JP4421603B2 - モータ制御方法およびモータ制御装置 - Google Patents

モータ制御方法およびモータ制御装置 Download PDF

Info

Publication number
JP4421603B2
JP4421603B2 JP2006325399A JP2006325399A JP4421603B2 JP 4421603 B2 JP4421603 B2 JP 4421603B2 JP 2006325399 A JP2006325399 A JP 2006325399A JP 2006325399 A JP2006325399 A JP 2006325399A JP 4421603 B2 JP4421603 B2 JP 4421603B2
Authority
JP
Japan
Prior art keywords
motor
short
rotor
phase
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006325399A
Other languages
English (en)
Other versions
JP2008141862A (ja
Inventor
博文 新
浩行 伊勢川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006325399A priority Critical patent/JP4421603B2/ja
Priority to CN2007101962193A priority patent/CN101192779B/zh
Priority to US11/998,429 priority patent/US7804261B2/en
Priority to EP07121984A priority patent/EP1928084B1/en
Publication of JP2008141862A publication Critical patent/JP2008141862A/ja
Application granted granted Critical
Publication of JP4421603B2 publication Critical patent/JP4421603B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/40Problem solutions or means not otherwise provided for related to technical updates when adding new parts or software
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

本発明は、モータ制御方法およびモータ制御装置に関する。
従来、例えば永久磁石を具備するモータの解体時等において、このモータの巻線の端子間に高周波電圧を印加して、永久磁石を減磁する方法が知られている(例えば、特許文献1参照)。
しかしながら、この方法では、モータに高周波電圧を印加するための特別な装置が必要であると共に、モータの巻線の温度が過剰に上昇して、損傷が生じてしまう虞がある。
このような問題に対して、従来、例えば永久磁石を具備するモータと、内燃機関とを駆動源として備えるハイブリッド車両において、このモータの解体時等において、モータの出力トルクがほぼゼロとなるように制御しつつ、内燃機関の駆動力によりモータを回転駆動する状態で、モータの端子電圧をバッテリの電源電圧以下に維持するゼロトルク制御を行う方法が知られている(例えば、特許文献2参照)。
特開2001−346364号公報 特開2004−242398号公報
ところで、上記従来技術の後者に係る方法では、モータの出力トルクがほぼゼロとなるようにゼロトルク制御が行われることから、バッテリの充放電電流はゼロとなるように制御され、内燃機関の回転エネルギーは熱エネルギーに変換されるようになっている。しかしながら、この方法によれば、モータの端子電圧をバッテリの電源電圧以下に維持することから、モータや、モータを駆動制御するインバータでの損失を補償するようにして、実際にはバッテリから電流が放電されるようになっている。このため、例えばバッテリが劣化している場合等においては、バッテリからの放電を維持することができず、所望の減磁を行うことが困難となる虞がある。
本発明は上記事情に鑑みてなされたもので、モータに具備される永久磁石を適切に減磁することが可能なモータ制御方法およびモータ制御装置を提供することを目的とする。
上記課題を解決して係る目的を達成するために、請求項1に記載の発明のモータ制御方法は、永久磁石片(例えば、実施の形態での永久磁石9)を具備するロータ(例えば、実施の形態での外周側回転子5と内周側回転子6)とステータ(例えば、実施の形態での固定子2)とを備えるモータを駆動源(例えば、実施の形態での内燃機関E)により回転駆動し、前記モータの回転数が所定回転数(例えば、実施の形態での所定の回転数Nref)以上である場合に前記モータの複数相を短絡することにより前記永久磁石片を減磁させており、前記所定回転数は、前記モータの複数相を短絡したときに、前記回転数の変動に伴う相電流の変化が所定値未満となる定電流かつ短絡トルクが所定値未満となるトルク領域に到達する回転数であることを特徴としている。
上記のモータ制御方法によれば、駆動源により回転駆動されるモータの回転数が所定回転数以上となって、モータの複数相を短絡した際に発生する短絡トルクが所定値未満、かつ、モータの複数相を短絡した際の回転数に応じた相電流(つまり、短絡電流)の変動が所定変動未満となった状態でモータの複数相を短絡することにより、過剰に大きなトルク変動が生じてしまうことを防止すると共に、所望の弱め界磁位相の電機子磁束をロータの永久磁石片に安定的に印加させ、この電機子磁束に起因する渦電流損失によって永久磁石片を自己発熱させ、永久磁石片を適切かつ効率よく減磁させることができる。
さらに、請求項2に記載の発明のモータ制御方法は、前記短絡の実行時に、少なくとも前記モータの相電流を含むモータ状態量が所定値以上変動した場合に、前記短絡および前記回転駆動を停止することを特徴としている。
上記のモータ制御方法によれば、例えば短絡電流の検出値が所定値以下に低下した場合や、短絡電流の検出値から算出可能な誘起電圧定数が所定値以下に低下した場合には、所望の減磁が完了したと判断して、モータの複数相の短絡および駆動源によるモータの回転駆動を停止して、過剰なエネルギー消費を防止することができる。また、例えば永久磁石片の温度やステータ巻線の温度が所定値以上に増大した場合には、モータの複数相の短絡および駆動源によるモータの回転駆動を停止することにより、モータに熱損傷が生じることを防止することができる。
また、請求項3に記載の発明のモータ制御装置は、永久磁石片(例えば、実施の形態での永久磁石9)を具備するロータ(例えば、実施の形態での外周側回転子5と内周側回転子6)とステータ(例えば、実施の形態での固定子2)とを備えるモータと、前記ロータを回転駆動可能な駆動源(例えば、実施の形態での内燃機関E)と、前記モータの複数相を短絡する短絡手段(例えば、実施の形態でのPDU41)と、前記ロータを前記駆動源により回転駆動させ、前記モータの回転数が所定回転数(例えば、実施の形態での所定の回転数Nref)以上である場合に、前記短絡手段により前記モータの複数相を短絡させることにより前記永久磁石片を減磁させる制御手段(例えば、実施の形態でのモータ制御部40)とを備え、前記所定回転数は、前記モータの複数相を短絡したときに、前記回転数の変動に伴う相電流の変化が所定値未満となる定電流かつ短絡トルクが所定値未満となるトルク領域に到達する回転数であることを特徴としている。
