WO2015001930A1 - 電動車両用バッテリ交換システム及びプログラム - Google Patents

電動車両用バッテリ交換システム及びプログラム Download PDF

Info

Publication number
WO2015001930A1
WO2015001930A1 PCT/JP2014/065458 JP2014065458W WO2015001930A1 WO 2015001930 A1 WO2015001930 A1 WO 2015001930A1 JP 2014065458 W JP2014065458 W JP 2014065458W WO 2015001930 A1 WO2015001930 A1 WO 2015001930A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
station
electric vehicle
charging
management server
Prior art date
Application number
PCT/JP2014/065458
Other languages
English (en)
French (fr)
Inventor
鈴木 大介
Original Assignee
レスク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レスク株式会社 filed Critical レスク株式会社
Priority to CN202111357827.4A priority Critical patent/CN114084032B/zh
Priority to CN201810874679.5A priority patent/CN108973744B/zh
Priority to CN201480047422.2A priority patent/CN105493378B/zh
Publication of WO2015001930A1 publication Critical patent/WO2015001930A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/68Traffic data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/58Departure time prediction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a system for replacing a battery of an electric vehicle such as an electric vehicle or an electric scooter. More specifically, the system of the present invention includes an electric vehicle driven by a replaceable battery, a battery station for charging the battery, and a management server for managing the charging status in the battery station. In the system of the present invention, the management server controls the charging speed of the battery in the battery station according to the battery charging information including the position of the electric vehicle, the remaining battery level, etc., so that the electric vehicle arrives at the battery station. Another feature is that the battery can be replaced smoothly.
  • an electric vehicle equipped with a replaceable battery travels by driving a motor with electric power supplied from a battery via a controller.
  • Typical examples of such an electric vehicle include an electric vehicle, an electric scooter, and an electric assist bicycle.
  • electric vehicles such as those mentioned above currently have a distance that can be traveled with a single charge or battery replacement, but are generally liquid fuel vehicles (gasoline vehicles, diesel vehicles, and liquefied natural gas). It is said that it is shorter than cars). Therefore, at present, infrastructure is being developed to increase the number of battery stations for charging the battery so that the battery of the electric vehicle can be charged and replaced frequently. For this reason, when the battery of the battery of the own vehicle is low, the user of the electric vehicle stops by a nearby battery station and replaces the battery of the own vehicle with the battery charged at the battery station. The electric vehicle can be continuously driven.
  • liquid fuel vehicles gasoline vehicles, diesel vehicles, and liquefied natural gas
  • a general battery station requires a charging time of several tens of minutes to several hours in order to fully charge a battery for an electric vehicle, depending on the charging current value to the battery. For this reason, even if the electric vehicle arrives at the nearest battery station, if the charging of the battery is not completed, it is necessary to wait for the charging to be completed in front of the battery station. As described above, in the conventional system, even when the electric vehicle arrives at the battery station, it is assumed that the battery cannot be replaced immediately. This was one of the factors that hindered the spread of systems including electric vehicles and battery stations.
  • Patent Document 1 discloses a technique for detecting the remaining battery level of a battery when the battery is stored in a battery station and charging the battery at a high speed when the remaining battery level is equal to or less than a predetermined value. Has been. As described above, when the battery level of the battery is equal to or lower than the predetermined value, the high-speed charging is performed, so that when the electric vehicle arrives at the battery station, the necessary battery charging is not completed. It is considered that the possibility of occurrence of this can be reduced.
  • the battery has upper limits on the charging speed and the charging current value mainly from the viewpoint of safety and durability.
  • charging closer to the upper limit of the charging speed and the charging current value is called fast charging, and charging closer to the lower limit of the charging speed and the charging current value is called slow charging.
  • high-speed charging has a higher degree of battery degradation than normal-speed charging (normal charging) and low-speed charging.
  • normal charging normal-speed charging
  • low-speed charging low-speed charging.
  • the normal charging normal charging
  • the normal charging is continued and when the battery is charged by appropriately switching between normal charging, low-speed charging, and high-speed charging, the latter has a larger degree of battery deterioration. It is known to be.
  • the system administrator when the deterioration level of the battery stored in the battery station increases, the system administrator must go to the battery station, discard the battery with the increased deterioration level, and replace it with a new battery. Necessary. At this time, for example, when a battery with a large deterioration level appears among a plurality of batteries stored in the battery station, the administrator may go to the battery station and replace the battery every time. It is time consuming and not efficient. For this reason, it is required to improve the efficiency by replacing a plurality of batteries at a time. From this point of view, it can be said that it is preferable that the plurality of batteries stored in the battery station have the same level of deterioration as much as possible.
  • the performance (speed and mileage) of the entire vehicle may depend on the performance of the battery with the least remaining battery level. Therefore, the plurality of batteries stored in the battery station are preferably in a state where the remaining battery power is as equal as possible when the electric vehicle arrives. For example, when an electric vehicle requests replacement of four batteries, four batteries with a remaining battery capacity of 80 Ah are provided rather than three batteries with a remaining battery capacity of 100 Ah and one battery with 60 Ah. It is said that it is easier to bring out the performance of the electric vehicle more efficiently by preparing the individual.
  • the charging by the battery station is performed so that the deterioration degree of the plurality of batteries and the remaining battery level are leveled as much as possible in consideration of the risk that the deterioration of the battery progresses when high-speed charging is performed. Is desirable.
  • conventional battery charging systems perform high-speed charging ignoring the risk of battery deterioration, and have a mechanism for leveling the degree of deterioration and the remaining battery capacity of multiple batteries. It was not.
  • the inventors of the present invention basically predicted the time until the electric vehicle arrives at the battery station, and predicted arrival time.
  • the charging speed of each battery stored in the battery station based on the above, it is possible to prevent the battery from degrading and to appropriately control the degree of deterioration of the battery and the remaining battery level. I got the knowledge.
  • the inventor has conceived that the problems of the prior art can be solved based on the above knowledge, and has completed the present invention. More specifically, the present invention has the following configuration.
  • the 1st side of the present invention is related with the battery exchange system for electric vehicles.
  • the system of the present invention includes a plurality of electric vehicles 2, a plurality of battery stations 3, and a management server 4.
  • the plurality of electric vehicles 2 can travel by driving a motor with one or a plurality of replaceable batteries 1 mounted on the vehicle. Examples of the electric vehicle 2 are an electric automobile, an electric scooter, and an electric assist bicycle.
  • the battery station 3 includes a mechanism that can charge the battery 1.
  • the management server 4 is a server device connected to the electric vehicle 2 and the battery station 3 via a communication network.
  • the battery 1 is a BMS (Battery Management System) having a function of measuring and calculating the battery remaining amount and the number of times of charging of the battery and communicating the battery charging information including the identification number (ID) to the outside. 10 may be included.
  • the electric vehicle 2 includes a control device 20, a position information acquisition device (GPS) 22, and a communication device 23.
  • the control device 20 is connected to a position information acquisition device (GPS) 22 and a communication device 23, respectively. Thereby, the control device 20 appropriately stores the battery information including the remaining battery level of the battery 1 acquired by the remaining capacity meter 21, the current position information of the own vehicle acquired by the position information acquisition device (GPS) 22, and the like. Obtainable.
  • control device 20 can perform calculation processing of information obtained from various devices, and can transmit it to the management server via the communication device 23.
  • the control device 20 may be a device provided in the electric vehicle 2, or may be a device using an information arithmetic processing device provided in a general-purpose portable communication terminal (for example, a smartphone).
  • the position information acquisition device (GPS) 22 acquires current position information of the electric vehicle 2.
  • the position information acquisition device (GPS) 22 may be a device provided in the electric vehicle 2 or may use a GPS provided in a general-purpose portable communication terminal (for example, a smartphone).
  • the communication device 23 can transmit a battery replacement request to the management server 4 together with battery charging information and position information.
  • the communication device 23 may be a device provided in the electric vehicle 2 or may use a communication device provided in a general-purpose portable communication terminal (for example, a smartphone).
  • the battery station 3 has one or a plurality of chargers 31 that can charge a loaded battery by adjusting a charging speed.
  • the management server 4 has a control unit 40 and a communication unit 41.
  • the control unit 40 of the management server 4 has arrival time prediction means 40b and charging speed determination means 40c.
  • the arrival time predicting means 40b predicts the time when the electric vehicle 2 arrives at the battery station 3 based on at least the position information of the electric vehicle 2 when a battery replacement request is received from the electric vehicle 2.
  • the charging speed determination unit 40 c determines the charging speed of the battery loaded in the charger 31 of the battery station 3 based on at least the expected time when the electric vehicle 2 arrives at the battery station 3. And the communication part 41 of the management server 4 transmits the information regarding the charging speed of the battery determined by the charging speed determination means 40c to the battery station 3. Thereby, the battery station 3 controls the charging speed of the battery loaded in the charger 31 based on the information regarding the charging speed received from the management server 4.
  • the management server 4 sends a command to the battery station 3 to perform high-speed charging if the distance between the battery station 3 and the electric vehicle 2 for which the battery replacement request is made is short, and the electric vehicle 2 arrives. A charged battery may be prepared by the time.
  • the management server 4 transmits a command to the battery station 3 to charge at the normal speed, thereby reducing the battery deterioration. Can be suppressed.
  • the electric vehicle 2 preferably further includes a remaining capacity 21.
  • the remaining capacity meter 21 acquires battery charge information including the remaining battery levels of one or a plurality of batteries mounted on its own vehicle.
  • the communication device 23 transmits a battery replacement request to the management server together with the position information and the battery charging information.
  • the remaining capacity meter 21 acquires battery charging information including the identification number and the remaining battery level of one or more batteries 1 mounted on the electric vehicle 2.
  • the remaining capacity meter 21 may acquire battery charging information from the BMS 10 included in the battery 1, or directly detect and measure the identification number of the battery 1 and the remaining battery level when the battery 1 is connected. Also good.
  • the remaining capacity meter 21 may be a device provided in the electric vehicle 2, or may be a device using an information reception display device provided in a general-purpose portable communication terminal (for example, a smartphone).
  • the control unit 40 of the management server 4 preferably further includes a station selection unit 40a.
  • the station selection unit 40 a receives a battery replacement request from the electric vehicle 2, the station selection unit 40 a is based on the battery charging information of the battery mounted on the electric vehicle 2 and the position information of the electric vehicle 2.
  • One or a plurality of battery stations 3 reachable by 2 are selected as candidate stations.
  • the arrival time predicting means 40b predicts the time at which the electric vehicle 2 arrives at the candidate station based on at least the position information of the electric vehicle 2.
  • the charging speed determination means 40c determines the charging speed of the battery loaded in the charger 31 of the candidate station based on at least the expected time when the electric vehicle 2 arrives at the candidate station.
  • the communication unit 41 transmits information on the battery charging speed determined by the charging speed determination unit 40c to the battery station 3 selected as the candidate station.
  • the battery charging speed can be efficiently controlled by selecting the battery station 3 existing at a position where the electric vehicle 2 can reach as a candidate station.
  • the battery station 3 preferably further includes a detector 32 and a communication device 33.
  • the detector 32 acquires battery charging information including the identification number of the battery loaded in the charger 31 and the remaining battery level.
  • the detector 32 may acquire battery charging information from the BMS 10 provided in the battery 1 or may directly detect and measure the identification number of the battery 1 and the remaining battery level when the battery 1 is connected. Good.
  • the communication device 33 can transmit the battery charge information detected by the detector 32 to the management server 4.
  • the charging speed determination means 40c of the management server 4 determines the charger of the battery station 3 based on the battery charging information received from the battery station 3 and the estimated time when the electric vehicle 2 arrives at the battery station 3. It is preferable to determine the charging speed of the battery loaded in 31.
  • the detector 32 of the battery station 3 extracts the battery charge information, By determining the battery charging speed based on the estimated arrival time of the electric vehicle, it is possible to more appropriately determine whether or not the battery needs to be charged at high speed.
  • the detector 32 of the battery station 3 preferably detects an identification number (ID) of a battery loaded in the charger 31.
  • the detector 32 may acquire the recognition number (ID) from the BMS 10 included in the battery 1 or may directly detect the recognition number (ID) of the battery 1 when the battery 1 is connected.
  • the management server 4 further includes a battery database 42 that records the number of times of charging for each battery based on the number of times the identification information of the battery 1 is received from the battery station 3. Then, the charging speed determination means 40c of the management server 4 is based on the information related to the number of times of charging of the battery recorded in the battery database 42 and the expected time when the electric vehicle 2 arrives at the battery station 3. It is preferable to determine the charging speed of the battery loaded in the charger 31.
  • the management server 4 may store the degree of deterioration of each battery in the battery database 42 in association with the identification number of each battery.
  • the charging speed determination means 40c of the management server 4 refers to the battery identification number received from at least one battery station 3 when receiving a battery replacement request from the electric vehicle 2, and from the battery database 42. Then, the degree of deterioration of the battery associated with the identification number of the battery is read, and the charging speed of the battery loaded in the charger 31 of the battery station is determined based on the read degree of deterioration of the battery.
  • the management server 4 records the number of times of charging and / or full charge capacity of each battery and statistical data of many past similar batteries in the battery database 42. From this information, it is possible to grasp the degree of deterioration of the battery. Then, by determining the charging speed of the battery based on the degree of deterioration of the battery, it is possible to appropriately control the degree of deterioration of the battery and the full charge capacity. Further, the degree of deterioration of the battery can be predicted more accurately by comparing it with a large number of past statistical data of the same type of battery other than the number of times of charging and / or the full charge capacity of the single battery.
  • the battery station 3 has a plurality of chargers 31 or can perform charge control for each battery.
  • the control unit 40 of the management server 4 has a deterioration degree calculating means 40d for determining the deterioration degree of each battery based on the information regarding the number of times of charging the battery and the full charge capacity recorded in the battery database 42. It is preferable. Further, the charging speed determination means 40c of the management server 4 compares the deterioration levels obtained by the deterioration level calculation means 40d for the plurality of batteries 1 loaded in one or a plurality of chargers 31 in one battery station 3.
  • a form of the battery station 3 a form in which a plurality of batteries 1 are loaded in one charger 31 is also assumed.
  • a new battery having a small deterioration degree among the batteries in one battery station 3 is intentionally deteriorated by positively charging at high speed.
  • batteries with a high degree of deterioration avoid fast charging to avoid battery deterioration.
  • the degree of deterioration of a plurality of batteries stored in one battery station 3 can be leveled.
  • a plurality of batteries whose deterioration levels are relatively leveled can be delivered from the battery station 3 to the electric vehicle 2.
  • the performance (speed and travel distance) of the entire vehicle may depend on the performance of the battery having the greatest deterioration level.
  • the electric vehicle 2 is equipped with a plurality of batteries whose level of deterioration is leveled, so that the performance of the vehicle is more efficiently exhibited.
  • the degree of deterioration of each battery in the battery station 3 is leveled, so that each battery reaches the disposal time (replacement time) almost at the same time.
  • the efficiency of the replacement work can be improved by enabling the replacement work of a plurality of batteries to be performed simultaneously.
  • the charging speed determination means 40 c of the management server 4 is configured such that the electric vehicle 2 arrives at the battery station 3 for a plurality of batteries 1 loaded in one or a plurality of chargers 31 in one battery station 3. In the meantime, it is preferable to determine the charging speed of each battery so that the remaining battery levels of the plurality of batteries approach the same value.
  • the remaining battery levels of each battery are compared.
  • the remaining battery levels of a plurality of batteries can be made uniform.
  • each of the plurality of chargers 31 included in the battery station 3 can charge a battery loaded in itself using a battery loaded in another charger 31 as a power source.
  • the charging speed determination means 40c of the management server 4 is used until the electric vehicle 2 arrives at the battery station 3 for the plurality of batteries 1 loaded in one or more chargers 31 in one battery station 3. It is preferable to determine the charging speed of each battery in consideration of using at least one battery as a power source so that the remaining battery levels of the plurality of batteries approach the same value during the period.
  • the remaining battery level of the batteries is made uniform. Can be achieved.
  • the battery station is preferably capable of charging the battery by receiving power from the natural energy generator 34a.
  • the natural energy generator 34a are a solar power generator, a solar power generator, a wind power generator, and the like.
  • the natural energy generator 34a may be mounted on the battery station or may be arranged near the battery station.
  • the battery station may receive power supply from the natural energy generator 34a owned by the power company via the power network.
  • each of the plurality of chargers 31 can charge the battery loaded in itself using the natural energy generator 34a as a power source together with the battery loaded in the other charger 31.
  • the charging speed determination means 40c of the management server 4 performs different control depending on the time zone in which the natural energy generator 34 can generate power and the time zone in which power cannot be generated. That is, the charging speed determining means 40c is configured to store a plurality of batteries 1 in a time zone when the natural energy generator 34 cannot generate power for a plurality of batteries 1 loaded in one or a plurality of chargers 31 in one battery station 3. The charging speed of each battery when at least one battery is used as a power source is determined so that the remaining battery capacity approaches an equal value. On the other hand, in the time zone in which the natural energy generator 34 can generate power, the charging speed determination unit 40c approaches the battery level of the plurality of batteries to be equal until the electric vehicle 2 arrives at the battery station 3.
  • the “time period in which the natural energy generator 34 can generate power” is a sunshine time zone for a solar power generator or a solar power generator, and a time zone in which wind is blowing for a wind power generator.
  • the “time zone when the natural energy generator 34 cannot generate power” is a non-sunshine time zone for a solar power generator or a solar power generator, and a time zone when no wind is blowing for a wind power generator. .
  • the present invention can utilize the natural energy generator 34 as a power source.
  • the charging speed determination means 40c is considered to be in the nighttime (non-sunshine hours) when the battery replacement request from the electric vehicle 2 is considered to be small. Control is performed so that the remaining battery is charged by using the battery stored in the battery station 3 as a power source, and the remaining battery level of each battery is made uniform. Then, the charging speed determining means 40c controls to charge each battery using the power supplied from the solar power generator 34a when it is daytime (daylight hours).
  • the charge of the battery in a battery station can be completed with the renewable energy obtained by solar power generation.
  • the battery can be charged with 100% renewable energy, and the remaining battery levels of the plurality of batteries can be made uniform.
  • the second aspect of the present invention relates to a computer program for causing a server device to function as the management server 4 in the battery exchange system according to the first aspect.
  • the present invention it is possible to provide a system and a program capable of controlling the charging speed in the battery station and appropriately controlling the degree of deterioration of the battery and the remaining battery level. That is, according to the present invention, while considering the risk of battery deterioration due to high-speed charging, the battery charging speed is appropriately set so as to equalize the degree of deterioration of the plurality of batteries and the remaining battery level as much as possible. Can be controlled.
  • FIG. 1 is an overall view showing an outline of a battery exchange system according to the present invention.
  • FIG. 2 is a block diagram showing the configuration of the electric vehicle.
  • FIG. 3 is a block diagram showing the configuration of the battery station.
  • FIG. 4 is a block diagram showing the configuration of the management server.
  • FIG. 5 is a flowchart showing processing in the battery preparation stage.
  • FIG. 6 is a flowchart showing processing when a battery replacement request is made.
  • FIG. 7 shows an example of the charging rate determination process.
  • FIG. 8 shows an example of the charging speed determination process.
  • FIG. 9 shows an example of the charging speed determination process.
  • FIG. 10 shows an example of the charging speed determination process.
  • FIG. 11 shows an example of the charging rate determination process.
  • full charge capacity means the maximum value of the electric capacity of the battery that can be charged at one time. This full charge capacity is proportional to the degree of deterioration of the battery within a specific range. The full charge capacity gradually decreases as the number of times of charging is increased, and rapidly decreases when a certain number of times of charging is exceeded, making it impossible to supply power required by the electric vehicle. When this full charge capacity decreases rapidly, the battery needs to be discarded or replaced.
