하게는 1 시간 내지 3 시간 동안 수행될 수 있다. 상기 열처리 시간이 1 시간 미만이라면, 상기 단계 iv에서 혼합된 그래핀 옥사이드가 효과적으로 환원되지 못하는 문제가 발생할 수 있고, 상기 열처리 시간이 10 시간 초과라면, 상기 단계 iv에서 혼합된 그래핀 옥사이드를 환원시키는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 iv의 집전체는 구리, 니켈, 알루미늄, 스테인레스 강으로 이루어지는 군으로부터 선택된 1종 이상의 금속을 포함하는 금속 호일 또는 금속 박막일 수 있고, 전도도를 갖는 탄소 기반의 다공성 페이퍼일 수 있으나, 화학적, 전기 화학적으로 내식성이 있는 것이라면 이에 제한하는 것은 아니다.
상기 단계 iv의 용매는 증류수, 산 용액, 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린 및 디메틸설폭사이드로 이루어지는 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 N-메틸-2-피롤리돈 용매를 사용할 수 있다.
상기 단계 iv의 도포는 상기 집전체 상에 50 ㎛ 내지 200 ㎛의 두께가 되도록 수행될 수 있고, 바람직하게는 75 ㎛ 내지 125 ㎛의 두께가 되도록 수행될 수 있다. 상기 도포 두께가 50 ㎛ 미만이라면, 제조되는 전극과 수용성 전해질 간 계면저항이 증가될 우려가 있고, 상기 도포 두께가 200 ㎛ 초과라면, 제조되는 전극이 커패시터에 적용 시 비축전용량을 증가시키지 못하면서 복합체 및 그래핀의 낭비를 발생시킬 수 있다.
상기 단계 i 내지 단계 iv를 통해 제조되는 전극은 빠른 전자이동 특성을 나타낼 수 있고, 바인더를 사용하지 않음으로 인한 활물질 함량 증가로 인하여 커패시터 적용 시 비축전용량 및 비축전용량 유지율을 향상시킬 수 있다.
본 발명의 다른 제3양태는,
구겨진 형상의 그래핀 시트; 상기 그래핀 시트 내부에 포함된 탄소나노튜브; 및 전도성 고분자;를 포함하고, 구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체;
상기 복합체가 일면에 복수 개 형성된 집전체; 및
상기 집전체와 복합체를 고정하고, 상기 복합체와 복합체를 고정하는 그래핀 시트;를 포함하는, 슈퍼커패시터 전극을 제공한다.
상기 탄소나노튜브는 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 및 다중벽 탄소나노튜브(MWCNT)로 이루어지는 군으로부터 선택된 1종의 탄소나노튜브일 수 있고, 다중벽 탄소나노튜브(multi-walled carbon nanotube; MWCNT)인 것이 바람직하다.
상기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리퓨란 및 폴리파라페닐렌으로 이루어지는 군으로부터 선택된 1종일 수 있고, 바람직하게는 폴리아닐린일 수 있다.
상기 구겨진 형상의 그래핀-탄소나노튜브-폴리아닐린 복합체는 그래핀 면간격(interlayer spacing)이 증대된 특성을 나타낼 수 있고, 이는 상기 복합체의 그래핀 내에 잔류할 수 있는 산소 작용기, 탄소나노튜브 및 전도성 고분자 등에 의한 것일 수 있다.
상기의 복합체를 포함하는 전극은 커패시터에 적용될 시, 복합체의 그래핀 면간격 증가로 인한 높은 접촉면적으로 인해 수용성 전해질과의 접촉저항이 감소된 특성을 나타낼 수 있다. 또한, 상기 전극은 상기 복합체를 지지하는 기존의 바인더 대신 그래핀을 통해 집전체 상에 고정시킴으로써 커패시터의 비축전용량과 비축전용량 유지율 향상을 도모할 수 있다.
본 발명의 또 다른 제3양태는,
상호 대향 배치된 한 쌍의 전극;
상기 한 쌍의 전극 사이에 구비되는 전해질; 및
상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고,
상기 전극은 상기의 슈퍼커패시터 전극으로 구비되는, 슈퍼커패시터를 제공한다.
상기 전해질은 황산을 포함하는 산계 전해질, 수산화칼륨을 포함하는 알칼리계 전해질 및 황산나트륨을 포함하는 중성 전해질로 이루어지는 군으로부터 선택된 1종을 사용할 수 있으나, 이에 제한하는 것은 아니다.
상기 분리막은 부직포, 폴리테트라플루오르에틸렌(PTFE), 다공성 필름, 크래프트지, 셀룰로스계 전해지, 레이온 섬유 등을 사용할 수 있으나, 이에 제한하는 것은 아니다.
본 발명의 제3양태에 따른 슈퍼커패시터는 상기 복합체의 그래핀 면간격 증가로 인한 높은 접촉면적으로 인해 상기 전극 및 전해질 간의 계면저항이 감소될 수 있고, 이에 비축전용량이 증대될 수 있다. 또한, 복합체 내 전도성 고분자로 인하여 전기이중층 및 슈도커패시터적 성능을 동시에 나타낼 수 있다. 나아가, 바인더 없이 그래핀을 통해 집전체 상에 복합체를 고정시켜 전극을 제조함으로써, 이를 커패시터에 적용할 시 더 높은 비축전용량과 비축전용량 유지율을 나타낼 수 있다. 구체적으로, 본 발명의 제3양태에 따른 슈퍼커패시터의 비축전용량은 0.1 A/g의 전류밀도에서 250 F/g 내지 500 F/g 일 수 있고, 400 F/g 내지 500 F/g일 수 있다. 높은 전류밀도에서도 상기의 비축전용량을 거의 유지할 수 있다. 구체적으로, 4 A/g의 전류밀도에서의 비축전용량은 0.1 A/g의 전류밀도에서 비축전용량 대비 85 % 내지 95 %를 나타낼 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명의 제1양태를 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명의 제1양태를 예시하기 위한 것일 뿐 본 발명의 제1양태의 범위가 이들만으로 한정되는 것은 아니다.
<실시예 1> 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조 1
그래핀 제조를 위한 원료로 사용된 그래핀 옥사이드(GO)는 흑연으로부터 개선된 Hummer's method에 따라 제조한 후 증류수에 분산시켜 준비하였다.
단계 1 : 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT, 95 % 순도, NANOLAB)를 물에 대한 분산성을 향상시키기 위해 산 처리를 수행하였다. 1 g의 MWCNT를 150 mL의 황산(H2SO4, 99.5 %)과 50 mL의 질산(HNO3) 혼합용액에 분산 시킨 후 70 ℃에서 2 시간 동안 교반하였다. 이후 5 %의 염산(HCl) 용액으로 필터링 세척하고 공기 중에 건조하였다. 상기 산 처리된 MWCNT 및 GO의 혼합 중량비(weight ratio)를 0.01 : 1로 하여 증류수를 용매로 하는 혼합용액으로 제조하였다. 이때, 혼합용액의 GO 농도가 0.25 wt%가 되도록 하였다.
단계 2a : MWCNT-GO 복합체를 제조하기 위하여 에어로졸 반응기를 이용하였으며, 반응의 모식도를 도 2에 나타내었다. 산 처리된 MWCNT와 GO를 포함하는 혼합용액을 1.4 mm 직경의 이류체 노즐을 통해 에어로졸 분사시켜 액적을 형성시켰다.
단계 2b : 분사된 액적을 8 L/min 유속의 아르곤 가스를 통해 200 ℃ 온도의 가열로로 이송시켰고, 용매를 증발시켰다. 제조된 시료를 사이클론을 통하여 필터에 포집하였으며, 3차원의 구겨진 형상으로 제조된 MWCNT-GO 복합체를 수득하였다. 상기 제조된 MWCNT-GO 복합체의 GO의 환원을 위하여, 머플로(muffle furnace)에서 250 ℃의 온도로 아르곤 가스 분위기(1 L/min)에서 2 시간 동안 열처리 한 후 최종적으로 구겨진 형상의 그래핀-다중벽 탄소나노튜브(MWCNT-GR) 복합체를 제조하였다.
< 실시예 2> 구겨진 형상의 그래핀 -탄소나노튜브 복합체 제조 2( MWCNT : GO 중량비 0.05 : 1)
상기 실시예 1의 단계 1에서, MWCNT : GO 중량비를 0.05 : 1로 변경하여 혼합용액을 제조한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 구겨진 형상의 그래핀-다중벽 탄소나노튜브 복합체를 제조하였다.
< 실시예 3> 구겨진 형상의 그래핀 -탄소나노튜브 복합체 제조 3( MWCNT : GO 중량비 0.1 : 1)
상기 실시예 1의 단계 1에서, MWCNT : GO 중량비를 0.1 : 1로 변경하여 혼합용액을 제조한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 구겨진 형상의 그래핀-다중벽 탄소나노튜브 복합체를 제조하였다.
< 비교예 1> 구겨진 형상의 그래핀 -탄소나노튜브 복합체 제조 4( MWCNT : GO 중량비 0.5 : 1)
상기 실시예 1의 단계 1에서, MWCNT : GO 중량비를 0.5 : 1로 변경하여 혼합용액을 제조한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 구겨진 형상의 그래핀-다중벽 탄소나노튜브 복합체를 제조하였다.
