WO2008126630A1 - モータ制御装置、制御方法及び制御プログラム - Google Patents

モータ制御装置、制御方法及び制御プログラム Download PDF

Info

Publication number
WO2008126630A1
WO2008126630A1 PCT/JP2008/054691 JP2008054691W WO2008126630A1 WO 2008126630 A1 WO2008126630 A1 WO 2008126630A1 JP 2008054691 W JP2008054691 W JP 2008054691W WO 2008126630 A1 WO2008126630 A1 WO 2008126630A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
control
magnet
coil
motor
Prior art date
Application number
PCT/JP2008/054691
Other languages
English (en)
French (fr)
Inventor
Tetsuya Miura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800022978A priority Critical patent/CN101589546B/zh
Priority to EP08722088A priority patent/EP2058941B1/en
Priority to BRPI0808381-9A priority patent/BRPI0808381A2/pt
Priority to US12/309,526 priority patent/US8013565B2/en
Publication of WO2008126630A1 publication Critical patent/WO2008126630A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2205/00Application of thermometers in motors, e.g. of a vehicle

Definitions

  • a magnet temperature estimating means for estimating the temperature of the permanent magnet by operating the motor with the stay arranged with the coil on the concentric outer side of the low evening with the permanent magnet, and the estimated magnet temperature.
  • the present invention relates to a control means for controlling a motion based on the control device, a control method, a control method, and a control program. Background art
  • hybrid vehicles In recent years, hybrid vehicles, electric vehicles, fuel cell vehicles, etc. have attracted attention, and various improvements have been made with the aim of improving the power performance over conventional engine-driven vehicles. For example, in hybrid vehicles, higher voltages and improved drive systems are being used to increase energy efficiency and drive performance.
  • thermocouple signal provided in the night is provided with a slip ring or a single connector on the low shaft, and the signal is taken out through these.
  • the cost was increased and the structure of the movie was complicated.
  • Japanese Laid-Open Patent Publication No. 2 0 0 5-7 7 3 3 3 3 stores the temperature distribution of the morning and evening measured in advance, detects the temperature of the coil by detecting multiple temperatures, Inspection A technique for estimating a magnetic sensor temperature, a bearing temperature, a low temperature magnet temperature, and the like by comparing a plurality of temperatures obtained and a stored temperature distribution of the motion is disclosed.
  • Japanese Patent Laid-Open No. 2 00 0-2 2 3 4 2 1 describes a cooling system in which the oil cooling system on the steer side and the oil cooling system on the mouth side are separated and circulated through the low oil cooling system In addition to measuring the oil flow rate, in the low oil cooling system, the inflow temperature of the cooling oil before low temperature cooling and the outflow temperature of the cooling oil after low temperature cooling are measured. Techniques for estimating the temperature of the are shown. Disclosure of the invention
  • a low error magnet temperature includes a predetermined error only with the lower cooling oil temperature.
  • an object of the present invention is to provide a magnet temperature estimating means for estimating the temperature of a permanent magnet incorporated in a low evening so that the morning evening is small and has high performance. And a control means for controlling the motor based on the estimated magnet temperature, and a motor control device, method and program including:
  • a motor control device operates a motor that has a steering coil having a steering coil arranged on a concentric outer side of a low magnet having a permanent magnet.
  • the motor control apparatus includes: Cooling hands that cool the evening A temperature detecting means for detecting the liquid temperature of the cooling liquid, and a coil temperature detecting means for detecting the temperature of the coil, and the magnet temperature estimating means The thermal resistance between the coil, the thermal resistance between the steer coil and the permanent magnet, and the heat resistance ratio, which is the ratio of During the motor operation, the magnet temperature is obtained by calculation based on the coil temperature, the coolant temperature, the heat generation ratio, and the heat resistance ratio.
  • control means controls the motor by switching between the P WM control and the rectangular wave control, and the magnet temperature estimating means generates heat by the P WM control and the rectangular wave control.
  • the calculation is performed according to the change in the ratio.
  • the motor control method operates a motor in which a steering wheel having a steering coil is disposed on the concentric outer side of a low winding having a permanent magnet, A coil temperature detection process for detecting the temperature of the heat generating coil, a liquid temperature detection process for detecting the liquid temperature of the cooling liquid that cools the outer periphery of the steer, and a magnet temperature estimation for estimating the temperature of the permanent magnet that generates heat And a motor control method that controls the motor based on the estimated magnet temperature, and the magnet temperature estimation step includes a thermal resistance between the coolant and the steer coil, and a stator coil.
  • the heat resistance ratio between the magnet and the permanent magnet, and the heat resistance ratio, which is the ratio of the heat resistance ratio between the steer coil and the permanent magnet, are obtained in advance. And the liquid temperature of the coolant, The ratio, and the thermal resistance ratio, and obtains by calculation the magnet temperature based on.
  • the control process switches the P WM control and the rectangular wave control to control the motor control
  • the magnet temperature estimation process includes the heat generation ratio by the P WM control and the rectangular wave control. The calculation is performed in accordance with the change of.
  • a certain heat resistance ratio and a heat generation ratio between the coil and the permanent magnet are obtained in advance.
  • the coil temperature, the liquid temperature of the coolant, the heat generation ratio, and the heat resistance are obtained.
  • the magnet temperature is obtained by calculation based on the ratio and.
  • the control step switches the PWM control and the rectangular wave control to control the motor control
  • the magnet temperature estimation step includes the heat generation ratio of the PWM control and the rectangular wave control. It is characterized by computing according to changes.
  • the low magnet temperature is calculated based on a plurality of parameters, there is an effect that the low magnet temperature can be estimated with high accuracy, and appropriate motor control is possible.
  • FIG. 1 is a configuration diagram showing a configuration of a morning control apparatus for controlling a morning evening according to the present embodiment.