  • the “battery remaining amount” means a remaining amount value of the electric capacity of the battery.
  • FIG. 1 is an overall view showing an outline of a battery exchange system 100 for an electric vehicle according to the present invention.
  • a system 100 according to the present invention includes a plurality of electric vehicles 2 equipped with replaceable batteries 1, a plurality of battery stations 3 that charge a replacement battery 1, and the entire system.
  • a management server 4 that performs management.
  • the electric vehicle 2, the battery station 3, and the management server 4 have a configuration capable of exchanging information with each other.
  • the electric vehicle 2 includes a communication device that can wirelessly communicate with the communication station 5.
  • the battery station 3, the management server 4, and the communication station 5 are connected to each other via an information communication line 6 such as the Internet.
  • the electric vehicle 2 travels by driving a motor with electric power supplied from a plurality of batteries 1 mounted on the vehicle.
  • Examples of the electric vehicle 2 are an electric vehicle, an electric scooter, an electric assist bicycle, an electric standing motorcycle, and the like.
  • the electric vehicle 2 stops at a nearby battery station 3.
  • a plurality of batteries 1 are stored and charged.
  • the user of the electric vehicle 2 takes out the required number of batteries 1 from the battery station 3 and replaces it with the battery 1 of his / her vehicle. Thereby, the electric vehicle 2 can continue traveling using the charged battery 1.
  • the battery station 3 is loaded with the battery 1 having a low remaining battery level. Then, the battery station 3 receives power supply from a power source such as a power network and starts charging the battery 1 loaded therein.
  • the user of the electric vehicle 2 can send a battery replacement request to the management server 4 in advance via a communication device provided in the vehicle.
  • This battery replacement request includes reservation for battery replacement.
  • the management server 4 that has received the battery replacement request notifies the battery station 3 existing within the reachable range of the electric vehicle 2 that the battery replacement request has been made.
  • the management server 4 controls the charging speed of the battery 1 in the battery station 3 based on information such as the estimated arrival time of the electric vehicle 2. For example, if the charged battery 1 cannot be prepared before the electric vehicle 2 arrives at the battery station 3 in normal speed charging, the management server 4 instructs the battery station 3 to perform high-speed charging. Send. Thereby, when the electric vehicle 2 arrives at the battery station 3, one or a plurality of charged batteries 1 can be prepared.
  • FIG. 2 is a block diagram showing the configuration of the electric vehicle 2.
  • the electric vehicle 2 includes a replaceable battery 1, a control device 20, a remaining capacity meter 21, a position information acquisition device (GPS) 22, a communication device 23, a motor 24, an interface 25, and a speedometer 26. , And a controller 27.
  • the electric vehicle 2 is provided with an information connection terminal 28 for taking out information by the control device 20 to the outside as needed.
  • the electric vehicle 2 includes an outlet for taking in and out the battery 1.
  • the electric vehicle 2 travels by driving the motor 24 via the controller 27 by the replaceable battery 1 and rotating the wheels by the power transmission mechanism.
  • the battery 1 a known secondary battery such as a rechargeable nickel-metal hydride battery or a lithium ion battery can be basically used.
  • the number of the batteries 1 mounted on the vehicle increases or decreases. That is, the number of the batteries 1 mounted on the electric vehicle 2 may be one or plural.
  • the battery 1 supplies power to the motor 24 via the controller 27.
  • Each battery 1 used in this system is assigned an identification number (ID).
  • ID identification number of each battery 1 is stored in a battery database of the management server 4 to be described later and is centrally managed.
  • the battery 1 preferably has a BMS (Battery Management System) 10.
  • the BMS 10 may have a different name, but is basically provided inside or outside the battery and is mainly composed of an integrated circuit, a sensor, and the like. It is also preferable that the BMS 10 measures and calculates battery charging information including control of one or a plurality of batteries 1, the remaining battery level, the number of times of charging, and the like. Further, the battery charging information acquired by the BMS 10 may include the number of times of charging, the voltage, current, temperature, and full charge capacity of the battery in addition to the identification number (ID) and the remaining battery level.
  • the BMS 10 may have a communication function for communicating battery charging information to the outside.
  • the battery charge information such as the identification number and the battery remaining amount acquired from the BMS 10 is the remaining capacity meter 21 mounted on the electric vehicle 2 by wired communication (CAN etc.) or wireless communication (Bluetooth (registered trademark) etc.). It is preferably transmitted to the detector 32 or the like mounted on the battery station 3.
  • the control device 20 of the electric vehicle 2 is connected to a remaining capacity meter 21, a position information acquisition device (GPS) 22, a communication device 23, an interface 25, and a speedometer 26, respectively.
  • the control device 20 has the battery information including the remaining battery level of the battery 1 acquired from the remaining capacity meter 21, the current position information of the host vehicle acquired by the position information acquisition device (GPS) 22, and the speed.
  • the traveling speed of the own vehicle measured by the total 26 can be obtained as appropriate.
  • the control device 20 can perform calculation processing on information obtained from various devices, and can transmit it to the management server 4 via the communication device 23. Further, the control device 20 can execute various processes according to input information from the interface 25.
  • the control device 20 may be a device provided in the electric vehicle 2 or may use, for example, an information arithmetic processing device provided in a general-purpose portable communication terminal (for example, a smartphone).
  • the remaining capacity meter 21 acquires battery charging information including an identification number of the battery 1 mounted on the electric vehicle 2 and a remaining battery level.
  • the remaining capacity meter 21 may acquire battery charging information from the BMS 10 included in the battery 1, and when the battery 1 is connected, the identification number of the battery 1, the remaining battery level, and the like are communicated by wired communication (such as CAN) or It may be detected and measured directly via wireless communication (such as Bluetooth (registered trademark)).
  • the battery charge information acquired by the remaining capacity meter 21 is output to the control device 20.
  • the remaining capacity meter 21 may be a device provided in the electric vehicle 2, or may be a device using an information reception display device provided in a general-purpose portable communication terminal (for example, a smartphone).
  • GPS Global Positioning System
  • the GPS is a device for measuring the current position of the electric vehicle 2 and obtaining information for specifying the current position.
  • the position information acquisition device (GPS) 22 measures the time required to receive each radio wave based on the information on the radio wave transmission time included in the radio waves sent from a plurality of GPS satellites, and indicates the time. Time information is sent to the control device 20.
  • the control device 20 can calculate information regarding the latitude and longitude of the location of the electric vehicle 2 based on the acquired time information.
  • the position information acquisition device (GPS) 22 is mounted on the electric vehicle 2 included in, for example, a car navigation system (not shown).
  • the position information acquisition device (GPS) 22 may be a device provided in the electric vehicle 2, or may be a device using a GPS provided in a general-purpose mobile communication terminal (for example, a smartphone). .
  • the communication device 23 is connected to the communication station 5 via a wireless line and can perform bidirectional communication with the management server 4 via the information communication line 6.
  • the communication device 23 can transmit information processed by the control device 20 to the management server 4 or can receive information from the management server 4.
  • the communication device 23 is included in a car navigation system (not shown) and is mounted on the electric vehicle 2.
  • the communication device 23 may be a device provided in the electric vehicle 2, or may be a device using a communication device provided in a general-purpose portable communication terminal (for example, a smartphone).
  • the motor 24 converts the electric power obtained from the battery 1 through the controller 27 into a rotational output and transmits it to the power transmission mechanism.
  • the electric vehicle 2 travels when the output from the motor 24 is transmitted to the wheels via the power transmission mechanism.
  • the interface 25 may be a touch panel display in which a display device and an input device are integrated.
  • the speedometer 26 is an instrument that calculates the instantaneous traveling speed of the electric vehicle 2 based on the rotational speed of the motor 24 and the power transmission mechanism or the position information acquisition device (GPS) 22.
  • the controller 27 has a function of controlling power supplied from the battery 1 and transmitting it to the motor 24.
  • FIG. 3 is a block diagram showing the configuration of the battery station 3.
  • the battery station 3 includes a controller 30, a plurality of chargers 31, a detector 32, a communication device 33, and a power source 34.
  • the battery 1 can be loaded in each of the plurality of chargers 31.
  • the charger 31 loaded with the battery 1 is supplied with power from the power source 34 according to control by the controller 30 and charges the battery 1.
  • the controller 30 of the battery station 3 is connected to a plurality of chargers 31, a detector 32, and a communication device 33. For this reason, the controller 30 can control the charging speed of the battery 1 by the charger 31 based on the control information received from the management server 4 via the communication device 33. Further, the controller 30 can process the detection information acquired by the detector 32 from the battery 1 and transmit it to the management server 4 via the communication device 33.
  • the charger 31 is a device that is electrically connected to the battery 1, receives power supply from the power supply 34, and performs a charging operation on the battery 1.
  • the charger 31 charges the battery 1 by, for example, a constant current constant voltage method (CC-CV method).
  • CC-CV method constant current constant voltage method
  • charging is performed at a constant current value from the beginning of charging, and is maintained when the battery voltage reaches a predetermined value as charging progresses.
  • the charging current value is continuously reduced.
  • the charger 31 can vary the charging speed of the battery 1 in accordance with a control signal from the controller 30.
  • the charger 31 can change the charging speed in at least two stages of normal charging that charges at a normal speed and high-speed charging that charges at a higher speed than normal charging.
  • the charger 31 may be capable of performing low-speed charging in which charging is performed at a lower speed than normal charging in addition to normal charging and high-speed charging.
  • the charging speed and the charging current value are in a substantially proportional relationship. For this reason, the charging speed of the battery 1 can be freely adjusted by controlling the charging current value supplied from the charger 31 to the battery 1.
  • the battery 1 has upper limits on the charging speed and the charging current value mainly from the viewpoint of safety and durability.
  • charging that is closer to the upper limit of the charging speed and charging current value is faster charging
  • charging that is closer to the lower limit of the charging speed and charging current value is slower charging
  • charging that is based on the current value between faster charging and slower charging is normal.
  • charging at a standard speed within a certain range is called normal charging
  • charging faster than normal charging is called fast charging
  • charging slower than normal charging is called slow charging.
  • the detector 32 is a device for acquiring battery charge information including an identification number and a remaining battery level from the battery 1 in a charged state.
  • the detector 32 may acquire battery charging information from the BMS 10 included in the battery 1, and when the battery 1 is connected, the identification number of the battery 1, the remaining battery level, and the like are wired communication (such as CAN). Alternatively, it may be one that directly detects and measures via wireless communication (such as Bluetooth (registered trademark)).
  • the remaining battery level of the battery 1 is obtained by, for example, measuring the charge / discharge current value of the battery 1 using the BMS 10 and subtracting the amount of electricity obtained by integrating the current from the remaining capacity (full charge capacity) in the fully charged state. Can be detected.
  • the battery charge information detected by the detector 32 is sent to the controller 30.
  • the communication device 33 is a device for the battery station 3 to perform bidirectional communication with the management server 4 via the information communication line 6.
  • the communication device 33 can transmit information processed by the controller 30 to the management server 4 or receive information from the management server 4.
  • the power supply 34 a known power supply can be used as long as it can supply power to the charger 31.
  • the power source 34 renewable energy obtained by the natural energy generator 34a may be used.
  • the natural energy generator 34a are a solar power generator, a solar power generator, a wind power generator, and the like.
  • the natural energy generator 34 a is preferably installed in the vicinity of the battery station 3. That is, the natural energy generator 34a may be mounted on the battery station or may be disposed near the battery station. Further, the battery station may receive power supply from the natural energy generator 34 owned by the power company via the power network. Further, as the power source 34, commercial power supplied from the power network 34b may be used.
  • the power source 34 can also use both renewable energy and commercial power.
  • the electric power stored in the battery 1 can be sold to the outside through the battery station 3.
  • the battery station 3 can sell the electric power stored in the battery 1 to an electric power company, a company, a general household, etc. via an electric power network. It is also possible to sell the power stored in the battery 1 to the user by lending or replacing the battery 1 loaded in the battery station 3.
  • FIG. 4 is a block diagram showing the configuration of the management server 4.
  • the management server 4 includes a control unit 40, a communication unit 41, a battery database 42, an electric vehicle database 43, and a station database 44.
  • the management server 4 has a function of controlling this system by centrally managing information on the battery 1, the electric vehicle 2, and the battery station 3.
  • the management server 4 may execute these functions by one server device, or may execute these functions by a plurality of server devices.
  • the control unit 40 of the management server 4 reads out the program stored in the main memory and performs predetermined arithmetic processing according to the read program.
  • the control unit 40 of the management server 4 is connected to a communication unit 41, a battery database 42, an electric vehicle database 43, and a station database 44.
  • the control unit 40 records information received from each of the plurality of electric vehicles 2 and the plurality of battery stations 3 via the communication unit 41 in various databases 42, 43, and 44.
  • the control unit 40 generates control signals for the electric vehicle 2 and the battery station 4 based on information recorded in the various databases 42, 43, 44, and transmits the control signals via the communication unit 41. be able to.
  • the communication unit 41 is a device for the management server 4 to perform bidirectional communication with the electric vehicle 2 and the battery station 3 via the information communication line 6. For example, the communication unit 41 transmits the control signal generated by the control unit 40 toward the electric vehicle 2 and the battery station 3. The communication unit 41 can receive various information transmitted from the electric vehicle 2 and the battery station 3.
  • the battery database 42 is storage means for recording management information for each of the plurality of batteries 1 used in the present system.
  • FIG. 4 shows an example of the data structure of the battery database 42.
  • the battery station 42 stores various management information in association with each other using the identification number (ID) of the battery 1 as key information.
  • the management information of the battery 1 includes information on the current location of the battery, the number of times of charging, the remaining battery level, the full charge capacity, and the deterioration level. Further, by storing information on a plurality of batteries used in the past in the battery database 42, battery statistical data can be obtained.
  • the management server 4 can more accurately grasp the degree of battery deterioration from these pieces of information. .
  • the degree of deterioration of the battery can be predicted more accurately by comparing with the past statistical data of a large number of the same type of batteries in addition to the number of times the battery is charged and the full charge capacity.
  • the identification number (ID) of the electric vehicle 2 in which the battery is stored and the identification number (ID) of the battery station 3 are recorded. Further, when the electric vehicle 2 or the battery station 3 can store a plurality of batteries, the information on the current location of the battery is stored in any of the plurality of storage locations of the vehicle 2 or the battery station 3. Is preferably information indicating whether or not is stored. In the example shown in FIG. 4, the identification number with the initial “V” is the identification number of the electric vehicle, and the identification number with the initial “S” is the identification number of the battery station. Number.
  • information on the number of times the battery has been charged information on the number of times the battery has been stored in the battery station 3 may be recorded, the number of times the battery has been fully charged, or It is good also as recording the frequency
  • the method for obtaining the number of times the battery is charged is not limited to the above-described method, and other known methods can be employed.
  • information on the number of times the battery is charged is recorded separately for the charging speed, such as the number of times of fast charging, the number of times of normal charging, and the number of times of performing slow charging. It is preferable. By counting the number of times of charging for each charging speed, it is possible to improve the accuracy of calculating the degree of deterioration of the battery.
  • the battery charging information including the battery identification number and the remaining battery level
  • the rated full charge capacity and the full charge capacity of the battery are recorded.
  • the rated full charge capacity is shown in parentheses.
  • the full charge capacity may be measured and calculated by the BMS 10.
  • the rated full charge capacity (when present) and the full charge capacity corrected by the control unit 40 in consideration of the deterioration of the battery are preferably recorded in the battery database 42. Normally, the more the number of times the battery is used, the smaller the full charge capacity value. At this time, the full charge capacity is preferably a value obtained by correcting the rated full charge capacity based on the number of fast charges, the number of normal charges, and the number of slow charges. Furthermore, there are cases where high-speed charging deteriorates the battery more than normal charging, and normal charging deteriorates the battery more than low-speed charging.
  • the full charge capacity by changing the weighting of the degree of influence on the deterioration of the battery according to the fast charge, the normal charge, and the low speed charge.
  • the number of fast charge, normal charge, and slow charge of each battery is recorded in the battery database 42, and the full charge capacity is more accurately determined by comparing the record of the number of charges with the past statistical data. Can be guessed.
  • the calculation for obtaining the full charge capacity described above is performed by the control unit 40 based on information on the number of times of charging recorded in the battery database 42 and information on the rated full charge capacity.
  • the method for obtaining the full charge capacity of the battery is not limited to the method described above, and other known methods can be adopted.
  • the information on the degree of deterioration of the battery is calculated by the control unit 40 based on the information recorded in the battery database 42.
  • the degree of deterioration may be ranked in five stages from A (new) to E (old). For example, it means that the battery needs to be discarded when the degree of deterioration reaches E rank.
  • the control unit 40 can compare the full charge capacities and obtain the degree of deterioration from the rated full charge capacity to the actual full charge capacity as the degree of deterioration.
  • the full charge capacity actually measured and calculated from the battery alone by the BMS 10 or the like may vary depending on the external environment and usage load, and accuracy may be low.
  • the degree of deterioration corrected based on the number of fast charges, the number of normal charges, and the number of slow charges.
  • the number of high-speed charging, normal charging, and low-speed charging of each battery is recorded in the battery database 42, and the degree of deterioration can be estimated more accurately by comparing the number of times of charging with the past statistical data. can do.
  • the method for obtaining the degree of deterioration of the battery is not limited to the method described above, and other known methods can be employed.
  • the battery database 42 uses the identification number (ID) as key information for each of the plurality of batteries 1, regarding the current location of the battery, the number of times of charging, the remaining battery level, the full charge capacity, and the degree of deterioration. Information is preferably recorded in association with each other.
  • ID identification number
  • an identification number (ID) for each of the plurality of electric vehicles 2 included in this system, an identification number (ID), personal information of the user (name, address, contact information, etc.), vehicle type, battery usage history
  • the transmission history of the battery replacement request is preferably recorded in association with each other.
  • Information on the type of vehicle includes information on the type, weight, fuel consumption, and model of the electric vehicle 2.
  • the battery usage history includes the identification number (ID) of the battery used in the electric vehicle 2, the identification number (ID) of the battery station that obtained the battery, and the like.
  • the transmission history of the battery replacement request includes information such as the number of times the replacement request is transmitted, the location, and the time.
  • an identification number (ID), a location, a battery usage history, a battery charging history, and the like are recorded in association with each other for each of the plurality of battery stations 3 included in the present system.
  • the battery usage history includes information such as the number of times the battery 1 is removed from the battery station 3, date, date, weather, and identification number of the removed battery 3.
  • the battery charging history includes information such as the identification number of the battery that has been charged at the battery station.
  • the control unit 40 of the management server 4 preferably includes a station selection unit 40a, an arrival time prediction unit 40b, a charge rate determination unit 40c, and a deterioration degree calculation unit 40d.
  • These means 40a, 40b, 40c, 40d, and the control unit 40 are functional blocks that function by reading a program stored in the main memory and executing the read program. These means 40a, 40b, 40c, and 40d will be described in detail according to the processing flow of the system described below.
  • FIG. 5 shows a flow when the battery 1 is newly loaded into the battery station 3. That is, the flow shown in FIG. 5 shows a preparation stage process in which the battery 1 is charged by the battery station 3.
  • step S1-1 first, one or a plurality of batteries 1 are newly loaded into the battery station 3 (step S1-1).
  • the battery 1 loaded in the battery station 3 may be new or used.
  • the battery station 3 uses the detector 32 to extract battery charge information including the identification number and the remaining battery level from the battery 1 (step S1-2).