上記構成のモータ制御装置によれば、駆動源により回転駆動されるモータの回転数が所定回転数以上となって、モータの複数相を短絡した際に発生する短絡トルクが所定値未満、かつ、モータの複数相を短絡した際の回転数に応じた相電流(つまり、短絡電流)の変動が所定変動未満となった状態でモータの複数相を短絡することにより、過剰に大きなトルク変動が生じてしまうことを防止すると共に、所望の弱め界磁位相の電機子磁束をロータの永久磁石片に安定的に印加させ、この電機子磁束に起因する渦電流損失によって永久磁石片を自己発熱させ、永久磁石片を適切かつ効率よく減磁させることができる。
さらに、請求項4に記載の発明のモータ制御装置では、前記駆動源は内燃機関(例えば、実施の形態での内燃機関E)であって、前記モータおよび前記内燃機関は車両を走行駆動する駆動源として前記車両に搭載され、前記車両の駆動輪と、前記モータおよび前記内燃機関との連結を断接可能な断接手段(例えば、実施の形態でのクラッチC)を備え、前記制御手段は、前記ロータを前記内燃機関により回転駆動させる際に、前記断接手段により前記車両の駆動輪と前記モータおよび前記内燃機関との連結を解除することを特徴としている。
上記構成のモータ制御装置によれば、駆動源として特別な装置を設ける必要無しに、モータを内燃機関により適切に回転駆動させることができ、永久磁石片を適切かつ効率よく減磁させることができる。
さらに、請求項5に記載の発明のモータ制御装置は、少なくとも前記モータの相電流を含むモータ状態量を検出する検出手段(例えば、実施の形態での電流測定部65)を備え、前記制御手段は、前記モータの複数相を短絡させた状態で、前記検出手段の検出により得られる検出値(例えば、実施の形態での短絡電流IS)あるいは該検出値に係る状態量(例えば、実施の形態での誘起電圧定数Ke、磁石温度Tm、コイル温度Tc)が所定値以上変動した場合に、前記短絡手段による前記短絡の動作および前記駆動源による前記回転駆動の動作を停止することを特徴としている。
上記構成のモータ制御装置によれば、例えば短絡電流の検出値が所定値以下に低下した場合や、短絡電流の検出値から算出可能な誘起電圧定数が所定値以下に低下した場合には、所望の減磁が完了したと判断して、モータの複数相の短絡および駆動源によるモータの回転駆動を停止して、過剰なエネルギー消費を防止することができる。また、例えば永久磁石片の温度やステータ巻線の温度が所定値以上に増大した場合には、モータの複数相の短絡および駆動源によるモータの回転駆動を停止することにより、モータに熱損傷が生じることを防止することができる。
さらに、請求項6に記載の発明のモータ制御装置では、前記ロータは、各々に前記永久磁石片を具備すると共に互いの相対的な位相を変更可能な複数のロータ部材(例えば、実施の形態での外周側回転子5と内周側回転子6)と、前記複数のロータ部材の相対的な位相を変更することによって誘起電圧定数を変更する位相変更手段(例えば、実施の形態での位相変更手段12)とを備え、前記制御手段は、前記モータの複数相を短絡させる際に、前記位相変更手段により前記誘起電圧定数を所定値以上に増大させることを特徴としている。
上記構成のモータ制御装置によれば、位相変更手段によって誘起電圧定数を増大させることにより、各ロータ部材の永久磁石片に印加される弱め界磁位相の電機子磁束を増大させることができ、永久磁石片を効率よく減磁させることができる。
請求項1に記載の本発明のモータ制御方法によれば、過剰に大きなトルク変動が生じてしまうことを防止すると共に、所望の弱め界磁位相の電機子磁束をロータの永久磁石片に安定的に印加させ、この電機子磁束に起因する渦電流損失によって永久磁石片を自己発熱させ、永久磁石片を適切かつ効率よく減磁させることができる。
さらに、請求項2に記載の発明のモータ制御方法によれば、過剰なエネルギー消費を防止すると共に、モータに熱損傷が生じることを防止することができる。
また、請求項3に記載の発明のモータ制御装置によれば、過剰に大きなトルク変動が生じてしまうことを防止すると共に、所望の弱め界磁位相の電機子磁束をロータの永久磁石片に安定的に印加させ、この電機子磁束に起因する渦電流損失によって永久磁石片を自己発熱させ、永久磁石片を適切かつ効率よく減磁させることができる。
さらに、請求項4に記載の発明のモータ制御装置によれば、駆動源として特別な装置を設ける必要無しに、モータを内燃機関により適切に回転駆動させることができ、永久磁石片を適切かつ効率よく減磁させることができる。
さらに、請求項5に記載の発明のモータ制御装置によれば、過剰なエネルギー消費を防止すると共に、モータに熱損傷が生じることを防止することができる。
さらに、請求項6に記載の発明のモータ制御装置によれば、各ロータ部材の永久磁石片に印加される弱め界磁位相の電機子磁束を増大させることができ、永久磁石片を効率よく減磁させることができる。
以下、本発明のモータ制御方法およびモータ制御装置の実施の形態について添付図面を参照しながら説明する。
この実施の形態によるモータ制御装置は、例えば走行駆動源としてモータを備えるハイブリッド車や電動車両等の車両に制御装置として搭載されている。具体的には、図1に示すように、制御装置100aを搭載する車両100は、モータ1および内燃機関Eを駆動源として備えるパラレルハイブリッド車両であり、モータ1と、内燃機関Eと、トランスミッションT/Mとは直列に直結され、少なくともモータ1または内燃機関Eの駆動力は、クラッチCおよびトランスミッションT/Mを介して車両100の駆動輪Wに伝達されるようになっている。
そして、この車両100の減速時に駆動輪W側からモータ1に駆動力が伝達されると、モータ1は発電機として機能して、いわゆる回生制動力を発生し、車体の運動エネルギーを電気エネルギー(回生エネルギー)として回収する。また、内燃機関Eの出力がモータ1に伝達された場合にもモータ1は発電機として機能して発電エネルギーを発生する。
ここで、制御装置100aが設けられた車両100には、例えばアクセルペダル開度センサ、ブレーキペダルスイッチセンサ、車輪速センサ等の各種センサ(図示略)が設けられており、制御装置100aはこれら各種センサの検出結果に基づいて、内燃機関E、モータ1、クラッチC、トランスミッションT/Mのそれぞれの制御系に対して制御指令を出力する。
モータ1は、例えば図2〜図5に示すように、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータとされている。
固定子2は複数相の固定子巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。モータ1の回転力はクラッチCおよびトランスミッションT/Mを介して駆動輪Wに伝達される。
回転子ユニット3は、例えば円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6とが所定の設定角度の範囲で相対的に回動可能とされている。