  • FIG. 3 is a calculation flow chart of the magnet temperature according to the present embodiment.
  • FIG. 4 is a flow chart of the motor magnet demagnetization protection control according to this embodiment.
  • FIG. 5 is a schematic diagram of a steered coil heat generation map and a low magnet heat generation map according to the present embodiment.
  • FIG. 6 is a schematic diagram of a mouth-and-mouth magnet thermal demagnetization temperature limit map according to the present embodiment.
  • Figure 7 shows the experimental results and the correlation diagram based on actual measurements.
  • FIG. 1 shows the configuration of a motor controller 20 that controls the motor 10.
  • the motor 10 is a stage having a permanent magnet 16, a resolver 13 provided in the low evening 1 2, and a stage having a coil 16 located outside the mouth evening 1 2.
  • a temperature sensor 14 for detecting the temperature of the coil 1 6.
  • the motor control device 20 for controlling the motor 10 includes a steering coil temperature amplifier 21, a motor cooling oil temperature amplifier 22, a vehicle control unit 23, and a motor control unit 24. Contains.
  • the power supply unit 30 that supplies power to the motor 10 includes a battery 33, a boost converter 3 2 that boosts the battery voltage, and a motor 10 according to a command from the motor control unit 24. Including a motor vehicle 3 1 that supplies power to
  • the temperature of the steering coil is detected by the temperature sensor 14, amplified by the steering coil temperature amplifier 21, and transmitted to the vehicle control unit 23. Further, the motor cooling oil 17 that cools the outer periphery of the stay cools the steering coil 16 along the end coil portion (path indicated by the broken line in the figure) of the steering coil 16. The temperature of the motor coolant that has been heated by the steering coil 16 is detected by the temperature sensor 15 and is similarly transmitted to the vehicle control unit 23 via the motor coolant temperature amplifier 22. It is.
  • the vehicle controller 23 receives the motor cooling oil temperature and the Steering Coil temperature as inputs, the motor cooling oil, and the thermal model of the Steering Coil 1 6 and the Low Magnet 1 2 (temperature, heat generation, thermal resistance).
  • the low magnet temperature is estimated based on and, and a control instruction is sent to the motor control unit 24.
  • T rt T s t + Q rt / Q s tR 2 / R 1 (T s t -T o i 1)
  • the Steering Coil Temperature T st and the Mo Cool Cooling Oil Temperature T oi 1 can be obtained by actual measurement, and Q rt No Q st ⁇ R 2ZR 1 can be obtained by prior measurement.
  • the low magnet temperature can be obtained at.
  • Figure 7 shows the experimental results from actual measurements.
  • an experimental vehicle was specially manufactured that made it possible to measure the temperature of the low-speed magnet using a slip ring provided on the low-speed shaft.
  • Fig. 7 (E) shows that the increase in the Steering coil temperature is proportional to the increase in the Moe cooling oil temperature
  • Fig. 7 (F) shows that the lower the Coil temperature is lower than the Steering coil temperature increase. It is shown that the magnet temperature rise also has a proportional relationship. From this, it was confirmed that there is a predetermined proportional relationship between the rise in the temperature of the coolant oil and the rise in the magnet temperature of the mouth.
  • FIG. 7 (G) the value of ⁇ 2 ⁇ 1 (indicated by a circle in the figure) is obtained from the temperatures of T st, T rt, and Toi 1 obtained by actual measurement in this embodiment, and Q r .t / Q st * R 2 / R 1 is calculated and plotted in Fig. 7 (G). Also. In Fig. 7 (G), it increases at around 4 00 rpm (for example, about 80 km / h in terms of speed) because the high-frequency noise in PWM control affects low magnetite. It is considered that the calorific value increased.
  • R 2ZR 1 can be calculated as, for example, a constant value of about 3.5 by correcting the vicinity of the inflection point of PWM control and rectangular wave control. .
  • FIG. 3 shows the map map used in this processing.
  • Fig. 5 (A) shows the Stealth Coil Heat Generation Map
  • Fig. 5 (B) shows the Low Coil Magnet Heat Generation Map
  • Fig. 6 (C) shows the Low Coil Magnet Thermal Demagnetization Temperature Limit Map.
  • the contour-line heat generation amount in the Steering Coil Heating Map in Fig. 5 (A) is almost 10 times that in the Magnet / Mount Heating Map shown in Fig. 5 (B).
  • the mouth-and-mouth magnet heat generation map shown in Fig. 5 (B) shows discontinuous heat generation characteristics at the inflection point between the PWM control and the rectangular wave control described above.
  • the low heat magnet demagnetization temperature limit map shown in Fig. 6 shows discontinuous heat generation characteristics similar to those from 5, O O O r pm to 10,000 r pm.
  • the low magnetic demagnetization temperature limit map shown in Fig. 6 (C) is divided into five stages from 1 60 to 2 10 where the thermal demagnetization limit temperature due to the weak magnetic field generated by the drive of the motor is Therefore, it is necessary to operate the low temperature magnet temperature below the thermal demagnetization limit temperature under each operating condition based on the combination of rotational speed and torque.
  • step S 1 the low temperature magnet temperature calculation 41 shown in FIG. 3 is based on the torque command value instructed from the outside and the rotational speed measurement value detected by the resolver 13 3.
  • the command condition M l shown in Fig. 6 (C) is an acceleration command with a torque of 140 Nm and a rotational speed of 80 00 to 1 2000 rpm.
  • the low magnet temperature that outputs the same torque is 8000 to 9000 rpm.
  • the temperature is up to the limit temperature of 1 90, but from 9 000 to 1 1100 Orm pm, the limit temperature is 1 80, and from 1 1 000 to 1 200 00 rpm, it decreases to 1 70.
  • FIG. 4 shows the flow of the low demagnetization thermal demagnetization protection control process (hereinafter abbreviated as protection control).
  • protection control is started from a main process (not shown)
  • a low temperature magnet temperature is calculated in step S10
  • a low temperature magnet demagnetization limit temperature is calculated in step S12.
  • step S 14 If the low magnet temperature obtained by the calculation in step S 14 is “No” below the thermal demagnetization limit temperature by the combination of the rotation speed and torque, the normal processing is executed. If the thermal demagnetization limit temperature is exceeded, the process proceeds to step S 16 to execute the “Ye s” process. In step S 16, calculate the allowable torque value that does not demagnetize. Furthermore, in step S 18, the torque command value is limited to the allowable torque or the rotational speed is limited to prevent the low magnet temperature from rising, and the process returns to the main process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Power Steering Mechanism (AREA)