  • the battery station 3 transmits battery charging information including the identification number extracted by the detector 32 and the remaining battery level to the management server 4 (step S1-3). Further, the battery station 3 starts charging the newly loaded battery 1 (step S1-4). At this time, the battery station 3 performs normal charging or low-speed charging so that the deterioration of the battery 1 does not proceed even when the remaining amount of the battery 1 is low. That is, at this stage, since the battery station 3 has not received a battery replacement request from the electric vehicle 2, it is not necessary to charge the battery 1 at high speed. Rather, if the battery 1 is charged at a high speed in a stage where the battery replacement request from the electric vehicle 2 is not received, the battery 1 is unnecessarily deteriorated.
  • the management server 4 receives the battery charging information including the identification number and the remaining battery level transmitted by the battery station 3 (step S1-5). Thereafter, the control unit 40 of the management server 4 updates the battery database 42 based on the received battery charging information (step S1-6).
  • the battery database 42 is preferably updated by updating the remaining location of the battery 1, updating the number of times of charging, updating the remaining battery level, updating the full charge capacity, and updating the degree of deterioration. As described above, it is preferable that the update of the full charge capacity and the deterioration degree is performed by correcting based on the number of times of charging the battery stored in the battery database 42.
  • the control unit 40 of the management server 4 may update the charging history recorded in the station database 44 based on the battery charging information received from the battery station 3.
  • FIG. 6 shows a flow when a battery replacement request is made from the electric vehicle 2.
  • the control device 20 of the electric vehicle 2 generates a request for replacing the battery 1 mounted on the own vehicle (step S2-1).
  • the replacement request for the battery 1 may be automatically generated by the control device 20 when the remaining battery level of the battery 1 becomes a predetermined value or less. Further, the battery 1 replacement request may be generated manually by the control device 20 when the user of the electric vehicle 1 performs a predetermined input operation via the interface 25.
  • the BMS 10 of the battery 1 measures and calculates the remaining battery capacity of each battery 1 mounted on the host vehicle (step S2-2).
  • the battery charge information including the remaining battery level of each battery 1 measured and calculated by the BMS 10 is transmitted to the remaining capacity meter 21 of the electric vehicle 2.
  • the remaining capacity meter 21 acquires battery charging information including an identification number and a remaining battery level
  • the remaining capacity meter 21 sends the information to the control device 20.
  • acquisition of the identification number of each battery 1, a battery remaining amount, etc. may be directly performed by the remaining capacity meter 21.
  • the position information acquisition device (GPS) 22 of the electric vehicle 2 detects the current position of the own vehicle (step S2-3). Information on the current position of the electric vehicle 2 detected by the position information acquisition device (GPS) 22 is sent to the control device 20.
  • control device 20 When the control device 20 receives the battery charging information including the identification number of the battery 1 and the remaining battery level, and information on the current position of the host vehicle, the control device 20 transmits the information to the management server 4 together with the battery replacement request. (Step S2-5).
  • the management server 4 includes a battery replacement request transmitted from the electric vehicle 2, battery charging information including the identification number of the battery 1 mounted on the electric vehicle 2 and the remaining battery level, and information on the current position of the electric vehicle 2, Receive (step S2-6).
  • the control unit 40 of the management server 4 may temporarily store these pieces of information received from the electric vehicle 2 in a memory. Further, the control unit of the management server 40 may record the battery replacement request received from the electric vehicle 2 in the electric vehicle database 43.
  • the station selection means 40a of the control unit 40 moves the electric vehicle 2 based on the battery charging information and the current position information including the battery identification number and the battery remaining amount received from the electric vehicle 2 for which the battery replacement request is made.
  • the possible distance (reachable range) is determined (step S2-6).
  • the distance that the electric vehicle 2 can move with a certain amount of battery remaining varies depending on the type of electric vehicle. Therefore, the station selection means 40a refers to, for example, the model of the electric vehicle 2 and determines how far the battery can travel with the remaining battery level. Further, the station selecting means 40a may consider the weather, time zone, road congestion, etc. in determining the reachable range of the electric vehicle 2.
  • the station selection means 40a of the control unit 40 selects one or a plurality of battery stations 3 included in the reachable range of the electric vehicle 2 as “candidate stations” (step S2-7).
  • the station selection unit 40a may select all the battery stations 3 included in the reachable range of the electric vehicle 2 as candidate stations.
  • the station selection means 40a may select only the battery station 3 nearest to the electric vehicle 2.
  • the station selecting means 40a extracts a plurality of battery stations 3 included in the reachable range of the electric vehicle 2, and then transmits the locations of the plurality of battery stations 3 to the electric vehicle 2 so that the user of the electric vehicle 2 Alternatively, one battery station 3 may be selected from the plurality of battery stations 3, and the process of selecting one battery station 3 selected by the user as a candidate station may be performed. Moreover, the station selection means 40a is good also as selecting the arbitrary battery stations 3 selected by the operator of this system as a candidate station among the some battery stations 3 included in the reachable range of the electric vehicle 2. .
  • the control unit 40 of the management server 4 When a candidate station is selected, the control unit 40 of the management server 4 notifies the selected battery station 3 of that fact (step S2-8). That is, the control unit 40 of the management server 4 notifies the candidate station that there is a possibility that the electric vehicle 2 may stop for battery replacement.
  • the battery station 3 selected as the candidate station receives the notification from the management server 4 (step S2-9).
  • the battery station 3 (candidate station) that has been notified of the possibility of the electric vehicle 2 dropping in, extracts battery charging information by the detector 32 for a plurality of batteries 1 that are being charged when receiving the notification. .
  • the battery charging information extracted here includes the identification number (ID) of the battery 1 and the remaining battery level. Then, the battery station 3 selected as the candidate station transmits the battery charging information extracted by the detector 32 to the management server 4 (step S2-11).
  • the management server 4 receives the battery charging information transmitted by the battery station 3 (step S2-12). Thereafter, the deterioration degree calculation means 40d of the management server 4 obtains the deterioration degree of each battery based on the battery charging information received from the battery station 3 and information on the number of times of charging of the battery recorded in the battery database 42 ( Step S2-13). Thereafter, the control unit 40 of the management server 4 updates the battery database 42 to the latest state based on the received battery charging information (step S2-14). As the update operation of the battery database 42 here, it is preferable to update the number of times the battery 1 is charged, update the remaining battery level, update the full charge capacity, and update the degree of deterioration.
  • the update of the full charge capacity is performed by correcting based on the number of times of charging the battery stored in the battery database 42.
  • the update of the information regarding the degree of deterioration of the battery is based on the degree of deterioration obtained by the deterioration degree calculating means 40d.
  • the arrival time predicting means 40b of the control unit 40 provided in the management server 4 has the candidate station selected by the station selecting means 40a, and then the electric vehicle 2 that has requested battery replacement arrives at the candidate station. Is predicted (step S2-15).
  • the traveling speed (for example, legal speed) of the electric vehicle 2 varies depending on the type of the electric vehicle. Therefore, the arrival time predicting means 40b refers to, for example, the model of the electric vehicle 2, and predicts the time until the electric vehicle 2 arrives at the candidate station from the position where the battery replacement request is transmitted.
  • the arrival time predicting means 40b may take into consideration the weather, time zone, road congestion, and the like when predicting the time when the electric vehicle 2 arrives at the candidate station.
  • the charging speed determination unit of the management server 4 40c determines the speed at which the battery 1 is charged in the candidate station based on these pieces of information (step S2-16).
  • the charging speed determination unit 40 determines the charging speed of the battery 1 at the candidate station based on the estimated arrival time of the electric vehicle 2 and information recorded in the battery database 42 in consideration of various factors. The charging speed determination process will be described in detail later with reference to FIGS.
  • the charging speed determined by the charging speed determination unit 40 is converted into a control signal by the control unit 40 and transmitted to the battery station 3 selected as a candidate station (step S2-17).
  • the battery station 3 selected as the candidate station receives the control signal regarding the charging speed transmitted by the management server 4 (step S2-18). Then, the controller 30 of the battery station 3 controls the charging speed of the charger 31 according to the control signal regarding the charging speed received from the management server 4 (step S2-19).
  • the management server 4 notifies the electric vehicle 2 of the position of the candidate station at the stage of selecting the candidate station (step S-17) and guides the electric vehicle 2 to the candidate station. It is good also as performing control. Thereby, the electric vehicle 2 can be smoothly guided to the battery station 3 selected as the candidate station. Further, by guiding the electric vehicle, the user of the electric vehicle 2 can move the electric vehicle 2 to the battery station 3 without worrying about running out of the battery.
  • the battery delivered from the battery station 3 (candidate station) to the electric vehicle 2 does not always need to be fully charged.
  • the driver of the electric vehicle 2 designates a destination that cannot be reached with only one battery (that is, the battery needs to be replaced on the way).
  • a battery replacement advance reservation may be made to a plurality of battery stations 3 existing in the destination route of the electric vehicle 2.
  • the management server 4 can predict the arrival time of the electric vehicle 2 and control the charging speed of the battery for a plurality of battery stations 3 existing on the route of the electric vehicle 2.
  • the battery station 3 where the electric vehicle 2 stops in the middle of the route does not always need to fully charge the battery to be exchanged, and the battery to be exchanged is so far that the electric vehicle 2 can reach the next battery station 3. Charge it.
  • the charging speed of the battery by the battery station 3 can be controlled based on various factors.
  • FIG. 7A shows an example in which the charging speed of the battery is controlled based on the expected time when the electric vehicle 2 arrives at the battery station 3 and the remaining battery level of the battery charged in the battery station 3. Yes.
  • the estimated arrival time may be estimated in consideration of the speed and position of the electric vehicle 2 until the electric vehicle 2 arrives at the candidate station from the position where the battery replacement request is transmitted.
  • the estimated arrival time can be obtained in consideration of the weather, time zone, road congestion, and the like. For example, as shown in FIG. 7A, when the estimated arrival time of the electric vehicle 2 is 30 minutes or more and the remaining battery level of the battery charged in the battery station 3 is 90 Ah or more, the battery is , "Slow charging" is enough.
  • the battery can be fully charged before the electric vehicle 1 arrives.
  • the battery can be fully charged before the electric vehicle 1 arrives.
  • the battery is “fast charged”.
  • the battery can be fully charged before the electric vehicle 1 arrives.
  • the battery is “normally charged”. I am going to do that. The reason for performing such processing is that even if the battery is charged at high speed, it is not in time for the electric vehicle 2 to arrive, so priority is given to prevent the battery from being deteriorated by charging normally.
  • the electric vehicle 2 in addition to the estimated arrival time of the electric vehicle 2 and the remaining battery level of the battery charged in the battery station 3, the electric vehicle 2 can travel after reaching the battery station 3 (candidate station).
  • the charging speed of the battery is controlled in consideration of a simple distance.
  • the distance traveled after the electric vehicle 2 arrives at the candidate station is an index indicating the urgency of battery replacement. That is, if the electric vehicle 2 can travel only a short distance after arriving at the candidate station, it can be said that the urgency to replace the battery of the electric vehicle 2 is high. On the other hand, if the electric vehicle 2 can travel a longer distance after arriving at the candidate station, it can be said that the urgency to replace the battery of the electric vehicle 2 is low.
  • the travelable range of the electric vehicle 2 can be calculated in consideration of the remaining battery level of the battery mounted on the electric vehicle 2 and the vehicle type.
  • the distance that can be traveled after the electric vehicle 2 arrives at the candidate station can be calculated by subtracting the distance from the electric vehicle 2 to the candidate station from the travelable range of the electric vehicle 2. For example, as shown in FIG. 7B, when it is assumed that the remaining amount of the battery charged in the battery station 3 is 70 Ah, the estimated arrival time of the electric vehicle 2 is within 30 minutes. In the case where the travelable distance after the electric vehicle 2 arrives at the candidate station is within 5 km, the urgency of battery replacement of the electric vehicle 2 is high. For this reason, in such a case, the battery is “fast charged”.
  • FIG. 7C shows an example in which the battery replacement timing is predicted from the past use history of the battery station 3 and the battery charging speed is controlled according to the prediction.
  • “fast charging” is performed for the time zone, weather, and day of the week when the usage frequency is high
  • “slow charging” is performed for the time zone, weather, and day of the week when the usage frequency is low.
  • the usage frequency is high when it is sunny or cloudy, and the usage frequency is low when it is raining.
  • the usage frequency is high on weekdays and the usage frequency is low on holidays and holidays.
  • the usage frequency is high during the morning and evening commuting rush hours, and the usage frequency is low at night.
  • the battery replacement timing is predicted from these past usage histories, and “fast charge”, “normal charge”, and “slow charge” of the battery are controlled. Yes.
  • FIG. 8 ranks the degree of deterioration of a plurality of batteries charged in the battery station 3, and sets the charging speed of each battery so that the degree of deterioration of each battery in the battery station 3 is leveled.
  • An example of control is shown. That is, the battery database 42 included in the management server 4 records the degree of deterioration for each of the plurality of batteries.
  • the information regarding the degree of deterioration of the battery is a value determined based on the number of times the battery is charged and information regarding the battery full charge capacity.
  • the deterioration degree of the battery 1 being charged is indicated by A to E for a plurality of battery stations 3 within a specific geographical range.
  • the degree of deterioration A to E means that “A” is the newest and “E” is the oldest.
  • the four battery stations 3 within the specific geographical area shown in FIG. 8 there are many batteries 1 that have a high degree of deterioration and are about to be replaced with new ones. 1 is also present. For this reason, it can be said that it is preferable to suppress the deterioration of the battery 1 by refraining from high-speed charging and performing normal charging or low-speed charging for the relatively old battery 1 having a high degree of deterioration.
  • a relatively new battery 1 with a low degree of deterioration is preferably subjected to high-speed charging to promote the deterioration of the battery 1 to match the deterioration degree of other old batteries 1.
  • a new battery 1 having a large difference in the degree of deterioration from the other battery 1 is charged relatively frequently so that it is always used preferentially. It is preferable to promote.
  • high-speed charging should be avoided as much as possible while preferentially using it. It is preferable to do.
  • FIG. 9 shows an example in which the charging speed is controlled so that the remaining battery levels are uniform for a plurality of batteries charged in one battery station 3. That is, such charge speed control is to fully charge any one battery 1 in the same battery station 3 when it is necessary to replace a plurality of batteries 1 for one electric vehicle 2. Instead of giving priority, priority is given to bringing the remaining battery levels of all the batteries 1 close to the same state. This is because, in an electric vehicle driven by a plurality of batteries, the performance (speed and mileage) of the entire vehicle may depend on the performance of the battery that has deteriorated most or the battery that has the least remaining battery level.
  • the commercial power supply that supplies power to the battery station 3 is mainly limited in current value (A) and current amount (Ah).
  • the current value (A) of normal power supplied from the power grid is limited for each store depending on the content of the contract with the power company.
  • FIG. 10 shows an example in which the charger 31 in one battery station 3 can use the battery 1 loaded in the other charger 31 as a power source.
  • the remaining battery levels of the plurality of batteries are made uniform. Control the charging speed.
  • FIG. 10A shows a case where each charger 31 cannot use the battery 1 loaded in another charger 31 as a power source.
  • the amount of current from the external power supply is limited to 25 Ah.
  • the remaining amounts of the batteries 1 are 95 Ah, 85 Ah, 70 Ah, and 65 Ah.
  • the time until the electric vehicle 1 arrives at the battery station 3 is one hour.
  • the remaining battery levels of the four batteries 1 are reduced one hour after the electric vehicle 2 arrives. It is difficult to make uniform.
  • the battery 1 with a remaining battery level of 70 Ah is charged with 10 Ah (10 A ⁇ 1 h), and the battery 1 with a remaining battery level of 65 Ah is charged with 15 Ah (15 A ⁇ 1 h).
  • the remaining battery levels of the four batteries 1 are 95 Ah, 85 Ah, 80 Ah, and 80 Ah, which cannot be said to be completely uniform.
  • FIG. 10B shows a case where each charger 31 can use the battery 1 loaded in another charger 31 as a power source.
  • each charger 31 can use the battery 1 loaded in the other charger 31 as a power source. For this reason, it is possible to supply power to the charging of the other battery 1 using the battery 1 charged to 95 Ah having the largest remaining battery capacity as a power source. For example, the current is made to flow backward from the battery 1 charged to 95 Ah by ⁇ 10 Ah ( ⁇ 10 A ⁇ 1 h).
  • the electric power supplied from the battery 1 with the remaining battery level 95Ah is utilized for charging the battery 1 with the remaining battery level 70Ah and the battery 1 with the remaining battery level 65Ah.
  • the battery 1 with a remaining battery level of 70 Ah can be charged with 15 Ah (15 A ⁇ 1 h)
  • the battery 1 with a remaining battery level of 65 Ah can be charged with 20 Ah (20 A ⁇ 1 h).
  • the remaining battery levels of the four batteries 1 are all 85 Ah one hour after the electric vehicle 2 arrives, and the remaining battery levels become uniform.
  • the remaining battery 1 is charged by using the battery 1 stored in one battery station 3 having a relatively large amount of remaining battery as a power source, thereby realizing uniform battery remaining of each battery 1. It becomes easy.
  • FIG. 11 shows an example in which the battery 1 is charged by making maximum use of the renewable energy obtained by the natural energy generator provided in the battery station 3.
  • the natural energy generator are a solar power generator, a solar power generator, a wind power generator, and the like.
  • the natural energy generator is a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar power generator
  • the battery station 3 is provided with a solar
  • the solar generator can charge the battery 1 in the solar sunshine time zone (a time zone in which the natural energy generator can generate power), but the solar non-sunshine time zone (natural It is difficult to charge the battery 1 in a time zone in which the energy generator cannot generate power. Furthermore, as described above, it is also required to make the remaining amount of each battery 1 as uniform as possible. Therefore, in the example shown in FIG. 11, in the non-sunshine hours of the sun, the remaining battery level of each battery 1 is obtained by using the battery 1 in the battery station 3 as a power source and charging other batteries. Are made uniform as much as possible, and when the solar sunshine hours are reached, the batteries that have the remaining amount of battery are uniformly charged all at once.
  • FIG. 11A shows an example in which the battery 1 is not charged in the non-sunshine hours of the sun.
  • the battery station 3 it is assumed that four batteries 1 are stored in the battery station 3 and the remaining amounts of the batteries 1 are 95 Ah, 85 Ah, 75 Ah, and 65 Ah.
  • the electric vehicle 2 arrives at the battery station 3 after one hour has passed since the solar sunshine time zone.
  • the remaining battery level of the battery 1 in the battery station 3 is not equalized at the time of switching from the non-sunshine time zone to the sunshine time zone, the solar sunshine time zone is reached.
  • some batteries may not be fully charged.
  • FIG. 11 (a) it is difficult to equalize the remaining battery level of each battery 1 when the electric vehicle 2 arrives even if it is charged for 1 hour after the solar sunshine hours. .
  • FIG. 11B shows that the remaining battery level of each battery 1 can be obtained by charging the other battery using the battery 1 in the battery station 3 as a power source even in the non-sunshine hours of the sun. Is to be as uniform as possible.
  • a current amount of 15 Ah is supplied from a battery 1 with a remaining battery level of 95 Ah to a battery 1 with a remaining battery level of 65 Ah to be charged.
  • a current amount of 5 Ah is supplied from the battery 1 with a remaining battery level of 85 Ah to the battery 1 with a remaining battery level of 75 Ah for charging.
  • the battery remaining amount of each battery 1 becomes all 80 Ah and is made uniform. And in the state in which the battery remaining amount of each battery 1 was equalized in this way, it switches from the non-sunshine time zone of the sun to the sunshine time zone. Thereby, charging of the battery 1 is started by the renewable energy obtained from the solar power generator. At this time, since the remaining battery level of each battery 1 is already equalized, the battery 1 is fully charged when the electric vehicle 2 arrives by charging each battery 1 with a current amount of 20 Ah. A plurality of charged batteries 1 can be prepared. As described above, when the battery station 3 includes the solar power generator, the remaining power of each battery 1 is made uniform by using the solar non-sunshine time zone. The renewable energy obtained can be used to the maximum.
  • the battery delivered from the battery station 3 (candidate station) to the electric vehicle 2 is not necessarily fully charged.
  • the driver of the electric vehicle 2 designates a destination that cannot be reached with only one battery (that is, the battery needs to be replaced on the way).
  • a battery replacement advance reservation may be made to a plurality of battery stations 3 existing in the destination route of the electric vehicle 2.
  • the management server 4 can predict the arrival time of the electric vehicle 2 and control the charging speed of the battery for a plurality of battery stations 3 existing on the route of the electric vehicle 2.
  • the battery station 3 where the electric vehicle 2 stops in the middle of the route does not always need to fully charge the battery to be exchanged, and the battery to be exchanged is so far that the electric vehicle 2 can reach the next battery station 3. Charge it.
  • the charging speed of the battery by the battery station 3 can be controlled based on various factors.
  • the present invention relates to a battery exchange system for an electric vehicle. Therefore, the present invention can contribute to the realization of a society using clean energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Navigation (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【解決課題】バッテリの劣化度及び電池残量を適切に制御する。 【解決手段】本発明のシステムは,交換可能なバッテリを搭載した電動車両と,バッテリを充電可能のバッテリステーションと,システム全体を統括する管理サーバを備える。管理サーバは,電動車両からバッテリの交換要求を受信したときに,少なくとも電動車両の位置情報に基づいて,当該電動車両がバッテリステーションに到着する時間を予測する。そして,管理サーバは,少なくともバッテリステーションに電動車両が到着する予想時間に基づいて,当該バッテリステーションの充電器に装填されているバッテリの充電速度を決定する。