外周側回転子5と内周側回転子6は、各回転子本体である円環状のロータ鉄心7,8が例えば焼結金属によって形成され、その各ロータ鉄心7,8の外周側に偏寄した位置に、複数の磁石装着スロット7a,8aが円周方向等間隔に形成されている。各磁石装着スロット7a,8aには、厚み方向に磁化された2つの平板状の永久磁石9,9が並列に並んで装着されている。同じ磁石装着スロット7a,8a内に装着される2つの永久磁石9,9は同方向に磁化され、各隣接する磁石装着スロット7a,7a、及び、8a,8aに装着される永久磁石9の対同士は磁極の向きが逆向きになるように設定されている。即ち、各回転子5,6においては、外周側がN極とされた永久磁石9の対と、S極とされた永久磁石9の対が円周方向に交互に並んで配置されている。なお、各回転子5,6の外周面の隣接する磁石装着スロット7a,7a、及び、8a,8aの各間には、永久磁石9の磁束の流れを制御(例えば、磁路短絡の抑制等)するための切欠き部10が回転子5,6の軸方向に沿って形成されている。
外周側回転子5と内周側回転子6の磁石装着スロット7a,8aは夫々同数設けられ、両回転子5,6の永久磁石9,…,9が夫々1対1で対応するようになっている。したがって、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態(例えば、図5,図6(b)参照)を得ることができるとともに、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9の対を互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態(例えば、図3,図6(a)参照)を得ることができる。
また、回転子ユニット3は、外周側回転子5と内周側回転子6を相対回動させるための回動機構11を備えている。この回動機構11は、両回転子5,6の相対位相を任意に変更するための位相変更手段12の一部を構成するものであり、非圧縮性の作動流体である作動液(例えば、トランスミッションT/M用の潤滑油、エンジンオイル等でもよい)の圧力によって操作されるようになっている。
位相変更手段12は、例えば図7に示すように、回動機構11と、この回動機構11に供給する作動液の圧力を制御する油圧制御装置13とを主要な要素として備えて構成されている。
回動機構11は、例えば図2〜図5に示すように、回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の両側の側端部を跨ぐ円板状の一対のドライブプレート16,16を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。
ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応するベーン18が収容配置されるようになっている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を変位し得るようになっている。
この実施の形態においては、仕切壁21はベーン18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制する規制部材としても機能する。なお、各ベーン18の先端部と仕切壁21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によってベーン18と凹部19の底壁20、仕切壁21とボス部17の外周面の各間が液密にシールされている。
また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、例えば図2に示すように、内周側回転子6や仕切壁21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。
外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、作動液が導入される導入空間23となっている。各導入空間23内は、ベーンロータ14の対応する各ベーン18によって夫々2室に隔成され、一方の部屋が進角側作動室24、他方の部屋が遅角側作動室25とされている。
進角側作動室24は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入された作動液の圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図3,図5中の矢印Rで示すモータ1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、モータ1の回転方向Rと逆側に進めることを言うものとする。
また、各進角側作動室24と遅角側作動室25に対する作動液の給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、例えば図7に示す油圧制御装置13の進角側給排通路26に接続され、遅角側作動室25は同油圧制御装置13の遅角側給排通路27に接続されている。さらに、進角側給排通路26と遅角側給排通路27の一部は、例えば図2に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした2位置に形成された環状溝26bと環状溝27bに夫々接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c,…,26c,27c,…,27cに接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。
この実施の形態のモータ1において、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が異極同士で対向して強め界磁の状態(例えば、図3,図6(a)参照)になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が同極同士で対向して弱め界磁の状態(例えば、図5,図6(b)参照)になるように設定されている。
なお、このモータ1は、進角側作動室24と遅角側作動室25に対する作動液の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、このように磁界の強さが変更されると、これに伴って誘起電圧定数Keが変化し、この結果、モータ1の特性が変更される。即ち、強め界磁によって誘起電圧定数Keが大きくなると、モータ1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数Keが小さくなると、モータ1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。
油圧制御装置13は、例えば図7に示すように、オイルタンク(図示略)から作動液を吸い上げて通路に吐出するオイルポンプ32と、このオイルポンプ32から吐出された作動液の油圧を調整して高圧のライン通路33に導入し、余剰分の作動液を各種機器の潤滑や冷却のための低圧通路34に流出させるレギュレータバルブ35と、ライン通路33に導入された作動液を進角側給排通路26と遅角側給排通路27に振り分けるとともに、進角側給排通路26と遅角側給排通路27で不要な作動液をドレン通路36に排出する流路切換弁37とを備えている。
レギュレータバルブ35は、ライン通路33の圧力を制御圧として受け、反力スプリング38とのバランスによって作動液の振り分けを行う。
また、流路切換弁37は、制御スプール37aを進退操作する電磁ソレノイド37bを有し、この電磁ソレノイド37bが制御装置100aによって制御されるようになっている。
制御装置100aは、例えば図1に示すように、モータ制御部40と、PDU(パワードライブユニット)41と、バッテリ42と、ENG制御装置43とを備えて構成されている。