<실시예 4> 슈퍼커패시터 제조 1
활물질을 제조하기 위해, 상기 실시예 1에서 제조된 구겨진 형상의 그래핀-탄소나노튜브 복합체 및 polyvinylidene difluoride(PVDF, KUREHA Co., Japan) 바인더를 중량비가 9 : 1이 되도록 혼합하고 n-methyl-2-pyrrolidone(NMP, Micropure-EG) 용매와 함께 믹서를 이용하여 20 분 동안 충분히 교반시켰다. 교반이 완료된 활물질 용액을 집전체인 카본 페이퍼(AvCarb P50, FuelCellsEtc, USA) 상에 100 ㎛의 두께로 코팅하였다. 코팅된 활물질을 80 ℃에서 2 시간 동안 건조하여 2 cm2의 면적으로 재단하였으며 단위전극당 무게는 약 5 mg으로 측정되었다. 분리막(separator)으로는 Filter paper(Whatman 1822-110 Grade GF/C)를 지름 14 mm로 잘라서 사용하였으며, 전해질로는 5 M 농도의의 수산화칼륨이 사용되었다. 최종적으로 2 전극인 HS FLAT CELL(HOHSEN Corp., Japan)이용하여 슈퍼커패시터를 제조하였다.
<실시예 5> 슈퍼커패시터 제조 2
상기 실시예 4에서, 활물질 제조에 상기 실시예 2에서 제조된 복합체를 사용한 것을 제외하고, 상기 실시예 4와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실시예 6> 슈퍼커패시터 제조 3
상기 실시예 4에서, 활물질 제조에 상기 실시예 3에서 제조된 복합체를 사용한 것을 제외하고, 상기 실시예 4와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<비교예 2> 슈퍼커패시터 제조 4
상기 실시예 4에서, 활물질 제조에 상기 비교예 1에서 제조된 복합체를 사용한 것을 제외하고, 상기 실시예 4와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실험예 1> MWCNT-GR 복합체의 표면 및 모폴로지 평가
상기 실시예 1 내지 실시예 3 및 비교예 1에서 제조된 구겨진 형상의 그래핀-다중벽 탄소나노튜브의 구조, 형상을 전계방사형 주사전자현미경(FE-SEM, Sirion, FEI) 및 투과전자현미경(TEM, JEM-ARM200F, JEOL)을 통해 촬영하였으며, 그 결과를 도 3 (a1) 내지 (d1), 도 3 (a2) 내지 (d2) 에 나타내었다.
도 3 (a1) 내지 (d1)에 나타낸 바와 같이, 제조된 모든 복합체들은 3차원 형상의 그래핀 시트가 구겨진(crumped) 형태로 나타났으며, 직경이 대략 4 ㎛ 내지 6 ㎛으로 나타났다.
TEM 관찰결과, 도 3 (a2) 내지 (d2)에 나타낸 바와 같이 구겨진 그래핀 시트 내에 MWCNT가 존재하는 것을 확인할 수 있었으며, 제조 시 MWCNT/GO 중량비가 증가할수록 그래핀 시트에 존재하는 MWCNT 함량이 증가하는 것을 알 수 있었다. MWCNT : GO 중량비가 0.01 내지 0.1 : 1로 제조된 MWCNT-GR 복합체는 그래핀 시트 사이에 MWCNT가 고르게 분산된 것을 확인할 수 있었다. 하지만, MWCNT : GO 중량비가 0.5 : 1로 제조된 MWCNT-GR 복합체의 경우, 그래핀 시트 내에 존재하는 MWCNT 량이 많아 응집하여 뭉쳐진(bundles) MWCNT가 증가하는 것을 확인할 수 있었다.
<실험예 2> MWCNT-GR 복합체의 XRD 분석
상기 실시예 1 내지 실시예 3 및 비교예 1에서 제조된 MWCNT-GR 복합체를 XRD(SmartLab, Rigaku Co.) 분석하였으며, 그 결과를 도 4에 나타내었다.
도 4에 나타낸 바와 같이, 제조된 모든 MWCNT-GR 복합체의 XRD 피크(peak)는 약 23.5 °와 42.9 ° 부근에서 넓게 나타나고 있다. 이는 10 °에 존재하는 GO 피크가 환원되어 GR 피크로 이동하였기 때문이다. 또한, 환원된 MWCNT-GR 복합체의 XRD 피크는 흑연의 피크 보다 왼쪽으로 쉬프트된 형태인데, 이는 그래핀 내에 잔류하는 다양한 산소 작용기와 MWCNT 도입으로 인하여 복합체의 그래핀 면간격(interlayer spacing)이 증대되었기 때문이라 판단된다. Bragg's law 식 (하기 수학식 2)에 의한 면간격 계산결과, 실시예 1, 실시예 2, 실시예 3 및 비교예 1의 MWCNT-GR 복합체는 각각 면간격이 0.37 nm, 0.37 nm, 0.36 nm, 0.34 nm로 모든 시료에서 흑연의 면간격 0.33 nm 보다 증가한 것을 확인하였다. 한편, 복합체 제조시 중량비(MWCNT : GO)가 0.5 : 1인 비교예 1의 경우 다른 MWCNT-GR 복합체보다 면간격이 감소한 것을 볼 수 있는데, 이는 MWCNT 주입량 증가로 인하여 MWCNT 간의 응집이 복합체의 면간격을 감소시킨 것으로 판단된다.
[수학식 2]
d002 = nλ/2sinθ
<실험예 3> MWCNT-GR 복합체의 라만 분광법 측정
상기 실시예 1 내지 실시예 3 및 비교예 1에서 제조된 MWCNT-GR 복합체의 라만 분광법(Lambda Ray, LSI Dimension P1)을 수행하였으며, 그 결과를 도 5에 나타내었다.
도 5에 나타낸 바와 같이, 제조된 MWCNT-GR 복합체의 라만 분석결과로부터, 그래핀을 나타내는 D 와, G 피크가 각각 1350 cm-1, 1600 cm-1에서 관찰되는 것을 확인하였다. 여기서 G 피크는 흑연의 탄소를 나타내는 피크이고, D 피크는 그래핀 sp2 구조의 결손(defect)과 치환 또는 무질서도(disorder)를 나타내는 피크이다. 따라서 D 피크와 G 피크의 강도 비로부터 그래핀의 결함 정도를 확인할 수 있다. 제조된 MWCNT-GR 복합체는 제조시 MWCNT/GO 중량비가 증가함에 따라 D/G band 비가 감소하는 것으로 나타났다. 이는 그래핀 시트보다 상대적으로 결함정도가 낮은 MWCNT의 도입으로 인하여 복합체의 결함정도가 줄어든 것으로 판단된다.
< 실험예 4> 슈퍼커패시터의 i)순환전압전류, ii)충-방전 및 iii)임피던스 특성 평가
상기 실시예 4 내지 실시예 6 및 비교예 2에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 및 임피던스 특성을 Potentiostat(VSP, Bio-logics)을 통해 측정하였으며, 그 결과를 도 6 (a) 내지 (d)에 나타내었다.
일반적으로 수산화칼륨 수용액을 전해질로 사용하는 전기이중층 커패시터는 표면이온의 흡착에 의한 전기이중층 효과가 직사각형에 가까운 그래프 개형으로 나타나며, 직사각형 면적이 증가할수록 비축전용량이 증가하게 된다.
i) 따라서, 도 6 (a)에 나타낸 바와 같이, MWCNT-GR 복합체로부터 제조된 슈퍼커패시터의 성능을 평가하기 위한 순환전압전류시험 결과는 모든 전극에서 이상적인 전기이중층 커패시터 거동을 나타내고 있는 것을 알 수 있었다. 또한, 복합체 제조 시 MWCNT/GO 중량비가 0.01 에서 0.1로 증가할수록 순환전류전압곡선의 면적이 증가하였으나, 0.5에서는 면적이 감소하는 것을 볼 수 있었다. 이는 그래핀에 도입된 MWCNT 주입량이 증가가 높은 전기전도도와 그래핀의 면간격 증대를 유도함에 따라 전해질 이온이 큰 저항을 느끼지 못하고 전극물질 계면에 잘 배열되었기 때문으로 추측된다. 한편, 복합체 제조 시 MWCNT/GO 중량비가 0.5 이상인 경우, MWCNT 간의 뭉침이 그래핀의 면간격을 급격히 감소시켜 전해질의 이온전달 속도를 늦춘 것으로 판단된다.
ii) 도 6 (b)는 충방전 시험 결과와 이로부터 계산된 비축전용량을 스캔속도의 함수로서 나타내고 있다. 충방전 시험결과, 모든 전극은 가역성을 의미하는 대칭되는 충방전 곡선을 나타내었고, 이때 비축전용량은 하기 수학식 3에 의해 구할 수 있다.
[수학식 3]
Cp=4IΔt/mΔV
여기서 I는 방전 전류, Δt는 방전시간, m은 활물질의 질량, ΔV는 측정 전압 범위를 의미한다. MWCNT-GR 복합체를 포함하는 커패시터의 비축전용량은 도 6 (c)에 나타낸 바와 같이 전류밀도 0.1 A/g에서 실시예 4, 실시예 5, 실시예 6 및 비교예 2가 각각 137 F/g, 144 F/g, 192 F/g, 109 F/g으로 나타났으며, 복합체 제조 시 MWCNT/GO 중량비가 0.01 에서 0.1로 증가함에 따라 비축전용량이 증가하는 경향을 보였으나, 0.5 일 때는 비축전용량이 오히려 감소하였다. 복합체의 제조 시 MWCNT/GO 중량비가 0.1인 실시예 6의 경우 높은 비축전용량을 나타냄과 동시에 스캔속도가 증가함에 따른 비축전용량 또한 높게 유지되었다. 이로부터 MWCNT와 GO 혼합비의 최적 조건이 존재하는 것을 알 수 있었다. 이것은 앞의 순환전압전류 결과에서도 언급하였듯이 MWCNT의 도입으로 인한 면간격 증가가 전극 내부까지 전해질 이온의 침투를 향상시키고 전기전도도를 향상시켜 높은 스캔 속도에서도 비축전용량을 유지할 수 있었던 것으로 판단된다. 한편, 복합체 제조 시 MWCNT/GO 중량비가 0.5인 경우 전류밀도 증가에 따른 비축전용량의 감소는 크지 않지만, 모든 전류밀도에서 비축전용량이 다소 낮은 것을 알 수 있다. 이는 그래핀에 비해 낮은 비축전용량을 나타내는 MWCNT의 과량 도입과 투과전자현미경에서 관찰된 MWCNT의 응집현상으로 인한 전해질 계면저항증가가 복합체의 비축전용량을 낮춘 것으로 판단된다.
iii) 도 6 (d)에 나타낸 바와 같이, 전극과 전해질과의 계면저항을 조사하기 위해 실시한 임피던스 시험결과, 복합체 제조 시 MWCNT/GO 중량비가 증가함에 따라 벌크저항(bulk resistance, 도 6 (d)의 Z'축의 절편값에 해당)은 비교예 2를 제외하고 거의 유사하게 나타나지만, 계면저항(interfacial resistance, 도 6 (d)의 nyquist plot에서 반원의 직경에 대응)은 MWCNT 주입량이 증가함에 따라 감소하였다. 이는 MWCNT의 빠른 전기전도도로 인한 저항감소를 나타냄은 물론 그래핀과의 면간격 증대로 인한 전해질과 접촉면적을 증가시켜 이온전도에 따른 계면저항을 크게 감소시키기 때문이라 할 수 있다.
따라서, 본 발명의 제1양태의 실시예에 따른 그래핀-다중벽 탄소나노튜브(MWCNT-GR) 복합체는 평균 입자 크기가 1 ㎛ 내지 10 ㎛의 크기를 갖는 구형의 3차원 형상으로 제조되었으며, 다중벽 탄소나노튜브가 그래핀 시트 사이에 분산되어 있었다. MWCNT-GR 복합체를 포함하는 슈퍼커패시터의 성능을 평가한 결과, 복합체 제조 시 MWCNT/GO 중량비가 0.1 일 때 192 F/g으로 가장 높은 비축전용량을 나타내었고, 높은 전류밀도에서도 비축전용량이 잘 유지되는 것을 알 수 있었다. 이에, 그래핀에 MWCNT의 도입은 전기전도도, 이온전도도, 그래핀 면간격 증대 등의 특성이 향상될 수 있는 것으로 판단되었다. 특히 높은 전류밀도(4 A/g)에서도 비축전용량이 잘 유지되는 것은 MWCNT가 그래핀 내에서 물리적 가교점을 추가적으로 형성시킴과 더불어 3차원으로 제조된 MWCNT-GR 복합체 내 기공이 전극과 전해질 간의 계면저항을 감소시켰기 때문이라 생각되었다.
이하, 실시예 및 실험예에 의하여 본 발명의 제2양태를 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명의 제2양태를 예시하기 위한 것일 뿐 본 발명의 제2양태의 범위가 이들만으로 한정되는 것은 아니다.
<실시예 i> 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조 1
그래핀 제조를 위한 원료로 사용된 그래핀 옥사이드(GO)는 흑연으로부터 개선된 Hummer's method에 따라 제조한 후 증류수에 분산시켜 준비하였다.
단계 i : 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT, 95 % 순도, NANOLAB)를 물에 대한 분산성을 향상시키기 위해 산 처리를 수행하였다. 1 g의 MWCNT를 150 mL의 황산(H2SO4, 99.5 %)과 50 mL의 질산(HNO3) 혼합용액에 분산 시킨 후 70 ℃에서 2 시간 동안 교반하였다. 이후 5 %의 염산(HCl) 용액으로 필터링 세척하고 공기 중에 건조하였다. 산 처리된 MWCNT 및 GO의 혼합 중량비(weight ratio)를 0.01 : 1로 하여 1 M의 염산 용액에 첨가하였다. 이때, 염산 용액의 GO 농도가 0.25 wt%가 되도록 하였다. 또한, 전도성 고분자 단량체로 아닐린을 상기 염산 용액에 20 mM의 농도가 되도록 첨가하여 혼합용액을 제조하였다.
단계 ii : 상기 혼합용액의 아닐린 단량체 : 개시제 중량비가 4 : 1이 되도록 개시제로 암모늄 퍼설페이트(APS; 98 % 순도, Sigma-Aldrich)를 첨가하고, 1 시간 동안 상기 혼합용액을 초음파 처리하여 중합시켰다.
단계 iiia : MWCNT-GO-PANI 복합체를 제조하기 위하여 에어로졸 반응기를 이용하였으며, 반응의 모식도를 도 8에 나타내었다. 산 처리된 MWCNT, GO 및 PANI를 포함하는 혼합용액을 1.4 mm 직경의 이류체 노즐을 통해 에어로졸 분사시켜 액적을 형성시켰다.
단계 iiib : 분사된 액적을 8 L/min 유속의 아르곤 가스를 통해 200 ℃ 온도의 가열로로 이송시켰고, 용매를 증발시켰다. 제조된 시료를 사이클론을 통하여 필터에 포집하였으며, 3차원의 구겨진 형상으로 제조된 MWCNT-GO-PANI 복합체를 수득하였다. 상기 제조된 MWCNT-GO-PANI 복합체의 GO의 환원을 위하여, 머플로(muffle furnace)에서 250 ℃의 온도로 아르곤 가스 분위기(1 L/min)에서 2 시간 동안 열처리 한 후 최종적으로 구겨진 형상의 그래핀-다중벽 탄소나노튜브-폴리아닐린(MWCNT-GR-PANI) 복합체를 제조하였다.
< 실시예 ii> 구겨진 형상의 그래핀 -탄소나노튜브-고분자 복합체 제조 2(MWCNT : GO 중량비 0.05 : 1)
상기 실시예 i의 단계 i에서, MWCNT : GO 중량비를 0.05 : 1로 변경하여 혼합용액을 제조한 것을 제외하고, 상기 실시예 i와 동일하게 수행하여 구겨진 형상의 그래핀-다중벽 탄소나노튜브-폴리아닐린 복합체를 제조하였다.
< 실시예 iii> 구겨진 형상의 그래핀 -탄소나노튜브 복합체 제조 3( MWCNT : GO 중량비 0.1 : 1)
상기 실시예 i의 단계 i에서, MWCNT : GO 중량비를 0.1 : 1로 변경하여 혼합용액을 제조한 것을 제외하고, 상기 실시예 i와 동일하게 수행하여 구겨진 형상의 그래핀-다중벽 탄소나노튜브-폴리아닐린 복합체를 제조하였다.
<비교예 i> 구겨진 형상의 그래핀 볼 제조
상기 실시예 i의 단계 i에서, 탄소나노튜브 및 전도성 고분자 단량체를 첨가하지 않고, 단계 ii를 생략한 것을 제외하고 상기 실시예 i와 동일하게 수행하여 구겨진 형상의 그래핀 볼(CGR)을 제조하였다.
<비교예 ii> 구겨진 형상의 그래핀-탄소나노튜브 제조
상기 실시예 i의 단계 i에서, 전도성 고분자 단량체를 첨가하지 않고, 단계 ii를 생략한 것을 제외하고 상기 실시예 i와 동일하게 수행하여 구겨진 형상의 그래핀-탄소나노튜브 복합체를 제조하였다.
<실시예 iv> 슈퍼커패시터 제조 1
활물질을 제조하기 위해, 상기 실시예 1에서 제조된 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 및 polyvinylidene difluoride(PVDF, KUREHA Co., Japan) 바인더를 중량비가 9 : 1이 되도록 혼합하고 n-methyl-2-pyrrolidone(NMP, Micropure-EG) 용매와 함께 믹서를 이용하여 20 분 동안 충분히 교반시켰다. 교반이 완료된 활물질 용액을 집전체인 카본 페이퍼(AvCarb P50, FuelCellsEtc, USA) 상에 100 ㎛의 두께로 코팅하였다. 코팅된 활물질을 80 ℃에서 2 시간 동안 건조하여 2 cm2의 면적으로 재단하였으며 단위전극당 무게는 약 5 mg으로 측정되었다. 분리막(separator)으로는 Filter paper(Whatman 1822-110 Grade GF/C)를 지름 14 mm로 잘라서 사용하였으며, 전해질로는 5 M 농도의의 수산화칼륨이 사용되었다. 최종적으로 2 전극인 HS FLAT CELL(HOHSEN Corp., Japan)이용하여 슈퍼커패시터를 제조하였다.
<실시예 v> 슈퍼커패시터 제조 2
상기 실시예 iv에서, 활물질 제조에 상기 실시예 ii에서 제조된 복합체를 사용한 것을 제외하고, 상기 실시예 iv와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실시예 vi> 슈퍼커패시터 제조 3
상기 실시예 iv에서, 활물질 제조에 상기 실시예 iii에서 제조된 복합체를 사용한 것을 제외하고, 상기 실시예 iv와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<비교예 iii> 슈퍼커패시터 제조 4
상기 실시예 iv에서, 활물질 제조에 상기 비교예 i에서 제조된 구겨진 형상의 그래핀을 사용한 것을 제외하고, 상기 실시예 iv와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<비교예 vi> 슈퍼커패시터 제조 5
상기 실시예 iv에서, 활물질 제조에 상기 비교예 ii에서 제조된 복합체를 사용한 것을 제외하고, 상기 실시예 iv와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실험예 i> MWCNT-GR-PANI 복합체의 표면 및 모폴로지 평가
상기 실시예 i, 비교예 i 및 비교예 ii에서 제조된 물질들의 구조, 형상을 전계방사형 주사전자현미경(FE-SEM, Sirion, FEI) 및 투과전자현미경(TEM, JEM-ARM200F, JEOL)을 통해 촬영하였으며, 그 결과를 도 9 a 내지 c, 도 9 d 내지 f 에 나타내었다.
도 9 a 내지 c에 나타낸 바와 같이, 제조된 모든 복합체들은 3차원 형상의 그래핀 시트가 구겨진(crumped) 형태로 나타났으며, 직경이 대략 4 ㎛ 내지 6 ㎛으로 나타났다. 이때, CNT 및 아닐린 첨가에 따른 형상 변화는 나타나지 않았으며, 그래핀 시트 사이에 CNT와 PANI가 존재할 것으로 판단되었다.
TEM 관찰결과, 도 9 d 내지 f에 나타낸 바와 같이 구겨진 그래핀 시트 내에 MWCNT가 존재하는 것을 확인할 수 있었으며, 또한 아닐린 첨가 후 CNT와 그래핀 표면에 PANI가 생성된 것을 확인할 수 있었다.
<실험예 ii> MWCNT-GR-PANI 복합체의 XRD 분석
상기 실시예 i, 비교예 i 및 비교예 ii에서 제조된 물질들을 XRD(SmartLab, Rigaku Co.) 분석하였으며, 그 결과를 도 10 a에 나타내었다.
도 10 a에 나타낸 바와 같이, 비교예 i의 구겨진 그래핀(CGR), 비교예 ii의 GR-CNT, 실시예 i의 GR-CNT-PANI 복합체의 XRD 분석결과, 제조된 구겨진 그래핀, CNT/GR시료는 23.5 °, 26.4 °에서 GR과 CNT 피크를 나타내고 있다. 한편, GR-CNT-PANI 복합체는 GR과 CNT 피크와 함께 19.7 °와 25.3 °의 PANI 피크가 나타나는 것을 볼 수 있다. 따라서 제조된 구겨진 그래핀(CGR), GR-CNT 복합체, GR-CNT-PANI 복합체 내 GR, CNT, PANI가 성공적으로 제조된 것을 확인할 수 있었다.
<실험예 iii> MWCNT-GR-PANI 복합체의 라만 분광법 측정
상기 실시예 i, 비교예 i 및 비교예 ii에서 제조된 MWCNT-GR-PANI 복합체의 라만 분광법(Lambda Ray, LSI Dimension P1)을 수행하였으며, 그 결과를 도 10 b에 나타내었다.
도 10 b에 나타낸 바와 같이, 상기 실시예 i, 비교예 i 및 비교예 ii에서 제조된 모든 시료는 1350 cm-1, 1600 cm-1에서 그래핀 피크인 D와 G 피크가 관찰되었으며, 이때 G 피크는 흑연의 탄소를 나타내는 피크이고, D 피크는 그래핀 sp2 구조의 결손(defect)과 치환 또는 무질서도(disorder)를 나타내는 피크이다. 한편, GR-CNT-PANI 복합체는 1163 cm-1, 1250 cm-1, 1478 cm-1에서 PANI의 C-H 결합을 나타내는 피크가 관찰되었으며, 이러한 결과로부터 제조된 복합체 내 PANI가 성공적으로 생성되었음을 확인할 수 있었다.
<실험예 iv> MWCNT-GR-PANI 복합체의 수은 세공계 측정
상기 실시예 i, 비교예 i 및 비교예 ii에서 제조된 MWCNT-GR-PANI 복합체의 수은 세공계 (AutoPore IV, Micromeritics) 분석을 수행하였으며, 그 결과를 도 11에 나타내었다.
도 11에 나타낸 바와 같이, 비교예 i의 구겨진 그래핀(CGR), 비교예 ii의 GR-CNT, 실시예 i의 GR-MWCNT-PANI 복합체는 평균 기공 직경(average pore diameter) (nm)이 각각 340, 657, 824 nm로 측정되었다. 이때, CNT 및 PANI 도입이 복합체 내 기공크기를 향상시킨 것으로 판단되며, 향상된 기공크기는 복합체 전극으로의 전해질 접근성을 향상시킬 것으로 기대되었다.
< 실험예 v> 슈퍼커패시터의 i)순환전압전류, ii)충-방전 및 iii)임피던스 특성 평가
상기 실시예 iv, 비교예 iii 및 비교예 iv에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 및 임피던스 특성을 Potentiostat(VSP, Bio-logics)을 통해 측정하였으며, 그 결과를 도 12 a 내지 d에 나타내었다.
일반적으로 수산화칼륨 수용액을 전해질로 사용하는 전기이중층 커패시터는 표면이온의 흡착에 의한 전기이중층 효과가 직사각형에 가까운 그래프 개형으로 나타나며, 직사각형 면적이 증가할수록 비축전용량이 증가하게 된다.
i) 도 12 a를 참조하면, 제조된 시료의 순환전류전압 시험결과 모든 전극에서 이상적인 전기이중층 커패시터 거동을 나타내고 있는 것을 알 수 있었다. 또한, 이 직사각형 면적은 구겨진 그래핀(CGR), GR-CNT, GR-CNT-PANI 순으로 증가하는 것을 알 수 있는데, 이는 CNT 및 PANI 도입으로 인하여 전극 내 전해질 확산의 증가와 이동 저항이 감소하였기 때문으로 판단되었다. 이는 순환전압전류 결과의 산화환원 피크의 존재 및 도 12 b의 충방전 곡선에서 약하게 정체구간(Plateau) 나타나는 것으로부터 확인할 수 있다. 이러한 결과는 GR-CNT-PANI 복합체가 전기이중층 및 슈도커패시터적 성능을 동시에 나타내고 있음을 보여준다.
ii) 도 12 c는 충방전 시험 결과로부터 계산된 비축전용량을 스캔속도의 함수로서 나타내었다. 구겨진 그래핀(CGR), GR-CNT, GR-CNT-PANI 시료는 0.1 A/g에서 각각 121, 192, 294 F/g의 비축전용량을 나타내었다. 이때, GR-CNT-PANI 복합체는 구형의 형상과 CNT 도입으로 인한 표면적 증대와 우수한 전기전도도 특성이 전극 표면으로 전해질 이온의 침투를 향상시키고, PANI 도입으로 인한 슈도커패시터적 특성의 도입으로부터 가장 높은 비축전용량을 나타낸 것으로 판단되었다.
iii) 도 12 d에 나타낸 바와 같이, 100 kHz에서 0.01 Hz 주파수범위에서 임피던스 시험을 수행하여 구형의 GR-CNT-PANI 전극 내 이온 확산에 대해 조사하였다. 구겨진 그래핀(CGR), GR-CNT, GR-CNT-PANI 시료의 Nyquist plot을 참조하면, GR-CNT-PANI 전극이 다른 전극과 비교해 저주파 영역에서 곧은 선과 고주파 영역에서의 작은 반원을 나타내었다. 이로부터 GR과 CNT 내부에 PANI가 생성된 후에도 빠른 이온 확산력이 유지되고 있음을 알 수 있다.
< 실험예 vi> CNT 함량에 따른 슈퍼커패시터의 i)순환전압전류, ii)충-방전 및 iii)임피던스 특성 평가
상기 실시예 iv 내지 vi에서 제조된 슈퍼커패시터의 순환전압전류, 충-방전 및 임피던스 특성을 Potentiostat(VSP, Bio-logics)을 통해 측정하였으며, 그 결과를 도 13 a 내지 d에 나타내었다.
i) 도 13 a에 나타낸 바와 같이 순환전압전류 시험결과 CNT 첨가량이 증가할수록 순환전압전류곡선의 면적이 증가하는 것을 확인할 수 있었다. 이는 그래핀에 도입된 CNT 첨가량의 증가가 높은 전기전도도와 그래핀 시트의 재결합을 억제시킴에 따라 제조된 전극 내 전해질의 이온전달 속도를 향상시킨 것으로 판단되었다.
ii) 도 13 b 및 c는 충방전 시험과 이로부터 계산된 비축전용량을 스캔속도의 함수로 나타내고 있다. 충방전 시험 결과, 모든 전극에서 전기이중층 및 슈도커패시터 특성을 나타내는 것을 확인할 수 있었으며, 비축전용량은 전류밀도 0.1 A/g에서 각각 250 F/g, 266 F/g, 294 F/g으로 나타났다. 이는 CNT 첨가량이 증가함에 따라 비축전용량 또한 증가하는 것을 알 수 있으며, 전류밀도 증가에 따른 비축전용량 또한 첨가량이 복합체 제조 시 MWCNT/GO 중량비 0.1일 때 가장 높은 유지율을 나타내었다.
iii) 도 13 d에 나타낸 바와 같이 전극과 전해질의 계면저항을 조사하기 위해 실시한 임피던스 결과, CNT 첨가량이 증가함에 따라 저주파 영역에서의 곧은 선과 고주파 영역에서 작은 반원을 나타내었다. 이는 CNT의 빠른 전기전도도로 인한 저항감소를 나타냄과 동시에 그래핀 시트 사이의 재결합 억제가 전해질과의 접촉면적을 증가시켜 이온전도에 따른 계면저항을 크게 감소시킨 것으로 판단되었다.
본 발명자들은 상기 제2양태 실시예에서 다중벽 탄소나노튜브(Multi-Wall Carbon Nanotube ; CNT), 그래핀 옥사이드(Graphene Oxide; GO), 아닐린이 혼합된 콜로이드 용액으로부터 에어로졸(Aerosol Spray Pyrolysis; ASP)공정을 이용하여 단일 공정으로 3 차원 구조의 그래핀-다중벽 탄소나노튜브-폴리아닐린 구형 복합체를 제조하였다. 단계 i의 혼합 콜로이드 용액 내에 투입된 다중벽 탄소나노튜브는 그래핀 시트간의 가교역할을 함으로써 전기전도도 향상과 면간격 증대로 인한 전해질 접근성을 향상시키는 것을 확인하였으며, 폴리아닐린이 추가되어 제조된 복합체는 3 차원 구형 형상이며 복합체 내부의 균일한 기공 형성과 폴리아닐린의 높은 전기전도도와 산화-환원 반응을 통하여 출력밀도와 에너지 밀도를 동시에 향상시키는 것을 확인하였다.
이하, 실시예 및 실험예에 의하여 본 발명의 제3양태를 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명의 제3양태를 예시하기 위한 것일 뿐 본 발명의 제3양태의 범위가 이들만으로 한정되는 것은 아니다.
<실시예 i+> 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조 1
그래핀 제조를 위한 원료로 사용된 그래핀 옥사이드(GO)는 흑연으로부터 개선된 Hummer's method에 따라 제조한 후 증류수에 분산시켜 준비하였다.
단계 i : 다중벽 탄소나노튜브(multi-walled carbon nanotube, MWCNT, 95 % 순도, NANOLAB)를 물에 대한 분산성을 향상시키기 위해 산 처리를 수행하였다. 1 g의 MWCNT를 150 mL의 황산(H2SO4, 99.5 %)과 50 mL의 질산(HNO3) 혼합용액에 분산 시킨 후 70 ℃에서 2 시간 동안 교반하였다. 이후 5 %의 염산(HCl) 용액으로 필터링 세척하고 공기 중에 건조하였다. 산 처리된 MWCNT 및 GO의 혼합 중량비(weight ratio)를 0.1 : 1로 하여 1 M의 염산 용액에 첨가하였다. 이때, 염산 용액의 GO 농도가 0.25 wt%가 되도록 하였다. 또한, 전도성 고분자 단량체로 아닐린을 상기 염산 용액에 20 mM의 농도가 되도록 첨가하여 혼합용액을 제조하였다.
단계 ii : 상기 혼합용액의 아닐린 단량체 : 개시제 중량비가 4 : 1이 되도록 개시제로 암모늄 퍼설페이트(APS; 98 % 순도, Sigma-Aldrich)를 첨가하고, 1 시간 동안 상기 혼합용액을 초음파 처리하여 중합시켰다.
단계 iiia : MWCNT-GO-PANI 복합체를 제조하기 위하여 에어로졸 반응기를 이용하였으며, 반응의 모식도를 도 15에 나타내었다. 산 처리된 MWCNT, GO 및 PANI를 포함하는 혼합용액을 1.4 mm 직경의 이류체 노즐을 통해 에어로졸 분사시켜 액적을 형성시켰다.
단계 iiib : 분사된 액적을 8 L/min 유속의 아르곤 가스를 통해 200 ℃ 온도의 가열로로 이송시켰고, 용매를 증발시켰다. 제조된 시료를 사이클론을 통하여 필터에 포집하였으며, 3차원의 구겨진 형상으로 제조된 MWCNT-GO-PANI 복합체를 수득하였다. 상기 제조된 MWCNT-GO-PANI 복합체의 GO의 환원을 위하여, 머플로(muffle furnace)에서 250 ℃의 온도로 아르곤 가스 분위기(1 L/min)에서 2 시간 동안 열처리 한 후 최종적으로 구겨진 형상의 그래핀-다중벽 탄소나노튜브-폴리아닐린(MWCNT-GR-PANI) 복합체를 제조하였다.
< 실시예 ii+> 구겨진 형상의 그래핀 -탄소나노튜브-고분자 복합체 제조 2(아닐린 농도 10 mM)
상기 실시예 i+의 단계 i에서, 혼합용액의 아닐린 농도가 10 mM이 되도록 한 것을 제외하고, 상기 실시예 i+과 동일하게 수행하여 구겨진 형상의 그래핀-다중벽 탄소나노튜브-폴리아닐린 복합체를 제조하였다.
< 실시예 iii+> 구겨진 형상의 그래핀 -탄소나노튜브-고분자 복합체 제조 3(아닐린 농도 40 mM)
상기 실시예 i+의 단계 i에서, 혼합용액의 아닐린 농도가 40 mM이 되도록 한 것을 제외하고, 상기 실시예 i+과 동일하게 수행하여 구겨진 형상의 그래핀-다중벽 탄소나노튜브-폴리아닐린 복합체를 제조하였다.
< 실시예 iv+> 슈퍼커패시터 제조 1
단계 iv : 전극을 제조하기 위해, 상기 실시예 i+에서 제조된 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 및 그래핀 옥사이드를 중량비가 9.5 : 0.5(1 : 0.053) 가 되도록 혼합하고 n-methyl-2-pyrrolidone(NMP, Micropure-EG) 용매와 함께 믹서를 이용하여 20 분 동안 충분히 교반시켰다. 교반이 완료된 용액을 집전체인 카본 페이퍼(AvCarb P50, FuelCellsEtc, USA) 상에 100 ㎛의 두께로 코팅하였다. 코팅된 물질을 250 ℃에서 2 시간 동안 열처리하여 2 cm2의 면적으로 재단하였으며 단위전극당 무게는 약 1.5 mg으로 측정되었다.
분리막(separator)으로는 Filter paper(Whatman 1822-110 Grade GF/C)를 지름 14 mm로 잘라서 사용하였으며, 전해질로는 5 M 농도의의 수산화칼륨이 사용되었다. 최종적으로 2 전극인 HS FLAT CELL(HOHSEN Corp., Japan)이용하여 슈퍼커패시터를 제조하였다.
<실시예 v+> 슈퍼커패시터 제조 2
상기 실시예 iv+의 단계 iv에서, 복합체를 상기 실시예 ii+에서 제조된 것으로 사용한 것을 제외하고, 상기 실시예 iv+와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실시예 vi+> 슈퍼커패시터 제조 3
상기 실시예 iv+의 단계 iv에서, 복합체를 상기 실시예 iii+에서 제조된 것으로 사용한 것을 제외하고, 상기 실시예 iv+와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실시예 vii+> 슈퍼커패시터 제조 4
상기 실시예 iv+의 단계 iv에서, 복합체 및 그래핀 옥사이드를 중량비가 9 : 1(1 : 0.111)이 되도록 한 것을 제외하고, 상기 실시예 iv+와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실시예 viii+> 슈퍼커패시터 제조 5
상기 실시예 iv+의 단계 iv에서, 복합체 및 그래핀 옥사이드를 중량비가 8 : 2(1 : 0.25)가 되도록 한 것을 제외하고, 상기 실시예 iv+와 동일하게 수행하여 슈퍼커패시터를 제조하였다.
<실험예 i+> MWCNT-GR-PANI 복합체의 표면 및 모폴로지 평가
상기 실시예 i+ 내지 실시예 iii+에서 제조된 복합체들의 구조, 형상을 전계방사형 주사전자현미경(FE-SEM, Sirion, FEI) 및 투과전자현미경(TEM, JEM-ARM200F, JEOL)을 통해 촬영하였으며, 그 결과를 도 16 a 내지 f 및 도 17 a 내지 f 에 나타내었다.
도 16 a 내지 f에 나타낸 바와 같이, FE-SEM 관찰결과 실시예 1 내지 3에서 제조된 GR-CNT-PANI 복합체는 3차원의 구형(spherical) 입자로 직경이 약 5 ㎛로 나타났다. 이때, 전극 제조 시 아닐린 주입량 변화에 따른 형상 변화는 나타나지 않았으며, 그래핀 시트 사이에 CNT가 존재할 것으로 판단되었다. 또한, 전극 제조 시 아닐린 주입량이 증가함에 따라 그래핀 표면에 PANI로 보이는 돌기의 생성량이 증가하는 것을 알 수 있었다.
도 17 a 내지 f에 나타낸 바와 같이, TEM 및 mapping image로부터 제조된 시료 내에 CNT 및 PANI 존재 여부를 관찰하였고, 그래핀 시트 내에 CNT가 고르게 분산된 것을 확인할 수 있었다. 또한, 전극 제조 시 아닐린 주입량이 증가함에 따라 CNT와 그래핀 표면에 PANI의 생성량이 증가한 것을 확인할 수 있었다.
<실험예 ii+> MWCNT-GR-PANI 복합체의 XRD 분석
상기 실시예 i+ 내지 실시예 iii+에서 제조된 복합체들을 XRD(SmartLab, Rigaku Co.) 분석하였으며, 그 결과를 도 18 a에 나타내었다.
도 18 a에 나타낸 바와 같이, 실시예 i+ 내지 실시예 iii+에서 제조된 복합체들은 23.5 °, 26.4 °에서 GR과 CNT 피크와 함께 19.7 °와 25.3 °에서 PANI 피크가 존재하는 것을 확인할 수 있었다. 따라서, 제조된 복합체 내 GR, CNT, PANI가 성공적으로 제조된 것을 확인할 수 있었다.
<실험예 iii+> MWCNT-GR-PANI 복합체의 라만 분광법 측정
상기 실시예 i+ 내지 실시예 iii+에서 제조된 복합체들의 라만 분광법(Lambda Ray, LSI Dimension P1)을 수행하였으며, 그 결과를 도 18 b에 나타내었다.
도 18 b에 나타낸 바와 같이, 상기 실시예 i+ 내지 실시예 iii+에서 제조된 복합체들은 1350 cm-1, 1600 cm-1에서 그래핀 피크인 D와 G 피크가 관찰되었다. 또한, 1163 cm-1, 1250 cm-1, 1478 cm-1에서 PANI의 C-H 결합을 나타내는 피크가 관찰되었으며, 이러한 결과로부터 시료 내 PANI가 성공적으로 생성되었음을 확인할 수 있었다.
< 실험예 iv+> 아닐린 농도에 따른 슈퍼커패시터의 i)순환전압전류 및 ii)충-방전 특성 평가
상기 실시예 iv+ 내지 실시예 vi+에서 제조된 슈퍼커패시터의 순환전압전류 및 충-방전 특성을 Potentiostat(VSP, Bio-logics)을 통해 측정하였으며, 그 결과를 도 19 a 내지 c에 나타내었다.
i) 도 19 a를 참조하면, 제조된 모든 전극에서 전기이중층 커패시터 거동과 함께 전극의 산화환원 피크가 함께 존재하는 것을 확인할 수 있었다. 또한, 전극 제조 시 아닐린 농도가 20 mM일 때 가장 넓은 순환전압전류 면적을 나타내는 것을 확인할 수 있었다. 하지만, 전극 제조 시 아닐린 농도가 40 mM로 높은 경우, 순환전압전류 면적이 오히려 감소하는데, 이는 복합체 내 PANI의 함량 증가로 인하여 전극 내부로 전해질이온의 확산거리 증가가 커패시터 성능에 영향을 미친것으로 판단되었다.
ii) 도 19 b에 나타낸 바와 같이 충-방전 곡선에서는 전극 제조 시 아닐린 주입량이 증가할 수록 곡선의 정체구간(plateau)이 두드러지는 것을 확인할 수 있으며, 이러한 결과는 GR-CNT-PANI-GR 복합체가 전기이중층 및 슈도커패시터적 특성을 동시에 가지고 있음을 나타내었다. 도 19 c를 참조하면, 전극 제조 시 아닐린 농도가 10 mM, 20 mM, 40 mM인 전극은 0.1 A/g의 전류밀도에서 각각 354 F/g, 456 F/g, 256 F/g의 비축전용량을 나타내었다. 이때, 실시예 i+의 전극은 가장 높은 비축전용량을 나타냄과 동시에 전류밀도 증가에 따른 비축전용량 또한 높게 유지되었다. 이로부터 복합체 전극 제조 시 아닐린 농도의 최적조건이 존재하는 것을 알 수 있었다. 또한, 복합체 전극 내 CNT의 도입은 그래핀 시트간의 가교역할을 함에 따라 전기전도도 향상시키고 이로 인한 비축전용량의 향상에 기여한 것으로 판단된다. 다만, 전극 제조 시 높은 아닐린 농도(40 mM)에서 제조된 실시예 iv+의 GR-CNT-PANI-GR 전극을 적용한 실시예 vi+의 슈퍼커패시터는 모든 전류밀도에서 비축전용량이 다소 낮은 것을 알 수 있었다. 이는 전극 제조 시 아닐린의 과량 주입에 따른 PANI 성장이 전극 내부로의 전해질이온 이동을 억제시키고, 산화환원 반응에 따른 전극의 활성표면적 감소가 비축전용량에 영향을 미친 것으로 판단되었다.
< 실험예 v+> 그래핀 옥사이드 첨가량에 따른 슈퍼커패시터의 i)순환전압전류 및 ii)충-방전 특성 평가
상기 실시예 iv+, 실시예 vii+ 및 실시예 viii+에서 제조된 슈퍼커패시터의 순환전압전류 및 충-방전 특성을 Potentiostat(VSP, Bio-logics)을 통해 측정하였으며, 그 결과를 도 20 a 내지 c에 나타내었다.
i) 도 20 a에 나타낸 바와 같이, 제조된 모든 전극은 전기이중층 커패시터 거동을 나타냄과 동시에 PANI 도입으로 인한 산화환원 피크가 존재하는 것을 확인할 수 있었다. 이때 그래프 면적은 전극 제조 시 GR-CNT-PANI 복합체와 GO의 혼합 중량비가 9.5 : 0.5, 9 : 1, 8 : 2 순으로 감소하는 것을 알 수 있는데, 이는 GO 주입 증가로 인하여 제조된 시료의 활성표면적이 다소 감소하였기 때문이라 판단된다.
ii) 도 20 b, c의 충-방전시험 및 비축전량 계산 결과, 전극 제조 시 GR-CNT-PANI 복합체와 GO 혼합 중량비가 9.5 : 0.5, 9 : 1, 8 : 2일 때 제조된 복합체 전극을 커패시터로 적용 시 비축전량은 0.1 A/g 전류밀도에서 각각 471 F/g, 456 F/g, 432 F/g으로 나타난 것을 확인할 수 있었다. 또한, 전극 제조 시 GR-CNT-PANI 복합체와 GO 혼합 중량비가 9.5 : 0.5인 전극을 적용한 커패시터의 경우, 전류밀도 증가에 따른 비축전량 유지율이 전극 제조 시 GR-CNT-PANI 복합체와 GO 혼합 중량비가 9 : 1인 전극을 적용한 커패시터보다 감소한 것을 알 수 있었다. 이러한 결과로부터 전극 제조 시, GR-CNT-PANI 복합체와 GO 비율의 최적 조건이 존재하는 것을 확인하였다. 따라서, 바인더 없이 그래핀 시트가 도입된 복합체 전극은 전극의 빠른 전자이동과 활물질 함량 증가로 인하여 슈퍼커패시터의 비축전용량과 비축전용량의 유지율을 향상시킨 것으로 판단되었다.
본 발명자들은 제3양태 실시예에서 다중벽 탄소나노튜브(Multiwall-carbon nanotube; CNT), 그래핀 산화물(Graphene oxide; GO), 아닐린이 혼합된 콜로이드 용액으로부터 에어로졸 (Aerosol spray pyrolysis; ASP)공정을 이용하여 GR-CNT-PANI 복합체를 제조하고, 이에 그래핀 산화물(GO)을 첨가하여 3차원 구조의 GR-CNT-PANI-GR 복합체 전극을 제조하였다. 이때, 아닐린 농도변화에 따른 슈퍼커패시터 성능 및 그래핀 산화물 주입량 조절에 따라 제조된 복합체 전극이 슈퍼커패시터 성능에 미치는 영향을 각각 조사하였다. GR-CNT-PANI-GR 복합체 전극은 전극 내부의 원활한 전자이동과 전극 활물질 함량 증가로 인한 슈퍼커패시터 비축전량이 향상되는 것을 확인하였다. SEM, TEM, XRD, Raman 분석을 통하여 전극 제조 시 아닐린 농도 변화에 따른 GR-CNT-PANI의 물성(형상, 결정상, 결함)을 조사하였으며, 복합체로부터 제조된 전극의 슈퍼커패시터 특성평가를 수행하였다.
지금까지 본 발명의 제1양태 내지 제3양태에 따른 구겨진 형상의 그래핀 복합체의 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 슈퍼커패시터에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (30)

  1. 산 처리된 탄소나노튜브, 그래핀 옥사이드 및 용매를 혼합한 콜로이드 혼합용액을 준비하는 단계(단계 1); 및
    상기 혼합용액을 분무 건조하고, 열처리하는 단계(단계 2);를 포함하는, 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  2. 제1항에 있어서,
    상기 탄소나노튜브는,
    다중벽 탄소나노튜브(MWCNT)인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  3. 제1항에 있어서,
    상기 단계 1의 탄소나노튜브 산 처리는,
    탄소나노튜브를 황산 및 질산을 포함하는 산 용액에 분산시켜 수행되는 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  4. 제1항에 있어서,
    상기 단계 1의 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비는,
    0.01 내지 0.4 : 1인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  5. 제1항에 있어서,
    상기 단계 1의 혼합용액의 그래핀 옥사이드 농도는,
    0.10 wt% 내지 0.50 wt%인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  6. 제1항에 있어서,
    상기 단계 2는,
    상기 단계 1의 혼합용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 2a); 및
    상기 분무된 액적을 가열로로 이송하여 건조하고, 열처리하여 자가-조립된 구겨진 형상의 그래핀-탄소나노튜브 복합체를 형성하는 단계(단계 2b);를 포함하는 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  7. 제6항에 있어서,
    상기 단계 2a의 이류체 노즐의 직경은,
    1.0 mm 내지 3.0 mm인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  8. 제1항 또는 제6항에 있어서,
    상기 단계 2 또는 단계 2b의 열처리는,
    200 ℃ 내지 500 ℃의 온도에서 수행되는 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  9. 제1항 또는 제6항에 있어서,
    상기 단계 2 또는 단계 2b의 열처리는,
    1 시간 내지 10 시간 동안 수행되는 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법.
  10. 제1항의 방법으로 제조되어,
    구겨진 형상의 그래핀 시트; 및
    상기 그래핀 시트 내부에 포함된 탄소나노튜브;를 포함하고,
    구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브 복합체.
  11. 제10항에 있어서,
    상기 탄소나노튜브는,
    다중벽 탄소나노튜브(MWCNT)인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브 복합체.
  12. 제10항의 구겨진 형상의 그래핀-탄소나노튜브 복합체를 포함하는 슈퍼커패시터 전극.
  13. 상호 대향 배치되고, 활물질을 포함하는 한 쌍의 전극;
    상기 한 쌍의 전극 사이에 구비되는 전해질; 및
    상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고,
    상기 활물질은 제10항의 구겨진 형상의 그래핀-탄소나노튜브 복합체를 포함하는, 슈퍼커패시터.
  14. 산 처리된 탄소나노튜브, 그래핀 옥사이드, 전도성 고분자 단량체 및 용매를 혼합한 혼합용액을 준비하는 단계(단계 i);
    상기 혼합용액의 단량체를 중합 반응시키는 단계(단계 ii); 및
    상기 중합 반응된 혼합용액을 분무 건조하고, 열처리하는 단계(단계 iii);를 포함하는, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  15. 제14항에 있어서,
    상기 단계 i의 탄소나노튜브 및 그래핀 옥사이드의 혼합 중량비는,
    0.01 내지 0.5 : 1인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  16. 제14항에 있어서,
    상기 단계 i의 혼합용액의 단량체 농도는,
    5 mM 내지 50 mM인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  17. 제14항에 있어서,
    상기 단계 i의 전도성 고분자 단량체는,
    아닐린, 피롤, 티오펜, 아세틸렌, 퓨란, 페닐렌 및 이들의 유도체로 이루어지는 군으로부터 선택된 1종 이상인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  18. 제14항에 있어서,
    상기 단계 ii는,
    상기 혼합용액에 중합 개시제를 첨가하고 초음파 처리하여 수행되는 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  19. 제14항에 있어서,
    상기 단계 iii은,
    상기 중합 반응된 혼합용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 iiia); 및
    상기 분무된 액적을 가열로로 이송하여 건조하고, 열처리하여 자가-조립된 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 형성하는 단계(단계 iiib);를 포함하는 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  20. 제19항에 있어서,
    상기 단계 iiia의 이류체 노즐의 직경은,
    1.0 mm 내지 3.0 mm인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  21. 제14항 또는 제19항에 있어서,
    상기 단계 iii 또는 단계 iiib의 열처리는,
    200 ℃ 내지 500 ℃의 온도에서 1 시간 내지 10 시간 동안 수행되는 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법.
  22. 제14항의 방법으로 제조되어,
    구겨진 형상의 그래핀 시트;
    상기 그래핀 시트 내부에 포함된 탄소나노튜브; 및 전도성 고분자;를 포함하고,
    구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체.
  23. 제22항에 있어서,
    상기 전도성 고분자는 폴리아닐린, 폴리피롤, 폴리티오펜, 폴리아세틸렌, 폴리퓨란 및 폴리파라페닐렌으로 이루어지는 군으로부터 선택된 1종인 것을 특징으로 하는 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체.
  24. 제22항의 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 포함하는 슈퍼커패시터 전극.
  25. 상호 대향 배치되고, 활물질을 포함하는 한 쌍의 전극;
    상기 한 쌍의 전극 사이에 구비되는 전해질; 및
    상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고,
    상기 활물질은 제22항의 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체를 포함하는, 슈퍼커패시터.
  26. 산 처리된 탄소나노튜브, 그래핀 옥사이드, 전도성 고분자 단량체 및 용매를 혼합한 혼합용액을 준비하는 단계(단계 i);
    상기 혼합용액의 단량체를 중합 반응시키는 단계(단계 ii);
    상기 중합 반응된 혼합용액을 분무 건조하고, 열처리하여 구겨진 형상의 그래핀 복합체를 제조하는 단계(단계 iii); 및
    상기 복합체, 그래핀 옥사이드 및 용매를 혼합하고 집전체 상에 도포한 다음 열처리하는 단계(iv);를 포함하는, 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법.
  27. 제26항에 있어서,
    상기 단계 iv의 혼합은,
    상기 복합체 : 그래핀 옥사이드의 중량비가 1 : 0.02 내지 0.5인 것을 특징으로 하는 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법.
  28. 제26항에 있어서,
    상기 단계 iv의 열처리는,
    200 ℃ 내지 500 ℃의 온도에서 1 시간 내지 10 시간 동안 수행되는 것을 특징으로 하는 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극 제조방법.
  29. 구겨진 형상의 그래핀 시트; 상기 그래핀 시트 내부에 포함된 탄소나노튜브; 및 전도성 고분자;를 포함하고, 구형이며, 평균 입자 크기가 1 ㎛ 내지 10 ㎛인, 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체;
    상기 복합체가 일면에 복수 개 형성된 집전체; 및
    상기 집전체와 복합체를 고정하고, 상기 복합체와 복합체를 고정하는 그래핀 시트;를 포함하는, 슈퍼커패시터 전극.
  30. 상호 대향 배치된 한 쌍의 전극;
    상기 한 쌍의 전극 사이에 구비되는 전해질; 및
    상기 한 쌍의 전극 사이에 구비되고, 전기적 단락을 억제하는 분리막;을 포함하고,
    상기 전극은 제29항의 전극으로 구비되는, 슈퍼커패시터.
PCT/KR2017/003433 2016-12-12 2017-03-29 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터 WO2018110776A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780076905.9A CN110073458B (zh) 2016-12-12 2017-03-29 褶皱状石墨烯复合体的制备方法、由此制备的复合体及包含复合体的超级电容器

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020160169022A KR101744122B1 (ko) 2016-12-12 2016-12-12 구겨진 형상의 그래핀-탄소나노튜브 복합체 제조방법, 이에 따라 제조된 그래핀-탄소나노튜브 복합체 및 이를 포함하는 슈퍼커패시터
KR10-2016-0169022 2016-12-12
KR1020160174818A KR101742593B1 (ko) 2016-12-20 2016-12-20 구겨진 형상의 그래핀-탄소나노튜브-고분자 복합체 제조방법, 이에 따라 제조된 복합체 및 이를 포함하는 슈퍼커패시터
KR10-2016-0174818 2016-12-20
KR10-2017-0001353 2017-01-04
KR1020170001353A KR101753129B1 (ko) 2017-01-04 2017-01-04 구겨진 형상의 그래핀 복합체를 포함하는 슈퍼커패시터 전극의 제조방법, 이에 따라 제조되는 전극 및 이를 포함하는 슈퍼커패시터

Publications (1)

Publication Number Publication Date
WO2018110776A1 true WO2018110776A1 (ko) 2018-06-21

Family

ID=62558720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003433 WO2018110776A1 (ko) 2016-12-12 2017-03-29 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터

Country Status (2)

Country Link
CN (1) CN110073458B (ko)
WO (1) WO2018110776A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285336A (zh) * 2018-12-10 2020-06-16 北京清正泰科技术有限公司 一种消除二维材料褶皱的方法
US20210104721A1 (en) * 2017-05-24 2021-04-08 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
CN114171325A (zh) * 2021-11-17 2022-03-11 中北大学南通智能光机电研究院 一种三维石墨烯/聚苯胺负载的导电织物复合电极材料的制备方法
EP3944380A4 (en) * 2019-05-15 2022-05-25 LG Energy Solution, Ltd. CONDUCTIVE MATERIAL, CONDUCTIVE MATERIAL ELECTRODE AND SINGLE ELECTRODE SECONDARY BATTERY
CN116836421A (zh) * 2023-04-11 2023-10-03 湖北中一科技股份有限公司 一种导电膜及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110544771B (zh) * 2019-08-23 2021-02-05 暨南大学 低电压、高载量的自支撑钾离子电池负极及其制备与应用
CN111739740B (zh) * 2020-06-29 2021-12-07 清华大学深圳国际研究生院 多孔碳基复合材料及其制备方法
CN115172066B (zh) * 2022-06-16 2023-04-25 宁德师范学院 一种Fe3+诱导的褶皱石墨烯基电容复合材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110018735A (ko) * 2009-08-18 2011-02-24 한국전기연구원 탄소나노튜브 마이크로볼의 제조방법, 이에 의해 제조된 탄소나노튜브 마이크로볼 및 이를 이용한 전극의 제조방법
US20120111730A1 (en) * 2009-04-24 2012-05-10 Samsung Electro-Mechanics Co., Ltd. Composite electrode and method for manufacturing the same
KR101211949B1 (ko) * 2010-11-17 2012-12-18 성균관대학교산학협력단 하이브리드 복합체 및 이의 제조방법
KR101623346B1 (ko) * 2015-10-27 2016-05-23 한국지질자원연구원 3차원 산화철-그래핀 나노복합체의 제조방법 및 이를 이용한 슈퍼커패시터

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993065B (zh) * 2010-12-17 2012-09-05 中国科学院上海微***与信息技术研究所 一种制备石墨烯粉体的方法
CN102530913A (zh) * 2010-12-30 2012-07-04 海洋王照明科技股份有限公司 石墨烯-碳纳米管复合材料的制备方法
CN102515145A (zh) * 2011-12-27 2012-06-27 常州第六元素材料科技股份有限公司 一种高比表面多孔炭材料的制备工艺
CN102832050B (zh) * 2012-08-29 2015-04-15 华东理工大学 分级结构石墨烯/碳纳米管杂化物的制备方法
CN102850543B (zh) * 2012-09-28 2014-12-17 中国科学院宁波材料技术与工程研究所 一种石墨烯/导电聚合物复合材料及其制备方法
US20140205841A1 (en) * 2013-01-18 2014-07-24 Hongwei Qiu Granules of graphene oxide by spray drying
CN103204497A (zh) * 2013-04-16 2013-07-17 中国科学院福建物质结构研究所 一种制备石墨烯材料的方法及其在化学储能和/或转化中的用途
CN103308574A (zh) * 2013-05-21 2013-09-18 上海师范大学 一种碳纳米管-石墨烯复合膜修饰的电化学传感器及其制备方法和应用
CN103346022B (zh) * 2013-07-03 2016-03-02 中国科学院福建物质结构研究所 一种石墨烯/纳米碳颗粒复合材料的制备方法
CN103366971A (zh) * 2013-07-09 2013-10-23 武汉国墨新材料技术有限公司 石墨烯-聚苯胺-碳纳米管立体三维复合物的制备方法
DE112015002190T5 (de) * 2014-05-09 2017-02-02 Semiconductor Energy Laboratory Co., Ltd. Lithium-lonen-Sekundärbatterie und elektronisches Gerät
CN104009205B (zh) * 2014-06-12 2016-08-24 上海中聚佳华电池科技有限公司 一种中空石墨烯球及其制备方法和用途
CN105304882A (zh) * 2014-07-25 2016-02-03 中国科学院物理研究所 锂硫电池正极材料的制备方法、锂硫电池正极材料和电池
CN104993170B (zh) * 2015-05-25 2017-03-15 天津巴莫科技股份有限公司 锂硫二次电池正极材料的制备方法
CN105742590B (zh) * 2016-03-02 2019-01-08 合肥国轩高科动力能源有限公司 一种低电阻率的磷酸铁锂/碳复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120111730A1 (en) * 2009-04-24 2012-05-10 Samsung Electro-Mechanics Co., Ltd. Composite electrode and method for manufacturing the same
KR20110018735A (ko) * 2009-08-18 2011-02-24 한국전기연구원 탄소나노튜브 마이크로볼의 제조방법, 이에 의해 제조된 탄소나노튜브 마이크로볼 및 이를 이용한 전극의 제조방법
KR101211949B1 (ko) * 2010-11-17 2012-12-18 성균관대학교산학협력단 하이브리드 복합체 및 이의 제조방법
KR101623346B1 (ko) * 2015-10-27 2016-05-23 한국지질자원연구원 3차원 산화철-그래핀 나노복합체의 제조방법 및 이를 이용한 슈퍼커패시터

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAN, JUN ET AL.: "Preparation of Graphene Nanosheet/carbon Nanotube/polyaniline Composite as Electrode Material for Supercapacitors", JOURNAL OF POWER SOURCES, vol. 195, no. 9, 1 May 2010 (2010-05-01), pages 3041 - 3045, XP026827358 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210104721A1 (en) * 2017-05-24 2021-04-08 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US11735705B2 (en) * 2017-05-24 2023-08-22 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
CN111285336A (zh) * 2018-12-10 2020-06-16 北京清正泰科技术有限公司 一种消除二维材料褶皱的方法
CN111285336B (zh) * 2018-12-10 2023-02-03 北京清正泰科技术有限公司 一种消除二维材料褶皱的方法
EP3944380A4 (en) * 2019-05-15 2022-05-25 LG Energy Solution, Ltd. CONDUCTIVE MATERIAL, CONDUCTIVE MATERIAL ELECTRODE AND SINGLE ELECTRODE SECONDARY BATTERY
CN114171325A (zh) * 2021-11-17 2022-03-11 中北大学南通智能光机电研究院 一种三维石墨烯/聚苯胺负载的导电织物复合电极材料的制备方法
CN116836421A (zh) * 2023-04-11 2023-10-03 湖北中一科技股份有限公司 一种导电膜及其制备方法
CN116836421B (zh) * 2023-04-11 2024-02-06 湖北中一科技股份有限公司 一种导电膜及其制备方法

Also Published As

Publication number Publication date
CN110073458B (zh) 2022-07-08
CN110073458A (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2018110776A1 (ko) 구겨진 형상의 그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 복합체를 포함하는 슈퍼커패시터
WO2020022822A1 (ko) 탄소나노튜브, 이의 제조방법 및 이를 포함하는 일차전지용 양극
WO2017074124A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2021141376A1 (ko) 선분산제 조성물, 이를 포함하는 전극 및 이차전지
WO2017099481A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2017209561A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2017179900A1 (ko) 그래핀 섬유 및 그 제조 방법
WO2018066974A1 (ko) 전극 섬유 및 그 제조 방법
WO2021075874A1 (ko) 양극 활물질, 및 그 제조 방법
WO2017099358A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2017164703A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 이차전지
WO2023096443A1 (ko) 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬 이차전지용 음극 활물질
WO2021029534A1 (ko) 표면에 인산 음이온이 흡착된 옥시수산화질산철, 이의 제조방법, 상기 표면에 인산 음이온이 흡착된 옥시수산화질산철을 포함하는 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2020005029A1 (ko) 구조전지 전극 및 그의 제조 방법, 그 구조전지 전극을 이용한 구조전지
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2019125052A1 (ko) 에어로겔 복합물 및 그의 제조 방법
WO2021215768A1 (ko) 실리콘-탄소 복합 음극 활물질, 상기 실리콘-탄소 복합 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2015111801A1 (ko) 폴리아닐린 나노페이스트 및 이의 제조방법
WO2024029906A1 (ko) 전극 및 이를 포함하는 전기화학소자
WO2024063518A1 (ko) 가교 폴리티오펜 화합물, 황-탄소 복합체, 리튬-황 전지, 및 황-탄소 복합체의 제조 방법
WO2020242219A1 (ko) 리튬 이차전지
WO2024025104A1 (ko) 리튬황 전지용 양극재 이를 포함하는 리튬황 전지
WO2021241874A1 (ko) 연료전지용 혼합 촉매, 그 제조방법, 그것을 이용한 전극 형성방법, 및 그것을 포함하는 막-전극 어셈블리
WO2021096113A1 (ko) 유기 화합물 기반의 리튬 이차 전지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880119

Country of ref document: EP

Kind code of ref document: A1