Description

電動車両用バッテリ交換システム及びプログラム
 本発明は,電動自動車や電動スクーターのような電動車両のバッテリを交換するためのシステムに関する。具体的に説明すると,本発明のシステムは,交換可能なバッテリにより駆動する電動車両と,バッテリを充電するバッテリステーションと,バッテリステーションにおける充電状況を管理するための管理サーバと,を備える。本発明のシステムでは,管理サーバが,電動車両の位置や電池残量等を含むバッテリ充電情報に応じて,バッテリステーションにおけるバッテリの充電速度を制御することで,電動車両がバッテリステーションの到着した際に,スムーズにバッテリ交換を行うことができる点を特徴の一つとしている。
 従来から,交換可能なバッテリを搭載した電動車両が知られている。電動車両は,コントローラーを介してバッテリから供給された電力によりモータを駆動させることで走行する。このような電動車両としては,代表的なものとして,電動自動車や,電動スクーター,電動アシスト自転車を挙げることができる。
 上記のような電動車両は,バッテリの性能やコストの問題から,現状では,一度の充電やバッテリ交換で走行できる距離が,一般的な液体燃料自動車(ガソリン車,ディーゼル車,及び,液化天然ガス車など)に比べて短いとされている。このため,現在では,電動車両のバッテリの充電や交換をこまめに行うことができるように,バッテリを充電するためのバッテリステーションの数を増やすインフラ整備が進められている。このため,電動車両のユーザは,自車のバッテリの電池残量が少なくなってきたときに,近くのバッテリステーションに立ち寄り,自車のバッテリとバッテリステーションで充電されたバッテリを交換することで,連続的に電動車両を走行させることができるようになっている。
 しかし,一般的なバッテリステーションは,バッテリへの充電電流値にもよるが,電動車両用のバッテリを完全に充電するために,数十分から数時間程度の充電時間を必要とする。このため,電動車両が最寄りのバッテリステーションに到着しても,バッテリの充電が完了していなければ,バッテリステーションの前でその充電が完了するのを待つ必要があった。このように,従来のシステムでは,電動車両がバッテリステーションに到着してもすぐにバッテリ交換を行うことができないという事態も想定される。このことは,電動車両やバッテリステーションを含むシステムの普及を阻害する要因の一つとなっていた。
 ここで,上記のようなバッテリの充電の遅延を回避するために,バッテリステーションにおいて,バッテリの高速充電を行うことが知られている。例えば,特許文献1には,バッテリステーションにバッテリを保管する際に,そのバッテリの電池残量を検出し,電池残量が所定値以下である場合には,そのバッテリを高速充電する技術が開示されている。このように,バッテリの電池残量が所定値以下である場合に高速充電を行うようにすることで,電動車両がバッテリステーションに到着した際に,必要なバッテリの充電が完了していないという事態が起こる可能性を低減できると考えられる。
特開2001-57711号公報
 しかしながら,バッテリを高速充電すると,バッテリの劣化が進行するというデメリットがある。すなわち,バッテリは,主に安全性と耐久性の面から,充電速度と充電電流値に上限が設けられている。ここで,充電速度と充電電流値の上限により近い充電は高速充電と呼ばれ,充電速度と充電電流値の下限により近い充電は低速充電と呼ばれる。そして,高速充電は,通常速度での充電(普通充電)及び低速充電と比較して,バッテリの劣化度が大きくなることが知られている。また,一般的に,普通充電を継続して行い続けた場合と,普通充電や,低速充電,高速充電を適宜切り替えてバッテリの充電を行う場合とでは,後者の方が,バッテリ劣化度が大きくなることが知られている。このため,特許文献1に開示された技術のように,バッテリの電池残量が所定値以下であるときに,必ず高速充電を行うこととすると,不必要な場合にもバッテリの高速充電を行うこととなり,意味なくバッテリの劣化が進行してしまうという不具合があった。例えば,特許文献1の技術は,バッテリステーションの近くにバッテリ交換の必要な電動車両が存在しない場合であっても,そのバッテリステーションに保管されているバッテリの電池残量が所定値以下であるときには,必ず高速充電を行うこととなる。しかし,バッテリステーションの近くにバッテリ交換の必要な電動車両が存在しない場合には,バッテリの高速充電を行なってバッテリの劣化を進行させてしまうよりも,普通充電又は低速充電を行なってバッテリの劣化を抑えることが好ましいといえる。
 また,電動車両は,一つのバッテリによって駆動するものだけでなく,複数のバッテリを搭載することによって駆動するものも存在している。また,一般的にバッテリステーションには,複数のバッテリが保管され充電が行われている。このため,一度のバッテリ交換で,電動車両に搭載された複数個のバッテリを,バッテリステーションにおいて保管されている複数個のバッテリと交換することも想定される。ところが,複数個のバッテリによって駆動する電動車両は,その車両全体の性能(速度や走行距離)が,最も劣化したバッテリ,又は最も電池残量の少ないバッテリの性能に依存する場合がある。従って,バッテリ交換の際に,バッテリステーションから電動車両へと受け渡される複数個のバッテリの中に,電池残量の少ないバッテリや劣化度の大きいバッテリがあると,電動車両は十分に性能を発揮できないという問題があった。すなわち,バッテリステーションから電動車両に受け渡されるバッテリが4個である場合に,そのうち3個が新品のバッテリであっても,そのうち1個が劣化度の大きい古いバッテリである場合,これら4個のバッテリを搭載した電動車両の性能は,最も劣化度の大きい1個のバッテリの性能に依存する場合がある。このように,電動車両に搭載される4個のバッテリのうち,3個のバッテリが新品のものであっても,そのうちの1個に古いバッテリが存在している場合,3個の新品のバッテリの性能を十分に引き出すことができなかった。このため,バッテリステーションに保管されている複数のバッテリは,なるべく,その劣化度が平準化されたものであることが好ましいといえる。
 また,バッテリステーションに保管されているバッテリの劣化度が大きくなった際に,システムの管理者は,バッテリステーションに足を運び,劣化度の大きくなったバッテリを廃棄し,新しいバッテリに入れ替える作業が必要となる。このとき,例えば,バッテリステーションに保管されている複数のバッテリのうち,劣化度の大きくなったバッテリが現れたときに,その都度,管理者がバッテリステーションに赴いてバッテリの入替え作業を行うのは手間であり,効率的ではない。このため,一度に,複数個のバッテリの入替え作業を行うことができるようにして,効率化を図ることが求められる。このような観点からも,バッテリステーションに保管されている複数のバッテリは,なるべく,その劣化度が平準化されたものであることが好ましいといえる。
 さらに,上述のように,複数個のバッテリによって駆動する電動車両は,その車両全体の性能(速度や走行距離)が,最も電池残量の少ないバッテリの性能に依存する場合がある。従って,バッテリステーションに保管されている複数個のバッテリは,電動車両が到着した際には,なるべく電池残量が等しい状態となっていることが好ましい。例えば,電動車両が4個のバッテリの交換を要求している場合に,電池残量が100Ahのバッテリを3個と60Ahのバッテリを1個用意するよりも,電池残量が80Ahのバッテリを4個用意する方が,電動車両の性能をより効率よく引き出すやすいとされる。
 上記のような観点から,バッテリステーションによる充電は,高速充電を行うとバッテリの劣化が進行するというリスクを考慮しつつ,複数個のバッテリの劣化度と電池残量をなるべく平準化させるように行うことが望ましいといえる。しかしながら,従来のバッテリ充電システムは,バッテリが劣化するというリスクを無視して高速充電が行われており,また,複数個のバッテリの劣化度及び電池残量を平準化するための仕組みを有していないものであった。
 このため,現在では,バッテリステーションにおける充電速度をコントロールすることで,バッテリの劣化度及び電池残量を適切に制御することのできる技術が求められている。
 そこで,本発明の発明者は,上記の従来発明の問題点を解決する手段について鋭意検討した結果,基本的には,電動車両がバッテリステーションに到着するまでの時間を予測し,予測した到着時間に基づいて,バッテリステーションに保管されている各バッテリの充電速度を制御することにより,バッテリが無駄に劣化することを防止できると共に,バッテリの劣化度及び電池残量を適切に制御することができるという知見を得た。そして,本発明者は,上記知見に基づけば,従来技術の課題を解決できることに想到し,本発明を完成させた。
 具体的に説明すると,本発明は以下の構成を有する。
 本発明の第1の側面は,電動車両用バッテリ交換システムに関する。
 本発明のシステムは,複数の電動車両2と,複数のバッテリステーション3と,管理サーバ4とを,備える。
 複数の電動車両2は,車両に搭載された一又は複数の交換可能なバッテリ1によってモータを駆動することにより走行することができる。電動車両2の例は,電動自動車,電動スクーター,及び電動アシスト自転車である。バッテリステーション3は,バッテリ1を充電可能な機構を備える。管理サーバ4は,電動車両2及びバッテリステーション3に通信網を介して相互に接続されたサーバ装置である。
 本発明のシステムにおいて,バッテリ1は,バッテリの電池残量及び充電回数等を計測及び算出し,識別番号(ID)を含むそれらバッテリ充電情報を外部へ通信する機能をもつBMS(Battery Management System)10を有することとしてもよい。
 また,本発明のシステムにおいて,電動車両2は,制御装置20と,位置情報取得装置(GPS)22と,通信装置23と,を有する。
 制御装置20は,位置情報取得装置(GPS)22,通信装置23にそれぞれ接続されている。これにより,制御装置20は,残容量計21により取得されたバッテリ1の電池残量等を含むバッテリ情報,位置情報取得装置(GPS)22により取得された自車の現在の位置情報等を適宜得ることができる。また,制御装置20は,各種機器から得られた情報の演算処理を行い,通信装置23を介して,管理サーバに送信できる。制御装置20は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備える情報演算処理装置を利用したものであってもよい。
 位置情報取得装置(GPS)22は,電動車両2の現在の位置情報を取得する。位置情報取得装置(GPS)22は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備えるGPSを利用したものであってもよい。
 通信装置23は,バッテリ充電情報と位置情報と共に,バッテリの交換要求を管理サーバ4へと送信することができる。通信装置23は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備える通信装置を利用したものであってもよい。
 本発明のシステムにおいて,バッテリステーション3は,充電速度を調節して,装填されたバッテリの充電を行うことができる一又は複数の充電器31を有している。
 さらに,本発明のシステムにおいて,管理サーバ4は,制御部40と通信部41を有する。
 管理サーバ4の制御部40は,到着時間予測手段40b,及び充電速度決定手段40cを有している。
 到着時間予測手段40bは,電動車両2からバッテリの交換要求を受信したときに,少なくとも電動車両2の位置情報に基づいて,当該電動車両2がバッテリステーション3に到着する時間を予測する。充電速度決定手段40cは,少なくともバッテリステーション3に電動車両2が到着する予想時間に基づいて,当該バッテリステーション3の充電器31に装填されているバッテリの充電速度を決定する。
 そして,管理サーバ4の通信部41は,充電速度決定手段40cにより決定されたバッテリの充電速度に関する情報を,バッテリステーション3へと送信する。
 これにより,バッテリステーション3は,管理サーバ4から受信した充電速度に関する情報に基づいて,充電器31に装填されているバッテリの充電速度を制御する。
 上記構成のように,電動車両2がバッテリステーション3に到着する予想時間に基づいて,バッテリステーション3によるバッテリ1の充電速度を制御することにより,適切なタイミングで高速充電を行うことが可能になるため,バッテリを無駄に劣化させることを防止できる。例えば,管理サーバ4は,バッテリの交換要求がなされた電動車両2と,バッテリステーション3の距離が近ければ,バッテリステーション3に対して高速充電を行うように指令を送信し,電動車両2の到着時刻までに充電済みのバッテリを用意するようにすればよい。反対に,管理サーバ4は,電動車両2とバッテリステーション3の距離が離れている場合には,バッテリステーション3には通常速度での充電を行うように指令を送信することで,バッテリの劣化を抑えることができる。
 本発明のシステムにおいて,電動車両2は,残容量経21をさらに含むことが好ましい。残容量計21は,自己の車両に搭載された一又は複数のバッテリの電池残量を含むバッテリ充電情報を取得する。
 この場合,通信装置23は,位置情報とバッテリ充電情報と共に,バッテリの交換要求を前記管理サーバへと送信する。
 残容量計21は,電動車両2に搭載された一又は複数のバッテリ1の識別番号及び電池残量等を含むバッテリ充電情報を取得する。残容量計21は,バッテリ1が備えるBMS10からバッテリ充電情報を取得することとしてもよいし,バッテリ1が接続されたときにバッテリ1の識別番号及び電池残量等を直接検出及び測定することとしてもよい。また残容量計21は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備える情報受信表示装置を利用したものであってもよい。
 また,管理サーバ4の制御部40は,ステーション選定手段40aをさらに含むことが好ましい。ステーション選定手段40aは,電動車両2からバッテリの交換要求を受信したときに,当該電動車両2に搭載されているバッテリのバッテリ充電情報と当該電動車両2の位置情報とに基づいて,当該電動車両2が到達可能な一又は複数のバッテリステーション3を,候補ステーションとして選定する。
 この場合,到着時間予測手段40bは,少なくとも電動車両2の位置情報に基づいて,当該電動車両2が候補ステーションに到着する時間を予測する。
 充電速度決定手段40cは,少なくとも候補ステーションに電動車両2が到着する予想時間に基づいて,当該候補ステーションの充電器31に装填されているバッテリの充電速度を決定する。
 通信部41は,充電速度決定手段40cにより決定されたバッテリの充電速度に関する情報を,候補ステーションとして選定されたバッテリステーション3へと送信する。
 上記構成のように,電動車両2が到達可能な位置に存在するバッテリステーション3を,候補ステーションとして選定することにより,効率的にバッテリの充電速度を制御することができる。
 本発明のシステムにおいて,バッテリステーション3は,検出機32と通信機33を,さらに有することが好ましい。
 検出機32は,充電器31に装填されているバッテリの識別番号及び電池残量等を含むバッテリ充電情報を取得する。検出機32は,バッテリ1が備えるBMS10からバッテリ充電情報を取得することとしてもよいし,バッテリ1が接続されたときにバッテリ1の識別番号及び電池残量等を直接検出及び測定することとしてもよい。
 また,通信機33は,検出機32により検出されたバッテリ充電情報を管理サーバ4へと送信することができる。
 この場合に,管理サーバ4の充電速度決定手段40cは,バッテリステーション3から受信したバッテリ充電情報と,バッテリステーション3に電動車両2が到着する予想時間とに基づいて,当該バッテリステーション3の充電器31に装填されているバッテリの充電速度を決定することが好ましい。
 上記構成のように,例えば,電動車両2によってバッテリ交換要求がなされたことを管理サーバ4から報知されたときに,バッテリステーション3の検出機32がバッテリ充電情報を抽出し,このバッテリ充電情報と電動車両の到着予想時間に基づいて,バッテリの充電速度を決定することで,バッテリの高速充電が必要か否かをより適切に判断できる。
 本発明のシステムにおいて,バッテリステーション3の検出機32は,充電器31に装填されているバッテリの識別番号(ID)を検出するものであることが好ましい。検出機32は,バッテリ1が備えるBMS10から認識番号(ID)を取得することとしてもよいし,バッテリ1が接続されたときにバッテリ1の認識番号(ID)を直接検出することとしてもよい。
 この場合に,管理サーバ4は,バッテリステーション3からバッテリ1の識別情報を受信した回数に基づいて,バッテリ毎にその充電回数を記録したバッテリデータベース42を,さらに有していることが好ましい。
 そして,管理サーバ4の充電速度決定手段40cは,バッテリデータベース42に記録されているバッテリの充電回数に関する情報と,バッテリステーション3に電動車両2が到着する予想時間とに基づいて,当該バッテリステーション3の充電器31に装填されているバッテリの充電速度を決定することが好ましい。
 また,管理サーバ4は,バッテリデータベース42に,各バッテリの識別番号に関連付けて各バッテリの劣化度を記憶していてもよい。
 この場合,管理サーバ4の充電速度決定手段40cは,電動車両2からバッテリの交換要求を受信したときに,少なくとも一つのバッテリステーション3から受信したバッテリの識別番号を参照して,バッテリデータベース42から,当該バッテリの識別番号に関連付けられているバッテリの劣化度を読み出し,読み出したバッテリの劣化度に基づいて,当該バッテリステーションの充電器31に装填されているバッテリの充電速度を決定する。
 上記構成のように,本発明の好ましい形態では,各バッテリの充電回数及び/又は満充電容量と,過去の同種バッテリ多数の統計データをバッテリデータベース42に記録しておくことで,管理サーバ4は,これらの情報から,バッテリの劣化度を把握することができる。そして,バッテリの劣化度に基づいて,バッテリの充電速度を決定することで,バッテリの劣化度や満充電容量を適切に制御できる。また,バッテリの劣化度は,バッテリ単体の充電回数及び/又は満充電容量以外に,過去の同種のバッテリの多数の統計データと比較することで,より正確な予測が可能になる。
 本発明のシステムにおいて,バッテリステーション3は,充電器31を複数有するか,若しくは各バッテリごとに充電制御が可能なものであることが好ましい。
 この場合に,管理サーバ4の制御部40は,バッテリデータベース42に記録されているバッテリの充電回数と満充電容量に関する情報に基づいて,各バッテリの劣化度を求める劣化度算出手段40dを,有することが好ましい。
 さらに,管理サーバ4の充電速度決定手段40cは,一つのバッテリステーション3内の一又は複数の充電器31に装填された複数のバッテリ1について,劣化度算出手段40dによって求められた劣化度が比較的小さく新しいバッテリの充電速度を比較的高速にし,当該劣化度が比較的大きく古いバッテリの充電速度を比較的低速に決定することが好ましい。なお,バッテリステーション3の形態として,一つの充電器31に複数のバッテリ1が装填される形態も想定される。
 上記構成のように,本発明の好ましい形態では,一つのバッテリステーション3内のバッテリのうち,劣化度の小さい新しいバッテリについては,積極的に高速充電を行うことで,あえてバッテリを劣化させる。他方,劣化度の大きいバッテリについては,高速充電を控え,バッテリが劣化することを避ける。このように,バッテリの劣化度に基づいて充電速度を制御することで,一つのバッテリステーション3内に保管されている複数のバッテリの劣化度を平準化させることができる。これにより,電動車両2が複数のバッテリを交換することを求めている場合に,バッテリステーション3から,劣化度が比較的平準化された複数のバッテリを電動車両2に渡すことができる。すなわち,複数個のバッテリによって駆動する電動車両2は,その車両全体の性能(速度や走行距離)が,最も劣化度の大きいバッテリの性能に依存する場合がある。このため,電動車両2が,劣化度が平準化された複数のバッテリを搭載することで,より効率的に車両の性能が発揮されるようになる。さらに,バッテリステーション3内の各バッテリの劣化度が平準化されることで,ほぼ同時期に,各バッテリが廃棄時期(入れ替え時期)を迎えることと想定される。このように,複数個のバッテリの入替え作業を同時に行うことができるようにすることで,入れ替え作業の効率化を図ることができる。
 本発明のシステムにおいて,管理サーバ4の充電速度決定手段40cは,一つのバッテリステーション3内の一又は複数の充電器31に装填された複数のバッテリ1について,電動車両2がバッテリステーション3に到着するまでの間に,複数のバッテリの電池残量が等しい値に近づくように,各バッテリの充電速度を決定することが好ましい。
 上記構成のように,例えば,一つのバッテリステーション3内の複数のバッテリについて,それぞれの電池残量を比較し,電池残量が多いものについては低速充電を行い,電池残量が多いものについては高速充電を行うようにすることで,複数のバッテリの電池残量を均一にすることができる。これにより,バッテリステーション3から電動車両2に複数のバッテリを受け渡す際に,バッテリの電池残量の均一化を図ることが可能となる。
 本発明のシステムにおいて,バッテリステーション3に含まれる複数の充電器31のそれぞれは,他の充電器31に装填されたバッテリを電源として,自己に装填されたバッテリの充電を行うことができるものであることが好ましい。
 この場合に,管理サーバ4の充電速度決定手段40cは,一つのバッテリステーション3内の一又は複数の充電器31に装填された複数のバッテリ1について,電動車両2がバッテリステーション3に到着するまでの間に,複数のバッテリの電池残量が等しい値に近づくように,少なくとも一つのバッテリを電源として利用することを考慮して,各バッテリの充電速度を決定することが好ましい。
 上記構成のように,少なくとも一つのバッテリを電源として利用して他のバッテリを充電することで,バッテリステーション3から電動車両2に複数のバッテリを受け渡す際に,バッテリの電池残量の均一化を図ることが可能となる。
 本発明のシステムにおいて,バッテリステーションは,自然エネルギー発電機34aから電力の供給を受けてバッテリを充電する事ができるものであることが好ましい。自然エネルギー発電機34aの例は,太陽光発電機,太陽熱発電機,及び風力発電機などである。自然エネルギー発電機34aは,バッテリステーションに搭載されていてもよいし,バッテリステーションの近くに配置されていてもよい。また,バッテリステーションは,電力会社が保有する自然エネルギー発電機34aから,電力網を介して,電力の供給を受けてもよい。
 この場合,複数の充電器31のそれぞれは,他の充電器31に装填されたバッテリと共に,自然エネルギー発電機34aを電源として,自己に装填されたバッテリの充電を行うことができる。
 そして,管理サーバ4の充電速度決定手段40cは,自然エネルギー発電機34が発電可能な時間帯と発電できない時間帯とで異なる制御を行う。すなわち,充電速度決定手段40cは,一つのバッテリステーション3内の一又は複数の充電器31に装填された複数のバッテリ1について,自然エネルギー発電機34が発電できない時間帯においては,複数のバッテリの電池残量が等しい値に近づくように,少なくとも一つのバッテリを電源として利用した場合の各バッテリの充電速度を決定する。他方,充電速度決定手段40cは,自然エネルギー発電機34が発電可能な時間帯においては,電動車両2がバッテリステーション3に到着するまでの間に,複数のバッテリの電池残量が等しい値に近づくように,自然エネルギー発電機34aを電源として利用した場合の各バッテリの充電速度を決定する。
 なお,「自然エネルギー発電機34が発電可能な時間帯」とは,太陽光発電機や太陽熱発電機であれば日照時間帯であり,風力発電機であれば風が吹いている時間帯である。また,「自然エネルギー発電機34が発電できない時間帯」とは,太陽光発電機や太陽熱発電機であれば非日照時間帯であり,風力発電機であれば風が吹いていない時間帯である。
 上記構成のように,本発明は,電源として,自然エネルギー発電機34を活用することができる。例えば,自然エネルギー発電機34が太陽光発電機である場合を説明すると,充電速度決定手段40cは,電動車両2からのバッテリ交換要求が少ないと考えられる夜間(非日照時間帯)のうちに,バッテリステーション3内に保管されているバッテリを電源として他のバッテリを充電し,各バッテリの電池残量を均一化するように制御する。そして,充電速度決定手段40cは,昼間(日照時間帯)になったときに,太陽光発電機34aから供給される電力を利用して,各バッテリの充電を行うように制御する。これにより,例えば電力網から供給される電力を用いなくても,太陽光発電により得られた再生可能エネルギーによってバッテリステーション内のバッテリの充電を完了させることができる。しかも,上記仕組みによれば,バッテリの充電を100%再生可能エネルギーによって行うことができるとともに,複数のバッテリの電池残量を均一化させることも可能となる。
 本発明の第2の側面は,サーバ装置を,上記第1の側面に係るバッテリ交換システムにおける管理サーバ4として機能させるためのコンピュータプログラムに関する。
 以上に説明した通り,本発明によれば,バッテリステーションにおける充電速度をコントロールし,バッテリの劣化度及び電池残量を適切に制御することが可能なシステム及びプログラムを提供することができる。すなわち,本発明によれば,高速充電によってバッテリの劣化が進行するというリスクを考慮しつつ,複数個のバッテリの劣化度と電池残量をなるべく平準化するように,バッテリの充電速度を適切に制御できる。
図1は,本発明に係るバッテリ交換システムの概要を示す全体図である。 図2は,電動車両の構成を示すブロック図である。 図3は,バッテリステーションの構成を示すブロック図である。 図4は,管理サーバの構成を示すブロック図である。 図5は,バッテリの準備段階における処理を示すフロー図である。 図6は,バッテリ交換要求がなされた際の処理を示すフロー図である。 図7は,充電速度決定処理の一例を示している。 図8は,充電速度決定処理の一例を示している。 図9は,充電速度決定処理の一例を示している。 図10は,充電速度決定処理の一例を示している。 図11は,充電速度決定処理の一例を示している。
 以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。
 ここで,本願明細書において,「満充電容量」とは,一回あたりに充電できるバッテリの電気容量の最大値を意味する。この満充電容量は,特定範囲内においてバッテリの劣化度に比例する。満充電容量は,充電回数を重ねると徐々に低下していき,ある充電回数を超えたときに急速に低下して,電動車両が要求する電力供給が不可能になる。この満充電容量が急速低下したときには,バッテリの廃棄又は入替えが必要となる。
 また,本願明細書において,「電池残量」とは,バッテリの電気容量の残量値を意味する。
[1.システムの概要]
 図1を参照して,本発明に係る電動車両用のバッテリ交換システムの概要を説明する。
 図1は,本発明に係る電動車両用のバッテリ交換システム100の概要を示す全体図である。図1に示されるように,本発明のシステム100は,交換可能なバッテリ1を搭載した複数の電動車両2と,交換用のバッテリ1の充電を行う複数のバッテリステーション3と,本システム全体の管理を行う管理サーバ4と,を備えている。図1に示されるように,電動車両2,バッテリステーション3,及び管理サーバ4は,互いに,情報の授受が可能な構成を備える。例えば,電動車両2は,通信局5と無線通信可能な通信装置を備える。また,バッテリステーション3,管理サーバ4,及び通信局5は,インターネットのような情報通信回線6を介して相互に接続されている。
 電動車両2は,車両に搭載された複数のバッテリ1から供給される電力により,モータを駆動させることで走行する。電動車両2の例は,電動自動車,電動スクーター,電動アシスト自転車,及び電動立ち乗り二輪車等である。駆動用のバッテリ1の電池残量が低下すると,電動車両2は,近くのバッテリステーション3に立ち寄る。バッテリステーション3では,複数のバッテリ1が保管され,充電されている。電動車両2のユーザは,バッテリステーション3から必要な数のバッテリ1を取り出し,自己の車両のバッテリ1と入れ替える。これにより,電動車両2は,充電済みのバッテリ1を利用して,走行を続けることができる。他方,バッテリステーション3には,電池残量の少なくなったバッテリ1が装填される。そうすると,バッテリステーション3は,電力網等の電源から電力供給を受けて,内部に装填されたバッテリ1の充電を開始する。
 特に,本発明において,電動車両2のユーザは,車両に備えられた通信装置を介して,事前にバッテリ交換要求を管理サーバ4に送ることができる。このバッテリ交換要求には,バッテリ交換の予約などが含まれる。バッテリ交換要求を受信した管理サーバ4は,電動車両2の到達可能範囲に存在するバッテリステーショ3に対し,バッテリ交換要求があった旨を報知する。また,管理サーバ4は,電動車両2の到達予想時間等の情報に基づいて,バッテリステーション3におけるバッテリ1の充電速度を制御する。例えば,通常速度の充電では電動車両2がバッテリステーション3に到着する前に充電済みのバッテリ1を用意できない場合に,管理サーバ4は,バッテリステーション3に対して,高速充電を行うように指令を送信する。これにより,電動車両2がバッテリステーション3に到着した際には,充電済みのバッテリ1が一又は複数個用意できているようにすることができる。
[2.システムの具体的構成]
 続いて,本システムの具体的構成について説明する。
[2-1.電動車両]
 図2は,電動車両2の構成を示したブロック図である。
 図2に示されるように,電動車両2は,交換可能なバッテリ1,制御装置20,残容量計21,位置情報取得装置(GPS)22,通信機23,モータ24,インターフェイス25,速度計26,及びコントローラー27が備えられている。また,電動車両2には,必要に応じて制御装置20による情報を外部へ取り出すための情報接続端子28が備えられる。また,電動車両2は,バッテリ1を出し入れするための取出口を備える。電動車両2は,交換可能なバッテリ1により,コントローラー27を介してモータ24を駆動し,動力伝達機構により車輪を回転させることで走行する。
 バッテリ1には,基本的に,公知の充電可能なニッケル水素電池やリチウムイオン電池などの二次電池を使用することができる。電動車両2の種類によっては,車両に搭載されるバッテリ1の数は増減する。すなわち,電動車両2に搭載されるバッテリ1の数は,一個であってもよいし複数個であってもよい。バッテリ1は,コントローラー27を介してモータ24に対して電力を供給する。また,本システムで利用されるバッテリ1には,それぞれ識別番号(ID)が付与されている。各バッテリ1の識別番号(ID)は,後述する管理サーバ4のバッテリデータベースに記憶されて一元管理されている。
 また,図1に示されるように,本発明において,バッテリ1は,BMS(Battery Management System)10を有することが好ましい。BMS10は,別の名称をもつ場合もあるが,基本的にバッテリ内部または外部に備えられ,主に集積回路及びセンサ等で構成されている。 BMS10は,一又は複数のバッテリ1の制御や電池残量及び充電回数等を含むバッテリ充電情報を計測及び算出することも好ましい。また,BMS10により取得されるバッテリ充電情報には,識別番号(ID)及び電池残量の他に,充電回数,バッテリの電圧,電流,温度,及び満充電容量等が含まれることとしてもよい。BMS10は,バッテリ充電情報を外部へ通信する通信機能を持つとしてもよい。すなわち,BMS10より取得される識別番号及び電池残量等のバッテリ充電情報は,有線通信(CANなど)又は無線通信(Bluetooth(登録商標)など)で,電動車両2に搭載された残容量計21やバッテリステーション3に搭載された検出機32等へ送信されることが好ましい。
 電動車両2の制御装置20は,残容量計21,位置情報取得装置(GPS)22,通信装置23,インターフェイス25,及び速度計26にそれぞれ接続されている。これにより,制御装置20は,残容量計21より取得されたバッテリ1の電池残量等を含むバッテリ情報,位置情報取得装置(GPS)22により取得された自車の現在の位置情報,及び速度計26により計測された自車の走行速度を適宜得ることができる。また,制御装置20は,各種機器から得られた情報の演算処理を行い,通信装置23を介して,管理サーバ4に送信できる。また,制御装置20は,インターフェイス25からの入力情報に応じて各種の処理を実行できる。なお,制御装置20は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備える情報演算処理装置を利用したものであってもよい。
 残容量計21は,電動車両2に搭載されているバッテリ1の識別番号及び電池残量等を含むバッテリ充電情報を取得する。残容量計21は,バッテリ1が備えるBMS10からバッテリ充電情報を取得することとしてもよいし,バッテリ1が接続されたときにバッテリ1の識別番号及び電池残量等を有線通信(CANなど)又は無線通信(Bluetooth(登録商標)など)等を経由して直接検出及び測定することとしてもよい。残容量計21によって取得されたバッテリ充電情報は,制御装置20へと出力される。なお,残容量計21は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備える情報受信表示装置を利用したものであってもよい。
 位置情報取得装置(GPS)22の例は,GPS(Global Positioning System)である。GPSは,電動車両2の現在位置を測定し,これを特定する情報を得るための装置である。位置情報取得装置(GPS)22は,複数のGPS衛星から送られた電波に含まれる電波送信時間の情報に基づき,それぞれの電波を受信するのに要した時間を測定して,その時間を示す時間情報を制御装置20に送出する。制御装置20は,取得した時間情報に基づいて,電動車両2の所在位置の緯度経度に関する情報を算出することができる。位置情報取得装置(GPS)22は,例えば,図示しないカーナビゲーションシステムなどに含まれて電動車両2に搭載されている。なお,位置情報取得装置(GPS)22は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備えるGPSを利用したものであってもよい。
 通信装置23は,無線回線によって通信局5に接続され,情報通信回線6を介して管理サーバ4と双方向通信を行うことができる。通信装置23は,制御装置20で加工された情報を管理サーバ4に向けて送信し,又は管理サーバ4からの情報を受信することができる。通信装置23は,例えば,図示しないカーナビゲーションシステムなどに含まれて電動車両2に搭載されている。なお,通信装置23は,電動車両2に備え付けられた装置であってもよいし,例えば汎用的な携帯通信端末(例えばスマートフォン)が備える通信装置を利用したものであってもよい。
 モータ24は,コントローラー27を介してバッテリ1から得られた電力を回転出力に変換し,動力伝達機構に伝達する。モータ24からの出力が,動力伝達機構を介して車輪に伝わることで,電動車両2が走行する。
 インターフェイス25,制御装置20の制御情報を表示させるための表示装置と,必要に応じて電動車両2のユーザの操作によって入力される情報を受付ける入力装置とを含む。インターフェイス25は,表示装置と入力装置が一体となったタッチパネルディスプレイであってもよい。
 速度計26は,モータ24や動力伝達機構などの回転数又は位置情報取得装置(GPS)22に基づいて,電動車両2の瞬間の走行速度を算出する計器である。
 コントローラー27は,バッテリ1により供給される電力を制御し,モータ24に伝達する機能を備える。
[2-2.バッテリステーション]
 図3は,バッテリステーション3の構成を示したブロック図である。
 図3に示されるように,バッテリステーション3は,制御器30,複数の充電器31,検出機32,通信機33,及び電源34を備えている。複数の充電器31のそれぞれには,バッテリ1を装填することができる。バッテリ1が装填された充電器31は,制御機30による制御に従って,電源から34からの電力供給を受け,バッテリ1を充電する。
 バッテリステーション3の制御機30は,複数の充電器31,検出機32,及び通信機33に接続されている。このため,制御機30は,通信機33を介して管理サーバ4から受信した制御情報に基づいて,充電器31によるバッテリ1の充電速度を制御することができる。また,制御機30は,検出機32がバッテリ1から取得した検出情報を加工し,通信機33を介して,管理サーバ4へと送信することができる。
 充電器31は,バッテリ1と電気的に接続され,電源34からの電力供給を受けて,バッテリ1に対する充電操作を行う装置である。充電器31は,例えば,定電流定電圧方式(CC-CV方式)によりバッテリ1を充電する。この定電流定電圧方式(CC-CV方式)とは,充電初期から一定の電流値で充電を行い,充電の進行に伴ってバッテリの電圧が所定の値に達したときに,その電圧を維持しながら連続的に充電電流値を減少させてゆく充電方式である。
 また,充電器31は,制御機30からの制御信号に従って,バッテリ1の充電速度を可変させることができる。例えば,充電器31は,少なくとも,通常の速度で充電する普通充電と,普通充電よりも高速に充電する高速充電の2段階で,充電速度を可変できることが好ましい。また,充電器31は,普通充電と高速充電の他,普通充電よりも低速で充電する低速充電を行うことができるものであってもよい。また,定電流定電圧方式で充電するバッテリ1では,充電速度と充電電流値が,ほぼ正比例の関係となる。このため,充電器31からバッテリ1に供給される充電電流値を制御することで,バッテリ1の充電速度を自由に調節できる。例えば,バッテリ1は,主に安全性と耐久性の面から,充電速度と充電電流値に上限が設けられている。このため,充電速度と充電電流値の上限により近い充電は高速充電とし,充電速度と充電電流値の下限により近い充電は低速充電とし,高速充電と低速充電の間の電流値により行う充電を普通充電とすればよい。換言すると,一定範囲内の標準的な速度で行う充電を普通充電といい,普通充電の範囲よりもより高速な充電を高速充電といい,普通充電の範囲よりもより低速な充電を低速充電ということができる。充電器31による充電速度の調整についての詳細は,後述する。
 検出機32は,充電状態にあるバッテリ1から識別番号及び電池残量等を含むバッテリ充電情報を取得するための装置である。検出機32は,バッテリ1が備えるBMS10からバッテリ充電情報を取得するものであってもよいし,バッテリ1が接続されたときにバッテリ1の識別番号及び電池残量等を有線通信(CANなど)又は無線通信(Bluetooth(登録商標)など)等を経由して直接検出及び測定するものであってもよい。また,バッテリ1の電池残量は,例えば,BMS10によってバッテリ1の充放電電流値を計測し,電流を積算して得られる電気量を満充電の状態の残容量(満充電容量)から減算することで検出することができる。検出機32により検出されたバッテリ充電情報は,制御機30へと送出される。
 通信機33は,バッテリステーション3が,情報通信回線6を介して管理サーバ4と双方向通信を行うための装置である。通信機33は,制御機30で加工された情報を管理サーバ4に向けて送信し,又は管理サーバ4からの情報を受信することができる。
 電源34は,充電器31に対して電力を供給できるものであれば,公知のものを採用できる。例えば,電源34として,自然エネルギー発電機34aにより得られた再生可能エネルギーを利用することとしてもよい。自然エネルギー発電機34aの例は,太陽光発電機,太陽熱発電機,及び風力発電機等である。自然エネルギー発電機34aは,バッテリステーション3の近傍に設置されたものであることが好ましい。つまり,自然エネルギー発電機34aは,バッテリステーションに搭載されていてもよいし,バッテリステーションの近くに配置されていてもよい。また,バッテリステーションは,電力会社が保有する自然エネルギー発電機34から,電力網を介して,電力の供給を受けてもよい。また,電源34としては,電力網34bから供給される商用電力を利用することとしてもよい。また,電源34は,再生可能エネルギーと商用電力を併用することも可能である。
 なお,バッテリ1内に蓄えられている電力は,バッテリステーション3を介して外部に販売することができる。例えば,バッテリステーション3は,電力網を介して,バッテリ1内に蓄えられている電力を,電力会社や,会社,一般家庭などに販売することができる。また,バッテリステーション3に装填されているバッテリ1を貸し出したり交換したりすることを通じて,バッテリ1内に蓄えられている電力をユーザに販売することも可能である。
[2-3.管理サーバ]
 図4は,管理サーバ4の構成を示したブロック図である。
 図4に示されるように,管理サーバ4は,制御部40,通信部41,バッテリデータベース42,電動車両データベース43,及びステーションデータベース44を有している。管理サーバ4は,バッテリ1,電動車両2,及びバッテリステーション3に関する情報を一元管理することで,本システムを統制する機能を担う。管理サーバ4は,一つのサーバ装置によってこれらの機能を実行するものであってもよいし,複数のサーバ装置によってこれらの機能を実行するものであってもよい。管理サーバ4の制御部40は,メインメモリに記憶されたプログラムを読み出し,読み出したプログラムに従って所定の演算処理を行う。
 管理サーバ4の制御部40は,通信部41,バッテリデータベース42,電動車両データベース43,及びステーションデータベース44に接続されている。制御部40は,通信部41を介して複数の電動車両2及び複数のバッテリステーション3のそれぞれから受信した情報を,各種データベース42,43,44に記録する。また,制御部40は,各種データベース42,43,44に記録された情報に基づいて,電動車両2及びバッテリステーション4に対する制御信号を生成し,その制御信号を,通信部41を介して送信することができる。
 通信部41は,管理サーバ4が,情報通信回線6を介して電動車両2及びバッテリステーション3と双方向通信を行うための装置である。例えば,通信部41は,制御部40が生成した制御信号を,電動車両2及びバッテリステーション3に向けて送信する。また,通信部41は,電動車両2及びバッテリステーション3から送信された各種情報を受信できる。
 バッテリデータベース42は,本システムにおいて利用される複数のバッテリ1のそれぞれについて,その管理情報を記録するための記憶手段である。図4には,バッテリデータベース42のデータ構造の例が示されている。図4に示されるように,バッテリステーション42は,バッテリ1の識別番号(ID)をキー情報として,種々の管理情報を関連付けて記憶している。図4に示されるように,バッテリ1の管理情報には,バッテリの現所在場所,充電回数,電池残量,満充電容量,及び劣化度に関する情報が含まれる。
 また,バッテリデータベース42に,過去に使用された複数のバッテリに関する情報も記憶しておくことで,バッテリの統計データを得ることができる。各バッテリについて,過去に使用された同種のバッテリの統計データをバッテリデータベース42に記録しておくことで,管理サーバ4は,これらの情報から,バッテリの劣化度をより正確に把握することができる。すなわち,バッテリの劣化度は,バッテリ単体の充電回数及び満充電容量以外に,過去の同種バッテリ多数の統計データと比較することで,より正確な予測が可能になる。
 バッテリの現所在場所の情報としては,バッテリが格納されている電動車両2の識別番号(ID)や,バッテリステーション3の識別番号(ID)が記録される。また,電動車両2やバッテリステーション3が,複数のバッテリを格納できるものである場合,バッテリの現所在場所の情報は,車両2やバッテリステーション3が有する複数の格納場所のうち,どの場所にバッテリが格納されているかを示す情報であることが好ましい。なお,図4に示した例では,頭文字が「V」となっている識別番号は,電動車両の識別番号であり,頭文字が「S」となっている識別番号は,バッテリステーションの識別番号である。
 また,バッテリの充電回数に関する情報としては,バッテリがバッテリステーション3に格納された回数の情報を記録することとしてもよいし,バッテリが満充電となった回数を記録することとしてもよいし,又はバッテリ充電後の電池残量が特定された数値または割合以上となった回数を記録することとしてもよい。ただし,バッテリの充電回数を求める方法は,上記した方法に限られず,その他公知の方法を採用することができる。また,図4に示されるように,バッテリの充電回数に関する情報は,高速充電を行った回数,普通充電を行った回数,及び低速充電を行った回数のように,充電速度に分けて記録されていることが好ましい。充電速度別に充電回数をカウントすることにより,バッテリの劣化度の算出の精度を向上させることができる。
 また,バッテリの識別番号及び電池残量等を含むバッテリ充電情報に関しては,電動車両2又はバッテリステーション3によって送信された最新のバッテリ充電情報を記録することが好ましい。すなわち,バッテリ1の現所在場所が電動車両である場合,通信装置23によって送信されたバッテリ充電情報が記録される。また,バッテリ1の現所在場所がバッテリステーションである場合,バッテリステーション3の通信機33によって送信されたバッテリ充電情報が記録される。バッテリデータベース42において,バッテリ充電情報は,常に最新のものに更新されることが好ましい。
 また,バッテリの満充電容量に関する情報としては,バッテリの定格満充電容量と,満充電容量とが記録されていることが好ましい。図4においては,満充電容量の他に,定格満充電容量をカッコ書きで示している。バッテリ1が満充電容量の計測及び算出する場合のBMS10を備えている場合には,満充電容量はBMS10により計測及び算出される場合がある。
 また,バッテリ1がBMS10を備えないものである場合や,バッテリ1がBMS10を備えてあるものでも,実際にBMS10が満充電容量を計測及び算出しない場合には,バッテリ使用開始前(新品状態であるとき)の定格満充電容量と,バッテリの劣化を考慮して制御部40により補正された満充電容量等が,バッテリデータベース42に記録されていることが好ましい。 通常,バッテリの使用回数が多くなればなるほど,満充電容量の値が小さくなる。このとき,満充電容量は,高速充電の回数,普通充電の回数,及び低速充電の回数に基づいて,定格満充電容量を補正することで,求められた値であることが好ましい。更に,高速充電の方が普通充電よりもバッテリを劣化させ,普通充電の方が低速充電よりもバッテリを劣化させる場合がある。従ってこの場合,高速充電,普通充電,及び低速充電に応じて,バッテリの劣化に与える影響度の重み付けを変化させて,満充電容量を求めることがより好ましい。このように,バッテリデータベース42に,各バッテリの高速充電,普通充電,及び低速充電の回数を記録し,この充電回数の記録と過去の統計データを比較することにより,満充電容量をより正確に推測することができる。なお,上記した満充電容量を求める計算は,制御部40が,バッテリデータベース42に記録されている充電回数に関する情報と,定格満充電容量に関する情報とに基づいて行う。ただし,バッテリの満充電容量を求める方法は,上記した方法に限られず,その他公知の方法を採用することができる。例えば,バッテリ1を充電する際の電気抵抗値を逐次記録していくことで,満充電容量を求めることとしてもよい。また,例えば,バッテリ1自体に満充電容量を逐次記憶するためのBMS10以外のメモリを搭載することも可能である。
 また,バッテリの劣化度に関する情報は,バッテリデータベース42に記録されている情報に基づいて,制御部40が算出する。例えば,劣化度は,A(新しい)からE(古い)までの5段階でランク付けされることとしてもよい。例えば,劣化度がEランクとなったときに,そのバッテリは廃棄する必要があることを意味する。また,ランク付けの一例としては,制御部40により,満充電容量を比較し,定格満充電容量から実際の満充電容量にまで減少した度合いを,劣化度として求めることができる。しかしながら実際にBMS10等によりバッテリ単体から計測及び算出された満充電容量は,外部環境や使用負荷によってのバラつきや正確性が低い場合がある。この場合,高速充電の回数,普通充電の回数,及び低速充電の回数に基づいて補正した劣化度を求めることも好ましい。このように,バッテリデータベース42に,各バッテリの高速充電,普通充電,及び低速充電の回数を記録し,この充電回数の記録と過去の統計データを比較することにより,より正確に劣化度を推測することができる。ただし,バッテリの劣化度を求める方法は,上記した方法に限られず,その他公知の方法を採用することができる。
 上記のように,バッテリデータベース42には,複数のバッテリ1のそれぞれについて,識別番号(ID)をキー情報として,バッテリの現所在場所,充電回数,電池残量,満充電容量,及び劣化度に関する情報が関連付けて記録されていることが好ましい。
 電動車両データベース43には,本システムに含まれる複数の電動車両2のそれぞれについて,識別番号(ID)や,ユーザの個人情報(氏名,住所,連絡先等),車両の車種,バッテリの利用履歴,バッテリ交換要求の発信履歴などが関連付けて記録されていることが好ましい。車両の車種に関する情報としては,電動車両2の種類や,重量,燃費,年式に関する情報が含まれる。バッテリの利用履歴には,電動車両2において利用されたバッテリの識別番号(ID)や,そのバッテリを入手したバッテリステーションの識別番号(ID)などが含まれる。また,バッテリ交換要求の発信履歴には,交換要求を発信した回数,場所,時刻などの情報が含まれる。
 ステーションデータベース44には,本システムに含まれる複数のバッテリステーション3のそれぞれについて,識別番号(ID)や,所在地,バッテリの利用履歴,バッテリの充電履歴などが関連付けて記録されていることが好ましい。バッテリの利用履歴には,バッテリステーション3からバッテリ1が取り出された回数や,日付,日時,天候,及び取り出されたバッテリ3の識別番号などの情報が含まれる。バッテリの充電履歴には,バッテリステーションにおいて充電を行ったバッテリの識別番号などの情報が含まれる。
 図4に示されるように,管理サーバ4の制御部40は,ステーション選定手段40a,到着時間予測手段40b,充電速度決定手段40c,及び劣化度算出手段40dと,を含むことが好ましい。これらの手段40a,40b,40c,40d,制御部40が,メインメモリに格納されたプログラムを読み出し,読み出したプログラムを実行することにより機能する機能ブロックである。これらの手段40a,40b,40c,40dについては,以下に説明する本システムの処理フローに従って,詳しく説明する
[3.システムの処理フロー]
 図5及び図6は,本発明に係るバッテリ交換システムの動作例を示したフロー図である。
 図5は,バッテリステーション3に新たにバッテリ1を装填した際のフローを示している。すなわち,図5に示すフローは,バッテリステーション3によってバッテリ1を充電しておく準備段階の処理を示している。
 図5に示されるように,まず,バッテリステーション3に,一又は複数のバッテリ1が新たに装填される(ステップS1-1)。バッテリステーション3に装填されるバッテリ1は,新品であってもよいし,使用済みのものであってもよい。
 バッテリステーション3は,新たにバッテリ1が装填されると,検出機32によって,そのバッテリ1から識別番号及び電池残量等を含むバッテリ充電情報を抽出する(ステップS1-2)。
 バッテリステーション3は,検出機32によって抽出した識別番号及び電池残量等を含むバッテリ充電情報を,管理サーバ4に送信する(ステップS1-3)。また,バッテリステーション3は,新たに装填されたバッテリ1の充電を開始する(ステップS1-4)。このとき,バッテリステーション3は,バッテリ1の電池残量が少ない場合であっても,バッテリ1の劣化が進行しないように,普通充電又は低速充電を行う。すなわち,この段階では,バッテリステーション3は,電動車両2からのバッテリ交換要求を受報していないため,バッテリ1を高速充電する必要はない。むしろ,電動車両2からのバッテリ交換要求を受報していない段階において,バッテリ1の高速充電を行なってしまうと,無駄にバッテリ1を劣化させることとなるため,好ましくない。
 他方,管理サーバ4は,バッテリステーション3によって送信された識別番号及び電池残量等を含むバッテリ充電情報を受信する(ステップS1-5)。その後,管理サーバ4の制御部40は,受信したバッテリ充電情報に基づいて,バッテリデータベース42の更新を行う(ステップS1-6)。バッテリデータベース42の更新作業としては,バッテリ1の残所在場所の更新,充電回数の更新,電池残量の更新,満充電容量の更新,及び劣化度の更新を行うことが好ましい。上述したように,満充電容量や劣化度の更新は,バッテリデータベース42に記憶されているバッテリの充電回数に基づいて補正することにより行われることが好ましい。また,管理サーバ4の制御部40は,バッテリステーション3から受信したバッテリ充電情報に基づいて,ステーションデータベース44に記録されている充電履歴を更新することとしてもよい。
 続いて,図6は,電動車両2からバッテリ交換要求が行われた場合のフローを示している。
 図6に示されるように,まず,電動車両2の制御装置20が,自車に搭載されているバッテリ1の交換要求を生成する(ステップS2-1)。バッテリ1の交換要求は,バッテリ1の電池残量が所定値以下になったことを契機として,制御装置20により自動的に生成されるものであってもよい。また,バッテリ1の交換要求は,電動車両1のユーザが,インターフェイス25を介して所定の入力操作を行うことで,制御装置20により手動で生成されるものであってもよい。
 制御装置20によりバッテリ交換要求が生成されると,バッテリ1のBMS10は,自車に搭載されている各バッテリ1の電池残量を計測及び算出する(ステップS2-2)。BMS10により計測及び算出された各バッテリ1の電池残量等を含むバッテリ充電情報は,電動車両2の残容量計21へと伝達される。残容量計21は,識別番号及び電池残量等を含むバッテリ充電情報を取得すると,その情報を制御装置20へと送出する。なお,各バッテリ1の識別番号及び電池残量等の取得は,残容量計21によって直接行われるものであってもよい。
 また,制御装置20によりバッテリ交換要求が生成されると,電動車両2の位置情報取得装置(GPS)22は,自車の現在位置を検出する(ステップS2-3)。位置情報取得装置(GPS)22により検出された電動車両2の現在位置に関する情報は,制御装置20へと送出される。
 制御装置20は,バッテリ1の識別番号及び電池残量等を含むバッテリ充電情報と,自車の現在位置に関する情報を受け取ると,これらの情報を,バッテリ交換要求と共に,管理サーバ4へと送信する(ステップS2-5)。
 管理サーバ4は,電動車両2から送信されたバッテリ交換要求,電動車両2に搭載されたバッテリ1の識別番号及び電池残量等を含むバッテリ充電情報と,電動車両2の現在位置に関する情報を,受信する(ステップS2-6)。管理サーバ4の制御部40は,電動車両2から受信したこれらの情報を,一時的にメモリに記憶することとしてもよい。また,管理サーバ40の制御部は,電動車両2から受信したバッテリ交換要求を,電動車両データベース43に記録することとしてもよい。
 制御部40のステーション選定手段40aは,バッテリ交換要求がなされた電動車両2から受信したバッテリの識別番号及び電池残量等を含むバッテリ充電情報及び現在位置情報に基づいて,その電動車両2が移動できる距離(到達可能範囲)を判定する(ステップS2-6)。一定量の電池残量で,電動車両2が移動可能な距離は,電動車両の車種によって変動する。そこで,ステーション選定手段40aは,例えば,電動車両2の車種を参照し,バッテリの電池残量でどの程度の距離を走行できるかを判定する。また,ステーション選定手段40aは,電動車両2の到達可能範囲を判定するにあたり,天候や,時間帯,道路の混雑状況などを考慮することとしてもよい。
 その後,制御部40のステーション選定手段40aは,電動車両2の到達可能範囲に含まれる一又は複数のバッテリステーション3を,「候補ステーション」として選定する(ステップS2-7)。ステーション選定手段40aは,電動車両2の到達可能範囲に含まれるすべてのバッテリステーション3を候補ステーションとして選定することとしてもよい。また,ステーション選定手段40aは,電動車両2の最寄りのバッテリステーション3のみを選定することとしてもよい。また,ステーション選定手段40aは,電動車両2の到達可能範囲に含まれる複数のバッテリステーション3を抽出した後,この複数のバッテリステーション3の所在地を電動車両2に送信して,電動車両2のユーザに,複数のバッテリステーション3の中から一つのバッテリステーション3を選択させ,ユーザにより選択された一つのバッテリステーション3を候補ステーションとして選定する処理を行うこととしてもよい。また,ステーション選定手段40aは,電動車両2の到達可能範囲に含まれる複数のバッテリステーション3のうち,本システムの運営者により選択された任意のバッテリステーション3を候補ステーションとして選定することとしてもよい。
 候補ステーションが選定されると,管理サーバ4の制御部40は,選定されたバッテリステーション3に対し,その旨を報知する(ステップS2-8)。すなわち,管理サーバ4の制御部40は,候補ステーションに対し,電動車両2がバッテリ交換のために立ち寄る可能性がある旨を知らせることとなる。
 候補ステーションとして選定されたバッテリステーション3は,管理サーバ4からの報知を受報する(ステップS2-9)。電動車両2が立ち寄る可能性を報知されたバッテリステーション3(候補ステーション)は,その旨を受報したときに充電を行なっている複数のバッテリ1について,検出機32により,バッテリ充電情報を抽出する。ここで抽出されるバッテリ充電情報には,バッテリ1の識別番号(ID)や電池残量が含まれる。そして,候補ステーションとして選定されたバッテリステーション3は,検出機32により抽出したバッテリ充電情報を,管理サーバ4に送信する(ステップS2-11)
 管理サーバ4は,上記バッテリステーション3により送信されたバッテリ充電情報を受信する(ステップS2-12)。その後,管理サーバ4の劣化度算出手段40dは,バッテリステーション3から受信したバッテリ充電情報と,バッテリデータベース42に記録されているバッテリの充電回数に関する情報に基づいて,各バッテリの劣化度を求める(ステップS2-13)。その後,管理サーバ4の制御部40は,受信したバッテリ充電情報に基づいて,バッテリデータベース42を最新の状態に更新する(ステップS2-14)。ここでのバッテリデータベース42の更新作業としては,バッテリ1の充電回数の更新,電池残量の更新,満充電容量の更新,及び劣化度の更新を行うことが好ましい。上述したように,満充電容量の更新は,バッテリデータベース42に記憶されているバッテリの充電回数に基づいて補正することにより行われることが好ましい。また,バッテリの劣化度に関する情報の更新は,劣化度算出手段40dによって求められた劣化度に基づく。
 他方,管理サーバ4に備えられた制御部40の到着時間予測手段40bは,ステーション選定手段40aにより候補ステーションが選定された後,バッテリ交換要求を行った電動車両2が,その候補ステーションに到着するまでの時間を予測する(ステップS2-15)。電動車両2の走行速度(例えば法定速度)は,電動車両の車種によって変動する。そこで,到着時間予測手段40bは,例えば,電動車両2の車種を参照し,その電動車両2が,バッテリ交換要求を発信した位置から候補ステーションに到着するまでの時間を予測する。到着時間予測手段40bは,電動車両2が候補ステーションに到着する時間を予測するにあたり,天候や,時間帯,道路の混雑状況などを考慮することとしてもよい。
 上記のようにして,バッテリデータベース42が最新の状態に更新され(ステップS2-14),また電動車両2の到着時間が予測された(ステップS2-15)後,管理サーバ4の充電速度決定部40cは,これらの情報に基づいて,候補ステーションにおいてバッテリ1を充電する速度を決定する(ステップS2-16)。充電速度決定部40は,電動車両2の到着予想時間や,バッテリデータベース42に記録されている情報に基づき,種々の要因を考慮して,候補ステーションにおけるバッテリ1の充電速度を決定する。充電速度の決定処理については,図7~図11を参照して,後段にて詳しく説明する。また,充電速度決定部40により決定された充電速度は,制御部40において制御信号に変換され,候補ステーションとして選定されたバッテリステーション3へと送信される(ステップS2-17)。
 候補ステーションとして選定されたバッテリステーション3は,管理サーバ4により送信された充電速度に関する制御信号を受信する(ステップS2-18)。そして,バッテリステーション3の制御機30は,管理サーバ4から受信した充電速度に関する制御信号に従って,充電器31の充電速度を制御する(ステップS2-19)。
 なお,図示は省略するが,管理サーバ4は,候補ステーションを選定した段階(ステップS-17)で,候補ステーションの位置を電動車両2に通知し,この電動車両2を候補ステーションにまで案内する制御を行うこととしてもよい。これにより,電動車両2を,候補ステーションとして選定されたバッテリステーション3にまでスムーズに誘導することができる。また,電動車両を案内することにより,電動車両2のユーザは,バッテリ切れを懸念することなく,電動車両2をバッテリステーション3にまで移動させることができる。
 また,本発明において,バッテリステーション3(候補ステーション)から電動車両2へ受け渡されるバッテリは常に満充電である必要はない。例えば,電動車両2のドライバが,1個のバッテリだけでは到達不可能(すなわち,途中でバッテリの交換が必要)な行き先を指定していたとする。この場合,電動車両2の行き先ルートに存在する複数箇所のバッテリステーション3に対して,バッテリ交換の事前予約を行うこととしてもよい。例えば,管理サーバ4は,電動車両2のルート上に存在する複数箇所のバッテリステーション3について,電動車両2の到着時間を予測して,バッテリの充電速度を制御することができる。この場合,電動車両2がルートの途中で立ち寄るバッテリステーション3は,交換対象のバッテリを常に満充電としておく必要はなく,電動車両2が次のバッテリステーション3まで到達できる程度に,交換対象バッテリを充電しておけばよい。このように,本発明では,様々な要因に基づいて,バッテリステーション3によるバッテリの充電速度を制御することが可能である。
[4.充電速度決定処理]
 続いて,ステップS2-16において,管理サーバ4の充電速度決定手段40cにより行われる充電速度決定処理について詳しく説明する。充電速度決定処理の例は,図7~図11に示されている。ただし,図7~図11に示した処理は,飽くまで一例であり,本発明における充電速度決定処理は,図7~図11に例示された処理に限定されるものではない。
 図7(a)は,電動車2がバッテリステーション3に到着する予想時間と,バッテリステーション3で充電されているバッテリの電池残量とに基づいて,バッテリの充電速度を制御する例を示している。上述した通り,到着予想時間は,電動車両2のスピードと位置を考慮して,その電動車両2が,バッテリ交換要求を発信した位置から候補ステーションに到着するまでの時間を予測すればよい。また,到着予想時間は,天候や,時間帯,道路の混雑状況などを考慮して求めることもできる。
 例えば,図7(a)に示されるように,電動車両2の到着予測時間が30分以上であり,バッテリステーション3で充電されているバッテリの電池残量が90Ah以上である場合,そのバッテリは,「低速充電」すればよい。この場合は,バッテリを低速充電しても,電動車両1が到着するまでの間に,バッテリを満充電することができる。また,時間に余裕があるときには,バッテリを低速充電することで,バッテリの劣化を防止できる。
 他方,電動車両2の到着予測時間が30分以上であっても,バッテリステーション3で充電されているバッテリの電池残量が70Ah以下である場合には,そのバッテリは,「高速充電」する。これにより,電動車両1が到着するまでの間に,バッテリを満充電することができる。
 なお,図7(a)に示された実施例において,電動車両2の到着予測時間が15分以内であり,バッテリの電池残量が70Ah以下であるときに,そのバッテリを「普通充電」することとしている。このような処理を行う理由は,バッテリを高速充電しても,電動車両2の到着に間に合わないため,あえて普通充電を行いバッテリの劣化を防ぐことを優先したためである。
 図7(b)は,電動車2の到着予想時間と,バッテリステーション3で充電されているバッテリの電池残量の他に,電動車両2がバッテリステーション3(候補ステーション)に到着した後に走行可能な距離を考慮して,バッテリの充電速度を制御する例を示している。電動車両2が候補ステーションに到着した後に走行可能な距離は,バッテリ交換の緊急性を示す指標となる。すなわち,電動車両2が候補ステーションに到着した後に短距離しか走行できないのであれば,その電動車両2のバッテリを交換する緊急性は高いといえる。他方,電動車両2が候補ステーションに到着した後にさらに長距離走行できるのであれば,その電動車両2のバッテリを交換する緊急性は低いといえる。ここで,電動車両2の走行可能範囲は,電動車両2に搭載されているバッテリの電池残量と車種タイプを考慮して算出可能である。また,電動車両2が候補ステーションに到着した後に走行可能な距離は,電動車両2の走行可能範囲から,電動車両2から候補ステーションまでの距離を差し引くことで算出可能である。
 例えば,図7(b)に示されるように,バッテリステーション3で充電されているバッテリの電池残量が70Ahであることを想定したときに,電動車両2の到着予測時間が30分以内であり,電動車両2が候補ステーションに到着した後の走行可能距離が5km以内である場合は,その電動車両2のバッテリ交換の緊急性は高い。このため,このような場合は,バッテリを「高速充電」する。
 他方,電動車両2の到着予測時間が30分以内であっても,電動車両2が候補ステーションに到着した後の走行可能距離が10km以上である場合は,その電動車両2のバッテリ交換の緊急性は低い。そこで,このような場合は,バッテリを「普通充電」し,バッテリの劣化防止を優先する。
 図7(c)は,バッテリステーション3の過去の利用履歴から,バッテリ交換のタイミングを予測し,その予測に従って,バッテリの充電速度を制御する例を示している。このようにバッテリ交換のタイミングを予測することで,電動車両2から位置情報や電池残量に関する情報を取得できない場合であっても,電動車両2がバッテリステーション3に到着した際に,満充電のバッテリを要することができる可能性を高めることができる。例えば,図7(c)に示された例では,現在の時間帯,天候,及び曜日毎に,過去の利用履歴から,バッテリステーション3の利用頻度を求める。そして,利用頻度が多い時間帯,天候,及び曜日については,「高速充電」を行い,利用頻度が少ない時間帯,天候,及び曜日については,「低速充電」を行うこととしている。
 例えば,天候別でバッテリステーション3の利用頻度をみると,晴れや曇りのときは利用頻度が多く,雨のときには利用頻度が少なくなる。また,曜日別でバッテリステーション3の利用頻度をみると,平日は利用頻度が多く,休日や祝日は利用頻度が少なくなる。また,時間帯別でバッテリステーション3の利用頻度をみると,朝方や夕方の通勤ラッシュ時は利用頻度が多く,夜間は利用頻度が少なくなる。そして,図7(c)に示された例では,これらの過去の利用履歴からバッテリ交換のタイミングを予測し,バッテリの「高速充電」,「普通充電」,「低速充電」を制御することとしている。
 図8は,バッテリステーション3において充電されている複数のバッテリについて,その劣化度をランク付けしておき,バッテリステーション3内の各バッテリの劣化度が平準化するように,各バッテリの充電速度を制御する例を示している。すなわち,管理サーバ4が備えるバッテリデータベース42には,複数のバッテリのそれぞれについて劣化度が記録されている。バッテリの劣化度に関する情報は,バッテリの充電回数や,バッテリ満充電容量に関する情報に基づいて決定された値である。各バッテリの劣化度を平準化させることで,一つのバッテリステーション3内又は特定の地理的範囲内に位置する複数のバッテリステーション3の劣化したバッテリを,一度に入れ替えることができるようになる。
 図8に示した例では,特定の地理的範囲内にある複数台のバッテリステーション3について,充電中のバッテリ1の劣化度をA~Eで示している。劣化度A~Eは,「A」が最も新しく,「E」が最も古いことを意味している。図8に示した特定の地理的範囲内にある4つのバッテリステーション3をみると,劣化度が高く新品への入替え時期が近いバッテリ1も多く存在するが,劣化度が低くまだ比較的新しいバッテリ1も存在している。このため,劣化度が高く比較的古いバッテリ1については,高速充電を控え,通常充電又は低速充電を行い,バッテリ1の劣化を抑制することが好ましいといえる。他方,劣化度が低く比較的新しいバッテリ1については,積極的に高速充電を行い,あえてバッテリ1の劣化を促進することで,他の古いバッテリ1の劣化度に合わせることが好ましいといえる。例えば,一つバッテリステーション3内において,他のバッテリ1との劣化度の差が大きい新しいバッテリ1については,比較的頻繁に高速充電を行い,常に優先的に利用されるようにし,あえて劣化を促進することが好ましい。また,一つバッテリステーション3内に比較的新しいバッテリ1があっても,他のバッテリ1との劣化度の差が小さいときには,優先的に利用させるようにしつつも,なるべく高速充電は控えるようにすることが好ましい。このように,バッテリ1の充電速度を決定する際には,他のバッテリ1との劣化度の平準化を目的とし,他のバッテリと劣化度が均一になるように,「高速充電」,「普通充電」,又は「低速充電」を決定することが好ましい。
 図9は,一つのバッテリステーション3において充電されている複数のバッテリについて,電池残量が均一になるように,充電速度を制御する例が示されている。すなわち,このような充電速度の制御は,一台の電動車両2について複数個のバッテリ1を交換する必要がある場合に,同じバッテリステーション3内のいずれかのバッテリ1を満充電にすることを優先するのではなく,すべてのバッテリ1の電池残量を等しい状態に近づけることを優先している。複数個のバッテリによって駆動する電動車両は,その車両全体の性能(速度や走行距離)が,最も劣化したバッテリ,又は最も電池残量の少ないバッテリの性能に依存する場合があるからである。
 また,バッテリステーション3に電力を供給する商用電源は,主に,電流値(A)と電流量(Ah)が制限されている。例えば,電力網から供給される通常の電力の電流値(A)は,電力会社との契約内容等によって店舗ごとに制限されている。さらに,再生可能エネルギーシステム(例えば太陽光発電装置)により得られた電力をバッテリステーション3に供給している場合は,太陽の日照度や日照時間に比例して,電流値(A)と電流量(Ah)が制限される。このため,電流値(A)と電流量(Ah)が制限されている中で,一つのバッテリステーション3内の複数のバッテリの電池残量を均一化するためには,各バッテリに対する充電速度(=充電電流値)を適切にコントロールする必要がある。
 例えば,図9に示された例においては,一つのバッテリステーション3に供給される電流値(A)に60Aの制限があるとする。また,一つのバッテリステーション3で管理されているバッテリ1の数は4つであり,それぞれの電池残量が,90Ah,90Ah,80Ah,及び80Ahであるとする。また,このバッテリステーション3に電動車両1が到着するまでの時間は,1時間であるとする。このような場合に,90Ahまで充電が完了している2つのバッテリ1については,10Ah(10A×1h)で比較的「低速充電」を行う。他方,80Ahまでしか充電が完了していない2つのバッテリ1については,20Ah(20A×1h)で比較的「高速充電」を行う。このように,各バッテリ1について,充電速度(=充電電流値)を融通し合い,電動車両1が到着した時点において,同じ電池残量のバッテリが複数個同時に用意されているように,各バッテリ1の充電速度を調整することが好ましい。
 図10は,一つのバッテリステーション3内の充電器31が,他の充電器31に装填されたバッテリ1を電源として利用することのできる場合の例を示している。そして,図10に示された例では,充電器31が他の充電器31に装填されたバッテリ1を電源として利用できることを考慮して,複数のバッテリの電池残量を均一化するように,充電速度を制御する。
 まず,図10(a)は,各充電器31が,他の充電器31に装填されたバッテリ1を電源として利用することのできない場合を示している。例えば,外部供給電源から電流量が,25Ahに制限されているとする。また,バッテリステーション3内に4つのバッテリ1が格納されており,それぞれのバッテリ1の電池残量が,95Ah,85Ah,70Ah,及び65Ahであるとする。また,このバッテリステーション3に電動車両1が到着するまでの時間は,1時間であるとする。このような場合において,各充電器31が他の充電器31に装填されたバッテリ1を電源として利用できないこととすると,電動車両2が到着する1時間後に,4つのバッテリ1の電池残量を均一化させることは難しい。例えば,電池残量70Ahのバッテリ1を10Ah(10A×1h)で充電し,電池残量65Ahのバッテリ1を15Ah(15A×1h)で充電したとする。しかし,その結果,4つのバッテリ1の電池残量は,95Ah,85Ah,80Ah,80Ahとなり,完全に均一化されたとはいえない。
 これに対し,図10(b)は,各充電器31が,他の充電器31に装填されたバッテリ1を電源として利用することができる場合を示している。ここで,図10(b)の例においても,バッテリ1の電池残量や電流量制限は,上記図10(a)同じ条件であるとする。しかし,図10(b)に示された例では,各充電器31が,他の充電器31に装填されたバッテリ1を電源として利用することができる。このため,最も電池残量の多い95Ahまで充電されたバッテリ1を電源として,他のバッテリ1の充電に電力を供給することができる。例えば,95Ahまで充電されたバッテリ1から,-10Ah(-10A×1h)だけ電流を逆流させる。そして,電池残量95Ahのバッテリ1から供給された電力を,電池残量70Ahのバッテリ1と,電池残量65Ahのバッテリ1の充電に活用する。これにより,電池残量70Ahのバッテリ1を15Ah(15A×1h)で充電し,電池残量65Ahのバッテリ1を20Ah(20A×1h)で充電することができる。その結果,4つのバッテリ1の電池残量は,電動車両2が到着する1時間後には,すべて85Ahとなり,電池残量が均一化されることとなる。このように,一つのバッテリステーション3に格納されている比較的電池残量の多いバッテリ1を電源として,他のバッテリ1の充電することで,各バッテリ1の電池残量の均一化を実現することが容易になる。
 図11は,バッテリステーション3が備える自然エネルギー発電機により得られた再生可能エネルギーを最大限活用して,バッテリ1の充電を行う場合の例を示している。自然エネルギー発電機の例は,太陽光発電機,太陽熱発電機,及び風力発電機等である。ここでは,自然エネルギー発電機が,太陽光発電機である場合を例に挙げて説明する。バッテリステーション3が太陽光発電機を備える場合,バッテリ1の充電には,なるべく太陽光発電機から得られた再生可能エネルギーを利用し,商用電力の利用は控えたいとの要望がある。特に,バッテリ1の充電は,再生可能エネルギーで100%まかなうことが好ましい。ただし,太陽光発電機は,太陽の日照をエネルギーに変換するものであるため,供給可能な電流値(A)と電流量(Ah)に制限がある。また,太陽光発電機は,太陽の日照時間帯(自然エネルギー発電機が発電可能な時間帯)においては,バッテリ1を充電することが可能であるであるが,太陽の非日照時間帯(自然エネルギー発電機が発電できない時間帯)においては,バッテリ1を充電することは難しい。さらに,上述したように,各バッテリ1の電池残量をなるべく均一化することも求められる。
 そこで,図11に示された例では,太陽の非日照時間帯においては,バッテリステーション3内のバッテリ1を電源として活用して,他のバッテリを充電することで,各バッテリ1の電池残量をなるべく均一化しておき,太陽の日照時間帯となったときに,電池残量が均一化された各バッテリの充電を一斉に行うこととしている。
 まず,図11(a)は,太陽の非日照時間帯において,バッテリ1の充電を行わない例を示している。例えば,バッテリステーション3内に4つのバッテリ1が格納されており,それぞれのバッテリ1の電池残量が,95Ah,85Ah,75Ah,及び65Ahであるとする。また,太陽の日照時間帯になってから1時間経過後に,電動車両2がバッテリステーション3に到着するものとする。このような場合に,太陽の非日照時間帯から日照時間帯に切り替わった時点で,バッテリステーション3内のバッテリ1の電池残量が均一化されていないと,太陽の日照時間帯となったときに,太陽光発電機から得られた再生可能エネルギーを利用して高速充電を行ったとしても,一部のバッテリを充電し切れない恐れがある。例えば,図11(a)に示されるように,太陽の日照時間帯になってから1時間充電したとしても,電動車両2の到着時に,各バッテリ1の電池残量を均一化することは難しい。
 これに対し,図11(b)は,太陽の非日照時間帯においても,バッテリステーション3内のバッテリ1を電源として活用して,他のバッテリを充電することで,各バッテリ1の電池残量をなるべく均一化しておくこととしている。例えば,太陽の非日照時間帯において,電池残量95Ahのバッテリ1から,電池残量65Ahのバッテリ1に対して,15Ahの電流量を供給して充電しておく。また,電池残量85Ahのバッテリ1から,電池残量75Ahのバッテリ1に対して,5Ahの電流量を供給して充電しておく。これにより,太陽の非日照時間帯において,各バッテリ1の電池残量は,すべて80Ahとなり均一化される。そして,このように各バッテリ1の電池残量が均一化された状態で,太陽の非日照時間帯から日照時間帯へと切り替わる。これにより,太陽光発電機から得られた再生可能エネルギーによってバッテリ1の充電が開始される。このとき,すでに各バッテリ1の電池残量は均一化されているため,各バッテリ1をそれぞれ20Ahの電流量で充電することで,電装車両2の到着時には,電池残量が均一化された満充電状態のバッテリ1を複数個用意することができる。このように,バッテリステーション3が太陽光発電機を備える場合には,太陽の非日照時間帯を利用して,各バッテリ1の電池残量を均一化させておくことで,太陽光発電機により得られた再生可能エネルギーを最大限活用することができる。
 以上,本願明細書では,本発明の内容を表現するために,図面を参照しながら本発明の好ましい実施形態を中心に説明を行った。ただし,本発明は,上記実施形態に限定されるものではなく,本願明細書に記載された事項に基づいて当業者が自明な変更形態や改良形態を包含するものである。
 例えば,本発明において,バッテリステーション3(候補ステーション)から電動車両2へ受け渡されるバッテリは,必ずしも満充電である必要はない。例えば,電動車両2のドライバが,1個のバッテリだけでは到達不可能(すなわち,途中でバッテリの交換が必要)な行き先を指定していたとする。この場合,電動車両2の行き先ルートに存在する複数箇所のバッテリステーション3に対して,バッテリ交換の事前予約を行うこととしてもよい。例えば,管理サーバ4は,電動車両2のルート上に存在する複数箇所のバッテリステーション3について,電動車両2の到着時間を予測して,バッテリの充電速度を制御することができる。この場合,電動車両2がルートの途中で立ち寄るバッテリステーション3は,交換対象のバッテリを常に満充電としておく必要はなく,電動車両2が次のバッテリステーション3まで到達できる程度に,交換対象バッテリを充電しておけばよい。このように,本発明では,様々な要因に基づいて,バッテリステーション3によるバッテリの充電速度を制御することが可能である。
 本発明は,電動車両用のバッテリ交換システムに関する。このため,本発明は,クリーンエネルギーを活用した社会の実現に貢献し得る。
1…バッテリ         2…電動車両
3…バッテリステーション   4…管理サーバ
10…BMS         20…制御装置(電動車両)
21…残容量計        22…位置情報取得装置(GPS)
23…通信装置        24…モータ
25…インターフェイス    26…速度計
27…コントローラー     28…情報接続端子
30…制御機(バッテリステーション) 31…充電器
32…検出機         33…通信機
34…電源          34a…自然エネルギー発電機
34b…電力網        40…制御部(管理サーバ)
40a…ステーション選定手段 40b…到着時間予測手段
40c…充電速度決定手段   40d…劣化度算出手段
41…通信部         42…バッテリデータベース
43…電動車両データベース  44…ステーションデータベース
100…バッテリ交換システム

Claims (9)

  1.  車両に搭載された一又は複数の交換可能なバッテリ(1)によってモータを駆動することにより走行可能な複数の電動車両(2)と,
     前記バッテリ(1)を充電可能な複数のバッテリステーション(3)と,
     前記電動車両(2)及び前記バッテリステーション(3)と通信網を介して相互に接続された管理サーバ(4)と,を備える
     バッテリ交換システムであって,
     前記電動車両(2)は,
      自己の車両の現在の位置情報を取得するための位置情報取得装置(22)と,
      前記位置情報と共に,前記バッテリの交換要求を前記管理サーバへと送信可能な通信装置(23)と,を有し,
     前記バッテリステーション(3)は,
      充電速度を調節して,装填されたバッテリの充電を行うことができる一又は複数の充電器(31)を,有し,
     前記管理サーバ(4)の制御部(40)は,
      前記電動車両(2)から前記バッテリの交換要求を受信したときに,少なくとも前記電動車両(2)の位置情報に基づいて,当該電動車両(2)が前記バッテリステーション(3)に到着する時間を予測する到着時間予測手段(40b)と,
      少なくとも一つのバッテリステーション(3)に前記電動車両(2)が到着する予想時間に基づいて,当該バッテリステーション(3)の充電器(31)に装填されているバッテリの充電速度を決定する充電速度決定手段(40c)と,有し,
     前記管理サーバ(4)の通信部(41)は,
      前記充電速度決定手段(40c)により決定されたバッテリの充電速度に関する情報を,前記バッテリステーション(3)へと送信し,
     前記バッテリステーション(3)は,
      前記管理サーバ(4)から受信した充電速度に関する情報に基づいて,前記充電器(31)に装填されているバッテリの充電速度を制御する
     バッテリ交換システム。
  2.  請求項1に記載のバッテリ交換システムであって,
     前記電動車両(2)は,
      自己の車両に搭載された一又は複数のバッテリの電池残量を含むバッテリ充電情報を取得する残容量計(21)を,さらに含み,
      前記通信装置(23)は,前記位置情報と前記バッテリ充電情報と共に,前記バッテリの交換要求を前記管理サーバへと送信し,
     前記管理サーバ(4)の制御部(40)は,
      前記電動車両(2)から前記バッテリの交換要求を受信したときに,当該電動車両(2)に搭載されているバッテリのバッテリ充電情報と当該電動車両(2)の位置情報とに基づいて,当該電動車両(2)が到達可能な一又は複数のバッテリステーション(3)を,候補ステーションとして選定するステーション選定手段(40a)を,さらに含み,
      前記到着時間予測手段(40b)は,少なくとも前記電動車両(2)の位置情報に基づいて,当該電動車両(2)が前記候補ステーションに到着する時間を予測し,
      充電速度決定手段(40c)は,少なくとも前記候補バッテリステーションに前記電動車両(2)が到着する予想時間に基づいて,当該候補ステーションの充電器(31)に装填されているバッテリの充電速度を決定し,
      前記通信部(41)は,前記充電速度決定手段(40c)により決定されたバッテリの充電速度に関する情報を,前記候補ステーションとして選定された前記バッテリステーション(3)へと送信する
     バッテリ交換システム。
  3.  請求項1に記載のバッテリ交換システムであって,
     前記バッテリステーション(3)は,
      前記充電器(31)に装填されているバッテリの電池残量を含むバッテリ充電情報を検出する検出機(32)と,
      前記バッテリ充電情報を前記管理サーバ(4)へと送信可能な通信機(33)とを,さらに有し,
     前記管理サーバ(4)の充電速度決定手段(40c)は,
     前記バッテリステーション(3)から受信したバッテリの電池残量に関する情報と,前記バッテリステーション(3)に前記電動車両(2)が到着する予想時間とに基づいて,当該バッテリステーション(3)の充電器(31)に装填されているバッテリの充電速度を決定する
     バッテリ交換システム。
  4.  請求項1に記載のバッテリ交換システムであって,
     前記バッテリステーション(3)は,
      前記充電器(31)に装填されているバッテリの識別番号及び電池残量を含むバッテリ充電情報を検出する検出機(32)と,
      前記バッテリ充電情報を前記管理サーバへと送信可能な通信機(33)とを,さらに有し,
     前記管理サーバ(4)は,
      前記バッテリステーション(3)からバッテリの識別番号を受信した回数に基づいて,バッテリ毎にその充電回数を記録したバッテリデータベース(42)を,さらに有しており,
     前記管理サーバ(4)の前記充電速度決定手段(40c)は,
      前記バッテリデータベース(42)に記録されているバッテリの充電回数に関する情報と,前記バッテリステーション(3)に前記電動車両(2)が到着する予想時間とに基づいて,当該バッテリステーション(3)の充電器(31)に装填されているバッテリの充電速度を決定する
     バッテリ交換システム。
  5.  請求項1に記載のバッテリ交換システムであって,
     前記バッテリステーション(3)は,
      前記充電器(31)に装填されているバッテリの識別番号を含むバッテリ充電情報を検出する検出機(32)と,
      前記バッテリ充電情報を前記管理サーバへと送信可能な通信機(33)とを,さらに有し,
     前記管理サーバ(4)は,
      各バッテリの識別番号に関連付けて各バッテリの劣化度が記憶されたバッテリデータベース(42)を,さらに有しており,
     前記管理サーバ(4)の前記充電速度決定手段(40c)は,
      前記電動車両(2)から前記バッテリの交換要求を受信したときに,少なくとも一つのバッテリステーション(3)から受信したバッテリの識別番号を参照して,前記バッテリデータベース(42)から,当該バッテリの識別番号に関連付けられているバッテリの劣化度を読み出し,読み出したバッテリの劣化度に基づいて,当該バッテリステーションの充電器(31)に装填されているバッテリの充電速度を決定する
     バッテリ交換システム。
  6.  請求項4に記載のバッテリ交換システムであって,
     前記バッテリステーション(3)は,
      前記充電器(31)を複数有するものであり,
     前記管理サーバ(4)の充電速度決定手段(40c)は,
      一つのバッテリステーション(3)内の一又は複数の充電器(31)に装填された複数のバッテリ(1)について,前記電動車両(2)が前記バッテリステーション(3)に到着するまでの間に,前記複数のバッテリの電池残量が等しい値に近づくように,各バッテリの充電速度を決定する
     バッテリ交換システム。
  7.  請求項6に記載のバッテリ交換システムであって,
     前記複数の充電器(31)のそれぞれは,
      他の充電器(31)に装填されたバッテリを電源として,自己に装填されたバッテリの充電を行うことが可能であり,
     前記管理サーバ(4)の充電速度決定手段(40c)は,
      一つのバッテリステーション(3)内の一又は複数の充電器(31)に装填された複数のバッテリ(1)について,前記電動車両(2)が前記バッテリステーションに到着するまでの間に,前記複数のバッテリの電池残量が等しい値に近づくように,少なくとも一つのバッテリを電源として利用することを考慮して,各バッテリの充電速度を決定する
     バッテリ交換システム。
  8.  請求項6に記載のバッテリ交換システムであって,
     前記バッテリステーションは,
      自然エネルギー発電機(34a)から電力の供給を受けることができるものであり,
     前記複数の充電器(31)のそれぞれは,
      他の充電器(31)に装填されたバッテリと前記自然エネルギー発電機(34a)とから電力の供給を受けて,自己に装填されたバッテリの充電を行うことが可能であり,
     前記管理サーバ(4)の充電速度決定手段(40c)は,
      一つのバッテリステーション(3)内の一又は複数の充電器(31)に装填された複数のバッテリ(1)について,前記自然エネルギー発電機が発電できない時間帯においては,前記複数のバッテリの電池残量が等しい値に近づくように,少なくとも一つのバッテリを電源として利用した場合の各バッテリの充電速度を決定し,
      前記自然エネルギー発電機が発電可能な時間帯においては,前記電動車両(2)が前記バッテリステーション(3)に到着するまでの間に,前記複数のバッテリの電池残量が等しい値に近づくように,前記自然エネルギー発電機(34a)を電源として利用した場合の前記各バッテリの充電速度を決定する
     バッテリ交換システム。
  9.  サーバ装置を,請求項1に記載のバッテリ交換システムにおける管理サーバ(4)として機能させるためのコンピュータプログラム。
PCT/JP2014/065458 2013-07-04 2014-06-11 電動車両用バッテリ交換システム及びプログラム WO2015001930A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111357827.4A CN114084032B (zh) 2013-07-04 2014-06-11 蓄电池交换***、计算机程序介质、管理伺服器及蓄电池管理方法
CN201810874679.5A CN108973744B (zh) 2013-07-04 2014-06-11 蓄电池交换***、管理伺服器及蓄电池管理方法
CN201480047422.2A CN105493378B (zh) 2013-07-04 2014-06-11 电动车辆用蓄电池交换***及程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013140925A JP5362930B1 (ja) 2013-07-04 2013-07-04 電動車両用バッテリ交換システム及びプログラム
JP2013-140925 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015001930A1 true WO2015001930A1 (ja) 2015-01-08

Family

ID=49850344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065458 WO2015001930A1 (ja) 2013-07-04 2014-06-11 電動車両用バッテリ交換システム及びプログラム

Country Status (4)

Country Link
JP (4) JP5362930B1 (ja)
CN (4) CN108973744B (ja)
TW (1) TWI583577B (ja)
WO (1) WO2015001930A1 (ja)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170771A (ja) * 2015-03-09 2016-09-23 パナソニックIpマネジメント株式会社 貸与システムおよび貸与管理方法
JP2017023366A (ja) * 2015-07-22 2017-02-02 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー システム
JP2017091430A (ja) * 2015-11-17 2017-05-25 オムロン株式会社 誘導装置、誘導システムおよび誘導方法
CN106787830A (zh) * 2016-12-19 2017-05-31 深圳惠养车科技有限公司 一种汽车保养站集成电源管理***
JP2017103897A (ja) * 2015-12-01 2017-06-08 オムロン株式会社 バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法
TWI601085B (zh) * 2017-02-24 2017-10-01 Mobile power exchange system and method thereof
US9883787B2 (en) 2014-06-19 2018-02-06 Olympus Corporation Medical apparatus system
WO2018079590A1 (ja) * 2016-10-26 2018-05-03 京セラ株式会社 管理システム、自転車、制御方法及び記憶媒体
JP2018073006A (ja) * 2016-10-26 2018-05-10 京セラ株式会社 管理システム及び自転車
FR3063954A1 (fr) * 2017-03-17 2018-09-21 Arkod Innovation Systeme d'infrastructure de charge et distribution d'unites amovibles autonomes de stockage d'energie pour vehicules electroniques et hybrides
EP3379467A4 (en) * 2015-11-17 2018-12-19 Omron Corporation Battery reservation device and battery reservation method
EP3379464A4 (en) * 2015-11-17 2019-01-02 Omron Corporation Battery reservation device
CN109642802A (zh) * 2016-09-30 2019-04-16 本田技研工业株式会社 路径搜索装置、电池信息管理装置以及程序
CN110015165A (zh) * 2017-07-31 2019-07-16 周锡卫 一种适于人工换电的直流主动调控储能蓄电池模块及控制方法
CN110435456A (zh) * 2018-05-02 2019-11-12 爱驰汽车有限公司 可替换电池包的电动车充电方法、***、设备及存储介质
WO2020004509A1 (ja) 2018-06-29 2020-01-02 レスク株式会社 バッテリ管理システム
US10600116B2 (en) 2015-11-17 2020-03-24 Omron Corporation Reservation management device, reservation management system, and reservation management method
EP3564061A4 (en) * 2016-12-30 2020-07-08 NIO Nextev Limited METHOD AND DEVICE FOR DETERMINING THE USEFULNESS OF REPLACING A BATTERY PACK FOR AN ELECTRIC VEHICLE
CN111868477A (zh) * 2018-03-23 2020-10-30 本田技研工业株式会社 服务管理***、信息处理装置、服务管理方法、终端装置以及移动电池
US11010824B2 (en) 2015-11-17 2021-05-18 Omron Corporation Battery reservation device and battery reservation method
CN113169384A (zh) * 2018-11-29 2021-07-23 本田技研工业株式会社 电池利用***、充电装置、信息处理装置、电池利用方法、程序及存储介质
US11136008B2 (en) 2017-12-29 2021-10-05 Gogoro Inc. Systems and methods for managing exchangeable energy storage device stations
US11379899B2 (en) 2015-03-27 2022-07-05 Panasonic Intellectual Property Management Co., Ltd. Control method of information terminal
US20220245234A1 (en) * 2019-07-17 2022-08-04 Gogoro Inc. Systems and methods for managing batteries
CN114851872A (zh) * 2021-02-04 2022-08-05 福建途柚新能源汽车集团股份有限公司 一种兼容新能源汽车、电动自行车的动力电池和换电装置
WO2023039561A1 (en) * 2021-09-10 2023-03-16 Land Energy, Inc Battery-centric virtual grid (vg) system
EP4246658A1 (en) * 2022-03-16 2023-09-20 Toyota Jidosha Kabushiki Kaisha Battery management system
US11797290B2 (en) 2018-12-04 2023-10-24 Mitsubishi Electric Corporation Update control device and update control method
WO2023211377A1 (en) * 2022-04-25 2023-11-02 Sun Mobility Pte Ltd Systems and methods for optimized and intelligent charging of battery packs at a battery charging and swapping station
EP4276717A1 (en) * 2022-05-11 2023-11-15 Hitachi, Ltd. Information processing apparatus, energy system, and battery operation plan creation method
US11841382B2 (en) 2018-03-20 2023-12-12 Honda Motor Co., Ltd. Information providing apparatus, information providing method, and system
US20240176777A1 (en) * 2022-06-21 2024-05-30 Rivian Ip Holdings, Llc Systems and methods for updating electric charger locations

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11967839B2 (en) 2011-12-30 2024-04-23 Analog Devices, Inc. Electromagnetic connector for an industrial control system
US10834820B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Industrial control system cable
US9191203B2 (en) 2013-08-06 2015-11-17 Bedrock Automation Platforms Inc. Secure industrial control system
US9467297B2 (en) 2013-08-06 2016-10-11 Bedrock Automation Platforms Inc. Industrial control system redundant communications/control modules authentication
US9600434B1 (en) 2011-12-30 2017-03-21 Bedrock Automation Platforms, Inc. Switch fabric having a serial communications interface and a parallel communications interface
US9727511B2 (en) 2011-12-30 2017-08-08 Bedrock Automation Platforms Inc. Input/output module with multi-channel switching capability
US8971072B2 (en) 2011-12-30 2015-03-03 Bedrock Automation Platforms Inc. Electromagnetic connector for an industrial control system
US10834094B2 (en) 2013-08-06 2020-11-10 Bedrock Automation Platforms Inc. Operator action authentication in an industrial control system
US8862802B2 (en) 2011-12-30 2014-10-14 Bedrock Automation Platforms Inc. Switch fabric having a serial communications interface and a parallel communications interface
US11314854B2 (en) 2011-12-30 2022-04-26 Bedrock Automation Platforms Inc. Image capture devices for a secure industrial control system
US9437967B2 (en) 2011-12-30 2016-09-06 Bedrock Automation Platforms, Inc. Electromagnetic connector for an industrial control system
US10613567B2 (en) 2013-08-06 2020-04-07 Bedrock Automation Platforms Inc. Secure power supply for an industrial control system
WO2016006057A1 (ja) * 2014-07-09 2016-01-14 三菱電機株式会社 電力授受システムおよび電力授受方法
CN107074120B (zh) * 2014-09-04 2019-10-11 睿能创意公司 操作可携式电能储存器充电及双向分配***的方法及双向分配***
KR101682788B1 (ko) * 2015-01-28 2016-12-12 중소기업은행 전기자동차의 배터리 교환 시스템 및 방법
US9772383B2 (en) * 2015-03-04 2017-09-26 Johnson Controls Technology Company Battery test report system and method
CN106054824B (zh) * 2015-04-13 2021-09-28 基岩自动化平台公司 用于工业控制***的安全电源
CN107069840B (zh) * 2016-02-10 2022-05-27 松下知识产权经营株式会社 蓄电装置及其控制方法、充电装置及其控制方法以及无线连接设定***
CN105529787A (zh) * 2016-02-24 2016-04-27 北京新能源汽车股份有限公司 充电桩
KR101748085B1 (ko) * 2016-06-01 2017-06-16 공현규 무인이동장치를 이용한 전력공급방법
KR101864483B1 (ko) * 2016-06-17 2018-06-04 이남재 전기차 배터리 교환 시스템 및 방법
CN107972499A (zh) * 2016-10-21 2018-05-01 法乐第(北京)网络科技有限公司 一种动力电池管理***和包括其的电动汽车
JP6687499B2 (ja) * 2016-11-01 2020-04-22 本田技研工業株式会社 情報処理装置
CN106683280B (zh) * 2016-12-30 2019-03-26 哈尔滨理工大学 一种用于电动车电池交换续航及充电的控制装置
CN108448661A (zh) * 2017-02-16 2018-08-24 林文德 电池交换***以及电池交换方法
JP6345291B1 (ja) 2017-03-22 2018-06-20 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP6345292B1 (ja) * 2017-03-22 2018-06-20 本田技研工業株式会社 管理装置、プログラム、管理方法及び生産方法
JP6363754B1 (ja) 2017-03-22 2018-07-25 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP2019023600A (ja) * 2017-07-25 2019-02-14 株式会社Jvcケンウッド 管理装置、端末装置および通信システム
DE102017216127A1 (de) * 2017-09-13 2019-03-14 Audi Ag Verfahren zum Bereitstellen einer Kommunikationsverbindung zwischen einer stationären elektrischen Ladestation und einem Kraftfahrzeug sowie Steuervorrichtung und Ladesystem
JP2020534463A (ja) * 2017-09-22 2020-11-26 ザ・ノコ・カンパニーThe Noco Company 制御スイッチバックライトシステムを備えた充電式バッテリジャンプスタート装置
JP6595036B2 (ja) * 2017-09-29 2019-10-23 本田技研工業株式会社 マガジン式充電装置
WO2019065321A1 (ja) * 2017-09-29 2019-04-04 本田技研工業株式会社 マガジン式充電装置
JP6846667B2 (ja) 2017-11-10 2021-03-24 パナソニックIpマネジメント株式会社 充填体収容装置
WO2019093082A1 (ja) 2017-11-10 2019-05-16 パナソニックIpマネジメント株式会社 充電装置
JP2019097235A (ja) * 2017-11-18 2019-06-20 渡邉 雅弘 再生可能エネルギー蓄積および利用方法
JP7032110B2 (ja) * 2017-11-21 2022-03-08 トヨタ自動車株式会社 交換料金設定装置および交換料金設定システム
CN110015105A (zh) * 2017-12-18 2019-07-16 陈志勇 充电站***
TWI723310B (zh) * 2017-12-29 2021-04-01 英屬開曼群島商睿能創意公司 基於使用狀態維護儲能裝置的系統和方法
JP2019145088A (ja) 2017-12-29 2019-08-29 ゴゴロ インク 交換可能エネルギー貯蔵装置ステーション間でエネルギーを動的に配分するためのシステムおよび方法
TWI704740B (zh) 2017-12-29 2020-09-11 英屬開曼群島商睿能創意公司 提供置於裝置交換站的複數個能源儲存裝置的方法、裝置交換站及伺服器
TWI740082B (zh) * 2017-12-29 2021-09-21 英屬開曼群島商睿能創意公司 對置於裝置交換站的複數個可交換式能源儲存裝置的充電方法、伺服器、裝置交換站的管理方法
WO2019146263A1 (ja) * 2018-01-29 2019-08-01 本田技研工業株式会社 情報処理システム、情報処理装置、および情報処理方法
KR102131287B1 (ko) * 2018-01-30 2020-07-07 재상전자주식회사 전기이륜차의 배터리 교환 시스템
WO2019159475A1 (ja) * 2018-02-13 2019-08-22 本田技研工業株式会社 制御装置、制御方法、及びプログラム
JP7345143B2 (ja) 2018-02-23 2023-09-15 パナソニックIpマネジメント株式会社 バッテリ管理システム、バッテリ管理方法および端末装置
TWI694936B (zh) * 2018-03-02 2020-06-01 光陽工業股份有限公司 充電電池的預約方法及電動載具系統
TWI669677B (zh) * 2018-03-07 2019-08-21 光陽工業股份有限公司 充電座管理方法、用於充電座管理方法的伺服器及充電座
TWI685765B (zh) * 2018-03-07 2020-02-21 光陽工業股份有限公司 供電裝置之載具綁定變更方法及其伺服器
WO2019182303A1 (ko) * 2018-03-19 2019-09-26 엘지전자 주식회사 휴대용 배터리 충전 시스템
JP7016947B2 (ja) * 2018-03-20 2022-02-07 本田技研工業株式会社 管理装置および管理システム
JP2019165584A (ja) * 2018-03-20 2019-09-26 本田技研工業株式会社 情報提供装置、情報提供方法及びシステム
JPWO2019181702A1 (ja) * 2018-03-20 2020-12-17 本田技研工業株式会社 管理装置および管理システム
WO2019181584A1 (ja) * 2018-03-20 2019-09-26 本田技研工業株式会社 管理装置および管理システム
JP7000558B2 (ja) * 2018-03-20 2022-01-19 本田技研工業株式会社 サーバ、管理装置および管理システム
JP2021119555A (ja) * 2018-03-20 2021-08-12 本田技研工業株式会社 管理装置、バッテリおよび管理システム
US11447105B2 (en) * 2018-03-29 2022-09-20 Gogoro Inc. Systems and methods for managing batteries in a battery exchange station
US20190337392A1 (en) * 2018-05-02 2019-11-07 Baker Hughes, A Ge Company, Llc Storing and Providing Electric Energy to Equipment
DE102018005252A1 (de) * 2018-07-02 2020-01-02 Daimler Ag Verfahren zum Betrieb eines Fahrzeugs
JP7019827B2 (ja) * 2018-09-13 2022-02-15 本田技研工業株式会社 配置計画装置
CN109249837B (zh) * 2018-09-28 2021-03-02 汉海信息技术(上海)有限公司 电池更换方法、服务器、充电柜及***
JP2020077521A (ja) * 2018-11-07 2020-05-21 パナソニックIpマネジメント株式会社 バッテリステーション管理システム及びバッテリステーション管理方法
EP3885178A4 (en) * 2018-11-29 2022-01-26 Honda Motor Co., Ltd. BATTERY USAGE SYSTEM, STORAGE DEVICE, BATTERY USAGE METHOD, PROGRAM AND STORAGE MEDIA
KR102190351B1 (ko) * 2018-11-30 2020-12-11 재상전자주식회사 전기이륜차의 배터리 교환 시스템 및 방법
KR102171604B1 (ko) * 2018-11-30 2020-10-29 주식회사 젠트로피 전기이륜차의 배터리교환 자동 예약 시스템 및 방법
US11374421B2 (en) 2018-12-05 2022-06-28 Neutron Holdings, Inc. Rechargeable battery kiosk that dynamically alters a charging rate of rechargeable batteries based on usage data
WO2020171056A1 (ja) * 2019-02-18 2020-08-27 本田技研工業株式会社 保管装置、推定装置、保管方法、プログラム、及び記憶媒体
JP7399152B2 (ja) * 2019-02-25 2023-12-15 本田技研工業株式会社 移動体、バッテリ、情報処理方法、およびプログラム
KR102281641B1 (ko) * 2019-04-01 2021-07-29 스마트큐브(주) 스마트폰을 이용한 전기운송수단용 배터리 관제시스템
CN110001450A (zh) * 2019-04-19 2019-07-12 桂林市小蜗科技有限公司 一种电动汽车和电动单车混合交流充电桩
CN110077270B (zh) * 2019-05-09 2021-11-02 重庆九环新越新能源科技发展有限公司 储能设备的集中充/集电方法及***
CN110103769B (zh) * 2019-06-26 2021-02-19 广州小鹏汽车科技有限公司 电动车辆的充电控制方法、装置、存储介质及计算机设备
EP3761717A1 (en) 2019-07-05 2021-01-06 Sony Corporation Server devices, machines, battery devices and methods for managing usage of one or more battery devices
EP4064173A4 (en) * 2019-11-19 2023-02-22 Honda Motor Co., Ltd. INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING PROGRAM AND METHOD
JP7094459B2 (ja) * 2019-11-19 2022-07-01 三菱電機株式会社 保守管理システム及び保守管理地上システム
CN111003088B (zh) * 2019-11-27 2021-05-14 安徽科创生产力促进中心有限公司 一种电动自行车电池架及其换电装置
JP7075919B2 (ja) * 2019-12-23 2022-05-26 本田技研工業株式会社 バッテリ情報提供装置、バッテリ情報提供システム、バッテリ情報提供方法、およびプログラム
JPWO2021145360A1 (ja) * 2020-01-17 2021-07-22
EP4068460A4 (en) * 2020-01-24 2024-04-03 GS Yuasa International Ltd. DETERMINATION DEVICE, DETERMINATION DETERMINATION SYSTEM, WORK SUPPORT DEVICE, DETERMINATION DETERMINATION METHOD AND COMPUTER PROGRAM
JP7062022B2 (ja) * 2020-02-18 2022-05-02 本田技研工業株式会社 経路案内装置及びプログラム
JP7420596B2 (ja) 2020-03-04 2024-01-23 古河電気工業株式会社 充電システム
JPWO2021187623A1 (ja) * 2020-03-19 2021-09-23
WO2021194267A1 (ko) 2020-03-24 2021-09-30 주식회사 엘지에너지솔루션 전기차 충전 스테이션을 이용한 배터리 성능관리 시스템 및 방법
JPWO2021241764A1 (ja) * 2020-05-29 2021-12-02
CN114079091B (zh) * 2020-08-11 2023-05-12 宇通客车股份有限公司 一种电池***编码成组方法
US20230278431A1 (en) * 2020-08-27 2023-09-07 Lg Energy Solution, Ltd. Platform Service System and Method for Integrated Battery Management
KR102283832B1 (ko) * 2021-01-25 2021-08-02 (주)블루네트웍스 복수의 스테이션별 이동식 충전배터리 풀을 관리하는 방법 및 서버
EP4170572A4 (en) * 2021-08-31 2023-04-26 Contemporary Amperex Technology Co., Limited BATTERY REPLACEMENT PROCEDURE, DEVICE, SYSTEM, DEVICE AND MEDIA
WO2023039563A1 (en) * 2021-09-10 2023-03-16 Land Energy, Inc Home plus vehicle battery backup system with individual battery module profiles
WO2023047540A1 (ja) * 2021-09-24 2023-03-30 本田技研工業株式会社 バッテリーステーション及び制御方法
KR20230043423A (ko) * 2021-09-24 2023-03-31 주식회사 엘지에너지솔루션 비상발전기능을 갖는 배터리 교체 스테이션
TWI796801B (zh) * 2021-10-07 2023-03-21 國立虎尾科技大學 電動載具的使用記錄系統
CN116416083A (zh) * 2021-12-30 2023-07-11 奥动新能源汽车科技有限公司 电池的管理方法、装置、电子设备、存储介质
JP7469501B1 (ja) 2022-05-20 2024-04-16 日揮ホールディングス株式会社 バッテリーユニット保管用倉庫
WO2024111017A1 (ja) * 2022-11-21 2024-05-30 ヤマハ発動機株式会社 スワッピング式シェアドバッテリ充電設備

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648184A (ja) * 1992-06-16 1994-02-22 Hans Baer 電気自動車へのエネルギー供給方法及び装置並びにその供給に適した自動車
JPH10285824A (ja) * 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd 非常用発電装置
JP2001057711A (ja) * 1999-01-25 2001-02-27 Zip Charge:Kk 電気車両用エネルギー供給システム、電気車両用バッテリ、電気車両用バッテリ充電装置、バッテリ販売装置及び電気車両用バッテリ管理システム
JP2002313433A (ja) * 2001-04-18 2002-10-25 Makita Corp 複数の充電装置の管理方法
JP2010175492A (ja) * 2009-02-02 2010-08-12 Omron Corp 情報処理端末、情報処理装置、情報処理システム、情報処理方法、および、プログラム
JP2011083166A (ja) * 2009-10-09 2011-04-21 Chugoku Electric Power Co Inc:The 充電スタンド案内システム、制御サーバ及びスタンドサーバ
JP2012048286A (ja) * 2010-08-24 2012-03-08 Hitachi Ltd 電気自動車の充電制御方法、充電監視制御センタ、車載カーナビ装置、および電力系統安定化システム
WO2012120564A1 (ja) * 2011-03-09 2012-09-13 株式会社 日立製作所 二次電池システム
JP2012253976A (ja) * 2011-06-06 2012-12-20 Shimizu Corp 充放電制御装置、充放電制御方法、プログラム
JP2013121303A (ja) * 2011-12-09 2013-06-17 Toyota Industries Corp 電池充電量制御装置および方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715089B2 (ja) * 1997-09-15 2005-11-09 本田技研工業株式会社 バッテリ充電装置
CN1459396A (zh) * 2002-05-23 2003-12-03 刘奥宇 电动车电能供应站
US7282891B2 (en) * 2002-12-30 2007-10-16 Motorola, Inc. Method for charging a battery
JP2004215468A (ja) * 2003-01-09 2004-07-29 Oki Electric Ind Co Ltd 二次電池電源供給方法及びその通信システム並びにプログラム
CN1439544A (zh) * 2003-03-28 2003-09-03 潘世澄 一种延长电动车辆续行距离的方法
JP2005006461A (ja) * 2003-06-13 2005-01-06 Panasonic Ev Energy Co Ltd 無人搬送車用二次電池の充放電制御方法
CN100517905C (zh) * 2004-11-18 2009-07-22 上海磁浮交通工程技术研究中心 基于混沌控制的车载蓄电池管理方法
US8117293B1 (en) * 2005-01-05 2012-02-14 Smith Micro Software, Inc. Method of receiving, storing, and providing device management parameters and firmware updates to application programs within a mobile device
JP2007116799A (ja) * 2005-10-19 2007-05-10 Leben Hanbai:Kk バッテリー管理システム
JP5228322B2 (ja) * 2006-08-30 2013-07-03 トヨタ自動車株式会社 蓄電装置の劣化評価システム、車両、蓄電装置の劣化評価方法およびその劣化評価方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JPWO2010005052A1 (ja) * 2008-07-10 2012-01-05 見敏 石井 電気自動車の蓄電池管理の表示方法
WO2010033517A2 (en) * 2008-09-19 2010-03-25 Better Place GmbH System and method for operating an electric vehicle
US8006793B2 (en) * 2008-09-19 2011-08-30 Better Place GmbH Electric vehicle battery system
JP5338337B2 (ja) * 2009-01-23 2013-11-13 日産自動車株式会社 バッテリ交換システム及びバッテリ交換方法
DE102009016869A1 (de) * 2009-04-08 2010-10-14 Li-Tec Battery Gmbh Verfahren zum Betreiben eines Fahrzeugs
US8676636B2 (en) * 2009-04-22 2014-03-18 Parkpod Gmbh System for managing electric energy grid-vehicle exchange devices
CN102474110B (zh) * 2009-07-15 2014-12-10 松下电器产业株式会社 电力控制***、电力控制方法、电力控制装置及电力控制程序
JP2011041441A (ja) * 2009-08-18 2011-02-24 Toyota Central R&D Labs Inc 充電電力制限値演算装置
WO2011034526A1 (en) * 2009-09-16 2011-03-24 Jonathan Matthew Ross Battery management method and system
JP2011087430A (ja) * 2009-10-16 2011-04-28 Toyota Motor Corp 充電装置および充電方法
JP4998544B2 (ja) * 2009-12-25 2012-08-15 トヨタ自動車株式会社 交換用蓄電装置の管理システムおよび交換用蓄電装置の管理方法
JP2011147308A (ja) * 2010-01-18 2011-07-28 Toyota Motor Corp バッテリの充電システム
JP2011155737A (ja) * 2010-01-26 2011-08-11 Toyota Motor Corp バッテリの充電システム
JP2011155765A (ja) * 2010-01-27 2011-08-11 Toyota Motor Corp 充電装置および充電方法
US8427104B2 (en) * 2010-04-22 2013-04-23 The Raymond Corporation Method of allocating batteries for use on specific industrial vehicles in a fleet
JP2011234599A (ja) * 2010-04-26 2011-11-17 Hisashi Tsukamoto 走行体運行システム
EP2385349A1 (en) * 2010-05-06 2011-11-09 Leica Geosystems AG Method and guidance unit for guiding battery-operated transportation means to reconditioning stations
JP5343168B2 (ja) * 2010-06-24 2013-11-13 パナソニック株式会社 電池の劣化度を取得するための方法及びそのシステム
JP5544499B2 (ja) * 2010-07-12 2014-07-09 アルプス・グリーンデバイス株式会社 バッテリ充電システム及びバッテリ充電方法
FR2968107A1 (fr) * 2010-11-25 2012-06-01 Denso Corp Dispositif d'estimation du besoin en electricite d'un vehicule , dispositif de traitement de donnees electriques et systeme de recharge
CN102064578B (zh) * 2010-12-20 2014-03-12 中国电力科学研究院 一种电动汽车充换电站
JP2012139008A (ja) * 2010-12-24 2012-07-19 Sharp Corp 電気自動車充電装置、電気自動車充電システム、電気自動車充電方法、プログラムおよび記録媒体
WO2013024484A1 (en) * 2011-08-16 2013-02-21 Better Place GmbH Estimation and management of loads in electric vehicle networks
US8983657B2 (en) * 2011-08-31 2015-03-17 Caterpillar Inc. System and method of managing vehicles deployed in a worksite
JP5803548B2 (ja) * 2011-10-13 2015-11-04 日産自動車株式会社 充電制御装置
JP5741385B2 (ja) * 2011-11-07 2015-07-01 トヨタ自動車株式会社 バッテリの充電システム
TWI446684B (zh) * 2011-11-17 2014-07-21 Hon Hai Prec Ind Co Ltd 電動車的充電控制系統及充電控制方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648184A (ja) * 1992-06-16 1994-02-22 Hans Baer 電気自動車へのエネルギー供給方法及び装置並びにその供給に適した自動車
JPH10285824A (ja) * 1997-04-11 1998-10-23 Matsushita Electric Ind Co Ltd 非常用発電装置
JP2001057711A (ja) * 1999-01-25 2001-02-27 Zip Charge:Kk 電気車両用エネルギー供給システム、電気車両用バッテリ、電気車両用バッテリ充電装置、バッテリ販売装置及び電気車両用バッテリ管理システム
JP2002313433A (ja) * 2001-04-18 2002-10-25 Makita Corp 複数の充電装置の管理方法
JP2010175492A (ja) * 2009-02-02 2010-08-12 Omron Corp 情報処理端末、情報処理装置、情報処理システム、情報処理方法、および、プログラム
JP2011083166A (ja) * 2009-10-09 2011-04-21 Chugoku Electric Power Co Inc:The 充電スタンド案内システム、制御サーバ及びスタンドサーバ
JP2012048286A (ja) * 2010-08-24 2012-03-08 Hitachi Ltd 電気自動車の充電制御方法、充電監視制御センタ、車載カーナビ装置、および電力系統安定化システム
WO2012120564A1 (ja) * 2011-03-09 2012-09-13 株式会社 日立製作所 二次電池システム
JP2012253976A (ja) * 2011-06-06 2012-12-20 Shimizu Corp 充放電制御装置、充放電制御方法、プログラム
JP2013121303A (ja) * 2011-12-09 2013-06-17 Toyota Industries Corp 電池充電量制御装置および方法

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9883787B2 (en) 2014-06-19 2018-02-06 Olympus Corporation Medical apparatus system
JP2021140816A (ja) * 2015-03-09 2021-09-16 パナソニックIpマネジメント株式会社 貸与システム
JP2016170771A (ja) * 2015-03-09 2016-09-23 パナソニックIpマネジメント株式会社 貸与システムおよび貸与管理方法
US11379899B2 (en) 2015-03-27 2022-07-05 Panasonic Intellectual Property Management Co., Ltd. Control method of information terminal
JP2017023366A (ja) * 2015-07-22 2017-02-02 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー システム
US11010824B2 (en) 2015-11-17 2021-05-18 Omron Corporation Battery reservation device and battery reservation method
US10600116B2 (en) 2015-11-17 2020-03-24 Omron Corporation Reservation management device, reservation management system, and reservation management method
WO2017086163A1 (ja) * 2015-11-17 2017-05-26 オムロン株式会社 誘導装置、誘導システムおよび誘導方法
JP2017091430A (ja) * 2015-11-17 2017-05-25 オムロン株式会社 誘導装置、誘導システムおよび誘導方法
US10661676B2 (en) 2015-11-17 2020-05-26 Omron Corporation Guide device, guide system, and guide method
US10650444B2 (en) 2015-11-17 2020-05-12 Omron Corporation Battery reservation device and battery reservation method
EP3379467A4 (en) * 2015-11-17 2018-12-19 Omron Corporation Battery reservation device and battery reservation method
EP3379464A4 (en) * 2015-11-17 2019-01-02 Omron Corporation Battery reservation device
US10643272B2 (en) 2015-11-17 2020-05-05 Omron Corporation Battery reservation device
US10688876B2 (en) 2015-12-01 2020-06-23 Omron Corporation Battery charging device, battery charging system, and battery charging method
JP2017103897A (ja) * 2015-12-01 2017-06-08 オムロン株式会社 バッテリ充電装置、バッテリ充電システムおよびバッテリ充電方法
EP3386061A4 (en) * 2015-12-01 2019-01-16 Omron Corporation BATTERY DEVICE, BATTERY CHARGING SYSTEM AND BATTERY CHARGING METHOD
CN109642802A (zh) * 2016-09-30 2019-04-16 本田技研工业株式会社 路径搜索装置、电池信息管理装置以及程序
JP2018073006A (ja) * 2016-10-26 2018-05-10 京セラ株式会社 管理システム及び自転車
WO2018079590A1 (ja) * 2016-10-26 2018-05-03 京セラ株式会社 管理システム、自転車、制御方法及び記憶媒体
CN106787830A (zh) * 2016-12-19 2017-05-31 深圳惠养车科技有限公司 一种汽车保养站集成电源管理***
US11535117B2 (en) 2016-12-30 2022-12-27 Nio (Anhui) Holding Co., Ltd. Method and device for determining utility of replacement of battery pack for electric vehicle
EP3564061A4 (en) * 2016-12-30 2020-07-08 NIO Nextev Limited METHOD AND DEVICE FOR DETERMINING THE USEFULNESS OF REPLACING A BATTERY PACK FOR AN ELECTRIC VEHICLE
TWI601085B (zh) * 2017-02-24 2017-10-01 Mobile power exchange system and method thereof
FR3063954A1 (fr) * 2017-03-17 2018-09-21 Arkod Innovation Systeme d'infrastructure de charge et distribution d'unites amovibles autonomes de stockage d'energie pour vehicules electroniques et hybrides
CN110015165B (zh) * 2017-07-31 2023-10-31 周锡卫 一种适于人工换电的直流主动调控储能蓄电池模块的控制方法
CN110015165A (zh) * 2017-07-31 2019-07-16 周锡卫 一种适于人工换电的直流主动调控储能蓄电池模块及控制方法
US11136008B2 (en) 2017-12-29 2021-10-05 Gogoro Inc. Systems and methods for managing exchangeable energy storage device stations
US11841382B2 (en) 2018-03-20 2023-12-12 Honda Motor Co., Ltd. Information providing apparatus, information providing method, and system
CN111868477A (zh) * 2018-03-23 2020-10-30 本田技研工业株式会社 服务管理***、信息处理装置、服务管理方法、终端装置以及移动电池
CN110435456B (zh) * 2018-05-02 2022-07-12 爱驰汽车有限公司 可替换电池包的电动车充电方法、***、设备及存储介质
CN110435456A (zh) * 2018-05-02 2019-11-12 爱驰汽车有限公司 可替换电池包的电动车充电方法、***、设备及存储介质
KR20210008370A (ko) 2018-06-29 2021-01-21 레스크 가부시키가이샤 배터리 관리 시스템
US11865941B2 (en) 2018-06-29 2024-01-09 Resc, Ltd. Battery management system
WO2020004509A1 (ja) 2018-06-29 2020-01-02 レスク株式会社 バッテリ管理システム
US11724615B2 (en) 2018-06-29 2023-08-15 Resc, Ltd. Battery management system
CN113169384A (zh) * 2018-11-29 2021-07-23 本田技研工业株式会社 电池利用***、充电装置、信息处理装置、电池利用方法、程序及存储介质
US11797290B2 (en) 2018-12-04 2023-10-24 Mitsubishi Electric Corporation Update control device and update control method
US20220245234A1 (en) * 2019-07-17 2022-08-04 Gogoro Inc. Systems and methods for managing batteries
CN114851872A (zh) * 2021-02-04 2022-08-05 福建途柚新能源汽车集团股份有限公司 一种兼容新能源汽车、电动自行车的动力电池和换电装置
WO2023039561A1 (en) * 2021-09-10 2023-03-16 Land Energy, Inc Battery-centric virtual grid (vg) system
EP4246658A1 (en) * 2022-03-16 2023-09-20 Toyota Jidosha Kabushiki Kaisha Battery management system
WO2023211377A1 (en) * 2022-04-25 2023-11-02 Sun Mobility Pte Ltd Systems and methods for optimized and intelligent charging of battery packs at a battery charging and swapping station
EP4276717A1 (en) * 2022-05-11 2023-11-15 Hitachi, Ltd. Information processing apparatus, energy system, and battery operation plan creation method
US20240176777A1 (en) * 2022-06-21 2024-05-30 Rivian Ip Holdings, Llc Systems and methods for updating electric charger locations

Also Published As

Publication number Publication date
JP6371450B2 (ja) 2018-08-08
JP6181482B2 (ja) 2017-08-16
JP2019004693A (ja) 2019-01-10
JP2017225342A (ja) 2017-12-21
CN105493378B (zh) 2018-08-28
CN105493378A (zh) 2016-04-13
TW201511986A (zh) 2015-04-01
CN108973744A (zh) 2018-12-11
CN108973744B (zh) 2022-06-03
JP2015015827A (ja) 2015-01-22
CN108749624B (zh) 2021-08-03
TWI583577B (zh) 2017-05-21
CN108749624A (zh) 2018-11-06
CN114084032A (zh) 2022-02-25
JP5362930B1 (ja) 2013-12-11
JP6730643B2 (ja) 2020-07-29
JP2015015875A (ja) 2015-01-22
CN114084032B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
JP6371450B2 (ja) 電動車両用バッテリ交換システム及びプログラム
CA2951583C (en) System and method for recommending charging station for electric vehicle
US8996213B2 (en) Charge control system for electric motor vehicle
US8423273B2 (en) Minimum energy route for a motor vehicle
US8527132B2 (en) Energy maps and method of making
JP5158183B2 (ja) 車両の必要電力予測装置
CN104670036A (zh) 信息输出方法、信息提示装置以及信息输出***
US10793018B2 (en) Server, vehicle, and method for providing charging information
JP2010230499A (ja) 充電施設予約システム及び充電施設予約プログラム
JP2013027163A (ja) 蓄電池充電計画支援システム
CN108663061B (zh) 一种电动汽车里程预估***及其预估方法
JP5327207B2 (ja) 充電システム
JP5442088B1 (ja) 電動車両管理システム
JP2014048086A (ja) ナビゲーション装置
EP3889856A1 (en) Power calculation apparatus and power calculation method
JP2012115065A (ja) 電力情報処理装置
JP2014052231A (ja) ナビゲーション装置
KR20240051720A (ko) 충전소 추천 장치 및 그 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047422.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/04/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14819634

Country of ref document: EP

Kind code of ref document: A1