PDU41は、例えば図8に示すように、トランジスタのスイッチング素子がブリッジ接続されたブリッジ回路41aを用いてパルス幅変調(PWM)を行うPWMインバータ41Aを備え、モータ1と電気エネルギーの授受を行う高圧系のバッテリ42に接続されている。
PDU41に具備されるPWMインバータ41Aは、各相毎に対をなすハイ側,ロー側U相トランジスタUH,ULおよびハイ側,ロー側V相トランジスタVH,VLおよびハイ側,ロー側W相トランジスタWH,WLをブリッジ接続してなるブリッジ回路41aと、平滑コンデンサ41bとを備えて構成され、各トランジスタUH,VH,WHはバッテリ42の正極側端子に接続されてハイサイドアームを構成し、各トランジスタUL,VL,WLはバッテリ42の負極側端子に接続されローサイドアームを構成しており、各相毎に対をなす各トランジスタUH,ULおよびVH,VLおよびWH,WLはバッテリ42に対して直列に接続され、各トランジスタUH,UL,VH,VL,WH,WLのコレクタ−エミッタ間には、エミッタからコレクタに向けて順方向となるようにして、各ダイオードDUH,DUL,DVH,DVL,DWH,DWLが接続されている。
そして、PWMインバータ41Aは、例えばモータ1の駆動時等において、モータ制御部40から入力されるスイッチング指令であるゲート信号(つまり、パルス幅変調信号)に基づき、PWMインバータ41Aにおいて各相毎に対を成す各トランジスタUH,ULおよび各トランジスタVH,VLおよび各トランジスタWH,WLのオン(導通)/オフ(遮断)状態を切り換えることによって、バッテリ42から供給される直流電力を3相交流電力に変換し、モータ1の固定子巻線2aへの通電を順次転流させることによって、各相の固定子巻線2aに交流のU相電流Iu、V相電流IvおよびW相電流Iwを通電する。
モータ制御部40は、例えば図1に示すように、回転直交座標をなすdq座標上で電流のフィードバック制御を行うものであり、例えば運転者のアクセル操作に係るアクセル開度を検出するアクセルペダル開度センサの検出結果に基づいて算出されるトルク指令値Tqに基づきd軸電流指令Idc及びq軸電流指令Iqcを演算し、d軸電流指令Idc及びq軸電流指令Iqcに基づいて各相出力電圧Vu,Vv,Vwを算出し、各相出力電圧Vu,Vv,Vwに応じてPDU41へゲート信号であるPWM信号を入力すると共に、実際にPDU41からモータ1に供給される各相電流Iu,Iv,Iwの何れか2つの相電流をdq座標上の電流に変換して得たd軸電流Id及びq軸電流Iqと、d軸電流指令Idc及びq軸電流指令Iqcとの各偏差がゼロとなるように制御を行う。
このモータ制御部40は、例えば、目標電流設定部51と、電流偏差算出部52と、界磁制御部53と、電力制御部54と、電流制御部55と、dq−3相変換部56と、PWM信号生成部57と、フィルタ処理部58と、3相−dq変換部59と、回転数演算部60と、LdLq算出部61と、L算出部62と、R算出部63と、フィルタ処理部64と、電流測定部65と、コイル温度Tc算出部66と、誘起電圧定数算出部67と、磁石温度算出部68と、減磁判定部69と、短絡判定部70とを備えて構成されている。
そして、このモータ制御部40には、PDU41からモータ1に出力される3相の各相電流Iu,Iv,Iwのうち、2相のU相電流IuおよびW相電流Iwを検出する各電流センサ81,81から出力される各検出信号Ius,Iwsと、バッテリ42の端子電圧(電源電圧)VBを検出する電圧センサ82から出力される検出信号と、モータ1のロータの回転角θM(つまり、所定の基準回転位置からの回転子ユニット3の磁極の回転角度)を検出する回転センサ83から出力される検出信号と、油圧制御装置13により可変制御される内周側回転子6と外周側回転子5との相対的な位相(相対位相)θを検出する位相センサ(図示略)から出力される検出信号と、車両100の各車輪の回転速度(車輪速)を検出する複数の車輪速センサ(図示略)から出力される検出信号等とが入力されている。
目標電流設定部51は、例えば外部の制御装置(図示略)から入力されるトルク指令Tq(例えば、運転者によるアクセルペダルAPの踏み込み操作量を検出するアクセルペダル開度センサの出力に応じて必要とされるトルクをモータ1に発生させるための指令値)と、回転数演算部60から入力されるモータ1の回転数NMとに基づき、PDU41からモータ1に供給される各相電流Iu,Iv,Iwを指定するための電流指令を演算しており、この電流指令は、回転する直交座標上でのd軸目標電流Idc及びq軸目標電流Iqcとして電流偏差算出部52へ出力されている。
この回転直交座標をなすdq座標は、例えば回転子ユニット3の外周側回転子5の永久磁石9による界磁極の磁束方向をd軸(界磁軸)とし、このd軸と直交する方向をq軸(トルク軸)としており、モータ1の回転子ユニット3の回転位相に同期して回転している。これにより、PDU41からモータ1の各相に供給される交流信号に対する電流指令として、直流的な信号であるd軸目標電流Idcおよびq軸目標電流Iqcを与えるようになっている。
電流偏差算出部52は、界磁制御部53から入力されるd軸補正電流が加算されたd軸目標電流Idcと、d軸電流Idとの偏差ΔIdを算出するd軸電流偏差算出部52aと、電力制御部54から入力されるq軸補正電流が加算されたq軸目標電流Iqcと、q軸電流Iqとの偏差ΔIqを算出するq軸電流偏差算出部52bとを備えて構成されている。
なお、界磁制御部53は、例えばモータ1の回転数NMの増大に伴う逆起電圧の増大を抑制するために回転子ユニット3の界磁量を等価的に弱めるようにして電流位相を制御する弱め界磁制御の弱め界磁電流に対する目標値をd軸補正電流としてd軸電流偏差算出部52aへ出力する。
また、電力制御部54は、例えばバッテリ42の残容量等に応じた適宜の電力制御に応じてq軸目標電流Iqcを補正するためのq軸補正電流をq軸電流偏差算出部52bへ出力する。
電流制御部55は、例えばモータ1の回転数NMに応じたPI(比例積分)動作により、偏差ΔIdを制御増幅してd軸電圧指令値Vdを算出し、偏差ΔIqを制御増幅してq軸電圧指令値Vqを算出する。
dq−3相変換部56は、回転数演算部60から入力される回転子ユニット3の回転角θMを用いて、dq座標上でのd軸電圧指令値Vdおよびq軸電圧指令値Vqを、静止座標である3相交流座標上での電圧指令値であるU相出力電圧VuおよびV相出力電圧VvおよびW相出力電圧Vwに変換する。
PWM信号生成部57は、例えば、正弦波状の各相出力電圧Vu,Vv,Vwと、三角波からなるキャリア信号と、スイッチング周波数とに基づくパルス幅変調により、PDU41のPWMインバータ41Aの各スイッチング素子をオン/オフ駆動させる各パルスからなるスイッチング指令であるゲート信号(つまり、PWM信号)を生成する。
フィルタ処理部58は、各電流センサ81,81により検出された各相電流に対する検出信号Ius,Iwsに対して、高周波成分の除去等のフィルタ処理を行い、物理量としての各相電流Iu,Iwを抽出する。
3相−dq変換部59は、フィルタ処理部58により抽出された各相電流Iu,Iwと、回転数演算部60から入力される回転子ユニット3の回転角θMとにより、モータ1の回転位相による回転座標すなわちdq座標上でのd軸電流Idおよびq軸電流Iqを算出する。
回転数演算部60は、回転センサ83から出力される検出信号からモータ1の回転子ユニット3の回転角θMを抽出すると共に、この回転角θMに基づき、モータ1の回転数NMを算出する。