Abstract

ステータコイルの温度は、温度センサ14にて検出され、ステータコイル温度アンプ21により増幅されて、車両制御部23へ伝えられる。また、ステータ外周を冷却するモータ冷却油17は、ステータコイル16のエンドコイル部に沿ってステータコイル16を冷却する。ステータコイル16によって昇温したモータ冷却油の温度は、温度センサ15によって検出され、モータ冷却油温度アンプ22を介して車両制御部23へ同様に伝えられる。車両制御部23は、モータ冷却油温度及びステータコイル温度を入力として、モータ冷却油と、ステータコイルとロータ磁石の熱モデル(温度、発熱量、熱抵抗との関係)と、に基づいてロータ磁石温度を推定し、モータ制御部24に制御指示を送る。

Description

明 細 書 モー夕制御装置、 制御方法及び制御プログラム 技術分野
永久磁石を有するロー夕の同心円状外側に、 ステ一夕コイルを有するステー 夕を、 配置したモー夕を作動させ、 永久磁石の温度を推定する磁石温度推定手 段と、 推定された磁石温度に基づいてモー夕を制御する制御手段と、 を含む乇 一夕制御装置、 制御方法及び制御プログラムに関する。 背景技術
近年、 ハイプリッド自動車、 電気自動車及び燃料電池自動車等が注目され、 従来のエンジン駆動型自動車を上回る動力性能を目指して様々な改良が加えら れている。 例えば、 ハイブリッド自動車では、 エネルギー効率を高め、 動力性 能を向上させるために、 高電圧化や、 モー夕の駆動方式の改良等が行われてい る。
しかし、 モー夕を高出力状態で長時間使用を続けると、 ステ一夕及びロー夕 の温度が限界温度を超えることでロー夕の永久磁石が減磁してしまい、 以後、 モー夕のトルクが落ちてしまうという問題がある。 そこで、 モー夕内部の温度 上昇を抑えるため、 モー夕の冷却能力の向上の他に、 限界温度を超えないよう な温度管理が重要となる。
温度管理を正確に行うには、 ロー夕ゃステ一夕の温度測定が必要となる。 一 般的に、 ステ一夕はモー夕ケースに固定されているため、 ステ一夕に熱電対を 設けることで容易に測定が可能である。 しかし、 ロー夕はステ一夕内で回転す ることから、 ステ一夕に設けた熱電対の信号をロー夕のシャフトにスリップリ ング又は口一タリコネクタを設け、 これらを介して信号を取り出すことが必要 となり、 コストアップ及びモー夕構造が複雑になるという問題があった。
そこで、 日本国特開 2 0 0 5— 7 3 3 3 3号には、 予め測定したモー夕の温 度分布を記憶し、 複数のサ一ミス夕によりステ一夕コイルの温度を検出し、 検 出した複数の温度と、 記憶されたモー夕の温度分布と、 を比較じて磁気センサ 温度、 軸受け温度、 ロー夕磁石温度等を推定する技術が開示されている。
また、 日本国特開 2 0 0 0— 2 3 4 2 1号には、 ステ一夕側の油冷系と口一 夕側の油冷系を分離し、 ロー夕油冷系を循環する冷却油の流量を測定すると共 に、 ロー夕油冷系におけるロー夕冷却前の冷却油の流入温度とロー夕冷却後の 冷却油の流出温度とを測定し、 冷却油の温度差によりロー夕磁石の温度を推定 する技術が示されている。 発明の開示
しかし、 日本国特開 2 0 0 5— 7 3 3 3 3号と日本国特開 2 0 0 0— 2 3 4 2 1号では、 ロー夕磁石と、 ステ一夕コイルと、 冷却油と、 の熱的な相互相関 を見出しておらず、 ロー夕磁石に熱的な影響を与えるステ一夕コイル及び冷却 油がどのようにロー夕磁石温度と関係しているのかというモー夕全体としての 熱的な影響が考慮されていない。
また、 日本国特開 2 0 0 0— 2 3 4 2 1号の技術では、 モー夕冷却油温度か らロ一夕磁石温度を推定するものであるが、 高出力を出すためのモー夕の制御 方法が複雑になるに従い、 ロータ磁石自身の発熱の影響が大きくなり、 結果的 に従来の推定方法では十分な精度で予測することが困難となった。 特に、 時々 刻々と運転状態が変化するハイプリッド自動車のモー夕において、 モー夕冷却 油温度だけではロー夕磁石温度は所定の誤差が含まれることとなる。
このような課題を解決するために、 本発明の目的は、 モー夕を小型でかつ、 性能の良いモー夕とするため、 ロー夕に組み込まれた永久磁石の温度を推定す る磁石温度推定手段と、 推定された磁石温度に基づいてモー夕を制御する制御 手段と、 を含むモー夕制御装置、 方法及びプログラムを提供することである。 以上のような目的を達成するために、 本発明に係るモー夕制御装置は、 永久 磁石を有するロー夕の同心円状外側に、 ステ一夕コイルを有するステ一夕を、 配置したモー夕を作動させ、 永久磁石の温度を推定する磁石温度推定手段と、 推定された磁石温度に基づいてモー夕を制御する制御手段と、 を含むモー夕制 御装置において、 モータには、 冷却液によってステ一夕外周を冷却する冷却手 段と、 冷却液の液温度を検出する液温検出手段と、 ステ一夕コイルの温度を検 出するコイル温度検出手段と、 が設けられ、 磁石温度推定手段は、 冷却液とス テ一夕コイルとの間の熱抵抗と、 ステ一夕コイルと永久磁石との間の熱抵抗と、 の比である熱抵抗比と、ステ一夕コイルと永久磁石との発熱比と、を予め求め、 モー夕運転時には、 ステ一夕コイル温度と、 冷却液の液温度と、 発熱比と、 熱 抵抗比と、 に基づいて磁石温度を演算により求めることを特徴とする。
また、 本発明に係るモー夕制御装置において、 制御手段は、 P WM制御と矩 形波制御とを切り替えてモー夕を制御し、 磁石温度推定手段は、 P WM制御と 矩形波制御とによる発熱比の変化に応じて演算することを特徴とする。
また、 本発明に係るモー夕制御方法は、 永久磁石を有するロー夕の同心円状 外側に、 ステ一夕コイルを有するステ一夕を、 配置したモータを作動させ、 モ 一夕の作動に伴い、 発熱するステ一夕コイルの温度を検出するコイル温度検出 工程と、 ステ一夕外周を冷却する冷却液の液温度を検出する液温検出工程と、 発熱する永久磁石の温度を推定する磁石温度推定工程と、 推定された磁石温度 に基づいてモー夕を制御する制御工程と、 を含むモータ制御方法において、 磁 石温度推定工程は、 冷却液とステ一夕コイルとの間の熱抵抗と、 ステーダコィ ルと永久磁石との間の熱抵抗と、 の比である熱抵抗比と、 ステ一夕コイルと永 久磁石との発熱比と、 を予め求め、 モー夕運転中は、 ステ一夕コイル温度と、 冷却液の液温度と、 発熱比と、 熱抵抗比と、 に基づいて磁石温度を演算により 求めることを特徴とする。
さらに、 本発明に係るモー夕制御方法において、 制御工程は、 P WM制御と 矩形波制御とを切り替えてモー夕を制御し、 磁石温度推定工程は、 P WM制御 と矩形波制御とによる発熱比の変化に応じて演算することを特徴とする。
