WO2015122451A1 - 自動変速機の油圧制御装置 - Google Patents

自動変速機の油圧制御装置 Download PDF

Info

Publication number
WO2015122451A1
WO2015122451A1 PCT/JP2015/053806 JP2015053806W WO2015122451A1 WO 2015122451 A1 WO2015122451 A1 WO 2015122451A1 JP 2015053806 W JP2015053806 W JP 2015053806W WO 2015122451 A1 WO2015122451 A1 WO 2015122451A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
output
range
fail
Prior art date
Application number
PCT/JP2015/053806
Other languages
English (en)
French (fr)
Inventor
博之 九坪
一輝 小嶋
浩二 牧野
芳充 兵藤
土田 建一
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201580006857.7A priority Critical patent/CN105940247B/zh
Priority to DE112015000258.8T priority patent/DE112015000258T5/de
Priority to US15/108,987 priority patent/US9863531B2/en
Priority to JP2015562849A priority patent/JP6146487B2/ja
Publication of WO2015122451A1 publication Critical patent/WO2015122451A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1252Fail safe valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1264Hydraulic parts of the controller, e.g. a sticking valve or clogged channel

Definitions

  • the present invention relates to a hydraulic control device for an automatic transmission mounted on a vehicle, for example, and more specifically, a hydraulic control device for a shift-by-wire type automatic transmission capable of switching a travel range by a plurality of electrically controlled switching valves. About.
  • a shift-by-wire range switching device that includes two switching valves and two solenoid valves that can switch each switching valve is known (see Patent Document 1).
  • a forward range state, a reverse range state, and an N range state can be switched by a combination of spool positions of two switching valves.
  • the N range state is formed by the operation of the other solenoid valve.
  • the first switching valve switches whether the input line pressure is output as a range pressure or shuts off, and the second switching valve converts the range pressure input from the first switching valve to the forward range.
  • the output can be switched between pressure and reverse range pressure.
  • the first switching valve is self-held by the output range pressure, so that even if the solenoid valve that switches the first switching valve generates an off-fail while driving, The traveling pressure can be maintained by maintaining the output of the range pressure from one switching valve.
  • an automatic transmission that can guarantee the output of the forward range pressure even when at least one of the solenoid valves that switch each switching valve generates an off-fail.
  • a hydraulic control device (1) for the automatic transmission includes a transmission control unit (40) that controls the transmission mechanism, A first solenoid valve (SC2) capable of outputting a first signal pressure (PS1); A first position where the source pressure (PL) is input and the input source pressure (PL) is output as the forward range pressure (P1, PD) when the first signal pressure (PS1) is off.
  • a first position that can be switched to a second position that outputs the input original pressure (PL) as a reverse range pressure (P2, PR).
  • the first switching valve is at the first position and the second switching valve is at the first position. Can be in position 3. For this reason, even in such a case, the output of the forward range pressure to the shift control unit can be ensured. Further, for example, when the first switching valve sticks to the first position or when the second switching valve sticks to the third position, the output of the forward range pressure to the shift control unit is ensured in the same manner. be able to.
  • FIG. 5 is a schematic diagram showing a failure state in which the spool of the first cutoff valve is stuck to a second position in the hydraulic control device according to the present embodiment.
  • Schematic which shows the failure state in which the spool of the 2nd cut-off valve was stuck to the 4th position in the hydraulic control device concerning this embodiment.
  • surface of the solenoid valve corresponding to the driving
  • the flowchart which shows the process sequence when the failure generate
  • the hydraulic control device for the automatic transmission electrically controls the switching valve in response to the driver switching the traveling range, thereby setting the line pressure (original pressure) PL as a predetermined range pressure and a predetermined oil passage. And is suitable for use in a hydraulic control device for a shift-by-wire automatic transmission that realizes shift control.
  • an automatic transmission here, for example, it has four clutches, two brakes, and one one-way clutch, and among them, the eight forward speeds and the first reverse speed are selectively selected by simultaneously engaging two engagement elements. It is assumed that a multi-stage transmission that can be formed in a similar manner can be used (see, for example, JP-A-2011-214644).
  • the hydraulic control device of the automatic transmission is not limited to application to a multi-stage transmission, and can be similarly applied to, for example, a belt type continuously variable transmission (CVT), a hybrid drive device, and the like.
  • CVT continuously variable transmission
  • the hydraulic control device 1 can control the hydraulic pressure generating unit 5, the first cutoff valve (first switching valve) 10, and the first cutoff valve 10.
  • a fail-safe valve 30, a solenoid valve SR that can control the fail-safe valve 30, a lock-up solenoid valve SLU, and a shift control unit 40 which are formed in the valve body.
  • the first cutoff valve 10, the solenoid valve SC2, the second cutoff valve 20, and the solenoid valve SC3 are particularly referred to as a manual valveless circuit.
  • the solenoid valve, the shift control unit 40, and the like of the hydraulic control device 1 are controlled by a control unit (ECU) 50.
  • the hydraulic control device 1 generates a range pressure corresponding to the travel range based on the line pressure PL generated by the hydraulic pressure generation unit 5 and supplies the range pressure to the shift control unit 40. That is, the hydraulic control device 1 corresponds to the parking (P) range, neutral (N) range, and travel range (forward (D) range, reverse (R) range) selected by the driver's range switching operation.
  • the forward range pressure PD used at the time of forming the forward gear and the reverse range pressure PR used at the time of forming the reverse gear are supplied to the shift control unit 40 to perform the shift (see FIG. 4).
  • the hydraulic pressure generator 5 is controlled by the ECU 50 and includes a primary regulator valve that adjusts the hydraulic pressure from an oil pump (not shown) to the line pressure PL, and various original pressures such as the modulator pressure Pmod in addition to the line pressure PL. It is generated by adjusting the pressure.
  • the hydraulic control device 1 also includes a lubrication relay valve (not shown), a circulation modulator, in which a spool position is switched or controlled to selectively switch or adjust the hydraulic pressure based on various original pressures to the respective oil passages. Equipped with valves, lock-up relay valves, sequence valves, etc.
  • the solenoid valve SC2 is controlled by the ECU 50 and includes an input port SC2a to which the modulator pressure Pmod is input and an output port SC2b that can output the first signal pressure PS1 generated based on the modulator pressure Pmod.
  • the first cut-off valve 10 can be controlled by the first signal pressure PS1 to be output.
  • the first cut-off valve 10 has an input port (first input port) 10b capable of inputting the line pressure PL, and a first output capable of outputting the line pressure PL as the first hydraulic pressure (forward range pressure) P1.
  • a port 10c and a second output port 10d capable of outputting the line pressure PL as a second hydraulic pressure (reverse range pressure) P2 are provided.
  • the first cut-off valve 10 includes a first position (a left half position in the figure, also referred to as an off state) that communicates the input port 10b and the first output port 10c, and the input port 10b and the second output port 10c. Is provided with a spool 10p that can be switched to a second position that communicates with the output port 10d (right half position in the figure, also referred to as an ON state).
  • the first cut-off valve 10 receives the spring 10s formed of a compression coil spring that urges the spool 10p to be positioned at the first position, and the first signal pressure PS1, thereby inputting the spool 10p to the first cut-off valve 10. And a first oil chamber 10a that presses against the spring 10s so as to be positioned at position 2.
  • the first cut-off valve 10 receives the line pressure PL and outputs the input line pressure PL as the first oil pressure P1, and the input line pressure PL as the second oil pressure. Switching to the state of outputting as P2 is possible by the first signal pressure PS1.
  • the first cut-off valve 10 receives the line pressure PL and outputs the input line pressure PL as the first oil pressure P1 in the off state of the first signal pressure PS1. In the ON state of the first signal pressure PS1, it is possible to switch to the second position where the input line pressure PL is output as the second hydraulic pressure P2.
  • the solenoid valve SC3 is controlled by the ECU 50, and includes an input port SC3a to which the modulator pressure Pmod is input, and an output port SC3b that can output the second signal pressure PS2 generated based on the modulator pressure Pmod.
  • the second cutoff valve 20 can be controlled by the output second signal pressure PS2.
  • the second cutoff valve 20 is connected to the first output port 10c of the first cutoff valve 10, and the second input port 20b to which the first hydraulic pressure P1 is input, and the first cutoff valve.
  • a third input port 20c that is connected to the second output port 10d, and that receives the second hydraulic pressure P2, and a third output port 20d that can output the first hydraulic pressure P1 as the forward range pressure PD;
  • a fourth output port 20e capable of outputting the second hydraulic pressure P2 as the reverse range pressure PR, and a drain port 20f are provided.
  • the second cut-off valve 20 communicates with the second input port 20b and the third output port 20d and communicates with the fourth output port 20e and the drain port 20f in the third position (left side in the figure).
  • a half position also referred to as an OFF state
  • a fourth position (right in the figure) that communicates the third input port 20c and the fourth output port 20e and communicates the third output port 20d and the drain port 20f.
  • the spool 20p is switchable to a half position (also referred to as an on state).
  • the second cut-off valve 20 inputs the spring 20s formed of a compression coil spring that urges the spool 20p to be positioned at the first position, and the second signal pressure PS2, thereby allowing the spool 20p to move to the first position. And an oil chamber 20 a that presses against the spring 20 s so as to be positioned at the position 2. Accordingly, the second cutoff valve 20 can be switched between the state where the spool 20p is located at the first position and the state where the spool 20p is located at the second position by the second signal pressure PS2. ing.
  • the second cut-off valve 20 outputs the first hydraulic pressure P1 input from the first cut-off valve 10 as the forward range pressure PD to the shift control unit 40 in the off state of the second signal pressure PS2.
  • the second hydraulic pressure P2 input from the first cutoff valve 10 is used as the reverse range pressure PR. It is possible to switch to a fourth position where the first hydraulic pressure P1 is shut off while outputting to the control unit 40.
  • the solenoid valve SR is controlled by the ECU 50 and includes an input port SRa to which the modulator pressure Pmod is input, and an output port SRb that can output the third signal pressure PS3 generated based on the modulator pressure Pmod.
  • the fail-safe valve 30 can be controlled by the output third signal pressure PS3.
  • the failsafe valve 30 includes an input port 30b connected to the lockup solenoid valve SLU, an output port 30c connected to the drain port 20f of the second cutoff valve 20, and a drain hole EX.
  • the fail-safe valve 30 blocks the fifth position (left half position in the figure) where the input port 30b and the output port 30c communicate with each other, the input port 30b and the output port 30c, and the drain port 20f and the output port.
  • a spool 30p is provided that can switch 30c to a sixth position (right half position in the figure) communicating with the drain hole EX.
  • the fail-safe valve 30 inputs the spring 30s formed of a compression coil spring that urges the spool 30p to be positioned at the sixth position, and the third signal pressure PS3, so that the spool 30p is positioned at the fifth position. And an oil chamber 30a that presses against the spring 30s.
  • the fail-safe valve 30 drains the lock-up pressure PSLU from the fail state (left half position in the figure) in which the lock-up pressure (fail-safe oil pressure) PSLU from the lock-up solenoid valve SLU is supplied to the drain port 20f. Switching to the normal state (right half position in the figure) in which the drain port 20f communicates with the drain hole EX as a non-supply by shutting off the port 20f is switchable by the third signal pressure PS3.
  • the lockup pressure PSLU input from the failsafe valve 30 to the second cutoff valve 20 is shifted from the second cutoff valve 20 when the second cutoff valve 20 is in the third position.
  • the second cut-off valve 20 is in the fourth position, it is output from the second cut-off valve 20 to the shift control unit 40 as the forward range pressure PD. It is like that.
  • the solenoid valves SC2, SC3, SR described above are so-called normally closed (not closed) in which the input port and the output port are shut off when no power is supplied and the signal pressure is not output, and the signal pressure is communicated and output when the power is supplied.
  • N / C) type is used.
  • the normally closed type is applied as the solenoid valves SC2, SC3, SR.
  • the present invention is not limited to this, and the so-called normally open type that connects the input port and the output port when not energized and communicates when energized. (N / O) type may be applied.
  • the solenoid valves SC2, SC3, SR are configured to output or not output each signal pressure based on an electrical signal.
  • the lockup solenoid valve SLU is controlled by the ECU 50 and outputs an input port SLUa to which the line pressure PL is input and a lockup pressure PSLU generated based on the line pressure PL to the input port 30b of the failsafe valve 30. And a lockup pressure PSLU for controlling the engagement state of a lockup clutch capable of locking up a fluid power transmission device such as a torque converter.
  • the lockup solenoid valve SLU supplies the lockup pressure PSLU to the drain port 20f when the failsafe valve 30 is in a fail state.
  • the lockup pressure PSLU since the lockup solenoid valve SLU normally controls the engagement state of the lockup clutch as the lockup pressure PSLU, the lockup pressure PSLU may be output during traveling.
  • the lockup pressure PSLU is communicated with the drain port 20f via the failsafe valve 30, so even if the lockup pressure PSLU is output during normal travel, the failsafe It is shut off by the valve 30. Thereby, it is possible to prevent the lockup pressure PSLU from being supplied more than necessary.
  • the speed change control unit 40 includes a plurality of linear solenoid valves that can engage and disengage the first to fourth clutches, the first brake, and the second brake, respectively.
  • the shift control unit 40 controls the formation of a shift stage of a transmission mechanism that can form a plurality of shift stages by a combination of engagement and disengagement of a plurality of engagement elements by the supplied forward range pressure PD or reverse range pressure PR. It has become.
  • the line pressure PL is appropriately supplied to the plurality of linear solenoid valves. Note that the hydraulic circuit configuration in the shift control unit 40 is the same as that of a general automatic transmission, and thus detailed description thereof is omitted.
  • the ECU 50 includes, for example, a CPU, a ROM that stores a processing program, a RAM that temporarily stores data, an input / output port, and a communication port.
  • the ECU 50 includes an accelerator opening sensor, an engine rotational speed sensor, an automatic transmission input shaft rotational speed sensor, an automatic transmission output shaft rotational speed sensor, a shift lever shift position sensor, and the like. Connected through.
  • the ECU 50 calculates the vehicle speed from the output shaft rotation speed obtained by the output shaft rotation speed sensor, and when the driver steps on the accelerator, only the engine rotation speed increases without increasing the vehicle speed. It is possible to detect whether or not the engine is blowing up.
  • the ECU 50 calculates the actual gear ratio from the output shaft rotational speed and the input shaft rotational speed obtained by the input shaft rotational speed sensor, and whether the actual gear stage is normal in comparison with the shift position. Whether or not can be detected. Further, the ECU 50 stores the shift position history using the RAM, and can detect whether or not a shift change has been made from the R position to the D position between 10 seconds ago and the present, for example. It has become.
  • the ECU 50 determines whether the forward range pressure PD or the reverse range pressure PR is the second cutoff valve when either one of the first cutoff valve 10 and the second cutoff valve 20 cannot be switched. 20 is supplied to the speed change control unit 40, the state of the other non-stick switching valve is controlled by the first signal pressure PS1 or the second signal pressure PS2.
  • the ECU 50 causes the fail-safe valve 30 to fail by the third signal pressure PS3 when any one of the first cut-off valve 10 and the second cut-off valve 20 cannot be switched.
  • the lockup solenoid valve SLU is turned on to output the lockup pressure PSLU.
  • the lockup pressure PSLU is input to the drain port 20f, and based on the lockup pressure PSLU, the forward range pressure PD or the reverse range from the third output port 20d or the fourth output port 20e communicating with the drain port 20f.
  • the pressure PR is output.
  • the ECU 50 In a normal time when no failure has occurred, as shown in FIG. 4, the ECU 50 always controls the solenoid valve SR to be in an OFF state, and the fail safe valve 30 is in a normal state. As a result, as shown in FIG. 1, even if the lockup solenoid valve SLU outputs the lockup pressure PSLU to generate the lockup pressure, the lockup solenoid valve SLU is shut off by the failsafe valve 30 to prevent unnecessary supply.
  • the fail safe valve 30 when the fail safe valve 30 is in the normal state, the third output port 20d or the fourth output port 20e communicating with the drain port 20f of the second cutoff valve 20 serves as the drain port of the fail safe valve 30. Communicated.
  • the ECU 50 controls the solenoid valves SC2 and SC3 to the off state as shown in FIG. For this reason, as shown in FIG. 1, since the first signal pressure PS1 is not output, the first cutoff valve 10 is located at the first position, and the second signal pressure PS2 is not output.
  • the second cut-off valve 20 is positioned at the first position.
  • the line pressure PL supplied from the hydraulic pressure generator 5 is output from the input port 10b of the first cutoff valve 10 as the first hydraulic pressure P1 via the first output port 10c.
  • the first hydraulic pressure P1 is supplied from the second input port 20b of the second cutoff valve 20 through the third output port 20d to the transmission control unit 40 as the forward range pressure PD.
  • the fourth output port 20e is communicated with the drain port of the failsafe valve 30 via the drain port 20f, and the reverse range pressure PR is not supplied.
  • the ECU 50 controls the solenoid valves SC2 and SC3 to be on as shown in FIG. For this reason, since the first signal pressure PS1 is output, the first cutoff valve 10 is positioned at the second position, and since the second signal pressure PS2 is output, the second cutoff pressure is obtained.
  • the valve 20 comes to be in the second position.
  • the line pressure PL supplied from the hydraulic pressure generator 5 is output as the second hydraulic pressure P2 from the input port 10b of the first cutoff valve 10 via the second output port 10d.
  • the second hydraulic pressure P2 is supplied from the third input port 20c of the second cutoff valve 20 through the fourth output port 20e to the speed change control unit 40 as the reverse range pressure PR.
  • the third output port 20d communicates with the drain port of the failsafe valve 30 via the drain port 20f, and the forward range pressure PD is not supplied.
  • the ECU 50 controls the solenoid valve SC2 to be on and the solenoid valve SC3 to be off. For this reason, since the first signal pressure PS1 is output, the first cut-off valve 10 is located at the second position, and the second signal pressure PS2 is not output. 20 comes to be located in the first position. At this time, the line pressure PL supplied from the hydraulic pressure generator 5 is output as the second hydraulic pressure P2 from the input port 10b of the first cutoff valve 10 via the second output port 10d. Further, the second hydraulic pressure P2 is inputted to the third input port 20c of the second cutoff valve 20, but is drained as it is or used as a parking pressure or the like.
  • the ECU 50 controls the solenoid valve SC2 to the off state and the solenoid valve SC3 to the on state. For this reason, since the first signal pressure PS1 is not output, the first cut-off valve 10 is positioned at the first position, and the second signal pressure PS2 is output. Therefore, the second cut-off valve 20 comes to be located in the 2nd position. At this time, the line pressure PL supplied from the hydraulic pressure generator 5 is output from the input port 10b of the first cutoff valve 10 as the first hydraulic pressure P1 via the first output port 10c. Further, the first hydraulic pressure P1 is input to the second input port 20b of the second cutoff valve 20, but is blocked as it is.
  • the operation when one of the first cut-off valve 10 and the second cut-off valve 20 becomes non-switchable will be described.
  • the cut-off valve becoming non-switchable include, for example, a valve stick (valve sticking due to foreign object biting) and off-fail and on-fail of solenoid valves SC2 and SC3.
  • a valve stick valve sticking due to foreign object biting
  • the ECU 50 causes the solenoid valves SC2 and SC3 to be switched. Control to off state.
  • the first signal pressure PS1 is not output from the solenoid valve SC2
  • the first cut-off valve 10 remains in the second position, and therefore the second output port of the first cut-off valve 10 is used.
  • the line pressure PL is output as the second hydraulic pressure P2 from 10d.
  • the second hydraulic pressure P2 is input to the third input port 20c of the second cutoff valve 20, but is drained as it is. Is equal.
  • the operation is the same as in the normal P range.
  • the gear stage cannot be formed, for example, when the driver steps on the accelerator, only the engine speed increases without increasing the vehicle speed (so-called engine blowing). It is determined that the driving range pressure corresponding to the range is not output.
  • the ECU 50 detects whether or not an off-fail has occurred in the linear solenoid valve of the shift control unit 40 and determines that no off-fail has occurred, the ECU 50 or the second cutoff valve 10 It is determined that a failure has occurred that either one of the cut-off valves 20 cannot be switched (in this example, the valve stick), and the determination of the abnormality of the manual valveless circuit is finalized (see the flowchart of FIG. 5 described later). .
  • the ECU 50 determines that the manual valveless circuit is abnormal, it shifts to the limp home mode, turns on the solenoid valve SC3, and switches the second cutoff valve 20 to the second position.
  • the second hydraulic pressure P2 from the first cutoff valve 10 is speed-change controlled as the reverse range pressure PR via the third input port 20c to the fourth output port 20e of the second cutoff valve 20. Supplied to the unit 40.
  • the ECU 50 turns on the solenoid valve SR and switches the fail safe valve 30 to the fail position. Further, the ECU 50 turns on the lockup solenoid valve SLU to output the lockup pressure PSLU.
  • the lockup pressure PSLU is input from the input port 30b of the failsafe valve 30 to the drain port 20f of the second cutoff valve 20 via the output port 30c. Further, the lockup pressure PSLU is output from the third output port 20d and supplied to the shift control unit 40 as the forward range pressure PD. Therefore, both the forward range pressure PD and the reverse range pressure PR are supplied to the shift control unit 40, and a shift range of the D range that is the travel range can be formed.
  • the ECU 50 causes the solenoid valve SC2 to , SC3 is controlled to be turned off.
  • the second signal pressure PS2 is not output from the solenoid valve SC3
  • the second cutoff valve 20 remains in the second position, so the first output port of the first cutoff valve 10
  • the first hydraulic pressure P1 output from 10c is cut off at the second input port 20b of the second cutoff valve 20. That is, the operation is the same as in the normal N range.
  • the gear stage cannot be formed, for example, when the driver depresses the accelerator, only the engine speed increases without increasing the vehicle speed.
  • the ECU 50 determines the travel range corresponding to the selected travel range. It is determined that no pressure is output.
  • the ECU 50 detects whether or not an off-fail has occurred in the linear solenoid valve of the shift control unit 40 and determines that no off-fail has occurred, the ECU 50 or the second cutoff valve 10 It is determined that a failure has occurred that one of the cutoff valves 20 is not switchable, and the determination of abnormality of the manual valveless circuit is finalized (see the flowchart of FIG. 5 described later).
  • the ECU 50 determines that the manual valveless circuit is abnormal, the ECU 50 shifts to the limp home mode, the solenoid valve SC2 remains off, the solenoid valve SC3 is turned on, and the second cutoff valve 20 is set to the second cutoff valve 20. Try to switch to position. At this time, since the second cutoff valve is already located at the second position, the position is not changed. Accordingly, the first hydraulic pressure P1 from the first cutoff valve 10 is input to the second input port 20b of the second cutoff valve 20 and is blocked by the second cutoff valve 20.
  • the ECU 50 turns on the solenoid valve SR and switches the fail safe valve 30 to the fail position. Further, the ECU 50 turns on the lockup solenoid valve SLU to output the lockup pressure PSLU.
  • the lockup pressure PSLU is input from the input port 30b of the failsafe valve 30 to the drain port 20f of the second cutoff valve 20 via the output port 30c.
  • the lockup pressure PSLU is output from the third output port 20d and supplied to the shift control unit 40 as the forward range pressure PD. Accordingly, the forward shift range pressure PD is supplied to the shift control unit 40, and the shift range of the D range that is the travel range can be formed.
  • the ECU 50 determines whether or not the traveling range is the D range and the engine is blowing up, that is, whether or not only the engine speed is increased without increasing the vehicle speed when the driver steps on the accelerator. Is determined (step S1). If the ECU 50 determines that the travel range is not the D range or that the engine is not blowing up, it is not necessary to shift to the limp home mode, and thus this process is terminated.
  • Step S2 When the ECU 50 determines that the travel range is the D range and the engine is blowing up, it is determined whether the vehicle speed is, for example, 10 km / h or less, that is, whether the vehicle is traveling at a low speed or stopped ( Step S2). When the ECU 50 determines that the vehicle speed is not, for example, 10 km / h or less, that is, when the vehicle is traveling forward at a vehicle speed exceeding the low speed, it is assumed that the off-failure of the linear solenoid valve is suspected as the reason that the engine blows up Processing for detecting the presence or absence of an off-fail of the linear solenoid valve is executed (steps S3 to S6).
  • the ECU 50 changes the current gear position (for example, the second gear) to another gear (for example, the third gear) (step S3). Then, the ECU 50 determines whether or not the engine is still blowing up (step S4). If the ECU 50 determines that the engine is still blowing up, the current gear (for example, the third gear) is further shifted to another gear (for example, the seventh gear) (step S5). Then, the ECU 50 determines whether or not the engine is still blowing up (step S6). If the ECU 50 determines that the engine is still blowing up, it determines that there is an abnormality in the manual valveless circuit described later (step S9).
  • step S7 If the ECU 50 determines that the engine is not blown up in step S4, for example, it is determined that there is an abnormality in the linear solenoid valve that is involved in the formation of the second gear and not in the formation of the third gear (step S7). ). If the ECU 50 determines that the engine is not blown up in step S6, for example, there is an abnormality in the linear solenoid valve that is involved in the formation of the second gear and the third gear and is not involved in the formation of the seventh gear. (Step S7). After the determination, this process is terminated, and an appropriate process according to the determination result is executed.
  • step S2 determines in step S2 that the vehicle speed is, for example, 10 km / h or less, it refers to the shift position history and determines whether or not the shift position has been shifted from the R position to the D position in the past 10 seconds. (Step S8).
  • the ECU 50 determines that the shift position has not been shifted from the R position to the D position in the past 10 seconds, the on / off states of the first cutoff valve 10 and the second cutoff valve 20 change immediately before.
  • the above-described processing for detecting the presence or absence of the off-failure of the linear solenoid valve is executed on the assumption that the off-failure of the linear solenoid valve is suspected as the reason that the engine has blown up (steps S3 to S6).
  • the ECU 50 determines that the shift position has been shifted from the R position to the D position in the past 10 seconds, the first cutoff valve 10 and the second cutoff valve 20 are switched from the on state to the off state. Since the engine has blown up, it is determined that one of the first cutoff valve 10 and the second cutoff valve 20 has generated an on-fail that does not turn off, and the manual valveless circuit Abnormality determination is confirmed (step S9).
  • the ECU 50 executes the limp home mode (step S10), and controls the solenoid valve SC3 on while keeping the solenoid valve SC2 off. Further, the ECU 50 turns on the solenoid valve SR and the lockup solenoid valve SLU.
  • the reverse range pressure PR is supplied from the second cutoff valve 20 to the shift control unit 40, and the lock from the lockup solenoid valve SLU is locked.
  • the up pressure PSLU is supplied to the shift control unit 40 as the forward range pressure PD. Therefore, it is possible to form a shift range of the D range that is the travel range.
  • the solenoid valve SC2 when the solenoid valve SC2 generates an off-fail, the first cutoff valve 10 is in the first position, so the ECU 50 turns off the solenoid valve SC3 to turn off the second cutoff valve.
  • the forward range pressure PD can be output to the shift control unit 40 by switching 20 to the third position.
  • the solenoid valve SC3 when the solenoid valve SC3 generates an off-fail, the second cutoff valve 20 is in the third position, so the ECU 50 turns off the solenoid valve SC2 to turn off the first cutoff valve 10. Can be switched to the first position to output the forward range pressure PD to the shift control unit 40.
  • the first cut-off valve 10 is in the first position and the second cut-off valve 20 is in the third position. Therefore, the forward range pressure PD can be output to the shift control unit 40.
  • the solenoid valve SC3 when the solenoid valve SC3 generates an on-fail, the second cutoff valve 20 is in the fourth position, so the ECU 50 switches the fail-safe valve 30 to the fail state by turning on the solenoid valve SR.
  • the lockup pressure PSLU can be output to the shift control unit 40 as the forward range pressure PD via the second cutoff valve 20.
  • the solenoid valve SC2 operates normally, the ECU 50 switches the first cutoff valve 10 to the first position by turning off the solenoid valve SC2, and the second cutoff valve 20
  • the first hydraulic pressure P1 can be shut off.
  • the ECU 50 switches the fail-safe valve 30 to the fail state by turning on the solenoid valve SR so that the lockup pressure PSLU is set to the second value.
  • the forward range pressure PD can be output through the cut-off valve 20, and both the forward range pressure PD and the reverse range pressure PR are input to the speed change control unit 40. Can be ensured.
  • the first cutoff is achieved.
  • the valve 10 can be in the first position and the second cutoff valve 20 can be in the third position. For this reason, even in such a case, the output of the forward range pressure PD to the transmission control unit 40 can be ensured. Further, for example, even when the first cutoff valve 10 sticks to the first position or when the second cutoff valve 20 sticks to the third position, the forward range pressure with respect to the shift control unit 40 is also the same. PD output can be ensured.
  • the second cut-off valve 20 includes the fail-safe valve 30 that can output the lockup pressure PSLU, and the fail-safe valve 30 inputs the second cut-off valve 20.
  • the lock-up pressure PSLU thus output is output as the reverse range pressure PR from the second cut-off valve 20 to the speed change control unit 40.
  • the off-valve 20 is in the fourth position, it is output from the second cut-off valve 20 to the shift control unit 40 as the forward range pressure PD.
  • the lockup pressure PSLU is output from the fail-safe valve 30 even when the second cutoff valve 20 cannot be switched from the fourth position.
  • the forward range pressure PD can be output, and forward travel can be ensured.
  • the solenoid valves SC2 and SC3 are both normally closed types that do not output signal pressure when not energized. For this reason, for example, when an all-off failure caused by the power supply system occurs, even if both solenoid valves SC2 and SC3 are de-energized and no signal pressure is output, the output of the forward range pressure PD is guaranteed. can do.
  • the first cut-off valve 10 includes a first input port 10b that can input the line pressure PL and a first output that can output the first hydraulic pressure P1.
  • the second cutoff valve 20 can output the second input port 20b capable of inputting the first hydraulic pressure P1, the third input port 20c capable of inputting the second hydraulic pressure P2, and the forward range pressure PD.
  • the first output port 10c Communicates with the second input port 20b is passed through the second output port 10d and the third input port 20c is communicated, and the third output port 20d and the transmission control unit 40 communicates with. For this reason, the first hydraulic pressure P1 output from the first output port 10c is input to the second input port 20b, and is input to the shift control unit 40 as the forward range pressure PD from the third output port 20d.
  • the line pressure PL supplied to the first cutoff valve 10 is switched to either the first hydraulic pressure P1 or the second hydraulic pressure P2.
  • the first hydraulic pressure P1 or the second hydraulic pressure P2 that is output and output from the first cut-off valve 10 is supplied to the second cut-off valve 20 and a different output port 20d of the second cut-off valve 20.
  • 20e is output as the forward range pressure PD or the reverse range pressure PR. Accordingly, when the two switching valves 10 and 20 are passed from the line pressure PL to generate the two different traveling range pressures, ie, the forward range pressure PD or the reverse range pressure PR, which traveling range pressure is generated.
  • the hydraulic pressure passes through the first cutoff valve 10 and then passes through the second cutoff valve 20.
  • a hydraulic circuit configuration is used in which the order in which the line pressure PL passes through the two switching valves is reversed between when the forward range pressure PD is generated and when the reverse range pressure PR is generated.
  • the hydraulic circuit can be simplified, the control can be simplified, and the device such as the valve body can be downsized.
  • the solenoid valve SC3 The forward range pressure PD is supplied to the shift control unit 40 regardless of the cause of the generated failure by the ON control, the switching of the failsafe valve 30 and the output of the lockup pressure PSLU from the lockup solenoid valve SLU. Can do.
  • the shift control unit 40 can form a forward shift stage.
  • the hydraulic control device 1 is configured by only two switching valves 10, 20, three solenoid valves SC2, SC3, SLU as a minimum necessary configuration. Therefore, the hydraulic circuit can be simplified, control can be simplified, and the apparatus can be downsized.
  • the same processing is performed to advance the shift control unit 40. Since the range pressure PD can be supplied, there is no need to provide a hydraulic switch or the like for detecting which of the first cutoff valve 10 and the second cutoff valve 20 has caused an on-fail, and the number of parts can be reduced. An increase, an increase in cost, and an increase in size of the apparatus can be suppressed.
  • the D range is formed by the first cut-off valve 10 and the second cut-off valve 10. Since both of the cut-off valves 20 are in the off state, the D range can be formed without any problem.
  • the solenoid valve SR that can supply the third signal pressure PS3, and the lockup solenoid valve SLU and the drain port 20f are interposed between the lockup solenoid valve SLU. And the drain port 20f communicating with each other to allow the lockup pressure PSLU to be supplied to the drain port 20f, and the lockup solenoid valve SLU and the drain port 20f are cut off to lock the lockup pressure PSLU to the drain port 20f.
  • a fail-safe valve 30 that can be switched by the third signal pressure PS3 to a normal state in which the drain port 20f communicates with the drain hole EX as a non-supply is provided.
  • the fail-safe valve 30 since the fail-safe valve 30 is interposed between the lock-up solenoid valve SLU and the drain port 20f, the lock-up solenoid valve SLU and the drain port 20f Can be disconnected.
  • the lock-up solenoid valve SLU used for lock-up can be applied as a solenoid valve for outputting fail-safe hydraulic pressure, and is normally used for lock-up and locked only at the time of fail.
  • the up pressure PSLU can be selectively used so as to be supplied to the shift control unit 40. Therefore, it is not necessary to use a solenoid valve for outputting fail-safe oil pressure as a dedicated part for fail, preventing an increase in the number of parts and reducing the size of the apparatus.
  • the solenoid valve for outputting the fail safe hydraulic pressure generates the lockup pressure PSLU that controls the engagement state of the lockup clutch capable of locking up the fluid transmission device.
  • This is a lock-up solenoid valve SLU
  • the fail-safe hydraulic pressure is the lock-up pressure PSLU.
  • the solenoid valve for outputting the failsafe hydraulic pressure is the lock-up solenoid valve SLU, and therefore the solenoid valve for outputting the failsafe hydraulic pressure is used for the failsafe. Therefore, the number of parts can be prevented from increasing and the apparatus can be downsized.
  • the line pressure PL is supplied to the lockup solenoid valve SLU, and the lockup solenoid valve SLU supplies the lockup pressure PSLU based on the line pressure PL. .
  • the forward range pressure PD, the reverse range pressure PR, and the lockup pressure PSLU can be generated using the line pressure PL, thereby simplifying the hydraulic circuit configuration. be able to.
  • the case where the fail-safe valve 30 is interposed between the solenoid valve for outputting the fail-safe hydraulic pressure and the drain port 20f has been described.
  • the solenoid valve for outputting fail-safe hydraulic pressure and the drain port 20f may be directly connected.
  • the ECU 50 does not output the fail-safe oil pressure from the solenoid valve for outputting the fail-safe oil pressure at the normal time, and outputs the fail-safe oil pressure from the solenoid valve for outputting the fail-safe oil pressure at the time of the failure. Control.
  • the hydraulic control device of the automatic transmission relates to, for example, a hydraulic control device of an automatic transmission mounted on a vehicle, and more specifically, a shift-by-wire automatic control device that can switch a traveling range by a plurality of electrically controlled switching valves. It is suitable for use in a hydraulic control device for a transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 第1の信号圧(PS1)のオフ状態で、入力された元圧(PL)を前進レンジ圧(P1、PD)として出力する第1の位置と、第1の信号圧(PS1)のオン状態で、入力された元圧(PL)を後進レンジ圧(P2、PR)として出力する第2の位置とに、切換可能な第1の切換えバルブ(10)と、第2の信号圧(PS2)のオフ状態で、前進レンジ圧(P1、PD)を変速制御部(40)に出力する第3の位置と、第2の信号圧(PS2)のオン状態で、後進レンジ圧(P2、PR)を変速制御部(40)に出力する第4の位置とに、切換可能な第2の切換えバルブ(20)と、を備える。

Description

自動変速機の油圧制御装置
 本発明は、例えば車両に搭載される自動変速機の油圧制御装置に係り、詳しくは電気的に制御される複数の切換えバルブにより走行レンジを切換可能なシフトバイワイヤ方式の自動変速機の油圧制御装置に関する。
 従来、シフトバイワイヤ方式のレンジ切換装置として、2本の切換えバルブと、各切換えバルブを切換可能な2本のソレノイドバルブとを備えたものが知られている(特許文献1参照)。このレンジ切換装置では、2本の切換えバルブのスプール位置の組み合わせにより、前進レンジ状態、後進レンジ状態、Nレンジ状態を切換可能になっている。また、このレンジ切換装置では、2本のソレノイドバルブのうちの一方がフェールを発生した場合に、他方のソレノイドバルブの動作によってNレンジ状態を形成するようになっている。これにより、このレンジ切換装置によれば、2本のソレノイドバルブのいずれか一方のフェール時に、前進又は後進の意図しない変速段の形成を防止することができる。
 また、他のシフトバイワイヤ方式のレンジ切換装置として、2本の切換えバルブと、各切換えバルブを切換可能な2本のソレノイドバルブとを備えたものが知られている(特許文献2、図12参照)。このレンジ切換装置では、第1の切換えバルブは入力されたライン圧をレンジ圧として出力するか遮断するかを切り換え、第2の切換えバルブは第1の切換えバルブから入力されたレンジ圧を前進レンジ圧と後進レンジ圧とに切り換えて出力可能になっている。このレンジ切換装置では、第1の切換えバルブは出力したレンジ圧によって自己保持するようになっており、これにより走行中に第1の切換えバルブを切り換えるソレノイドバルブがオフフェールを発生しても、第1の切換えバルブからレンジ圧の出力を維持して走行状態を維持することができる。
特開2013-185656号公報 特開2008-128473号公報
 しかしながら、上述した特許文献1記載の油圧制御装置では、2本のソレノイドバルブのうちの一方のフェール時にNレンジ状態を形成するので、前進レンジ圧が出力されず前進走行できなくなってしまう。また、上述した特許文献2記載の油圧制御装置では、第1の切換えバルブを切り換えるソレノイドバルブがオフフェールを発生すると、一旦エンジンを停止してライン圧が低下して第1の切換えバルブの自己保持が解除されてから再度エンジンを駆動しても第1の切換えバルブは遮断状態のままになってしまい、前進レンジ圧が出力されず前進走行できなくなってしまう。
 即ち、上述したいずれの油圧制御装置であっても、2本のソレノイドバルブのうちの一方がオフフェールを発生したり、あるいは、複数のソレノイドバルブにおいてオールオフフェールが発生した場合は、前進レンジ圧が出力されなくなる場合がある。
 そこで、少なくとも2本の切換えバルブを用いるシフトバイワイヤ方式のレンジ切換装置で、各切換えバルブを切り換えるソレノイドバルブの少なくとも1つがオフフェールを発生した場合でも、前進レンジ圧の出力を保障できる自動変速機の油圧制御装置を提供することを目的とする。
 本自動変速機の油圧制御装置(1)は(例えば図1及び図2参照)、変速機構を制御する変速制御部(40)と、
 第1の信号圧(PS1)を出力可能な第1のソレノイドバルブ(SC2)と、
 元圧(PL)が入力されると共に、前記第1の信号圧(PS1)のオフ状態において、入力された前記元圧(PL)を前進レンジ圧(P1、PD)として出力する第1の位置と、前記第1の信号圧(PS1)のオン状態において、入力された前記元圧(PL)を後進レンジ圧(P2、PR)として出力する第2の位置とに、切換可能な第1の切換えバルブ(10)と、
 第2の信号圧(PS2)を出力可能な第2のソレノイドバルブ(SC3)と、
 前記第2の信号圧(PS2)のオフ状態において、前記第1の切換えバルブ(10)から入力された前記前進レンジ圧(P1、PD)を前記変速制御部(40)に出力すると共に前記後進レンジ圧(P2、PR)を遮断する第3の位置と、前記第2の信号圧(PS2)のオン状態において、前記第1の切換えバルブ(10)から入力された前記後進レンジ圧(P2、PR)を前記変速制御部(40)に出力すると共に前記前進レンジ圧(P1、PD)を遮断する第4の位置とに、切換可能な第2の切換えバルブ(20)と、を備えることを特徴とする。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、理解を容易にするための便宜的なものであり、請求の範囲の構成に何等影響を及ぼすものではない。
 本自動変速機の油圧制御装置によると、各切換えバルブを切り換えるソレノイドバルブの少なくとも1つがオフフェールを発生した場合でも、第1の切換えバルブが第1の位置で、かつ第2の切換えバルブが第3の位置になるようにできる。このため、このような場合でも、変速制御部に対する前進レンジ圧の出力を保障することができる。また、例えば、第1の切換えバルブが第1の位置にスティックした場合や、第2の切換えバルブが第3の位置にスティックした場合でも同様に、変速制御部に対する前進レンジ圧の出力を保障することができる。
本実施の形態に係る油圧制御装置におけるDレンジでの正常状態を示す概略図。 本実施の形態に係る油圧制御装置において、第1のカットオフバルブのスプールが第2の位置にスティックされたフェール状態を示す概略図。 本実施の形態に係る油圧制御装置において、第2のカットオフバルブのスプールが第4の位置にスティックされたフェール状態を示す概略図。 本実施の形態に係る油圧制御装置での走行レンジに対応するソレノイドバルブの作動表。 本実施の形態に係る油圧制御装置において、フェールが発生した時の処理手順を示すフローチャート。
 以下、本実施の形態を、図1乃至図5に沿って説明する。
 本自動変速機の油圧制御装置は、運転者が走行レンジを切り換えることに対応して切換えバルブを電気的に制御することにより、ライン圧(元圧)PLを所定のレンジ圧として所定の油路に出力して変速制御を実現するシフトバイワイヤ方式の自動変速機の油圧制御装置に用いられて好適である。ここでの自動変速機としては、例えば、4つのクラッチ、2つのブレーキ、1つのワンウェイクラッチを有し、そのうち2つの係合要素の同時係合により前進8速段及び後進1速段を選択的に形成可能な多段変速機を利用することができるものとする(例えば、特開2011-214644号公報参照)。尚、本自動変速機の油圧制御装置は、多段変速機への適用に限るものではなく、例えばベルト式無段変速機(CVT)やハイブリッド駆動装置等に対しても同様に適用可能である。
 図1乃至図3に示すように、油圧制御装置1は、油圧生成部5と、第1のカットオフバルブ(第1の切換えバルブ)10と、該第1のカットオフバルブ10を制御可能なソレノイドバルブ(第1のソレノイドバルブ)SC2と、第2のカットオフバルブ(第2の切換えバルブ)20と、該第2のカットオフバルブ20を制御可能なソレノイドバルブ(第2のソレノイドバルブ)SC3と、フェールセーフバルブ30と、該フェールセーフバルブ30を制御可能なソレノイドバルブSRと、ロックアップソレノイドバルブSLUと、変速制御部40とを備えており、バルブボディに形成されている。また、本実施の形態では、第1のカットオフバルブ10と、ソレノイドバルブSC2と、第2のカットオフバルブ20と、ソレノイドバルブSC3とを、特にマニュアルバルブレス回路と呼ぶ。尚、油圧制御装置1のソレノイドバルブや変速制御部40等は、制御部(ECU)50により制御されるようになっている。
 油圧制御装置1は、油圧生成部5で生成されたライン圧PLに基づいて走行レンジに応じたレンジ圧を生成すると共に、レンジ圧を変速制御部40に供給するようになっている。即ち、この油圧制御装置1は、運転者のレンジ切換操作により選択されたパーキング(P)レンジ、ニュートラル(N)レンジ、走行レンジ(前進(D)レンジ、後進(R)レンジ)に対応して、前進段の形成時に使用される前進レンジ圧PDや後進段の形成時に使用される後進レンジ圧PRを、変速制御部40に供給して変速を行うようになっている(図4参照)。
 油圧生成部5は、ECU50により制御されると共に、不図示のオイルポンプからの油圧をライン圧PLに調圧するプライマリレギュレータバルブ等を備え、ライン圧PLの他、モジュレータ圧Pmod等、各種の元圧を調圧して生成している。また、油圧制御装置1は、各種の元圧に基づく油圧をそれぞれの油路に選択的に切換え、あるいは調圧するための、スプール位置が切換え、あるいは制御される不図示の潤滑リレーバルブ、循環モジュレータバルブ、ロックアップリレーバルブ、シークエンスバルブ等を備えている。ライン圧PL及びモジュレータ圧Pmod等を生成するための油圧回路構成は、一般的な自動変速機の油圧制御装置のものと同様であるので、詳細な説明は省略する。尚、本実施の形態においては、各バルブにおける実際のスプールは1本であるが、スプール位置の切換え位置あるいはコントロール位置を説明するため、図中に示す右半分の状態を「右半位置」、左半分の状態「左半位置」という。
 ソレノイドバルブSC2は、ECU50により制御されると共に、モジュレータ圧Pmodが入力される入力ポートSC2aと、モジュレータ圧Pmodに基づいて生成される第1の信号圧PS1を出力可能な出力ポートSC2bとを備えており、出力する第1の信号圧PS1により第1のカットオフバルブ10を制御可能になっている。
 第1のカットオフバルブ10は、ライン圧PLを入力可能な入力ポート(第1の入力ポート)10bと、ライン圧PLを第1の油圧(前進レンジ圧)P1として出力可能な第1の出力ポート10cと、ライン圧PLを第2の油圧(後進レンジ圧)P2として出力可能な第2の出力ポート10dと、を備えている。また、第1のカットオフバルブ10は、入力ポート10b及び第1の出力ポート10cを連通する第1の位置(図中、左半位置。オフ状態ともいう。)と、入力ポート10b及び第2の出力ポート10dを連通する第2の位置(図中、右半位置。オン状態ともいう。)とに切換可能なスプール10pを備えている。
 更に、第1のカットオフバルブ10は、スプール10pを第1の位置に位置するよう付勢する圧縮コイルばねから成るスプリング10sと、第1の信号圧PS1を入力することで、スプール10pを第2の位置に位置するようスプリング10sに抗して押圧する第1の油室10aと、を備えている。これにより、第1のカットオフバルブ10は、ライン圧PLが入力されると共に、入力されたライン圧PLを第1の油圧P1として出力する状態と、入力されたライン圧PLを第2の油圧P2として出力する状態とに、第1の信号圧PS1により切換可能になっている。
 即ち、第1のカットオフバルブ10は、ライン圧PLが入力されると共に、第1の信号圧PS1のオフ状態において、入力されたライン圧PLを第1の油圧P1として出力する第1の位置と、第1の信号圧PS1のオン状態において、入力されたライン圧PLを第2の油圧P2として出力する第2の位置とに、切換可能になっている。
 ソレノイドバルブSC3は、ECU50により制御されると共に、モジュレータ圧Pmodが入力される入力ポートSC3aと、モジュレータ圧Pmodに基づいて生成される第2の信号圧PS2を出力可能な出力ポートSC3bとを備えており、出力する第2の信号圧PS2により第2のカットオフバルブ20を制御可能になっている。
 第2のカットオフバルブ20は、第1のカットオフバルブ10の第1の出力ポート10cに接続され、第1の油圧P1が入力される第2の入力ポート20bと、第1のカットオフバルブ10の第2の出力ポート10dに接続され、第2の油圧P2が入力される第3の入力ポート20cと、第1の油圧P1を前進レンジ圧PDとして出力可能な第3の出力ポート20dと、第2の油圧P2を後進レンジ圧PRとして出力可能な第4の出力ポート20eと、ドレーンポート20fとを備えている。また、第2のカットオフバルブ20は、第2の入力ポート20b及び第3の出力ポート20dを連通すると共に第4の出力ポート20e及びドレーンポート20fを連通する第3の位置(図中、左半位置。オフ状態ともいう。)と、第3の入力ポート20c及び第4の出力ポート20eを連通すると共に第3の出力ポート20d及びドレーンポート20fを連通する第4の位置(図中、右半位置。オン状態ともいう。)とに切換可能なスプール20pを備えている。
 更に、第2のカットオフバルブ20は、スプール20pを第1の位置に位置するよう付勢する圧縮コイルばねから成るスプリング20sと、第2の信号圧PS2を入力することで、スプール20pを第2の位置に位置するようスプリング20sに抗して押圧する油室20aと、を備えている。これにより、第2のカットオフバルブ20は、スプール20pが第1の位置に位置する状態と、スプール20pが第2の位置に位置する状態とに、第2の信号圧PS2により切換可能になっている。
 即ち、第2のカットオフバルブ20は、第2の信号圧PS2のオフ状態において、第1のカットオフバルブ10から入力された第1の油圧P1を前進レンジ圧PDとして変速制御部40に出力すると共に第2の油圧P2を遮断する第3の位置と、第2の信号圧PS2のオン状態において、第1のカットオフバルブ10から入力された第2の油圧P2を後進レンジ圧PRとして変速制御部40に出力すると共に第1の油圧P1を遮断する第4の位置とに、切換可能になっている。
 ソレノイドバルブSRは、ECU50により制御されると共に、モジュレータ圧Pmodが入力される入力ポートSRaと、モジュレータ圧Pmodに基づいて生成される第3の信号圧PS3を出力可能な出力ポートSRbとを備えており、出力する第3の信号圧PS3によりフェールセーフバルブ30を制御可能になっている。
 フェールセーフバルブ30は、ロックアップソレノイドバルブSLUに接続される入力ポート30bと、第2のカットオフバルブ20のドレーンポート20fに接続される出力ポート30cと、ドレーン孔EXとを備えている。また、フェールセーフバルブ30は、入力ポート30b及び出力ポート30cを連通する第5の位置(図中、左半位置)と、入力ポート30b及び出力ポート30cを遮断して、ドレーンポート20f及び出力ポート30cをドレーン孔EXと連通する第6の位置(図中、右半位置)とに切換可能なスプール30pを備えている。
 更に、フェールセーフバルブ30は、スプール30pを第6の位置に位置するよう付勢する圧縮コイルばねから成るスプリング30sと、第3の信号圧PS3を入力することで、スプール30pを第5の位置に位置するようスプリング30sに抗して押圧する油室30aと、を備えている。これにより、フェールセーフバルブ30は、ロックアップソレノイドバルブSLUからのロックアップ圧(フェールセーフ油圧)PSLUをドレーンポート20fに供給するフェール状態(図中、左半位置)と、ロックアップ圧PSLUをドレーンポート20fに対して遮断して非供給としてドレーンポート20fをドレーン孔EXと連通する通常状態(図中、右半位置)とに、第3の信号圧PS3により切換可能になっている。
 即ち、フェールセーフバルブ30から第2のカットオフバルブ20に入力されたロックアップ圧PSLUは、第2のカットオフバルブ20が第3の位置にある場合は、第2のカットオフバルブ20から変速制御部40に後進レンジ圧PRとして出力され、第2のカットオフバルブ20が第4の位置にある場合は、第2のカットオフバルブ20から変速制御部40に前進レンジ圧PDとして出力されるようになっている。
 尚、上述したソレノイドバルブSC2,SC3,SRとしては、非通電時に入力ポートと出力ポートとを遮断して各信号圧を出力せず、通電時に連通して各信号圧を出力する所謂ノーマルクローズ(N/C)タイプのものが用いられている。本実施の形態では、ソレノイドバルブSC2,SC3,SRとしてノーマルクローズタイプを適用しているが、これには限られず、非通電時に入力ポートと出力ポートとを連通し、通電時に連通する所謂ノーマルオープン(N/O)タイプのものを適用してもよい。いずれの場合も、ソレノイドバルブSC2,SC3,SRは、電気信号に基づき各信号圧を出力又は非出力とするようになっている。
 ロックアップソレノイドバルブSLUは、ECU50により制御されると共に、ライン圧PLが入力される入力ポートSLUaと、ライン圧PLに基づいて生成されるロックアップ圧PSLUをフェールセーフバルブ30の入力ポート30bに出力可能な出力ポートSLUbとを備えており、トルクコンバータ等の流体伝動装置をロックアップ可能なロックアップクラッチの係合状態を制御するロックアップ圧PSLUを生成するようになっている。ロックアップソレノイドバルブSLUは、フェールセーフバルブ30がフェール状態にある場合に、ロックアップ圧PSLUをドレーンポート20fに供給するようになっている。
 ここで、ロックアップソレノイドバルブSLUは、通常はロックアップ圧PSLUとしてロックアップクラッチの係合状態を制御するので、ロックアップ圧PSLUが走行中に出力される場合がある。これに対し、本実施の形態では、ロックアップ圧PSLUは、フェールセーフバルブ30を介してドレーンポート20fに連通されているので、通常の走行中にロックアップ圧PSLUが出力されても、フェールセーフバルブ30によって遮断される。これにより、ロックアップ圧PSLUが、必要以上に供給されてしまうことを防止できる。
 変速制御部40は、本実施の形態では、第1クラッチ~第4クラッチ、第1ブレーキ及び第2ブレーキをそれぞれ係脱可能な複数のリニアソレノイドバルブ等によって構成されている。変速制御部40は、供給された前進レンジ圧PD又は後進レンジ圧PRによって、複数の係合要素の係脱の組み合わせにより複数の変速段を形成可能な変速機構の変速段の形成を制御するようになっている。複数のリニアソレノイドバルブには、前進レンジ圧PD及び後進レンジ圧PRの他、ライン圧PLが適宜供給されるようになっている。尚、変速制御部40での油圧回路構成は、一般的な自動変速機のものと同様であるので、詳細な説明は省略する。
 ECU50は、例えば、CPUと、処理プログラムを記憶するROMと、データを一時的に記憶するRAMと、入出力ポートと、通信ポートとを備えている。ECU50には、アクセル開度センサや、エンジン回転速度センサや、自動変速機の入力軸回転速度センサや、自動変速機の出力軸回転速度センサや、シフトレバーのシフトポジションセンサ等が、入力ポートを介して接続されている。また、ECU50は、出力軸回転速度センサにより得られる出力軸回転速度から車速を演算するようになっており、ドライバがアクセルを踏んだ場合に車速の上昇を伴わずにエンジン回転速度だけが上昇しているか否か、即ちエンジンが吹き上げているか否かを検出可能になっている。また、ECU50は、出力軸回転速度と入力軸回転速度センサにより得られる入力軸回転速度とから実際の変速比を演算するようになっており、シフトポジションとの比較で実際の変速段が正常か否かを検出可能になっている。更に、ECU50は、RAMを利用してシフトポジションの履歴を記憶するようになっており、例えば、10秒前から現在までの間にRポジションからDポジションにシフトチェンジされたか否かを検出可能になっている。
 ECU50は、第1のカットオフバルブ10及び第2のカットオフバルブ20のいずれか一方の切換えバルブが切換不能となった場合に、前進レンジ圧PD又は後進レンジ圧PRが第2のカットオフバルブ20から変速制御部40に供給されるように、第1の信号圧PS1又は第2の信号圧PS2によって他方のスティックしていない方の切換えバルブの状態を制御するようになっている。
 また、ECU50は、第1のカットオフバルブ10及び第2のカットオフバルブ20のいずれか一方の切換えバルブが切換不能となった場合に、第3の信号圧PS3によってフェールセーフバルブ30をフェール状態に切り換え、ロックアップソレノイドバルブSLUをオン制御してロックアップ圧PSLUを出力させる。これにより、ロックアップ圧PSLUがドレーンポート20fに入力され、ロックアップ圧PSLUに基づいて、ドレーンポート20fに連通する第3の出力ポート20d又は第4の出力ポート20eから前進レンジ圧PD又は後進レンジ圧PRが出力されるようになっている。
 次に、本実施の形態に係る自動変速機の油圧制御装置1の動作について、図1乃至図5に基づいて詳細に説明する。
 フェールが発生していない通常時では、図4に示すように、ECU50は、ソレノイドバルブSRを常にオフ状態に制御しており、フェールセーフバルブ30は通常状態になっている。これにより、図1に示すように、ロックアップソレノイドバルブSLUが、ロックアップ圧を生成するためにロックアップ圧PSLUを出力しても、フェールセーフバルブ30により遮断されて、余計な供給が防止される。また、フェールセーフバルブ30が通常状態にあることにより、第2のカットオフバルブ20のドレーンポート20fに連通する第3の出力ポート20d又は第4の出力ポート20eがフェールセーフバルブ30のドレーンポートに連通される。
 そして、走行レンジとしてDレンジが選択された場合は、図4に示すように、ECU50は、ソレノイドバルブSC2,SC3をオフ状態に制御している。このため、図1に示すように、第1の信号圧PS1が出力されないことから、第1のカットオフバルブ10は第1の位置に位置し、第2の信号圧PS2が出力されないことから、第2のカットオフバルブ20は第1の位置に位置するようになる。この時、油圧生成部5から供給されるライン圧PLは、第1のカットオフバルブ10の入力ポート10bから第1の出力ポート10cを経て、第1の油圧P1として出力される。更に、この第1の油圧P1は、第2のカットオフバルブ20の第2の入力ポート20bから第3の出力ポート20dを経て、前進レンジ圧PDとして変速制御部40に供給される。同時に、第4の出力ポート20eは、ドレーンポート20fを経てフェールセーフバルブ30のドレーンポートに連通され、後進レンジ圧PRは供給されない。
 また、走行レンジとしてRレンジが選択された場合は、図4に示すように、ECU50は、ソレノイドバルブSC2,SC3をオン状態に制御している。このため、第1の信号圧PS1が出力されることから、第1のカットオフバルブ10は第2の位置に位置し、第2の信号圧PS2が出力されることから、第2のカットオフバルブ20は第2の位置に位置するようになる。この時、油圧生成部5から供給されるライン圧PLは、第1のカットオフバルブ10の入力ポート10bから第2の出力ポート10dを経て、第2の油圧P2として出力される。更に、この第2の油圧P2は、第2のカットオフバルブ20の第3の入力ポート20cから第4の出力ポート20eを経て、後進レンジ圧PRとして変速制御部40に供給される。同時に、第3の出力ポート20dは、ドレーンポート20fを経てフェールセーフバルブ30のドレーンポートに連通され、前進レンジ圧PDは供給されない。
 また、Pレンジが選択された場合は、図4に示すように、ECU50は、ソレノイドバルブSC2をオン状態に、ソレノイドバルブSC3をオフ状態に各々制御している。このため、第1の信号圧PS1が出力されることから、第1のカットオフバルブ10は第2の位置に位置し、第2の信号圧PS2が出力されないことから、第2のカットオフバルブ20は第1の位置に位置するようになる。この時、油圧生成部5から供給されるライン圧PLは、第1のカットオフバルブ10の入力ポート10bから第2の出力ポート10dを経て、第2の油圧P2として出力される。更に、この第2の油圧P2は、第2のカットオフバルブ20の第3の入力ポート20cに入力されるが、そのままドレーンされたり、あるいはパーキング圧等として使用される。
 また、Nレンジが選択された場合は、図4に示すように、ECU50は、ソレノイドバルブSC2をオフ状態に、ソレノイドバルブSC3をオン状態に各々制御している。このため、第1の信号圧PS1が出力されないことから、第1のカットオフバルブ10は第1の位置に位置し、第2の信号圧PS2が出力されることから、第2のカットオフバルブ20は第2の位置に位置するようになる。この時、油圧生成部5から供給されるライン圧PLは、第1のカットオフバルブ10の入力ポート10bから第1の出力ポート10cを経て、第1の油圧P1として出力される。更に、この第1の油圧P1は、第2のカットオフバルブ20の第2の入力ポート20bに入力されるが、そのまま遮断される。
 次に、第1のカットオフバルブ10又は第2のカットオフバルブ20のいずれか一方が、切換不能になった場合の動作を説明する。カットオフバルブが切換不能になる例としては、例えば、バルブスティック(異物噛み込みによるバルブの固着)やソレノイドバルブSC2,SC3のオフフェールやオンフェール等があるが、ここではバルブスティックが発生した場合について説明する。
 例えば、図2に示すように、第1のカットオフバルブ10が第2の位置でスティックするフェールが発生した場合に走行レンジとしてDレンジが選択されると、ECU50は、ソレノイドバルブSC2,SC3をオフ状態に制御する。ところが、ソレノイドバルブSC2から第1の信号圧PS1が出力されなくても、第1のカットオフバルブ10は第2の位置のままになるので、第1のカットオフバルブ10の第2の出力ポート10dから、ライン圧PLが第2の油圧P2として出力されてしまう。これに対し、第2のカットオフバルブ20は第1の位置に切り換わるので、第2の油圧P2は、第2のカットオフバルブ20の第3の入力ポート20cに入力されるが、そのままドレーン等される。即ち、通常時のPレンジの場合と同様の作動になる。この状態では、変速段を形成できない為、例えばドライバがアクセルを踏んだ場合に、車速の上昇を伴わずにエンジン回転速度だけが上昇(所謂、エンジン吹き)するため、ECU50は、選択された走行レンジに対応する走行レンジ圧が出力されていないと判断する。そして、ECU50は、変速制御部40のリニアソレノイドバルブにオフフェールが発生しているか否かを検出し、オフフェールが発生していないと判断した場合に、第1のカットオフバルブ10又は第2のカットオフバルブ20のどちらかが切換不能(この例ではバルブスティック)であるというフェールが発生していると判断し、マニュアルバルブレス回路の異常の判定を確定する(後述する図5のフローチャート参照)。
 そして、ECU50は、マニュアルバルブレス回路の異常を確定すると、リンプホームモードに移行し、ソレノイドバルブSC3をオン制御し、第2のカットオフバルブ20を第2の位置に切り換える。これにより、第1のカットオフバルブ10からの第2の油圧P2は、第2のカットオフバルブ20の第3の入力ポート20cから第4の出力ポート20eを経て、後進レンジ圧PRとして変速制御部40に供給される。
 また、ECU50は、ソレノイドバルブSRをオン制御し、フェールセーフバルブ30をフェール位置に切り換える。更に、ECU50は、ロックアップソレノイドバルブSLUをオン制御し、ロックアップ圧PSLUを出力させる。これにより、ロックアップ圧PSLUは、フェールセーフバルブ30の入力ポート30bから出力ポート30cを経て、第2のカットオフバルブ20のドレーンポート20fに入力される。更に、ロックアップ圧PSLUは、第3の出力ポート20dから出力され、前進レンジ圧PDとして変速制御部40に供給される。従って、変速制御部40には、前進レンジ圧PD及び後進レンジ圧PRの両方が供給されることになり、走行レンジであるDレンジの変速段を形成することができる。
 次に、例えば、図3に示すように、第2のカットオフバルブ20が第2の位置でスティックするフェールが発生した場合に走行レンジとしてDレンジが選択されると、ECU50は、ソレノイドバルブSC2,SC3をオフ状態に制御する。ところが、ソレノイドバルブSC3から第2の信号圧PS2が出力されなくても、第2のカットオフバルブ20は第2の位置のままになるので、第1のカットオフバルブ10の第1の出力ポート10cから出力された第1の油圧P1は、第2のカットオフバルブ20の第2の入力ポート20bで遮断されてしまう。即ち、通常時のNレンジの場合と同様の作動になる。この状態では、変速段を形成できない為、例えばドライバがアクセルを踏んだ場合に、車速の上昇を伴わずにエンジン回転速度だけが上昇するため、ECU50は、選択された走行レンジに対応する走行レンジ圧が出力されていないと判断する。そして、ECU50は、変速制御部40のリニアソレノイドバルブにオフフェールが発生しているか否かを検出し、オフフェールが発生していないと判断した場合に、第1のカットオフバルブ10又は第2のカットオフバルブ20のどちらかが切換不能であるというフェールが発生していると判断し、マニュアルバルブレス回路の異常の判定を確定する(後述する図5のフローチャート参照)。
 そして、ECU50は、マニュアルバルブレス回路の異常を確定すると、リンプホームモードに移行し、ソレノイドバルブSC2はオフ制御のままで、ソレノイドバルブSC3をオン制御し、第2のカットオフバルブ20を第2の位置に切り換えようとする。この際、既に第2のカットオフバルブは第2の位置に位置しているため位置変更はしない。これにより、第1のカットオフバルブ10からの第1の油圧P1は、第2のカットオフバルブ20の第2入力ポート20bに入力され第2のカットオフバルブ20により遮断される。
 また、ECU50は、ソレノイドバルブSRをオン制御し、フェールセーフバルブ30をフェール位置に切り換える。更に、ECU50は、ロックアップソレノイドバルブSLUをオン制御し、ロックアップ圧PSLUを出力させる。これにより、ロックアップ圧PSLUは、フェールセーフバルブ30の入力ポート30bから出力ポート30cを経て、第2のカットオフバルブ20のドレーンポート20fに入力される。更に、ロックアップ圧PSLUは、第3の出力ポート20dから出力され、前進レンジ圧PDとして変速制御部40に供給される。従って、変速制御部40には、前進レンジ圧PDが供給されることになり、走行レンジであるDレンジの変速段を形成することができる。
 次に、上述した第1のカットオフバルブ10又は第2のカットオフバルブ20のいずれか一方が切換不能になった場合の動作について、図5に示すフローチャートに沿って説明する。尚、本フローチャートは処理手順の一例であって、これに限られないのは勿論である。
 まず、ECU50は、走行レンジがDレンジであり、かつ、エンジンが吹き上げているか否か、即ちドライバがアクセルを踏んだ場合に車速の上昇を伴わずにエンジン回転速度だけが上昇しているか否かを判断する(ステップS1)。ECU50が、走行レンジはDレンジではない、又はエンジンは吹き上げていないと判断した場合は、リンプホームモードに移行する必要が無いので、本処理を終了する。
 ECU50が、走行レンジがDレンジであり、かつ、エンジンが吹き上げていると判断した場合は、車速が例えば10km/h以下、即ち車両が低速走行中或いは停車中であるか否かを判断する(ステップS2)。ECU50が、車速が例えば10km/h以下ではないと判断した場合、即ち車両が低速を超える車速で前進走行中である場合は、エンジンが吹き上げた理由としてリニアソレノイドバルブのオフフェールを疑うものとして、リニアソレノイドバルブのオフフェールの有無を検出する処理を実行する(ステップS3~ステップS6)。
 具体的には、ECU50は、現在の変速段(例えば、2速段)を他の変速段(例えば、3速段)に変速する(ステップS3)。そして、ECU50は、まだエンジンが吹き上げているか否かを判断する(ステップS4)。ECU50が、まだエンジンが吹き上げていると判断した場合は、現在の変速段(例えば、3速段)を更に他の変速段(例えば、7速段)に変速する(ステップS5)。そして、ECU50は、まだエンジンが吹き上げているか否かを判断する(ステップS6)。ECU50が、まだエンジンが吹き上げていると判断した場合は、後述するマニュアルバルブレス回路に異常があるものと判定を確定する(ステップS9)。
 ECU50が、ステップS4においてエンジンの吹き上げが無いと判断した場合は、例えば、2速段の形成に関与し3速段の形成には関与しないリニアソレノイドバルブに異常があるものと判定する(ステップS7)。また、ECU50が、ステップS6においてエンジンの吹き上げが無いと判断した場合は、例えば、2速段及び3速段の形成に関与し7速段の形成には関与しないリニアソレノイドバルブに異常があるものと判定する(ステップS7)。判定後は本処理を終了し、判定結果に応じた適宜な処理を実行する。
 ECU50が、ステップS2において車速が例えば10km/h以下であると判断した場合は、シフトポジションの履歴を参照し、シフトポジションが過去10秒間でRポジションからDポジションにシフトチェンジされたか否かを判断する(ステップS8)。ECU50が、シフトポジションが過去10秒間でRポジションからDポジションにシフトチェンジされていないと判断した場合は、第1のカットオフバルブ10及び第2のカットオフバルブ20のオンオフ状態は直前では変化していないので、エンジンが吹き上げた理由としてリニアソレノイドバルブのオフフェールを疑うものとして、上述したリニアソレノイドバルブのオフフェールの有無を検出する処理を実行する(ステップS3~ステップS6)。
 ECU50が、シフトポジションが過去10秒間でRポジションからDポジションにシフトチェンジされていると判断した場合は、第1のカットオフバルブ10及び第2のカットオフバルブ20がオン状態からオフ状態に切り換わっているので、エンジンが吹き上げた理由として、第1のカットオフバルブ10又は第2のカットオフバルブ20のどちらかがオフ状態にならないオンフェールを発生していると判断し、マニュアルバルブレス回路の異常の判定を確定する(ステップS9)。
 ECU50は、リンプホームモードを実行し(ステップS10)、ソレノイドバルブSC2はオフ制御のままで、ソレノイドバルブSC3をオン制御する。また、ECU50は、ソレノイドバルブSR及びロックアップソレノイドバルブSLUをオン制御する。これにより、第1のカットオフバルブ10が第2の位置でスティックした場合は、第2のカットオフバルブ20から後進レンジ圧PRが変速制御部40に供給され、ロックアップソレノイドバルブSLUからのロックアップ圧PSLUを前進レンジ圧PDとして変速制御部40に供給する。従って、走行レンジであるDレンジの変速段を形成可能にする。また、第2のカットオフバルブ20が第2の位置でスティックした場合は、第2のカットオフバルブ20からは油圧は供給されないが、ロックアップソレノイドバルブSLUからのロックアップ圧PSLUを前進レンジ圧PDとして変速制御部40に供給し、走行レンジであるDレンジの変速段を形成可能にする。
 尚、上述した本実施の形態では、第1のカットオフバルブ10又は第2のカットオフバルブ20のいずれか一方が切換不能になった場合の例として、バルブスティックが発生した場合について説明したが、これに限られないのは勿論である。例えば、第1のカットオフバルブ10又は第2のカットオフバルブ20のいずれか一方が切換不能になった場合の例としては、ソレノイドバルブSC2,SC3のオフフェールやオンフェールがある。
 ここで、例えば、ソレノイドバルブSC2がオフフェールを発生した場合は、第1のカットオフバルブ10は第1の位置になるので、ECU50はソレノイドバルブSC3をオフにすることで第2のカットオフバルブ20を第3の位置に切り換えて、変速制御部40に前進レンジ圧PDを出力することができる。また、例えば、ソレノイドバルブSC3がオフフェールを発生した場合は、第2のカットオフバルブ20は第3の位置になるので、ECU50はソレノイドバルブSC2をオフにすることで第1のカットオフバルブ10を第1の位置に切り換えて、変速制御部40に前進レンジ圧PDを出力することができる。更に、例えば、オールオフフェール等によってソレノイドバルブSC2,SC3の両方がオフフェールを発生した場合は、第1のカットオフバルブ10は第1の位置になると共に第2のカットオフバルブ20は第3の位置になるので、変速制御部40に前進レンジ圧PDを出力することができる。
 例えば、ソレノイドバルブSC3がオンフェールを発生した場合は、第2のカットオフバルブ20は第4の位置になるので、ECU50はソレノイドバルブSRをオンにすることでフェールセーフバルブ30をフェール状態に切り換えて、ロックアップ圧PSLUを第2のカットオフバルブ20を介して前進レンジ圧PDとして変速制御部40に出力することができる。この時、ソレノイドバルブSC2が正常に作動する場合は、ECU50はソレノイドバルブSC2をオフにすることで第1のカットオフバルブ10を第1の位置に切り換えて、第2のカットオフバルブ20にて第1の油圧P1を遮断するようにできる。尚、例えば、ソレノイドバルブSC2,SC3の両方がオンフェールを発生した場合でも、ECU50はソレノイドバルブSRをオンにすることでフェールセーフバルブ30をフェール状態に切り換えて、ロックアップ圧PSLUを第2のカットオフバルブ20を介して前進レンジ圧PDとして出力することができ、変速制御部40には前進レンジ圧PD及び後進レンジ圧PRの両方が入力されるようになるが、この場合でも前進走行を保障することができる。
 以上説明したように、本実施の形態の油圧制御装置1によれば、各カットオフバルブ10,20を切り換えるソレノイドバルブSC2,SC3の少なくとも1つがオフフェールを発生した場合でも、第1のカットオフバルブ10が第1の位置で、かつ第2のカットオフバルブ20が第3の位置になるようにできる。このため、このような場合でも、変速制御部40に対する前進レンジ圧PDの出力を保障することができる。また、例えば、第1のカットオフバルブ10が第1の位置にスティックした場合や、第2のカットオフバルブ20が第3の位置にスティックした場合でも同様に、変速制御部40に対する前進レンジ圧PDの出力を保障することができる。
 また、本実施の形態の油圧制御装置1では、第2のカットオフバルブ20にロックアップ圧PSLUを出力可能なフェールセーフバルブ30を備え、フェールセーフバルブ30から第2のカットオフバルブ20に入力されたロックアップ圧PSLUは、第2のカットオフバルブ20が第3の位置にある場合は、第2のカットオフバルブ20から変速制御部40に後進レンジ圧PRとして出力され、第2のカットオフバルブ20が第4の位置にある場合は、第2のカットオフバルブ20から変速制御部40に前進レンジ圧PDとして出力される。
 このため、本実施の形態の油圧制御装置1によれば、第2のカットオフバルブ20が第4の位置から切換不能になった場合でも、フェールセーフバルブ30からロックアップ圧PSLUを出力することにより前進レンジ圧PDを出力することができ、前進走行を保障することができる。
 また、本実施の形態の油圧制御装置1では、ソレノイドバルブSC2,SC3は、いずれも非通電時に信号圧を出力しないノーマルクローズタイプであるようにしている。このため、例えば、電源系に起因するオールオフフェールが発生した場合に、ソレノイドバルブSC2,SC3の両方が非通電になって信号圧を出力しなくなったときでも、前進レンジ圧PDの出力を保障することができる。
 また、本実施の形態の油圧制御装置1では、第1のカットオフバルブ10は、ライン圧PLを入力可能な第1の入力ポート10bと、第1の油圧P1を出力可能な第1の出力ポート10cと、第2の油圧P2を出力可能な第2の出力ポート10dと、ソレノイドバルブSC2と連通し第1の信号圧PS1を入力可能な第1の油室10aと、を有し、第2のカットオフバルブ20は、第1の油圧P1を入力可能な第2の入力ポート20bと、第2の油圧P2を入力可能な第3の入力ポート20cと、前進レンジ圧PDを出力可能な第3の出力ポート20dと、後進レンジ圧PRを出力可能な第4の出力ポート20eと、ソレノイドバルブSC3と連通し第2の信号圧PS2を入力可能な第2の油室20aと、を有し、第1の出力ポート10cと第2の入力ポート20bとが連通し、第2の出力ポート10dと第3の入力ポート20cとが連通し、第3の出力ポート20dと変速制御部40とが連通している。このため、第1の出力ポート10cから出力された第1の油圧P1が第2の入力ポート20bに入力され、第3の出力ポート20dから前進レンジ圧PDとして変速制御部40に入力される。
 また、本実施の形態の油圧制御装置1によれば、第1のカットオフバルブ10に供給されたライン圧PLは、第1の油圧P1と第2の油圧P2とのいずれかに切り換えられて出力され、第1のカットオフバルブ10から出力された第1の油圧P1又は第2の油圧P2は、第2のカットオフバルブ20に供給されて第2のカットオフバルブ20の異なる出力ポート20d,20eから前進レンジ圧PD又は後進レンジ圧PRとして出力される。これにより、ライン圧PLから2本の切換えバルブ10,20を通過させて異なる2つの走行レンジ圧である前進レンジ圧PD又は後進レンジ圧PRを生成する際に、どちらの走行レンジ圧を生成する際も、油圧は第1のカットオフバルブ10を通過してから第2のカットオフバルブ20を通過するという順序になる。このため、前進レンジ圧PDを生成する時と後進レンジ圧PRを生成する時とで、ライン圧PLが2本の切換えバルブを通過する順序が逆になるたすき掛けの油圧回路構成を採用する場合に比べて、油圧回路を簡素化することができ、制御の簡易化及びバルブボディ等の装置の小型化を図ることができる。
 また、本実施の形態の油圧制御装置1によれば、第1のカットオフバルブ10及び第2のカットオフバルブ20のいずれか一方の切換えバルブが切換不能になった場合に、ソレノイドバルブSC3のオン制御と、フェールセーフバルブ30の切り換えと、ロックアップソレノイドバルブSLUからのロックアップ圧PSLUの出力とにより、発生したフェールの原因が何であれ、前進レンジ圧PDを変速制御部40に供給することができる。これにより、変速制御部40では、前進の変速段を形成することができる。そして、本実施の形態の油圧制御装置1によれば、油圧制御装置1は、必要最小限の構成として、2本の切換えバルブ10,20、3つのソレノイドバルブSC2,SC3,SLUのみで構成されるので、油圧回路を簡素化することができ、制御の簡易化及び装置の小型化を図ることができる。また、第1のカットオフバルブ10及び第2のカットオフバルブ20のいずれがオンフェール(第2の位置となるフェール)を発生した場合でも、同じ処理を行うことで、変速制御部40に前進レンジ圧PDを供給することができるので、第1のカットオフバルブ10及び第2のカットオフバルブ20のいずれがオンフェールを発生したかを検出する油圧スイッチ等を設ける必要が無く、部品点数の増加やコストの増大や装置の大型化を抑制することができる。
 尚、第1のカットオフバルブ10及び第2のカットオフバルブ20のいずれかがオン状態に切り換わらないオフフェールを発生した場合は、Dレンジの形成は第1のカットオフバルブ10及び第2のカットオフバルブ20の両方がオフ状態であるため、何ら問題なくDレンジを形成することができる。
 また、本実施の形態の油圧制御装置1では、第3の信号圧PS3を供給可能なソレノイドバルブSRと、ロックアップソレノイドバルブSLUとドレーンポート20fとの間に介在され、当該ロックアップソレノイドバルブSLUとドレーンポート20fとを連通してロックアップ圧PSLUをドレーンポート20fに供給可能にするフェール状態と、当該ロックアップソレノイドバルブSLUとドレーンポート20fとを遮断してロックアップ圧PSLUをドレーンポート20fに対して非供給としてドレーンポート20fをドレーン孔EXと連通する通常状態とに、第3の信号圧PS3により切換可能なフェールセーフバルブ30を備えるようにしている。
 このため、本実施の形態の油圧制御装置1によれば、ロックアップソレノイドバルブSLUとドレーンポート20fとの間にフェールセーフバルブ30を介在させているので、ロックアップソレノイドバルブSLUとドレーンポート20fとの接続を切り離すことができる。このため、フェールセーフ油圧を出力するためのソレノイドバルブとして、ロックアップのために使用されるロックアップソレノイドバルブSLUを適用することができ、通常時はロックアップのために使用し、フェール時のみロックアップ圧PSLUを変速制御部40に供給するように使い分けることができるようになる。よって、フェールセーフ油圧を出力するためのソレノイドバルブをフェール用の専用部品にする必要が無く、部品点数の増加を防止し、装置の小型化を図ることができる。
 また、本実施の形態の油圧制御装置1では、フェールセーフ油圧を出力するためのソレノイドバルブは、流体伝動装置をロックアップ可能なロックアップクラッチの係合状態を制御するロックアップ圧PSLUを生成するロックアップソレノイドバルブSLUであり、フェールセーフ油圧はロックアップ圧PSLUであるようにしている。
 このため、本実施の形態の油圧制御装置1によれば、フェールセーフ油圧を出力するためのソレノイドバルブはロックアップソレノイドバルブSLUであるので、フェールセーフ油圧を出力するためのソレノイドバルブをフェールセーフ用の専用部品にする必要が無く、部品点数の増加を防止し、装置の小型化を図ることができる。
 また、本実施の形態の油圧制御装置1では、ロックアップソレノイドバルブSLUにはライン圧PLが供給され、ロックアップソレノイドバルブSLUはライン圧PLに基づいてロックアップ圧PSLUを供給するようにしている。
 このため、本実施の形態の油圧制御装置1によれば、ライン圧PLを利用して前進レンジ圧PD、後進レンジ圧PR、ロックアップ圧PSLUを生成できるので、油圧の回路構成を簡素化することができる。
 尚、上述した本実施の形態の油圧制御装置1では、フェールセーフ油圧を出力するためのソレノイドバルブはロックアップソレノイドバルブSLUである場合について説明したが、これには限定されず、他のソレノイドバルブを適用してもよい。
 また、上述した本実施の形態の油圧制御装置1では、フェールセーフ油圧を出力するためのソレノイドバルブとドレーンポート20fとの間にフェールセーフバルブ30を介在させた場合について説明したが、これには限定されず、フェールセーフ油圧を出力するためのソレノイドバルブとドレーンポート20fとを直接連結するようにしてもよい。この場合、ECU50は、通常時にはフェールセーフ油圧を出力するためのソレノイドバルブからはフェールセーフ油圧を出力しないようにし、フェール時にはフェールセーフ油圧を出力するためのソレノイドバルブからフェールセーフ油圧を出力するように制御する。
 本自動変速機の油圧制御装置は、例えば車両に搭載される自動変速機の油圧制御装置に係り、詳しくは電気的に制御される複数の切換えバルブにより走行レンジを切換可能なシフトバイワイヤ方式の自動変速機の油圧制御装置に用いて好適である。
1    自動変速機の油圧制御装置
10   第1のカットオフバルブ(第1の切換えバルブ)
10a  第1の油室
10b  第1の入力ポート
10c  第1の出力ポート
10d  第2の出力ポート
20   第2のカットオフバルブ(第2の切換えバルブ)
20a  第2の油室
20b  第2の入力ポート
20c  第3の入力ポート
20d  第3の出力ポート
20e  第4の出力ポート
30   フェールセーフバルブ
40   変速制御部
P1   第1の油圧(前進レンジ圧)
P2   第2の油圧(後進レンジ圧)
PD   前進レンジ圧
PL   ライン圧(元圧)
PR   後進レンジ圧
PS1  第1の信号圧
PS2  第2の信号圧
PSLU ロックアップ圧(フェールセーフ油圧)
SC2  ソレノイドバルブ(第1のソレノイドバルブ)
SC3  ソレノイドバルブ(第2のソレノイドバルブ)

Claims (4)

  1.  変速機構を制御する変速制御部と、
     第1の信号圧を出力可能な第1のソレノイドバルブと、
     元圧が入力されると共に、前記第1の信号圧のオフ状態において、入力された前記元圧を前進レンジ圧として出力する第1の位置と、前記第1の信号圧のオン状態において、入力された前記元圧を後進レンジ圧として出力する第2の位置とに、切換可能な第1の切換えバルブと、
     第2の信号圧を出力可能な第2のソレノイドバルブと、
     前記第2の信号圧のオフ状態において、前記第1の切換えバルブから入力された前記前進レンジ圧を前記変速制御部に出力すると共に前記後進レンジ圧を遮断する第3の位置と、前記第2の信号圧のオン状態において、前記第1の切換えバルブから入力された前記後進レンジ圧を前記変速制御部に出力すると共に前記前進レンジ圧を遮断する第4の位置とに、切換可能な第2の切換えバルブと、を備える、
     ことを特徴とする自動変速機の油圧制御装置。
  2.  前記第2の切換えバルブにフェールセーフ油圧を出力可能なフェールセーフバルブを備え、
     前記フェールセーフバルブから前記第2の切換えバルブに入力された前記フェールセーフ油圧は、前記第2の切換えバルブが前記第3の位置にある場合は、前記第2の切換えバルブから前記変速制御部に後進レンジ圧として出力され、前記第2の切換えバルブが前記第4の位置にある場合は、前記第2の切換えバルブから前記変速制御部に前進レンジ圧として出力される、
     ことを特徴とする請求項1記載の自動変速機の油圧制御装置。
  3.  前記第1のソレノイドバルブ及び前記第2のソレノイドバルブは、いずれも非通電時に信号圧を出力しないノーマルクローズタイプである、
     ことを特徴とする請求項1又は2に記載の自動変速機の油圧制御装置。
  4.  前記第1の切換えバルブは、前記元圧を入力可能な第1の入力ポートと、前記前進レンジ圧を出力可能な第1の出力ポートと、前記後進レンジ圧を出力可能な第2の出力ポートと、前記第1のソレノイドバルブと連通し前記第1の信号圧を入力可能な第1の油室と、を有し、
     前記第2の切換えバルブは、前記前進レンジ圧を入力可能な第2の入力ポートと、前記後進レンジ圧を入力可能な第3の入力ポートと、前記前進レンジ圧を出力可能な第3の出力ポートと、前記後進レンジ圧を出力可能な第4の出力ポートと、前記第2のソレノイドバルブと連通し前記第2の信号圧を入力可能な第2の油室と、を有し、
     前記第1の出力ポートと前記第2の入力ポートとが連通し、前記第2の出力ポートと前記第3の入力ポートとが連通し、前記第3の出力ポートと前記変速制御部とが連通する、
     ことを特徴とする請求項1乃至3のいずれか1項に記載の自動変速機の油圧制御装置。
PCT/JP2015/053806 2014-02-12 2015-02-12 自動変速機の油圧制御装置 WO2015122451A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580006857.7A CN105940247B (zh) 2014-02-12 2015-02-12 自动变速器的油压控制装置
DE112015000258.8T DE112015000258T5 (de) 2014-02-12 2015-02-12 Hydrauliksteuervorrichtung für ein automatisches Getriebe
US15/108,987 US9863531B2 (en) 2014-02-12 2015-02-12 Hydraulic control device for automatic transmission
JP2015562849A JP6146487B2 (ja) 2014-02-12 2015-02-12 自動変速機の油圧制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-024932 2014-02-12
JP2014024932 2014-02-12
JP2014-114652 2014-06-03
JP2014114652 2014-06-03

Publications (1)

Publication Number Publication Date
WO2015122451A1 true WO2015122451A1 (ja) 2015-08-20

Family

ID=53800192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053806 WO2015122451A1 (ja) 2014-02-12 2015-02-12 自動変速機の油圧制御装置

Country Status (5)

Country Link
US (1) US9863531B2 (ja)
JP (1) JP6146487B2 (ja)
CN (1) CN105940247B (ja)
DE (1) DE112015000258T5 (ja)
WO (1) WO2015122451A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122370B1 (ko) * 2016-07-19 2020-06-12 쟈트코 가부시키가이샤 압력 조절 밸브의 제어 장치
KR20180071455A (ko) * 2016-12-19 2018-06-28 현대자동차주식회사 무단변속기 변속속도 제어방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024060A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp 車両用自動変速機の油圧制御装置
JP2012007630A (ja) * 2010-06-22 2012-01-12 Aisin Aw Co Ltd 油圧回路装置
JP2012082969A (ja) * 2012-02-01 2012-04-26 Aisin Aw Co Ltd 前後進設定油圧切換え装置および自動変速機
JP2013245770A (ja) * 2012-05-25 2013-12-09 Aisin Aw Co Ltd 油圧制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666645B2 (ja) * 1992-01-30 1997-10-22 トヨタ自動車株式会社 シフトバイワイヤ自動変速機用油圧制御装置
JP2738214B2 (ja) * 1992-03-25 1998-04-08 トヨタ自動車株式会社 自動変速機の変速制御装置
DE10032680C1 (de) * 2000-07-05 2001-10-25 Daimler Chrysler Ag Automatikgetriebe mit einer Steuervorrichtung zur Auswahl einer Getriebefahrstufe
JP4506655B2 (ja) * 2005-11-24 2010-07-21 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置
JP4484816B2 (ja) * 2005-12-28 2010-06-16 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP2008128473A (ja) 2006-11-24 2008-06-05 Aisin Aw Co Ltd レンジ切換え装置
JP4781336B2 (ja) * 2007-09-10 2011-09-28 トヨタ自動車株式会社 油圧制御装置
JP5143690B2 (ja) * 2008-09-30 2013-02-13 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP5081118B2 (ja) * 2008-09-30 2012-11-21 アイシン・エィ・ダブリュ株式会社 多段式自動変速機の油圧制御装置
JP4913170B2 (ja) * 2009-02-12 2012-04-11 ジヤトコ株式会社 自動変速機の油圧制御装置
JP5790173B2 (ja) * 2011-06-07 2015-10-07 トヨタ自動車株式会社 車両用無段変速機の制御装置
JP5612624B2 (ja) * 2012-03-08 2014-10-22 富士重工業株式会社 レンジ切替装置
JP6131852B2 (ja) * 2013-12-26 2017-05-24 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024060A (ja) * 2003-07-02 2005-01-27 Toyota Motor Corp 車両用自動変速機の油圧制御装置
JP2012007630A (ja) * 2010-06-22 2012-01-12 Aisin Aw Co Ltd 油圧回路装置
JP2012082969A (ja) * 2012-02-01 2012-04-26 Aisin Aw Co Ltd 前後進設定油圧切換え装置および自動変速機
JP2013245770A (ja) * 2012-05-25 2013-12-09 Aisin Aw Co Ltd 油圧制御装置

Also Published As

Publication number Publication date
JP6146487B2 (ja) 2017-06-14
US20160327154A1 (en) 2016-11-10
US9863531B2 (en) 2018-01-09
DE112015000258T5 (de) 2016-09-08
CN105940247B (zh) 2017-10-20
JPWO2015122451A1 (ja) 2017-03-30
CN105940247A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6027992B2 (ja) 油圧制御装置
KR101787249B1 (ko) 동력 전달 장치
JP5605504B2 (ja) 車両用駆動装置の制御装置
JP5463620B2 (ja) 自動変速機搭載車のシフトバイワイヤ故障時制御装置
JP4678435B2 (ja) 無段変速機の油圧供給装置
KR20080022515A (ko) 자동 변속기의 정차 시 고장 제어 장치
US9188217B2 (en) Range switching device
US10174822B2 (en) Hydraulic control device for automatic transmission
JP7115880B2 (ja) 車両用動力伝達装置の制御装置
JP6493050B2 (ja) 車両用無段変速機の油圧制御装置
JP6233337B2 (ja) 動力伝達装置の制御装置
JP6146487B2 (ja) 自動変速機の油圧制御装置
US20180283541A1 (en) Belt continuously variable transmission and failure determination method of the same
US20180259066A1 (en) Belt continuously variable transmission and failure determination method of the same
WO2018061992A1 (ja) 制御装置
JP4221938B2 (ja) 自動変速機制御装置
JP6364542B2 (ja) 変速機の制御装置及び変速機の制御方法
JP2019178729A (ja) 動力伝達装置の制御装置および制御方法
JP7279619B2 (ja) 制御装置
JP2021116849A (ja) 油圧制御装置
KR20180051232A (ko) 다단변속기용 유압장치
WO2009090836A1 (ja) 自動変速機の制御装置および制御方法
JP5817583B2 (ja) 無段変速機の制御装置
JP5742760B2 (ja) 油圧制御装置
JP2019052659A (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562849

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15108987

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015000258

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749533

Country of ref document: EP

Kind code of ref document: A1