LdLq算出部61は、モータ1の駆動または回生作動時において、例えばd軸インダクタンスLdとd軸目標電流Idcとの相関関係を示す所定マップと、q軸インダクタンスLqとq軸目標電流Iqcとの相関関係を示す所定マップとに対する各マップ検索により、目標電流設定部51から出力されるd軸目標電流Idcおよびq軸目標電流Iqcに応じたd軸インダクタンスLdおよびq軸インダクタンスLqを算出する。
L算出部62は、回転数演算部60から出力される回転角θMに基づき、d軸インダクタンスLdおよびq軸インダクタンスLqに応じたインダクタンス成分値Lを算出する。
R算出部63は、後述するモータ3相短絡制御の実行時に電流測定部65から出力される相電流(つまり、短絡電流)に基づき、L算出部62から出力されるインダクタンス成分値Lに応じた相抵抗値Rを算出する。
なお、電流測定部65は、例えば電流センサ81により検出されたU相電流に対する検出信号Iusに対して高周波成分の除去等のフィルタ処理を行うフィルタ処理部64から出力されるU相電流Iuに基づき、相電流を算出する。
コイル温度Tc算出部66は、R算出部63から出力される相抵抗値Rに基づき、固定子巻線2aのコイル温度Tcを算出する。
つまり、相抵抗値Rは、例えば下記数式(1)に示すように、固定子巻線2aの所定の基準温度Tでの所定の相抵抗値Rと、コイル温度Tcによる相抵抗(つまり固定子巻線2aの抵抗)の変化係数β(例えば、β=0.00393)とにより記述される。これにより、コイル温度Tcは、この下記数式(1)を変形して得られる下記数式(2)により算出される。
Figure 0004421603
Figure 0004421603
誘起電圧定数算出部67は、電流制御部55から出力されるq軸電圧指令値Vqと、3相−dq変換部59から出力されるd軸電流Idおよびq軸電流Iqと、LdLq算出部61から出力されるd軸インダクタンスLdと、R算出部63から出力される相抵抗値Rとに基づき、誘起電圧定数Keを算出する。
つまり、例えば図9に示す電圧ベクトル図に基づき、dq座標上での回路方程式は、ロータの回転角速度ωにより、例えば下記数式(3)に示すように記述される。これにより、誘起電圧定数Keは、この下記数式(3)を変形して得られる下記数式(4)により算出される。
Figure 0004421603
Figure 0004421603
磁石温度Tm算出部68は、誘起電圧定数算出部67から出力される誘起電圧定数Keに基づき、磁石温度Tmを算出する。
つまり、誘起電圧定数Keは、例えば下記数式(5)に示すように、回転子ユニット3の永久磁石9の所定の基準温度Tでの所定の誘起電圧定数Keと、永久磁石9の磁石温度Tmに対する温度係数β(例えば、ネオジウム磁石に対してα=0.0011)とにより記述される。これにより、磁石温度Tmは、この下記数式(5)を変形して得られる下記数式(6)により算出される。
Figure 0004421603
Figure 0004421603
減磁判定部69は、例えば外部の制御装置から出力される減磁指令と、後述するモータ3相短絡制御の実行時に電流測定部65から出力される相電流またはコイル温度Tc算出部66から出力されるコイル温度Tcまたは誘起電圧定数算出部67から出力される誘起電圧定数Keまたは磁石温度Tm算出部68から出力される磁石温度Tmまたは適宜のタイマーの計時値(タイマーT)とに基づき、後述するモータ3相短絡制御の実行が要求される減磁モードであるか否かを判定し、この判定結果を、例えばクラッチCと油圧制御装置13とENG制御装置43と短絡判定部70とに出力する。
例えば減磁判定部69において減磁モードであると判定された場合には、クラッチCはモータ1と駆動輪Wとの接続を開放し、油圧制御装置13はモータ1を強め界磁状態に設定するようにして誘起電圧定数Keを増大させ、ENG制御装置43は後述するエンジン高回転制御を実行するように設定されている。
短絡判定部70は、回転数演算部60から出力されるモータ1の回転数NMと、減磁判定部69から出力される判定結果とに基づき、モータ3相短絡制御の実行開始または実行停止を指示する短絡指令を、例えば電流制御部55およびPWM信号生成部57および電流測定部65へ出力する。
短絡判定部70は、例えば減磁判定部69において減磁モードであると判定された状態で、回転数NMが所定の回転数Nrefよりも大きい場合に、モータ3相短絡制御の実行開始を指示する短絡指令を出力する。
このモータ3相短絡制御の実行開始を指示する短絡指令は、例えば電流制御部55に対して、モータ3相短絡制御の実行時のPI(比例積分)動作に係る電圧変動の補償を指示する短絡補償指令と、PWM信号生成部57に対して、PDU41のPWMインバータ41Aのハイサイドアームまたはローサイドアームの各トランジスタUH,VH,WHまたはUL,VL,WLをON状態に設定するスイッチング指令の出力を指示する相短絡指令と、電流測定部65に対する相電流(つまり、短絡電流)の測定および出力を指示する指令により構成されている。
また、回転数NMに対する所定の回転数Nrefは、例えば図10に示すように、モータ3相短絡制御の実行時において、回転数NMの変動に伴う相電流(つまり、短絡電流)の変化が所定値未満となる定電流かつ3相短絡トルクが所定値未満となる低トルクの領域に到達する回転数である。
このモータ3相短絡制御の実行開始に伴い、例えば図9に示すように、モータ3相短絡制御の実行時以外の通常運転における所定電圧値の電源電圧円は、モータ3相短絡制御の実行時には、例えば各トランジスタUH,VH,WHまたはUL,VL,WLをON状態に設定するON電圧と浮遊ダイオードのフォワード電圧との和等からなる、ほぼゼロの電圧値の電源電圧円となる。
これに伴い、例えば上記従来技術の一例のように、通常運転時において内燃機関Eの駆動力によりモータ1を回転駆動し、モータ1の端子電圧をバッテリ42の電源電圧以下に維持するゼロトルク制御の実行状態では、モータ1のインピーダンスZと、各d軸電流idおよびq軸電流iqとに応じた電圧ベクトルの合成ベクトルがモータ1の相電流iによる電圧ベクトルiZ(通常運転時)となることに対して、モータ3相短絡制御の実行時において内燃機関Eの駆動力によりモータ1を回転駆動する状態においては、逆起電圧Ke・ωに相当する電圧ベクトルiZ(短絡時)に応じた弱め界磁位相の電機子磁束が回転子ユニット3の永久磁石9に印加され、この電機子磁束に起因する渦電流損失による自己発熱により永久磁石9が減磁されることになる。
この実施の形態によるモータ制御装置(つまり、制御装置100a)は上記構成を備えており、次に、この制御装置100aの動作について説明する。
先ず、例えば図11に示すステップS01においては、減磁モードであるか否かを判定する。
この判定結果が「NO」の場合には、ステップS01の処理を繰り返す。
一方、この判定結果が「YES」の場合には、ステップS02に進む。
そして、ステップS02においては、クラッチCによるモータ1と駆動輪Wとの接続を開放する。
そして、ステップS03においては、エンジン高回転制御の実行を開始し、内燃機関Eの駆動力によりモータ1を回転駆動する。
そして、ステップS04においては、油圧制御装置13により内周側回転子6と外周側回転子5との相対位相θを制御し、モータ1を強め界磁状態に設定することで、誘起電圧定数Keを増大させる。
そして、ステップS05においては、回転数演算部60から出力されるモータ1の回転数NMが所定の回転数Nrefよりも大きいか否かを判定する。