また、 本発明に係るモー夕制御プログラムは、 永久磁石を有するロー夕の同 心円状外側に、 ステ一夕コイルを有するステ一夕を、 配置したモー夕を作動さ せ、 モ一夕の作動に伴い、 発熱するステ一夕コイルの温度を検出するコイル温 度検出ステップと、 ステ一夕外周を冷却する冷却液の液温度を検出する液温検 出ステップと、 発熱する永久磁石の温度を推定する磁石温度推定ステップと、 推定された磁石温度に基づいてモー夕を制御する制御ステップと、 をコンビュ —夕に実行させるモー夕制御プログラムにおいて、 磁石温度推定ステップは、 冷却液とステ一夕コイルとの間の熱抵抗と、 ステ一夕コイルと永久磁石との間 の熱抵抗と、の比である熱抵抗比と、ステ一夕コイルと永久磁石との発熱比と、 を予め求め、 モー夕運転中は、 ステ一夕コイル温度と、 冷却液の液温度と、 発 熱比と、 熱抵抗比と、 に基づいて磁石温度を演算により求めることを特徴とす る。
また、 本発明に係るモー夕制御プログラムにおいて、 制御ステップは、 P W M制御と矩形波制御とを切り替えてモー夕を制御し、磁石温度推定ステップは、 P WM制御と矩形波制御とによる発熱比の変化に応じて演算することを特徴と する。
本発明を用いると、 複数のパラメ一夕に基づき、 ロー夕磁石温度が演算され るので、 精度の良いロー夕磁石温度が推定できるという効果があり、 適切なモ 一夕制御が可能となる。
さらに、 予め求められた発熱比及び熱抵抗比と、 容易に測定可能な部位の.温 度と、 を用いてロー夕磁石温度を算出するようにしたため、 コンピュータの計 算負荷を高めることなく、 ロー夕磁石温度の算出処理を実行できるという効果 がある。 図面の簡単な説明
図 1は、 本実施形態に係るモー夕を制御するモー夕制御装置の構成を示す構 成図である。
図 2は、 本実施形態に係るモー夕の熱モデルを説明する説明図である。
図 3は、 本実施形態に係るモー夕磁石温度の計算フロー図である。
図 4は、 本実施形態に係るモー夕磁石熱減磁保護制御のフローチヤ一卜図で ある。
図 5は、 本実施形態に係るステ一夕コイル発熱マップ及びロー夕磁石発熱マ ップの模式図である。
図 6は、本実施形態に係る口一夕磁石熱減磁温度限界マップの模式図である。 図 7は、 実測による実験結果図及び相関関係図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態 (以下実施形態という) を、 図面に従って説明す る。
図 1には、 モー夕 1 0を制御するモ一夕制御装置 2 0の構成が示されている。 モー夕 1 0は、 永久磁石を有するロー夕 1 2と、 ロー夕 1 2に設けられたレゾ ルバ 1 3と、 口一夕 1 2の外側に位置しステ一夕コイル 1 6を有するステ一夕 1 1と、 ステ一夕コイル 1 6の温度を検出する温度センサ 1 4と、 を含んでい る。
モー夕 1 0を制御するモー夕制御装置 2 0は、 ステ一夕コイル温度アンプ 2 1と、 モー夕冷却油温度アンプ 2 2と、 車両制御部 2 3と、 モー夕制御部 2 4 とを含んでいる。 さらに、 モ一夕 1 0に電力を供給する電力供給部 3 0は、 バ ッテリ 3 3と、 バッテリ電圧を昇圧する昇圧コンバータ 3 2と、 モー夕制御部 2 4からの指令によりモー夕 1 0に電力を供給するモ一タインバ一夕 3 1と、 を含んでいる。
ステ一夕コイルの温度は、 温度センサ 1 4にて検出され、 ステ一夕コイル温 度アン'プ 2 1により増幅されて、 車両制御部 2 3へ伝えられる。 また、 ステー 夕外周を冷却するモー夕冷却油 1 7は、 ステ一夕コイル 1 6のエンドコイル部 (図中破線で示す経路) に沿ってステ一夕コイル 1 6を冷却する。 ステ一夕コ ィル 1 6によって昇温したモー夕冷却油の温度は、 温度センサ 1 5によって検 出され、 モー夕冷却油温度アンプ 2 2を介して車両制御部 2 3へ同様に伝えら れる。
車両制御部 2 3は、モー夕冷却油温度及びステ一夕コイル温度を入力として、 モータ冷却油と、 ステ一夕コイル 1 6とロー夕磁石 1 2の熱モデル (温度、 発 熱量、 熱抵抗との関係) と、 に基づいてロー夕磁石温度を推定し、 モー夕制御 部 2 4に制御指示を送る。
図 2には、 モー夕の熱モデルが示されている。 モー夕の熱モデルでは、 温度 の低い順にモ一夕冷却油 1.7、 ステ一夕コイル 1 6 , 口一夕磁石 1 2が配置さ れ、 それぞれの熱抵抗 (R l , R 2 ) と温度差 (Δ Τ 1, Δ Τ 2 ) が示されて いる。
以下、 図 2を用いて説明する。 まず、 過渡状態におけるステ一夕コイル温度 T s tの関係式を式 1に示す。 ロー夕磁石 1 2はステ一夕コイルに比べて発熱 量が少ないため (例えば、 1 1 0程度)、 ロー夕磁石 1 2の発熱量 Q r tは無 視できる。
T s t =Q s t - R 1 { 1 - e x p (- t /M s t /R 1 )} +To i 1 · · · (式 1)
式中、 T s t [ ] :ステ一夕コイル温度、
Q s t [W] :ステ一夕コイルの発熱量、
Ms t [WZ ] : ステ一夕コイルの熱の伝わりやすさ、
To i l [で] :モー夕冷却油の温度、
R 1 / :ステ一夕コイルとモー夕冷却油との間の熱抵抗である。
次に、 定常状態では tが無限大となるため、 e x p (— tZM s.tZR l) が無視できるほど小さくなり、 ステ一夕コイル温度 T s tは式 2のように単純 化される。 ' T s t =Q s t · R 1 +T o i 1 · · ' (式 2)
式 2の右辺の To i 1 を左辺に移すと、 ステ一夕コイルとモー夕冷却油との温 度差である式 3が求まる。
T s t -T o i 1 =Q s t · R 1 =Δ T 1 - · ' (式 3)
式中、 ΔΤ 1 [で] :ステ一夕コイルとモー夕冷却油との温度差である。
次に、 過渡状態におけるロー夕磁石温度 T r tの関係式を式 4に示す。
T r t =Q r t · R 2 { 1— e x p (— t /M r tZR 2)} +T s t * ' * (式 4)
式中、 T r t [で] : ロー夕磁石温度、
Q r t [W] : 口一夕磁石の発熱量、
M r t [WZで] : 口一夕磁石の熱の伝わりやすさ、
R 2 HC/W] :ステ一夕コイルと口一夕磁石との間の熱抵抗である。
定常状態では tが無限大となるため、 e x p (- t/M r t /R 2) が無視 できるほど小さくなり、 ロータ磁石温度 T r tは式 5のように単純化される。 T r t =Q r t · R 2 +T s t · · · (式 5)
式 5の右辺の T s tを左辺に移すと、 ロー夕磁石とステ一夕コイルとの温度差 である式 6が求まる。
T r t 一 T s t =Q r t - R 2 = ΔΤ 2 · · ' (式 6)
式中、 ΔΤ 2 [で]:ステ一夕コイルとロー夕磁石との温度差である。 式 6を式
3で割ると、 ΔΤ 2ΖΔΤ 1を得ることができ、 式 7に示すような式となる。
ΔΤ 2/ΔΤ 1 =Q r t /Q s t · R 2/R 1 · · ' (式 7 )
さらに、式 7を変形してロー夕磁石温度を求める式とすると、式 8が得られる。
T r t =T s t +ΔΤ 2 =T s t +Q r t /Q s t - R 2/R 1 · Δ T 1
T r t =T s t +Q r t /Q s t · R 2/R 1 · (T s t -T o i 1 ) · · ' (式
8)
ここで、 ステ一夕コイル温度 T s tとモー夕冷却油温度 T o i 1は実測で求 まり、 Q r tノ Q s t · R 2ZR 1は、 事前の測定により求めることが可能で あるので、 式 8にてロー夕磁石温度を求めることが可能となる。
図 7には、 実測による実験結果が示されている。 本実験は、 ロー夕磁石の温 度測定をモー夕シャフトに設けたスリップリングにより測定可能とする実験車 を特別に製作して実験を行った。 図 7 (E) にはモー夕冷却油温度上昇に対す るステ一夕コイル温度上昇が比例関係であることが示され、 さらに図 7 (F) には、 ステ一夕コイル温度上昇に対するロー夕磁石温度上昇も比例関係となる ことが示されている。 このことから、 モー夕冷却油温度上昇と口一夕磁石温度 上昇との間に所定の比例関係があることが確認できた。
図 7 (G) には、 本実施形態における実測により求めた T s t , T r t , T o i 1の温度から ΔΤ 2 ΔΤ 1の値 (図中、 〇印) を求め、 さらに、 Q r .t /Q s t * R 2/R 1は演算によって求め、 図 7 (G) にプロットしている。 また。 図 7 (G) 中、 4 0 0 0 r pm付近 (時速に換算すると例えば、 約 8 0 km/h) で増加している点は、 PWM制御における高周波ノイズがロー夕磁 石に影響して発熱量が増加したものであると考えられる。 この実験結果より、 PWM制御と矩形波制御の変曲点付近の補正を行うことで、 R 2ZR 1は、 例 えば、 約 3. 5の一定値として計算可能であることが実測により求められた。 次に、 図 3のロー夕磁石温度計算における処理の流れを説明するために、 最 初に本処理で用いるマップデ一夕を最初に説明する。 図 5 (A) にはステ一夕 コイル発熱マップ及び図 5 (B) にはロー夕磁石発熱マップと、 図 6 (C) に はロー夕磁石熱減磁温度限界マップが示されている。
図 5 (A) のステ一夕コイル発熱マップにおける等高線状の発熱量は、 図 5 (B)に示す口一夕磁石発熱マップのほぼ 10倍を示している。また、図 5 (B) に示す口一夕磁石発熱マップでは、 上述した PWM制御と矩形波制御の変曲点 を境にして不連続な発熱特性を示している。 このようなことから、 図 6に示す ロー夕磁石熱減磁温度限界マップでは、 5, O O O r pmから 10, 000 r pmの特性に同様の不連続な発熱特性となっている。
図 6 (C) に示したロー夕磁石熱減磁温度限界マップには、 モー夕の駆動に 伴って発生する弱め磁界による熱減磁限界温度が 1 60でから 2 10でまで 5 段階で区切られており、 回転数とトルクとの組み合わせによる各運転条件下に おいて、 ロー夕磁石温度を熱減磁限界温度以下で動作させることが必要となる。 次に、 図 3を用いてロー夕磁石温度の計算フローを説明する。 口一夕磁石熱 減磁限界温度を算出する為には、 最初にロー夕磁石温度を算出し (ステップ S 1)、 次に、 ロー夕磁石熱減磁限界温度を算出する (ステップ S 2)。 ステップ S 1において、 図 3に示すロー夕磁石温度算出 41は、 外部より指示されたト ルク指令値と、 レゾルバ 1 3で検出された回転数測定値と、 により図 5に示す ステ一夕コイル発熱マップ及びロー夕磁石発熱マップから発熱量 (Q s t , Q r t ) を参照する。 さらに、 実験によって予め求められた R 2/R 1を用いる ことにより、 上述した式 8に代入してロー夕磁石温度を算出する。
次に、 ステップ S 2において、 ロー夕磁石熱減磁限界温度算出 42は、 トル ク指令値と、 回転数測定値と、 ステップ S 1で算出されたロータ磁石温度と、 図 6 (C) に示すロー夕磁石熱減磁温度限界マップと、 に基づいて所定のトル クと回転数におけるロー夕磁石熱減磁限界温度を読み取ることができる。
例えば、 図 6 (C) に示す指令条件 M lは、 トルク 140Nm, 回転数 80 00から 1 2000 r pmまでの加速指令である。 この指令が入力された場合、 同じトルクを出力させるロー夕磁石温度は、 8000から 9000 r pmまで は限界温度 1 90でまでであるが、 9 000から 1 1 00 O r pmでは限界温 度 1 80でとなり、 1 1 000から 1 20 00 r pmでは 1 70 まで下がる ことになる。
ここで、 仮にロー夕磁石温度が 1 90でであった場合、 指令条件 M lは制限 されて指令条件 M 2に示すように、 回転数優先の場合は、 トルクが 90 Nmま で下がる指令条件に補正される。 同様に、 トルク優先の場合は、 回転数 90 0 0 r pmで回転数が制限されることになる。
図 4には、 ロー夕磁石熱減磁保護制御の処理 (以下、 保護制御と略す。) の流 れが示されている。 最初に、 図示しないメイン処理から保護制御が開始される と、 ステップ S 1 0においてロー夕磁石温度を計算し、 ステップ S 1 2におい てロー夕磁石熱減磁限界温度を計算する。
ステップ S 1 4において計算によって得られたロー夕磁石温度が、 回転数と トルクとの組み合わせによる熱減磁限界温度以下 「No」 であれば、 通常の処 理を実行する。 もし、 熱減磁限界温度を超えている場合には 「Ye s」 の処理 を実行するために、 ステップ S 1 6へ移る。 ステップ S 1 6では減磁しない許 容トルク値を計算する。 さらに、 ステップ S 1 8では、 許容トルクまでトルク 指令値を制限する又は回転数を制限することでロー夕磁石温度の上昇を防ぎ、 メイン処理に戻る。
以上、 上述したように、本実施形態を用いると、複数のパラメ一夕に基づき、 ロー夕磁石温度が演算されるので、 精度の良いロー夕磁石温度が推定でき、 適 切なモー夕制御が可能となる。 また、 容易に測定可能な部位の温度から口一夕 磁石温度を算出するようにしたため、 コンピュータの計算負荷を高めることな く、 処理を実行できる。 さらに、 モー夕の制御方法が変わることで発生する口 —夕磁石の発熱を考慮して補正することで、 予期せぬロー夕磁石の発熱を防止 することも可能となる。
なお、 本実施形態では自動車用のモー夕制御について説明したが、 本実施形 態 ώ自動車用に限らず、 鉄道車両用、 ロボット用及び産業機器一般のモー夕に 適応できることはいうまでもない。また、本実施形態の説明を容易にするため、 詳細な数値を用いたが、 これらの数値に限定するものではなく、 モー夕特性や 制御条件等に応じて適切に設定されるものである。