この判定結果が「NO」の場合には、上述したステップS03に戻る。
一方、この判定結果が「YES」の場合には、ステップS06に進む。
そして、ステップS06においては、タイマーの計時を開始する。
そして、ステップS07においては、モータ3相短絡制御の実行を開始する。
そして、ステップS08においては、短絡電流IS、誘起電圧定数Ke、磁石温度Tm、コイル温度Tcを算出する。
そして、ステップS09においては、短絡電流ISが所定電流値IS_refよりも小さいか否か、あるいは、誘起電圧定数Keが所定の所定値Ke_refよりも小さいか否か、あるいは、磁石温度Tmが所定磁石温度Tm_refよりも高いか否か、あるいは、コイル温度Tcが所定コイル温度Tc_refよりも高いか否か、あるいは、タイマーコイル温度Tcが所定コイル温度Tc_refよりも高いか否か、あるいは、タイマーの計時値(タイマーT)が所定値T_ref以上か否かを判定する。
この判定結果が「NO」の場合には、上述したステップS08に戻る。
一方、この判定結果が「YES」の場合には、ステップS10に進む。
そして、ステップS10においては、エンジン高回転制御の実行を停止する。
そして、ステップS11においては、油圧制御装置13により内周側回転子6と外周側回転子5との相対位相θを制御し、モータ1の状態(つまり、誘起電圧定数Ke)を、上述したステップS03でのエンジン高回転制御の実行開始以前の状態に戻す。
そして、ステップS12においては、モータ3相短絡制御の実行を停止し、一連の処理を終了する。
上述したように、この実施の形態によるモータ制御装置およびモータ制御方法によれば、モータ3相短絡制御により、バッテリ42の状態に拘わらずに永久磁石9を適切に減磁させることができる。
しかも、モータ1の運転状態が、モータ3相短絡制御の実行時以外の通常運転から、モータ3相短絡制御の実行状態へと移行する際に、過剰に大きなトルク変動が生じてしまうことで車両100の乗員が車両100の挙動に違和感を感じてしまうことを防止することができると共に、各モータ定数(例えば、d軸インダクタンスLdおよびq軸インダクタンスLq等)の変動が相対的に小さい状態で各モータ定数を精度良く算出することができ、所望の弱め界磁位相の電機子磁束を回転子ユニット3の永久磁石9に安定的に印加することができる。そして、この電機子磁束に起因する渦電流損失によって永久磁石9を自己発熱させ、永久磁石9を適切かつ効率よく減磁させることができる。
しかも、モータ3相短絡制御の実行時に、磁石温度Tmが所定磁石温度Tm_refよりも高い場合、あるいは、コイル温度Tcが所定コイル温度Tc_refよりも高い場合にエンジン高回転制御およびモータ3相短絡制御の実行を停止することにより、モータ1に熱損傷が生じることを防止することができる。
また、モータ3相短絡制御の実行時に、タイマーの計時値(タイマーT)が所定値T_ref以上の場合にエンジン高回転制御およびモータ3相短絡制御の実行を停止することにより、過剰なエネルギー消費を防止することができる。
また、モータ3相短絡制御の実行時には、回動機構11によってモータ1の誘起電圧定数Keを増大させることにより、回転子ユニット3の永久磁石9に印加される弱め界磁位相の電機子磁束を増大させることができ、各永久磁石9を効率よく減磁させることができる。
なお、この発明は上述した実施の形態に限られるものではなく、例えば、ハイブリッド車両以外に電気自動車等に適用してもよいし、車両に適用する場合に限らず、上述した車両の内燃機関の代わりに他の駆動源を具備する適宜の装置に適用してもよい。
なお、上述した実施の形態において、モータ1は外周側回転子5と内周側回転子6とを具備する多重ロータであって、誘起電圧定数Keを可変としたが、これに限定されず、例えば単一のロータを具備し、誘起電圧定数Keが所定値に固定されたモータであってもよい。
本発明の実施の形態に係る車両の概略構成図である。 本発明の実施の形態に係るモータの要部断面図である。 本発明の実施の形態に係るモータの最遅角位置に制御されている回転子ユニットの一部部品を省略した側面図である。 本発明の実施の形態に係るモータの回転子ユニットの分解斜視図である。 本発明の実施の形態に係るモータの最進角位置に制御されている回転子ユニットの一部部品を省略した側面図である。 本発明の実施の形態に係るモータの内周側回転子の永久磁石と外周側回転子の永久磁石とが同極配置された強め界磁状態を模式的に示す図(a)と、内周側回転子の永久磁石と外周側回転子の永久磁石とが異極配置された弱め界磁状態を模式的に示す図(b)を併せて記載した図である。 本発明の実施の形態に係る油圧制御装置の構成図である。 本発明の実施の形態に係るPDUの構成図である。 本発明の実施の形態に係る電圧ベクトル図である。 本発明の実施の形態に係るモータの回転数とトルクと相電流との関係を示すグラフ図である。 本発明の実施の形態に係るモータ制御装置の動作を示すフローチャートである。
符号の説明
1 モータ
2 固定子(ステータ)
5 外周側回転子(ロータ、ロータ部材)
6 内周側回転子(ロータ、ロータ部材)
9 永久磁石(永久磁石片)
12 位相変更手段
40 モータ制御部(制御手段)
41 PDU(短絡手段)
65 電流測定部(検出手段)

Claims (6)

  1. 永久磁石片を具備するロータとステータとを備えるモータを駆動源により回転駆動し、
    前記モータの回転数が所定回転数以上である場合に前記モータの複数相を短絡することにより前記永久磁石片を減磁させており、
    前記所定回転数は、前記モータの複数相を短絡したときに、前記回転数の変動に伴う相電流の変化が所定値未満となる定電流かつ短絡トルクが所定値未満となるトルク領域に到達する回転数であることを特徴とするモータ制御方法。
  2. 前記短絡の実行時に、少なくとも前記モータの相電流を含むモータ状態量が所定値以上変動した場合に、前記短絡および前記回転駆動を停止することを特徴とする請求項1に記載のモータ制御方法。
  3. 永久磁石片を具備するロータとステータとを備えるモータと、
    前記ロータを回転駆動可能な駆動源と、
    前記モータの複数相を短絡する短絡手段と、
    前記ロータを前記駆動源により回転駆動させ、前記モータの回転数が所定回転数以上である場合に、前記短絡手段により前記モータの複数相を短絡させることにより前記永久磁石片を減磁させる制御手段と
    を備え、
    前記所定回転数は、前記モータの複数相を短絡したときに、前記回転数の変動に伴う相電流の変化が所定値未満となる定電流かつ短絡トルクが所定値未満となるトルク領域に到達する回転数であることを特徴とするモータ制御装置。
  4. 前記駆動源は内燃機関であって、前記モータおよび前記内燃機関は車両を走行駆動する駆動源として前記車両に搭載され、
    前記車両の駆動輪と、前記モータおよび前記内燃機関との連結を断接可能な断接手段を備え、
    前記制御手段は、前記ロータを前記内燃機関により回転駆動させる際に、前記断接手段により前記車両の駆動輪と前記モータおよび前記内燃機関との連結を解除することを特徴とする請求項3に記載のモータ制御装置。
  5. 少なくとも前記モータの相電流を含むモータ状態量を検出する検出手段を備え、
    前記制御手段は、前記モータの複数相を短絡させた状態で、前記検出手段の検出により得られる検出値あるいは該検出値に係る状態量が所定値以上変動した場合に、前記短絡手段による前記短絡の動作および前記駆動源による前記回転駆動の動作を停止することを特徴とする請求項3または請求項4に記載のモータ制御装置。
  6. 前記ロータは、各々に前記永久磁石片を具備すると共に互いの相対的な位相を変更可能な複数のロータ部材と、前記複数のロータ部材の相対的な位相を変更することによって誘起電圧定数を変更する位相変更手段とを備え、
    前記制御手段は、前記モータの複数相を短絡させる際に、前記位相変更手段により前記誘起電圧定数を所定値以上に増大させることを特徴とする請求項3から請求項5の何れかひとつに記載のモータ制御装置。
JP2006325399A 2006-12-01 2006-12-01 モータ制御方法およびモータ制御装置 Expired - Fee Related JP4421603B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006325399A JP4421603B2 (ja) 2006-12-01 2006-12-01 モータ制御方法およびモータ制御装置
CN2007101962193A CN101192779B (zh) 2006-12-01 2007-11-30 电动机控制方法及电动机控制装置
US11/998,429 US7804261B2 (en) 2006-12-01 2007-11-30 Motor control method and motor control apparatus
EP07121984A EP1928084B1 (en) 2006-12-01 2007-11-30 Motor control method and motor control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325399A JP4421603B2 (ja) 2006-12-01 2006-12-01 モータ制御方法およびモータ制御装置

Publications (2)

Publication Number Publication Date
JP2008141862A JP2008141862A (ja) 2008-06-19
JP4421603B2 true JP4421603B2 (ja) 2010-02-24

Family

ID=39247103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325399A Expired - Fee Related JP4421603B2 (ja) 2006-12-01 2006-12-01 モータ制御方法およびモータ制御装置

Country Status (4)

Country Link
US (1) US7804261B2 (ja)
EP (1) EP1928084B1 (ja)
JP (1) JP4421603B2 (ja)
CN (1) CN101192779B (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092265A1 (de) * 2005-03-04 2006-09-08 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektromotor und verfahren zu seiner steuerung
JP4879657B2 (ja) * 2006-05-31 2012-02-22 本田技研工業株式会社 電動機の制御装置
JP4572907B2 (ja) * 2007-03-29 2010-11-04 トヨタ自動車株式会社 モータ制御装置、制御方法及び制御プログラム
US8538615B2 (en) * 2009-02-06 2013-09-17 Belon Engineering Inc. Smart electrical wheel for electrical bikes
US8174222B2 (en) * 2009-10-12 2012-05-08 GM Global Technology Operations LLC Methods, systems and apparatus for dynamically controlling an electric motor that drives an oil pump
JP5857394B2 (ja) * 2010-09-15 2016-02-10 日産自動車株式会社 インバータ装置及びインバータ制御方法
JP5786216B2 (ja) * 2010-11-02 2015-09-30 ジヤトコ株式会社 ハイブリッド車両
CN103347763B (zh) * 2011-02-03 2016-05-18 丰田自动车株式会社 混合动力车辆及其控制方法
JP5186586B2 (ja) * 2011-09-01 2013-04-17 株式会社松井製作所 駆動制御装置、電気機器及び駆動制御方法
JP5886008B2 (ja) * 2011-11-18 2016-03-16 Ntn株式会社 電気自動車のモータ制御装置
JP5802577B2 (ja) * 2012-03-07 2015-10-28 日立オートモティブシステムズ株式会社 回転電機制御装置
US20140195137A1 (en) * 2012-03-30 2014-07-10 Honda Motor Co., Ltd. Internal combustion engine control apparatus and internal combustion engine control method
JP5616409B2 (ja) * 2012-09-06 2014-10-29 ファナック株式会社 永久磁石の不可逆減磁を防止する永久磁石同期電動機の制御装置及びそのような制御装置を備える制御システム
JP5823055B2 (ja) * 2012-10-11 2015-11-25 三菱電機株式会社 モータ制御装置およびモータ制御方法
JPWO2014155655A1 (ja) * 2013-03-29 2017-02-16 株式会社松井製作所 材料輸送装置及び材料輸送方法
JP2015082943A (ja) * 2013-10-24 2015-04-27 トヨタ自動車株式会社 車両制御装置
US9698660B2 (en) 2013-10-25 2017-07-04 General Electric Company System and method for heating ferrite magnet motors for low temperatures
JP6277013B2 (ja) * 2014-02-21 2018-02-07 日立オートモティブシステムズ株式会社 アクチュエータの制御装置
CN103997266B (zh) * 2014-05-28 2016-06-15 江苏大学 一种混合动力车bsg转矩波动补偿控制器及其构造方法
US9602043B2 (en) * 2014-08-29 2017-03-21 General Electric Company Magnet management in electric machines
CN105836565B (zh) * 2015-01-14 2019-02-05 申龙电梯股份有限公司 电梯曳引机磁钢失磁在线监测装置
GB2540602A (en) * 2015-07-23 2017-01-25 Protean Electric Ltd A controller for an electric machine