Claims

請 求 の 範 囲
1 . 永久磁石を有するロー夕の同心円状外側に、 ステ一夕コイルを有するス テ一夕を、 配置したモー夕を作動させ、 永久磁石の温度を推定する磁石温度推 定手段と、 推定された磁石温度に基づいてモー夕を制御する制御手段と、 を含 むモー夕制御装置において、
モー夕には、
冷却液によってステ一夕外周を冷却する冷却手段と、
冷却液の液温度を検出する液温検出手段と、
ステ一夕コイルの温度を検出するコイル温度検出手段と、
が設けられ、
磁石温度推定手段は、
冷却液とステ一夕コイルとの間の熱抵抗と、 ステ一夕コイルと永久磁石との 間の熱抵抗と、 の比である熱抵抗比と、 ステ一夕コイルと永久磁石との発熱比 と、 を予め求め、
モー夕運転時には、 ステ一夕コイル温度と、 冷却液の液温度と、 発熱比と、 熱抵抗比と、 に基づいて磁石温度を演算により求めることを特徴とするモータ 制御装置。
2 . 請求の範囲 1に記載のモー夕制御装置において、 ,
制御手段は、 P WM制御と矩形波制御とを切り替えてモー夕を制御し、 磁石温度推定手段は、 P WM制御と矩形波制御とによる発熱比の変化に応じ て演算することを特徴とするモー夕制御装置。
3 . 永久磁石を有するロー夕の同心円状外側に、 ステ一夕コイルを有するス テ一夕を、 配置したモー夕を作動させ、 モー夕の作動に伴い、 発熱するステー 夕コイルの温度を検出するコイル温度検出工程と、 ステ一夕外周を冷却する冷 却液の液温度を検出する液温検出工程と、 発熱する永久磁石の温度を推定する 磁石温度推定工程と、 推定された磁石温度に基づいてモー夕を制御する制御ェ 程と、 を含むモー夕制御方法において、
磁石温度推定工程は、
冷却液とステ一夕コイルとの間の熱抵抗と、 ステ一夕コイルと永久磁石との 間の熱抵抗と、 の比である熱抵抗比と、 ステ一夕コイルと永久磁石との発熱比 と、 を予め求め、
モー夕運転中は、 ステ一夕コイル温度と、 冷却液の液温度と、 発熱比と、 熱 抵抗比と、 に基づいて磁石温度を演算により求めることを特徴とするモー夕制 御方法。
4 . 請求の範囲 3に記載のモー夕制御方法において、
制御工程は、 P WM制御と矩形波制御とを切り替えてモー夕を制御し、 磁石温度推定工程は、 P WM制御と矩形波制御とによる発熱比の変化に応じ て演算することを特徴とするモー夕制御方法。
5 . 永久磁石を有する口一夕の同心円状外側に、 ステ一夕コイルを有するス テ一夕を、 配置したモー夕を作動させ、 モー夕の作動に伴い、 発熱するステー 夕コイルの温度を検出するコイル温度検出ステップと、 ステ一夕外周を冷却す る冷却液の液温度を検出する液温検出スチップと、 発熱する永久磁石の温度を 推定する磁石温度推定ステップと、 推定された磁石温度に基づいてモー夕を制 御する制御ステップと、 をコンピュータに実行させるモー夕制御プログラムに おいて、
磁石温度推定ステップは、
冷却液とステ一夕コイルとの間の熱抵抗と、 ステ一夕コイルと永久磁石との 間の熱抵抗と、 の比である熱抵抗比と、 ステ一夕コイルと永久磁石との発熱比 と、 を予め求め、
モー夕運転中は、 ステ一夕コイル温度と、 冷却液の液温度と、 発熱比と、 熱 抵抗比と、 に基づいて磁石温度を演算により求めることを特徴とするモー夕制 御プログラム。
6 . 請求の範囲 5に記載のモー夕制御プログラムにおいて、
制御ステップは、 P WM制御と矩形波制御とを切り替えてモー夕を制御し、 磁石温度推定ステップは、 P WM制御と矩形波制御とによる発熱比の変化に 応じて演算することを特徴とするモー夕制御プログラム。
PCT/JP2008/054691 2007-03-29 2008-03-07 モータ制御装置、制御方法及び制御プログラム WO2008126630A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008800022978A CN101589546B (zh) 2007-03-29 2008-03-07 电动机控制装置、控制方法及控制程序
EP08722088A EP2058941B1 (en) 2007-03-29 2008-03-07 Motor control device, control method, and control program
BRPI0808381-9A BRPI0808381A2 (pt) 2007-03-29 2008-03-07 Dispositivo de controle, método de controle e progrma de controle de motor.
US12/309,526 US8013565B2 (en) 2007-03-29 2008-03-07 Motor control device, control method, and control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007086427A JP4572907B2 (ja) 2007-03-29 2007-03-29 モータ制御装置、制御方法及び制御プログラム
JP2007-086427 2007-03-29

Publications (1)

Publication Number Publication Date
WO2008126630A1 true WO2008126630A1 (ja) 2008-10-23

Family

ID=39863757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054691 WO2008126630A1 (ja) 2007-03-29 2008-03-07 モータ制御装置、制御方法及び制御プログラム

Country Status (7)

Country Link
US (1) US8013565B2 (ja)
EP (1) EP2058941B1 (ja)
JP (1) JP4572907B2 (ja)
CN (1) CN101589546B (ja)
BR (1) BRPI0808381A2 (ja)
RU (1) RU2419959C1 (ja)
WO (1) WO2008126630A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033995A (ja) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 車両用回転電機温度推定システム

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8487575B2 (en) * 2009-08-31 2013-07-16 GM Global Technology Operations LLC Electric motor stator winding temperature estimation
US8390228B2 (en) * 2009-12-10 2013-03-05 GM Global Technology Operations LLC Methods and systems for induction machine control
US8421391B2 (en) 2010-05-12 2013-04-16 GM Global Technology Operations LLC Electric motor stator winding temperature estimation systems and methods
US8339082B2 (en) 2010-05-21 2012-12-25 GM Global Technology Operations LLC Methods and systems for induction motor control
US8482238B2 (en) 2010-11-30 2013-07-09 Caterpillar Inc. System and method for estimating a generator rotor temperature in an electric drive machine
JP2012170208A (ja) * 2011-02-14 2012-09-06 Seiko Epson Corp 電気機械装置、移動体、ロボット及び電気機械装置の温度測定法
US8482237B2 (en) * 2011-03-03 2013-07-09 GM Global Technology Operations LLC Motor temperature estimation based on thermal model
US9735654B2 (en) 2011-03-09 2017-08-15 Stridsberg Innovation Ab Cooled magnet motor
JP5409680B2 (ja) * 2011-03-23 2014-02-05 トヨタ自動車株式会社 回転電機システム
US9166518B2 (en) * 2011-06-27 2015-10-20 GM Global Technology Operations LLC Rotor temperature estimation for an electric vehicle
JP5849468B2 (ja) * 2011-06-30 2016-01-27 株式会社ジェイテクト 電動モータ制御装置
JP5811665B2 (ja) * 2011-07-28 2015-11-11 トヨタ自動車株式会社 回転電気
JP5760865B2 (ja) * 2011-08-30 2015-08-12 トヨタ自動車株式会社 車両用モータ温度検出装置
JP5924045B2 (ja) * 2012-03-14 2016-05-25 日産自動車株式会社 電動機の制御装置及び電動機の制御方法
JP5420006B2 (ja) * 2012-03-22 2014-02-19 三菱電機株式会社 同期機制御装置
US9490682B2 (en) 2012-06-01 2016-11-08 General Electric Company Method and system for alternator thermal protection
JP6026815B2 (ja) * 2012-08-22 2016-11-16 トヨタ自動車株式会社 電動車両の駆動制御装置
JP2014045575A (ja) * 2012-08-27 2014-03-13 Toyota Motor Corp 回転電機の駆動制御装置
JP5616413B2 (ja) 2012-10-04 2014-10-29 ファナック株式会社 Pwm周波数を切り換えて使用するモータ制御装置
JP5823055B2 (ja) 2012-10-11 2015-11-25 三菱電機株式会社 モータ制御装置およびモータ制御方法
KR101531525B1 (ko) * 2012-10-31 2015-06-25 엘지전자 주식회사 전기자동차용 구동모터 및 이의 제어방법
JP5635581B2 (ja) 2012-11-02 2014-12-03 本田技研工業株式会社 回転電機の磁石温度推定装置及び磁石温度推定方法
JP5695013B2 (ja) 2012-11-02 2015-04-01 本田技研工業株式会社 回転電機の磁石温度推定装置及び磁石温度推定方法
JP6079253B2 (ja) * 2013-01-18 2017-02-15 コベルコ建機株式会社 電動機
JP5584794B1 (ja) * 2013-04-12 2014-09-03 三菱電機株式会社 電動機の駆動制御装置
US9331554B2 (en) 2013-07-02 2016-05-03 Hanwha Techwin Co., Ltd. System and method for controlling motor
KR101609527B1 (ko) * 2013-08-12 2016-04-05 미쓰비시덴키 가부시키가이샤 모터 제어 장치
US9698660B2 (en) 2013-10-25 2017-07-04 General Electric Company System and method for heating ferrite magnet motors for low temperatures
CN103762911B (zh) * 2013-12-25 2017-08-25 联合汽车电子有限公司 永磁同步电机的降额控制方法
JP6277013B2 (ja) * 2014-02-21 2018-02-07 日立オートモティブシステムズ株式会社 アクチュエータの制御装置
KR101542994B1 (ko) * 2014-04-14 2015-08-07 현대자동차 주식회사 모터의 회전자 온도 추정 방법
JP6180625B2 (ja) * 2014-05-09 2017-08-16 本田技研工業株式会社 回転電機の磁石温度推定装置および回転電機の磁石温度推定方法
US9602043B2 (en) * 2014-08-29 2017-03-21 General Electric Company Magnet management in electric machines
CN104410047A (zh) * 2014-09-26 2015-03-11 中国科学院长春光学精密机械与物理研究所 一种无刷电机的温度保护电路
JP2016082698A (ja) * 2014-10-16 2016-05-16 三菱電機株式会社 モータの温度推定装置及びモータの過熱保護方法
JP6329887B2 (ja) * 2014-12-05 2018-05-23 株式会社日立産機システム ポンプ装置及びインバータ駆動電動機組立体
JP6427805B2 (ja) 2015-05-19 2018-11-28 本田技研工業株式会社 回転電機の温度推定装置
JP2017036026A (ja) * 2015-08-07 2017-02-16 株式会社デンソー 車両の駆動装置
JP6504030B2 (ja) * 2015-11-13 2019-04-24 株式会社デンソー 回転電機制御装置
US9932701B2 (en) 2015-12-29 2018-04-03 Whirlpool Corporation Laundry appliances using search coils to identify motors and their rotors in order to self-tune control of the motor
JP2017189051A (ja) * 2016-04-07 2017-10-12 株式会社デンソー モータの制御装置
CN106124057B (zh) * 2016-06-20 2022-10-14 上海工程技术大学 电动车辆动力部件的温升在线测量***
JP6583186B2 (ja) * 2016-08-12 2019-10-02 トヨタ自動車株式会社 回転電機の冷却装置
JP2018046615A (ja) * 2016-09-13 2018-03-22 株式会社豊田中央研究所 温度推定装置、鎖交磁束推定装置及びモータ制御装置
KR102429003B1 (ko) * 2016-12-12 2022-08-03 현대자동차 주식회사 열등가회로를 이용한 모터의 온도 연산 시스템
JP6740114B2 (ja) * 2016-12-22 2020-08-12 株式会社デンソー モータシステム
US10519917B2 (en) * 2017-04-25 2019-12-31 Ford Global Technologies, Llc Engine operation based on integrated starter-generator temperature
US10903776B2 (en) * 2017-05-31 2021-01-26 Abb Schweiz Ag Industrial electrical machine
JP6915501B2 (ja) * 2017-11-08 2021-08-04 トヨタ自動車株式会社 車両の制御装置
JP6963484B2 (ja) * 2017-12-08 2021-11-10 東芝テック株式会社 モータ温度推定装置およびプログラム
CN108390617B (zh) * 2017-12-11 2020-01-03 深圳腾势新能源汽车有限公司 电机转子温度监测方法、装置、存储介质和计算机设备
CN108037454B (zh) * 2017-12-22 2019-10-29 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种定子电枢试验***及试验方法
CN108132438B (zh) * 2018-01-23 2024-02-20 无锡帕捷科技有限公司 新能源电机高低温测试***
DE102018204159A1 (de) * 2018-03-19 2019-09-19 Robert Bosch Gmbh Verfahren zu Ansteuerung eines Elektromotors
US10978934B2 (en) 2018-08-27 2021-04-13 General Electric Company Engine with a permanent magnet electric machine
RU2711950C1 (ru) * 2018-10-03 2020-01-23 Алексей Федорович Хорошев Майнинг криптовалюты обеспечивающее устройство, майнинг криптовалюты оптимизирующее устройство и способ такого майнинга криптовалюты
RU2711962C1 (ru) * 2018-10-03 2020-01-23 Алексей Федорович Хорошев Электронное вычисление обеспечивающее устройство, электронное вычисление оптимизирующее устройство и способ такого электронного вычисления
CN109357788A (zh) * 2018-11-05 2019-02-19 李俊峰 一种大型电动机温度测量***
KR102570296B1 (ko) * 2018-11-08 2023-08-24 현대자동차주식회사 차량 및 그 제어방법
CN109406904B (zh) * 2018-12-04 2022-01-04 航天科工防御技术研究试验中心 千瓦大功率电源模块双层测试工装
JP6714114B1 (ja) * 2019-01-29 2020-06-24 三菱電機株式会社 温度推定装置及び温度推定方法
CN112234906B (zh) * 2019-07-15 2022-04-22 宁波拓邦智能控制有限公司 一种电机内部温度估算方法及电机
CN110481308B (zh) * 2019-08-22 2022-06-07 重庆长安汽车股份有限公司 一种新能源车驱动电机的综合冷却控制方法
JP7312065B2 (ja) * 2019-09-11 2023-07-20 日立Astemo株式会社 モータ制御装置、機電一体ユニット、発電機システム、モータ駆動装置および電動車両システム
JP7367429B2 (ja) * 2019-09-27 2023-10-24 ニデックパワートレインシステムズ株式会社 モータユニットの制御装置
CN111046539B (zh) * 2019-11-27 2023-09-26 上海电气电站设备有限公司 一种基于瞬时移动法的水冷转子强励温升计算方法
CN113921951B (zh) 2020-07-10 2023-06-16 宁德时代新能源科技股份有限公司 动力电池自加热控制方法以及装置
EP4002681B1 (en) * 2020-11-12 2024-05-22 Valeo eAutomotive Germany GmbH Inverter, electric drive, vehicle and method for controlling controllable switches of an inverter and corresponding computer program product
DE102020130785A1 (de) 2020-11-20 2022-05-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühleinrichtung und Verfahren zum Kühlen einer elektrischen Maschine eines elektrisch antreibbaren Kraftfahrzeugs
JP2022167625A (ja) 2021-04-23 2022-11-04 トヨタ自動車株式会社 電動機の制御装置、及び車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155810A (ja) * 1997-08-05 1999-02-26 Toyota Motor Corp 動力出力装置
JP2000023421A (ja) 1998-06-30 2000-01-21 Toyota Motor Corp ロータ温度推定方法
JP2005073333A (ja) 2003-08-21 2005-03-17 Yaskawa Electric Corp Acサーボモータおよびこれを用いた減速機一体形アクチュエータならびにロボット装置
JP2005521374A (ja) * 2002-03-22 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Pm同期機におけるローター温度を求めるための方法および装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153381A (ja) 1992-11-11 1994-05-31 Omron Corp モータ保護装置
JP3644354B2 (ja) 2000-05-09 2005-04-27 トヨタ自動車株式会社 温度推定方法および装置
JP4473469B2 (ja) * 2001-05-22 2010-06-02 株式会社東芝 永久磁石電動機
JP3755424B2 (ja) * 2001-05-31 2006-03-15 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP4102177B2 (ja) * 2002-12-10 2008-06-18 トヨタ自動車株式会社 永久磁石モータの制御装置および制御方法
US7570074B2 (en) * 2005-05-09 2009-08-04 Square D Company Electronic overload relay for mains-fed induction motors
JP2006340743A (ja) * 2005-06-07 2006-12-21 Hitachi Appliances Inc 洗濯機およびdcブラシレスモータ
JP4421603B2 (ja) * 2006-12-01 2010-02-24 本田技研工業株式会社 モータ制御方法およびモータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1155810A (ja) * 1997-08-05 1999-02-26 Toyota Motor Corp 動力出力装置
JP2000023421A (ja) 1998-06-30 2000-01-21 Toyota Motor Corp ロータ温度推定方法
JP2005521374A (ja) * 2002-03-22 2005-07-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Pm同期機におけるローター温度を求めるための方法および装置
JP2005073333A (ja) 2003-08-21 2005-03-17 Yaskawa Electric Corp Acサーボモータおよびこれを用いた減速機一体形アクチュエータならびにロボット装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015033995A (ja) * 2013-08-09 2015-02-19 トヨタ自動車株式会社 車両用回転電機温度推定システム

Also Published As

Publication number Publication date
CN101589546B (zh) 2011-07-06
US8013565B2 (en) 2011-09-06
US20090284202A1 (en) 2009-11-19
JP4572907B2 (ja) 2010-11-04
EP2058941A4 (en) 2010-12-08
EP2058941A1 (en) 2009-05-13
BRPI0808381A2 (pt) 2014-07-01
EP2058941B1 (en) 2011-11-30
CN101589546A (zh) 2009-11-25
JP2008245486A (ja) 2008-10-09
RU2419959C1 (ru) 2011-05-27

Similar Documents

Publication Publication Date Title
WO2008126630A1 (ja) モータ制御装置、制御方法及び制御プログラム
EP2698615B1 (en) Electric motor winding temperature detection method and device as well as electric motor thermal protection method and device
JP5811755B2 (ja) モータ温度検出装置及び駆動力制御装置
US9628017B2 (en) Motor control device, and motor control method
US8373367B2 (en) Dynamo-electric machine control system and vehicle driving system including the same
JP2009124854A (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
US8862302B1 (en) Vehicle and method for controlling an electric machine
JP3668666B2 (ja) 同期電動機とそれを用いた電気車及びその制御方法
CN104670304B (zh) 电动助力转向装置及其驱动方法
JP5760865B2 (ja) 車両用モータ温度検出装置
CN109986968A (zh) 驱动装置
JP6740114B2 (ja) モータシステム
JP2009012662A (ja) 電動パワーステアリング装置
JP4586773B2 (ja) バッテリ温度推定装置
WO2016181898A1 (ja) 電動モータ装置および電動式直動アクチュエータ
JP4924066B2 (ja) モータ制御装置、及びモータ制御方法
JP2008187861A (ja) モータ制御装置、モータ制御方法及び車両用駆動制御装置
JP5708361B2 (ja) 回転電機温度推定システム
JP6502172B2 (ja) 電動ブレーキ装置
JP2013238234A (ja) レンジエクステンダ付き内燃機関を冷却するための方法およびレンジエクステンダ付き内燃機関を冷却するための装置
JP2019182233A (ja) 操舵制御装置
JP6090364B2 (ja) 永久磁石型同期モータを搭載した車両の制御装置及び永久磁石型同期モータの上限温度の設定方法
JP4606476B2 (ja) 電動パワーステアリング制御装置
JP7451260B2 (ja) 駆動装置、および、駆動装置の制御方法
JP7502114B2 (ja) 電力変換装置及び制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880002297.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12309526

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008722088

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009139924

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0808381

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090729