JP6484544B2 (ja) * 2015-10-29 2019-03-13 ルネサスエレクトロニクス株式会社 モータ駆動装置およびモータシステム
WO2018062083A1 (ja) * 2016-09-30 2018-04-05 日本電産トーソク株式会社 制御装置、制御方法、モータ、および電動オイルポンプ
CN110418742B (zh) * 2017-03-22 2022-06-28 株式会社爱信 车辆用驱动控制装置
US20200271120A1 (en) * 2017-10-31 2020-08-27 Ulvac, Inc. Vacuum pump and control method therefor
JP7019513B2 (ja) * 2018-06-05 2022-02-15 株式会社荏原製作所 制御装置、制御システム、制御方法、プログラム及び機械学習装置
KR102518904B1 (ko) * 2018-06-29 2023-04-06 에이치엘만도 주식회사 차량용 모터 제어 장치 및 방법
CN110429890A (zh) * 2019-08-16 2019-11-08 宝能汽车有限公司 电机转矩的控制方法、电动设备及计算机可读存储介质
JP7338589B2 (ja) * 2020-08-20 2023-09-05 株式会社デンソー 電力変換器の制御回路
JP2022076768A (ja) * 2020-11-10 2022-05-20 株式会社デンソー インバータ制御装置
CN113665374B (zh) * 2021-09-28 2024-06-18 潍柴动力股份有限公司 车辆速度的控制方法、装置、设备及存储介质
JP7285901B2 (ja) * 2021-11-01 2023-06-02 三菱電機株式会社 電動機制御装置および電動機駆動システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191026880A (en) * 1910-11-19 1911-05-04 William Holt Improvements in Dynamo-electric Machines.
GB115509A (en) 1917-05-22 1918-05-16 William Holt Improvements in Self-regulating Dynamo-electric Machines.
JP3063229B2 (ja) 1991-04-27 2000-07-12 株式会社佐竹製作所 同期電動機
DE4323599C1 (de) * 1993-07-09 1994-10-27 Mannesmann Ag Antriebseinheit
JPH0752854A (ja) * 1993-08-11 1995-02-28 Bridgestone Cycle Co 自転車用照明装置
JPH08308276A (ja) 1995-05-11 1996-11-22 Nikon Corp モータの回転停止制御装置
JPH11318098A (ja) * 1998-04-30 1999-11-16 Toshiba Corp インバータ装置
JP4306851B2 (ja) * 1999-01-06 2009-08-05 本田技研工業株式会社 磁石式ブラシレス電動機の進角補正方法
JP2000324884A (ja) 1999-05-07 2000-11-24 Matsushita Electric Ind Co Ltd ブラシレスモータ減速方式
JP3835126B2 (ja) 2000-05-31 2006-10-18 三菱電機株式会社 減磁装置、減磁方法、永久磁石を有する製品の解体方法
JP4828042B2 (ja) * 2001-05-17 2011-11-30 三菱電機株式会社 永久磁石型風力発電機の電気ブレーキ装置
US7089897B2 (en) * 2002-07-11 2006-08-15 Ina-Schaeffler Kg Electrically driven camshaft adjuster
JP3946648B2 (ja) * 2003-02-04 2007-07-18 本田技研工業株式会社 ハイブリッド車両の制御装置
JP2005130564A (ja) * 2003-10-22 2005-05-19 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
JP2005192325A (ja) * 2003-12-25 2005-07-14 Yaskawa Electric Corp 永久磁石電動機の減磁検出方法
JP2006254521A (ja) * 2005-03-08 2006-09-21 Yaskawa Electric Corp 同期機の制御装置
JP4350676B2 (ja) 2005-03-31 2009-10-21 本田技研工業株式会社 ハイブリッド車両の制御装置
JP4396679B2 (ja) 2006-09-11 2010-01-13 パナソニック株式会社 モータ駆動用システムおよびこれを用いた電気自動車

Also Published As

Publication number Publication date
EP1928084A1 (en) 2008-06-04
US7804261B2 (en) 2010-09-28
JP2008141862A (ja) 2008-06-19
EP1928084B1 (en) 2011-07-20
CN101192779B (zh) 2011-09-28
CN101192779A (zh) 2008-06-04
US20080129237A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4421603B2 (ja) モータ制御方法およびモータ制御装置
JP4515439B2 (ja) ハイブリッド車両の制御装置
EP2034603B1 (en) Control device and control method of boost converter
JP4971039B2 (ja) モータ制御装置
JP4372775B2 (ja) モータ制御装置
JP2010273521A (ja) 電動機の制御装置
JP4777192B2 (ja) モータの制御装置
JP4732273B2 (ja) 車両用モータの制御装置
JP4971040B2 (ja) モータ制御装置
JP4805128B2 (ja) モータ制御装置
JP4757722B2 (ja) モータの制御装置
JP4805129B2 (ja) モータ制御装置
JP4372770B2 (ja) モータを備える車両の制御装置
JP2009060697A (ja) モータ制御装置
JP4754433B2 (ja) モータの制御装置
JP2009005452A (ja) モータ制御装置
JP4869825B2 (ja) モータの制御装置
JP5063943B2 (ja) 電動機および電動機の位相制御方法
JP2008067499A (ja) 回転電機を具備する車両
JP2008306845A (ja) モータ制御装置
JP4864686B2 (ja) モータの制御装置
JP2009050124A (ja) モータ制御装置
JP2009005453A (ja) モータ駆動車両の制御装置
JP2009159760A (ja) 電動機
JP2010273522A (ja) 電動機の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees