JP2004331477A - Manufacturing method of monolayer carbon nanotube and its unit - Google Patents

Manufacturing method of monolayer carbon nanotube and its unit Download PDF

Info

Publication number
JP2004331477A
JP2004331477A JP2003132770A JP2003132770A JP2004331477A JP 2004331477 A JP2004331477 A JP 2004331477A JP 2003132770 A JP2003132770 A JP 2003132770A JP 2003132770 A JP2003132770 A JP 2003132770A JP 2004331477 A JP2004331477 A JP 2004331477A
Authority
JP
Japan
Prior art keywords
reaction vessel
carbon
mixed gas
net
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003132770A
Other languages
Japanese (ja)
Other versions
JP3810756B2 (en
JP2004331477A5 (en
Inventor
Yoshinori Ando
義則 安藤
Masato Okochi
正人 大河内
Shinraku Cho
新洛 趙
Sakae Inoue
栄 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003132770A priority Critical patent/JP3810756B2/en
Priority to PCT/JP2004/002491 priority patent/WO2004099072A1/en
Publication of JP2004331477A publication Critical patent/JP2004331477A/en
Publication of JP2004331477A5 publication Critical patent/JP2004331477A5/ja
Application granted granted Critical
Publication of JP3810756B2 publication Critical patent/JP3810756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Abstract

<P>PROBLEM TO BE SOLVED: To easily remove impurity carbons such as carbon nano particle, amorphous carbon, etc., from the net-like deposit of a monolayer carbon nanotube by carrying out the formation and the refining of the monolayer carbon nanotube in the same reactor 10. <P>SOLUTION: In this manufacturing method of the monolayer carbon nanotube, in a reactor kept in the atmosphere of a mixed gas of H<SB>2</SB>and Ar, an alternate current arc discharge A is generated between carbon electrodes 20R and 20L which are faced to the rectangular direction of the pipe axis, and the net-like deposit of a monolayer carbon nanotube is formed in the space connecting the carbon electrodes 20R and 20L and the inner wall of the reactor 10, then, the atmosphere of the reactor 10 is changed to a mixed gas of O<SB>2</SB>and Ar, and the temperature inside of the reactor 10 is raised with a heating device 14, and the carbon nano particle, amorphous carbon , etc., are removed by gasification and the monolayer carbon nanotube of high purity can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、電子材料,水素吸蔵材料,ナノ構造材料等の機能性材料としての展開が期待される単層カーボンナノチューブを作製し,その場精製する方法及び装置に関する。
【0002】
【従来の技術】
カーボンナノチューブは、結晶学的構造及び直径に応じて電気的特性が半導体的又は金属的に変わることから高機能材料として注目されている。カーボンナノチューブには、筒状に巻かれたグラフェンシートが等間隔で2層以上重なった多層カーボンナノチューブと、1層だけの単層カーボンナノチューブがある。単層カーボンナノチューブは、多層カーボンナノチューブに比較して小さな直径に由来する量子効果が期待され、物性的な興味がもたれている。
【0003】
カーボンナノチューブの作製にはアーク放電,レーザ蒸発法,CVD法等があるが、量産化にはCVD法が、結晶性向上にはアーク放電が適している。直流アーク放電で単層カーボンナノチューブを作製する場合、金属触媒を混合したグラファイト棒を陽極に用い、アーク熱でグラファイト棒を蒸発させる。蒸発したグラファイトは、電極の周りから容器の内部全体にわたって蜘蛛の巣状に張り巡らされた綿状煤として生成される。この綿状煤に単層カーボンナノチューブが含まれている。
本発明者等は、単層カーボンナノチューブを含む綿状煤が大量にできる作製条件を種々調査・検討し、Ni−Y触媒を含む陽極及び炭素棒陰極を30度の鋭角で配置させることが有効であることを報告した(「材料」第50巻第7号第357〜360頁)。
【0004】
【発明が解決しようとする課題】
堆積した綿状煤に含まれる単層カーボンナノチューブの割合が必ずしも高くないので、綿状煤を精製して単層カーボンナノチューブの純度を上げる必要がある。しかし、単層カーボンナノチューブ自体の機械的・化学的強度が十分でないため精製が容易でない。不十分な機械的・化学的強度は、Ni−Y触媒を用いて合成された単層カーボンナノチューブが結晶性に劣ることに原因があるものと考えられる。アーク放電法による単層カーボンナノチューブの作製にS添加Fe系金属触媒を使用した場合でも、触媒がSを含んでいるため単層カーボンナノチューブの機械的・化学的強度が低く精製が容易でない。
【0005】
単層カーボンナノチューブの機械的・化学的強度に触媒が与える影響を種々調査・検討した結果、触媒としてFe単体が有効であることを見出した。すなわち、H,Arの混合ガス雰囲気中でFe単体(触媒)をグラファイト棒に配合した陽極と陰極の間でアーク放電させると、陽極から蒸発したカーボンが陰極と真空チャンバ内壁を結ぶ空間に単層カーボンナノチューブを含む綿状析出物として堆積する(先願・特願2002−080729号)。
アーク放電雰囲気にH,Arの混合ガスを使用すると、ネット状堆積物へのアモルファスカーボンやカーボンナノ粒子の混入が軽減され、単層カーボンナノチューブの割合が高くなる。Fe単体触媒の使用により、単層カーボンナノチューブの結晶性,機械的・化学的強度が向上する。しかし、依然としてアモルファスカーボン,カーボンナノ粒子,Fe粒子(触媒)が混入していることに変わりなく、後続する工程で単層カーボンナノチューブの精製が必要になる。
【0006】
【課題を解決するための手段】
本発明は、アーク放電によって生成した単層カーボンナノチューブを別の場所に移動させることなく同じ反応容器内で精製することにより、低い機械的・化学的強度に起因する問題を克服し、純度の高い単層カーボンナノチューブを高生産性で製造することを目的とする。
【0007】
本発明に従った製造方法では、少なくとも陽極側のグラファイト棒にFe触媒を配合した2本の電極を筒状反応容器の内部で管軸直交方向に対向させ、反応容器にH,Arの混合ガスを送り込みながら電極間にアーク放電を発生させ、少なくとも陽極から蒸発したカーボンを混合ガスの流れに乗せて電極と反応容器壁との間にネット状の単層カーボンナノチューブとして堆積させる。
【0008】
ネット状堆積物の堆積に応じ炭素電極をプレチャンバ側に相対移動させると、反応容器の管軸方向に沿った所定長さ域に極長のネット状堆積物が生成する。
なかでも、グラファイト棒にFe触媒を配合した2本の電極間に交流アーク放電を発生させて両極からカーボンを蒸発させると、単層カーボンナノチューブを含まない陰極堆積物がなくなり、直流アーク放電に比較して蒸発炭素量に対する単層カーボンナノチューブの生成割合が高くなる。
【0009】
所定長さ域にネット状堆積物を生成させた後、アーク放電を中止し、反応容器10の雰囲気ガスをH,Arの混合ガスからO,Arの混合ガスに切り替える。そして、O,Arの混合ガスを送り込みながら反応容器全体を加熱することにより、単層カーボンナノチューブのネット状堆積物からカーボンナノ粒子,アモルファスカーボン等の不純物炭素がガス化して除去される。併せて、Fe粒子(触媒)の表面が酸化される。不純物炭素が除去された単層カーボンナノチューブのネット状堆積物を反応容器から取り出し、塩酸処理によって酸化されたFe触媒を除去すると、純度の高い単層カーボンナノチューブが得られる。
【0010】
この方法に使用する装置は、基端がプレチャンバに接続され、先端に排気管が開口している水平方向に延びた筒状反応容器と、該反応容器内で管軸直交方向に対向させた少なくとも陽極側がFe触媒配合カーボンから作製された一対の炭素電極と、該炭素電極が接続された放電電源と、反応容器の周囲に配置された加熱機構とを備えている。プレチャンバには、アーク放電中にH,Arの混合ガスを、アーク放電終了後に加熱機構をオンした状態でO,Arの混合ガスを排気管に向けて流すガス供給管が開口している。加熱酸化で不純物炭素が除去されたネット状堆積物は、反応容器内の排気管側に配置されている捕集装置で捕集される。交流電源を使用する場合、共にFe触媒配合カーボンから作製された一対の炭素電極が使用される。
【0011】
【実施の形態及び作用】
本発明では、アーク放電で炭素電極から炭素を蒸発させ単層カーボンナノチューブを堆積させる反応装置を使用する。直流アーク放電,交流アーク放電の何れも採用可能であるが、直流アーク放電による場合、Fe触媒配合カーボンから作製された炭素電極を陽極に、Fe触媒を含まない炭素電極を陰極に使用し、陽極から炭素を蒸発させる。その他は交流アーク放電による場合と同様であるので、以下では交流アーク放電による炭素の蒸発,単層カーボンナノチューブの生成を説明する。
反応装置は、石英管等の筒状反応容器10をプレチャンバ11に接続している(図1)。プレチャンバ11の一側が真空ポンプ12に接続され、H,Arの混合ガスを送り込むガス供給管13が開口している。ガス供給管13には、反応容器10の雰囲気圧を調節する圧力制御装置19が組み込まれている。
【0012】
反応容器10は、操作性を向上するためプレチャンバ11から水平方向に延在させることが好ましい。反応容器10の周囲には単層カーボンナノチューブのネット状堆積物を加熱する抵抗加熱器,輻射加熱器等の加熱機構14が配置され、プレチャンバ11と反対側に排気管15が開口している。排気管15は、排気ポンプ16に接続されており、途中に設けた流量調整弁17で排気管15を流れるH,Arの混合ガスの流量,ひいては反応容器10内の混合ガス流量が調整される。排気管15内に熱電対18を挿し込んでおくと、反応容器10の雰囲気温度を測定できる。
【0013】
反応容器10内に、交流電源21にリード線22R,22Lで接続された2本の炭素電極20R,20Lが管軸直交方向に対向配置されている。炭素電極20R,20Lは、送り装置23によって反応容器10内を管軸直交方向に移動可能になっている。炭素電極20R,20LはカーボンにFe触媒を配合して成形することにより用意される。Fe触媒としては、Feの酸化物や炭化物等から製造された粒径1μm以下の微粒状Fe単体触媒が単層カーボンナノチューブの機械的・化学的強度,収率を向上させる上で好ましい。炭素電極20R,20Lに含まれているFe微粒子は、アーク放電によって蒸発すると10nm以下の超微粒子になる。
【0014】
反応容器10内の雰囲気は、排気ポンプ16で真空度:13〜1.3×10−3Pa程度まで真空吸引した後、ガス供給管13からH,Arの混合ガスを送り込むことにより、1.3〜6.7×10Pa程度の雰囲気圧に維持される。雰囲気調整後、加熱機構14がオフの状態で炭素電極20R,20L間に20〜30Vの交流電圧を印加すると交流アーク放電Aが発生し、炭素電極20R,20Lから炭素が蒸発する。
【0015】
交流アーク放電による炭素蒸発であるため、2本の炭素電極20R,20Lは同じ条件下で消費される。発生した炭素蒸気は、混合ガスの流れFに乗って排気管15側に送られ、ネット状堆積物として炭素電極20R,20Lと反応容器10の内壁とを結ぶ空間に堆積する。堆積の進行に応じ炭素電極20R,20Lを管軸方向Dに沿って後退(図1では左方向)させると、管軸方向Dに延びる所定域で極長のネット状堆積物が反応容器10内に溜まる。
【0016】
所定量のネット状堆積物が生成した後、アーク放電を終了し、反応容器10を排気ポンプ16で真空吸引し、ガス供給管13から反応容器10に送り込まれるガスをH,Arの混合ガスからO,Arの混合ガスに切り替える。反応容器10内の酸素分圧が2.0〜4.0×10Paに達した段階で加熱機構14をオンし、流量4.0〜6.0×10SCCMでO,Arの混合ガスを送り込んで反応容器10の酸素分圧を2.0〜4.0×10Paに維持し、引き続きO,Arの混合ガスを供給しながらネット状堆積物を380〜440℃に加熱する。
【0017】
,Arの混合ガス雰囲気中での加熱により、ネット状堆積物に混入しているカーボンナノ粒子,アモルファスカーボン等の不純物は、CO,CO等に酸化され、ガスとなってネット状堆積物から除去され、Fe微粒子(触媒)が酸化される。また、ネット状堆積物は、混合ガスの流れFに乗って炭素電極20R,20Lから離れ、排気管15に向けて浮遊する。反応容器10内をネット状堆積物が浮遊流動する時間を30〜120分に設定するとき、不純物炭素の酸化除去が十分に進行する。
【0018】
不純物炭素が除去されたネット状堆積物は、反応容器10内の排気管15側から反応容器10に若干入った内部に配置されている捕集装置25で捕集される。捕集装置25は、不純物炭素除去のために加熱されたネット状堆積物を冷却すると共に、捕集効率を向上させるため、冷却水Wを循環させる冷却機構を内蔵している。ネット状堆積物を捕集した後、反応容器10を開放し、反応容器10から捕集装置25を取り出すことにより単層カーボンナノチューブネット状堆積物が回収される。
反応容器10から取り出されたネット状堆積物に含まれているFe触媒は、O,Arの混合ガス雰囲気中での加熱処理によって酸化されているので、塩酸処理によってネット状堆積物から容易に除去される。その結果、高純度の単層カーボンナノチューブが得られる。この方法は、長さ20〜30cmにもわたる長いネット状に連なった単層カーボンナノチューブの作製を可能にする。該単層カーボンナノチューブをシート状,糸状等に成形するとき、機械的強度の高い単層カーボンナノチューブ材料が提供される。
【0019】
【実施例】
粒径1μm以下のFe微粒子を触媒に使用し、グラファイトにFe微粒子を1.0質量%配合して加熱加圧することにより直径6mm,長さ20mmの炭素電極20R,20Lを用意した。炭素電極20R,20Lの先端間距離を1.5mmに設定し、内径65mmの石英製反応容器10内に炭素電極20R,20Lをセットした。
反応容器10を排気ポンプ16で真空排気した後、ガス供給管13からH:Ar=2:3(体積比)の混合ガスを反応容器10に送り込み、反応容器10の雰囲気圧を1.3×10Paに維持した。
【0020】
炭素電極20R,20L間に27Vの交流電圧を印加するとアーク放電が発生し、炭素電極20R,20Lから炭素が蒸発し始めた。交流アーク放電の進行に伴い、炭素電極20R,20Lと反応容器10の内壁を結ぶ空間にネット状堆積物が堆積した。炭素電極20R,20Lを1.3mm/分の速度でプレチャンバ11に向けて移動させながら交流アーク放電を1分間継続させたところ、質量14mgのネット状堆積物が生成した。
炭素電極20R,20Lの移動に代え、炭素電極20R,20Lを固定し、反応容器10を管軸方向Dに移動させた場合でも、管軸方向Dに沿った所定長さ域にネット状堆積物が反応容器10内に生成する。
【0021】
次いで、炭素電極20R,20Lへの電力投入を中止し、反応容器10を真空引きした後、ガス供給管13からO:Ar=3:7(体積比)の混合ガスを反応容器10に送り込み、反応容器10の酸素分圧を3×10Paに維持した。該酸素分圧が維持される条件下でO,Arの混合ガスを反応容器10に送り込みながら、加熱機構14により反応容器10の雰囲気温度を上げ、400℃に30分保持した。
ネット状堆積物はO,Arの混合ガス雰囲気中での加熱処理で11mgに減量したが、ネット状堆積物に含まれていたカーボンナノ粒子,アモルファスカーボン等の不純物炭素が大幅に除去された。不純物炭素の除去は、加熱処理前のネット状堆積物(SEM写真:図2)で観察されていたコントラストの弱いアモルファスカーボンが加熱処理後のネット状堆積物(SEM写真:図3)で消失していることによっても確認される。
【0022】
加熱処理されたネット状堆積物を捕集装置25で捕集し、走査型電子顕微鏡で観察したところ、単層カーボンナノチューブのバンドルが形成されていることが確認された(図3)。また、ネット状堆積物に混入しているFe微粒子は、加熱処理によって酸化鉄になり相互に結合し大粒径化し、コントラストの強い粒子として確認された。
加熱処理後のネット状堆積物に塩酸を添加したところ、塩酸が直ちに黄変した。塩酸の黄変は酸化鉄がネット状堆積物から塩酸に溶出した結果であり、単層カーボンナノチューブを容易に精製できることが判った。塩酸処理後に、4mgの単層カーボンナノチューブが回収された。
【0023】
精製された単層カーボンナノチューブには、Fe微粒子の混入が検出されなかった(SEM写真:図4)。Fe微粒子のない単層カーボンナノチューブのネット状堆積物は、透過型電子顕微鏡でも観察された(TEM写真:図5)。ラマン測定の結果(図6)では、精製の前後でもともと弱かった1340cm−1近傍にあるDバンドの強度が更に弱くなり、1590cm−1近傍にあるGバンドの強度が強くなっていた。Gバンドのピークにも、通常の単層カーボンナノチューブと同様なスプリッチングが検出された。
【0024】
Dバンド,Gバンドの強度変化は、精製によってアモルファスカーボンが除去され、単層カーボンナノチューブの存在比が著しく上昇したことを意味する。極微細な直径に対応するラジアルブリージングモードは、図6の挿入図にみられるように、精製前後で若干の分布に違いがあるものの何れもピークが検出された。得られた単層カーボンナノチューブは、結晶性,電気伝導度が高く、機械的・化学的強度にも優れていた。実際、網状の単層カーボンナノチューブから取り出した紐を引張試験に供したところ、断面積0.1mm程度の紐でも100gを超える荷重に耐えた。
【0025】
【発明の効果】
以上に説明したように、交流アーク放電で生成した単層カーボンナノチューブのネット状堆積物をそのままO,Arの混合ガス雰囲気中で加熱処理することにより、ネット状堆積物に含まれているカーボンナノ粒子,アモルファスカーボン等の不純物炭素がガス化して除去され、純度の高い単層カーボンナノチューブが得られる。雰囲気をH,Arの混合ガスからからO,Arの混合ガスに切り替えた単層カーボンナノチューブ作製用反応容器でネット状堆積物を加熱処理できるため、機械的・化学的強度が低いことに由来する精製の困難性が克服され、純度の高い単層カーボンナノチューブが高生産性で製造される。
【図面の簡単な説明】
【図1】本発明に従った単層カーボンナノチューブ製造装置の概略平面図
【図2】作製直後の単層カーボンナノチューブのネット状堆積物を示すSEM写真
【図3】加熱処理直後の単層カーボンナノチューブのネット状堆積物を示すSEM写真
【図4】塩酸処理した単層カーボンナノチューブのネット状堆積物を示すSEM写真
【図5】塩酸処理後でFe微粒子が消失した単層カーボンナノチューブのネット状堆積物を示すTEM写真
【図6】得られた単層カーボンナノチューブのラマンスペクトルを示すグラフ
【符号の説明】
10:反応容器 11:プレチャンバ 12:真空ポンプ 13:ガス供給管 14:加熱機構 15:排気管 16:排気ポンプ 17:流量調整弁 18:熱電対 19:圧力制御装置
20R,20L:炭素電極 21:交流電源 22R,22L:リード線 23:送り装置 25:捕集装置
A:交流アーク放電 F:H,Arの混合ガス又はO,Arの混合ガスの流れ W:冷却水 D:管軸方向
[0001]
[Industrial applications]
The present invention relates to a method and an apparatus for producing single-walled carbon nanotubes, which are expected to be developed as functional materials such as electronic materials, hydrogen storage materials, and nanostructured materials, and for in-situ purification.
[0002]
[Prior art]
2. Description of the Related Art Carbon nanotubes have attracted attention as high-performance materials because their electrical characteristics change semiconductingly or metallically depending on the crystallographic structure and diameter. The carbon nanotubes include multi-walled carbon nanotubes in which two or more layers of graphene sheets wound in a cylindrical shape are stacked at equal intervals, and single-walled carbon nanotubes having only one layer. Single-walled carbon nanotubes are expected to have a quantum effect derived from a smaller diameter than multi-walled carbon nanotubes, and are of great interest in physical properties.
[0003]
There are an arc discharge, a laser evaporation method, a CVD method, and the like for producing carbon nanotubes. The CVD method is suitable for mass production, and the arc discharge is suitable for improving crystallinity. When producing single-walled carbon nanotubes by DC arc discharge, a graphite rod mixed with a metal catalyst is used as an anode, and the graphite rod is evaporated by arc heat. The evaporated graphite is produced as flocculent soot wrapped around a spider web around the electrodes and throughout the interior of the container. This flocculent soot contains single-walled carbon nanotubes.
The present inventors have investigated and examined various conditions for producing a large amount of flocculent soot containing single-walled carbon nanotubes, and it is effective to dispose an anode containing a Ni-Y catalyst and a carbon rod cathode at an acute angle of 30 degrees. (“Materials”, Vol. 50, No. 7, pp. 357-360).
[0004]
[Problems to be solved by the invention]
Since the ratio of the single-walled carbon nanotubes contained in the deposited flocculent soot is not always high, it is necessary to purify the flocculent soot to increase the purity of the single-walled carbon nanotube. However, the purification is not easy because the mechanical and chemical strength of the single-walled carbon nanotube itself is not sufficient. Insufficient mechanical and chemical strength is considered to be due to poor single crystal carbon nanotubes synthesized using a Ni-Y catalyst having poor crystallinity. Even when an S-added Fe-based metal catalyst is used for producing single-walled carbon nanotubes by the arc discharge method, since the catalyst contains S, the mechanical and chemical strengths of the single-walled carbon nanotubes are low and purification is not easy.
[0005]
As a result of various investigations and studies on the effect of the catalyst on the mechanical and chemical strength of the single-walled carbon nanotube, it was found that Fe alone was effective as a catalyst. That is, when an arc discharge is caused between an anode and a cathode in which a simple substance of Fe (catalyst) is blended in a graphite rod in a mixed gas atmosphere of H 2 and Ar, carbon evaporated from the anode is singly placed in a space connecting the cathode and the inner wall of the vacuum chamber. It is deposited as a flocculent deposit containing single-walled carbon nanotubes (prior application / Japanese Patent Application No. 2002-080729).
When a mixed gas of H 2 and Ar is used in the arc discharge atmosphere, the incorporation of amorphous carbon and carbon nanoparticles into the net-like deposit is reduced, and the ratio of single-walled carbon nanotubes is increased. The use of the Fe single catalyst improves the crystallinity, mechanical and chemical strength of the single-walled carbon nanotube. However, amorphous carbon, carbon nanoparticles, and Fe particles (catalyst) are still mixed, and it is necessary to purify single-walled carbon nanotubes in a subsequent step.
[0006]
[Means for Solving the Problems]
The present invention overcomes problems caused by low mechanical and chemical strength by purifying single-walled carbon nanotubes generated by arc discharge in the same reaction vessel without moving them to another place, thereby achieving high purity. An object is to produce single-walled carbon nanotubes with high productivity.
[0007]
In the production method according to the present invention, at least two electrodes each containing a Fe catalyst are opposed to at least the graphite rod on the anode side in the tubular reaction vessel in a direction perpendicular to the tube axis, and the reaction vessel is mixed with H 2 and Ar. An arc discharge is generated between the electrodes while feeding the gas, and at least carbon evaporated from the anode is deposited on the flow of the mixed gas to deposit net-like single-walled carbon nanotubes between the electrodes and the reaction vessel wall.
[0008]
When the carbon electrode is relatively moved to the pre-chamber side according to the deposition of the net-like deposit, an extremely long net-like deposit is generated in a predetermined length region along the tube axis direction of the reaction vessel.
Above all, when an AC arc discharge is generated between two electrodes containing a Fe catalyst on a graphite rod to evaporate carbon from both electrodes, no cathode deposits containing single-walled carbon nanotubes are eliminated, and compared to DC arc discharge. As a result, the generation ratio of single-walled carbon nanotubes to the amount of evaporated carbon increases.
[0009]
After the net-like deposit is generated in the predetermined length region, the arc discharge is stopped, and the atmosphere gas in the reaction vessel 10 is switched from a mixed gas of H 2 and Ar to a mixed gas of O 2 and Ar. Then, by heating the entire reaction vessel while feeding a mixed gas of O 2 and Ar, carbon impurities such as carbon nanoparticles and amorphous carbon are gasified and removed from the net-like deposit of single-walled carbon nanotubes. At the same time, the surface of the Fe particles (catalyst) is oxidized. The net-like deposit of the single-walled carbon nanotube from which the impurity carbon has been removed is removed from the reaction vessel, and the Fe catalyst oxidized by the hydrochloric acid treatment is removed, whereby a single-walled carbon nanotube with high purity can be obtained.
[0010]
The apparatus used in this method has a tubular reaction vessel extending in the horizontal direction, the base end of which is connected to the pre-chamber and the exhaust pipe of which is open at the tip, and is opposed to the reaction vessel in a direction perpendicular to the tube axis. At least the anode side is provided with a pair of carbon electrodes made of Fe catalyst-containing carbon, a discharge power source to which the carbon electrodes are connected, and a heating mechanism arranged around the reaction vessel. The pre-chamber is provided with a gas supply pipe for flowing a mixed gas of H 2 and Ar during the arc discharge and flowing a mixed gas of O 2 and Ar toward the exhaust pipe with the heating mechanism turned on after the end of the arc discharge. I have. The net-like deposit from which the impurity carbon has been removed by the thermal oxidation is collected by a collecting device disposed on the exhaust pipe side in the reaction vessel. When an AC power supply is used, a pair of carbon electrodes both made of Fe catalyst-containing carbon are used.
[0011]
Embodiment and operation
In the present invention, a reactor for evaporating carbon from a carbon electrode by arc discharge to deposit single-walled carbon nanotubes is used. Either DC arc discharge or AC arc discharge can be employed. In the case of DC arc discharge, a carbon electrode made of Fe catalyst-containing carbon is used as an anode, and a carbon electrode containing no Fe catalyst is used as a cathode. From the carbon. The other points are the same as in the case of the AC arc discharge. Therefore, the evaporation of carbon and the generation of single-walled carbon nanotubes by the AC arc discharge will be described below.
In the reaction apparatus, a cylindrical reaction vessel 10 such as a quartz tube is connected to a pre-chamber 11 (FIG. 1). One side of the pre-chamber 11 is connected to a vacuum pump 12, and a gas supply pipe 13 for feeding a mixed gas of H 2 and Ar is opened. A pressure control device 19 for adjusting the atmospheric pressure of the reaction vessel 10 is incorporated in the gas supply pipe 13.
[0012]
Preferably, the reaction vessel 10 extends horizontally from the pre-chamber 11 to improve operability. A heating mechanism 14 such as a resistance heater or a radiant heater for heating the net-like deposit of single-walled carbon nanotubes is arranged around the reaction vessel 10, and an exhaust pipe 15 is opened on the side opposite to the pre-chamber 11. . The exhaust pipe 15 is connected to an exhaust pump 16, and the flow rate of a mixed gas of H 2 and Ar flowing through the exhaust pipe 15 and the flow rate of the mixed gas in the reaction vessel 10 are adjusted by a flow control valve 17 provided on the way. You. If the thermocouple 18 is inserted into the exhaust pipe 15, the ambient temperature of the reaction vessel 10 can be measured.
[0013]
In the reaction vessel 10, two carbon electrodes 20R and 20L connected to an AC power supply 21 by lead wires 22R and 22L are arranged to face each other in a direction orthogonal to the tube axis. The carbon electrodes 20R and 20L can be moved in the reaction container 10 in the direction perpendicular to the tube axis by the feed device 23. The carbon electrodes 20R and 20L are prepared by mixing and molding an Fe catalyst with carbon. As the Fe catalyst, a fine-particle Fe simple catalyst having a particle size of 1 μm or less manufactured from an oxide or carbide of Fe is preferable in terms of improving the mechanical and chemical strength and the yield of the single-walled carbon nanotube. The Fe fine particles contained in the carbon electrodes 20R and 20L become ultrafine particles of 10 nm or less when evaporated by arc discharge.
[0014]
The atmosphere in the reaction vessel 10 is evacuated to a vacuum degree of about 13 to 1.3 × 10 −3 Pa by the exhaust pump 16, and then a mixed gas of H 2 and Ar is fed from the gas supply pipe 13 to 1 atmosphere. The pressure is maintained at about 3.3 to 6.7 × 10 4 Pa. After the atmosphere is adjusted, if an AC voltage of 20 to 30 V is applied between the carbon electrodes 20R and 20L while the heating mechanism 14 is off, an AC arc discharge A is generated, and the carbon evaporates from the carbon electrodes 20R and 20L.
[0015]
Since carbon evaporation is caused by AC arc discharge, the two carbon electrodes 20R and 20L are consumed under the same conditions. The generated carbon vapor is sent to the exhaust pipe 15 side along with the flow F of the mixed gas, and is deposited as a net-like deposit in a space connecting the carbon electrodes 20R, 20L and the inner wall of the reaction vessel 10. When the carbon electrodes 20 </ b> R and 20 </ b> L are retracted along the tube axis direction D (leftward in FIG. 1) in accordance with the progress of deposition, a net-like deposit having a very long length in a predetermined region extending in the tube axis direction D is formed in the reaction vessel 10. Accumulate in
[0016]
After a predetermined amount of net-like deposits are generated, the arc discharge is terminated, the reaction vessel 10 is evacuated by the exhaust pump 16, and the gas fed into the reaction vessel 10 from the gas supply pipe 13 is mixed gas of H 2 and Ar. Is switched to a mixed gas of O 2 and Ar. When the oxygen partial pressure in the reaction vessel 10 reaches 2.0 to 4.0 × 10 4 Pa, the heating mechanism 14 is turned on, and O 2 and Ar are supplied at a flow rate of 4.0 to 6.0 × 10 3 SCCM. The mixed gas is fed to maintain the oxygen partial pressure in the reaction vessel 10 at 2.0 to 4.0 × 10 4 Pa, and the net-like deposit is heated to 380 to 440 ° C. while continuously supplying a mixed gas of O 2 and Ar. Heat.
[0017]
By heating in a mixed gas atmosphere of O 2 and Ar, impurities such as carbon nanoparticles and amorphous carbon mixed in the net-like deposit are oxidized to CO, CO 2, etc., and become a gas to form a net-like deposit. The Fe particles (catalyst) are removed from the material and oxidized. In addition, the net-like deposit separates from the carbon electrodes 20R and 20L on the flow F of the mixed gas, and floats toward the exhaust pipe 15. When the time during which the net-like deposit floats and flows in the reaction vessel 10 is set to 30 to 120 minutes, the oxidative removal of the impurity carbon proceeds sufficiently.
[0018]
The net-like deposit from which the impurity carbon has been removed is collected by a collecting device 25 disposed inside the reaction vessel 10 slightly from the exhaust pipe 15 side in the reaction vessel 10. The trapping device 25 has a built-in cooling mechanism that circulates the cooling water W in order to cool the net-like deposit heated to remove impurity carbon and improve trapping efficiency. After collecting the net-like deposit, the reaction vessel 10 is opened, and the collecting device 25 is taken out of the reaction vessel 10, whereby the single-walled carbon nanotube net-like deposit is collected.
Since the Fe catalyst contained in the net-like sediment taken out of the reaction vessel 10 has been oxidized by the heat treatment in a mixed gas atmosphere of O 2 and Ar, it can be easily separated from the net-like sediment by hydrochloric acid treatment. Removed. As a result, high-purity single-walled carbon nanotubes are obtained. This method enables the production of long net-like single-walled carbon nanotubes having a length of 20 to 30 cm. When the single-walled carbon nanotube is formed into a sheet shape, a thread shape, or the like, a single-walled carbon nanotube material having high mechanical strength is provided.
[0019]
【Example】
Carbon particles 20R and 20L each having a diameter of 6 mm and a length of 20 mm were prepared by using Fe fine particles having a particle size of 1 μm or less as a catalyst, mixing 1.0% by mass of Fe fine particles with graphite, and applying heat and pressure. The distance between the tips of the carbon electrodes 20R and 20L was set to 1.5 mm, and the carbon electrodes 20R and 20L were set in the quartz reaction vessel 10 having an inner diameter of 65 mm.
After evacuating the reaction vessel 10 with an exhaust pump 16, a mixed gas of H 2 : Ar = 2: 3 (volume ratio) is sent from the gas supply pipe 13 to the reaction vessel 10, and the atmospheric pressure of the reaction vessel 10 is set to 1.3. × 10 4 Pa was maintained.
[0020]
When an AC voltage of 27 V was applied between the carbon electrodes 20R and 20L, an arc discharge occurred, and carbon began to evaporate from the carbon electrodes 20R and 20L. With the progress of the AC arc discharge, net-like deposits were deposited in the space connecting the carbon electrodes 20R and 20L and the inner wall of the reaction vessel 10. When AC arc discharge was continued for 1 minute while moving the carbon electrodes 20R and 20L toward the pre-chamber 11 at a speed of 1.3 mm / min, a net-like deposit having a mass of 14 mg was generated.
Even if the carbon electrodes 20R and 20L are fixed and the reaction vessel 10 is moved in the tube axis direction D instead of the movement of the carbon electrodes 20R and 20L, the net-like sediment remains in a predetermined length region along the tube axis direction D. Is generated in the reaction vessel 10.
[0021]
Next, the supply of power to the carbon electrodes 20R and 20L is stopped, the reaction vessel 10 is evacuated, and then a mixed gas of O 2 : Ar = 3: 7 (volume ratio) is sent from the gas supply pipe 13 to the reaction vessel 10. The partial pressure of oxygen in the reaction vessel 10 was maintained at 3 × 10 4 Pa. While sending a mixed gas of O 2 and Ar into the reaction vessel 10 under the condition of maintaining the oxygen partial pressure, the atmosphere temperature of the reaction vessel 10 was raised by the heating mechanism 14 and maintained at 400 ° C. for 30 minutes.
Although the net-like deposit was reduced to 11 mg by heat treatment in a mixed gas atmosphere of O 2 and Ar, impurity carbon such as carbon nanoparticles and amorphous carbon contained in the net-like deposit was largely removed. . The removal of the impurity carbon is performed by removing the amorphous carbon having a low contrast observed in the net-like deposit before heat treatment (SEM photograph: FIG. 2) in the net-like deposit after heat treatment (SEM photograph: FIG. 3). It is also confirmed by having.
[0022]
The heat-treated net-like sediment was collected by the collection device 25 and observed with a scanning electron microscope. As a result, it was confirmed that a bundle of single-walled carbon nanotubes was formed (FIG. 3). Further, Fe fine particles mixed in the net-like sediment were turned into iron oxide by heat treatment, mutually bonded and increased in particle size, and were confirmed as particles having a strong contrast.
When hydrochloric acid was added to the net-like sediment after the heat treatment, the hydrochloric acid immediately turned yellow. The yellowing of hydrochloric acid was the result of iron oxide eluted from the net-like sediment into hydrochloric acid, indicating that single-walled carbon nanotubes could be easily purified. After the hydrochloric acid treatment, 4 mg of single-walled carbon nanotubes were recovered.
[0023]
No contamination of Fe fine particles was detected in the purified single-walled carbon nanotube (SEM photograph: FIG. 4). A net-like deposit of single-walled carbon nanotubes without Fe fine particles was also observed with a transmission electron microscope (TEM photograph: FIG. 5). As a result of the Raman measurement (FIG. 6), the intensity of the D band near 1340 cm −1 , which was originally weak before and after the purification, was further reduced, and the intensity of the G band near 1590 cm −1 was stronger. Splicing similar to that of a normal single-walled carbon nanotube was also detected in the G band peak.
[0024]
The change in the intensity of the D band and the G band means that the amorphous carbon was removed by the purification, and the abundance ratio of the single-walled carbon nanotube was significantly increased. In the radial breathing mode corresponding to the very fine diameter, as shown in the inset of FIG. 6, peaks were detected in any of the distributions before and after purification, although the distribution was slightly different. The obtained single-walled carbon nanotube had high crystallinity, high electrical conductivity, and excellent mechanical and chemical strength. Actually, when a string taken out of the net-like single-walled carbon nanotube was subjected to a tensile test, even a string having a cross-sectional area of about 0.1 mm 2 withstood a load exceeding 100 g.
[0025]
【The invention's effect】
As described above, the net-like deposit of single-walled carbon nanotubes generated by the alternating current arc discharge is directly subjected to heat treatment in a mixed gas atmosphere of O 2 and Ar, whereby carbon contained in the net-like deposit is obtained. Impurity carbon such as nanoparticles and amorphous carbon is gasified and removed, so that single-wall carbon nanotubes with high purity can be obtained. Since the net-like deposit can be heat-treated in a single-walled carbon nanotube production reactor in which the atmosphere is switched from a mixed gas of H 2 and Ar to a mixed gas of O 2 and Ar, the mechanical and chemical strength is low. The difficulty of purification from the origin is overcome, and high-purity single-walled carbon nanotubes are produced with high productivity.
[Brief description of the drawings]
1 is a schematic plan view of an apparatus for producing a single-walled carbon nanotube according to the present invention; FIG. 2 is an SEM photograph showing a net-like deposit of the single-walled carbon nanotube immediately after preparation; FIG. SEM photograph showing net-like deposits of nanotubes. [Fig. 4] SEM photograph showing net-like deposits of single-walled carbon nanotubes treated with hydrochloric acid. [Fig. TEM photograph showing sediment [Fig. 6] Graph showing Raman spectrum of obtained single-walled carbon nanotube [Explanation of symbols]
10: Reaction vessel 11: Pre-chamber 12: Vacuum pump 13: Gas supply pipe 14: Heating mechanism 15: Exhaust pipe 16: Exhaust pump 17: Flow control valve 18: Thermocouple 19: Pressure controller 20R, 20L: Carbon electrode 21 : AC power supply 22R, 22L: Lead wire 23: Feeding device 25: Collector A: AC arc discharge F: Flow of mixed gas of H 2 and Ar or mixed gas of O 2 and Ar W: Cooling water D: Tube shaft direction

Claims (3)

少なくとも陽極側のグラファイト棒にFe触媒を配合した2本の電極を筒状反応容器の内部で管軸直交方向に対向させ、反応容器にH,Arの混合ガスを送り込みながら電極間にアーク放電を発生させ、少なくとも陽極から蒸発したカーボンを混合ガスの流れに乗せて電極と反応容器の内壁との間にネット状の単層カーボンナノチューブとして堆積させ、アーク放電終了後にO,Arの混合ガスを送り込みながら反応容器全体を加熱することにより単層カーボンナノチューブのネット状堆積物から不純物炭素を除去することを特徴とする単層カーボンナノチューブの製造方法。At least two electrodes containing Fe catalyst are opposed to at least the graphite rod on the anode side in the direction perpendicular to the tube axis inside the cylindrical reaction vessel, and arc discharge is caused between the electrodes while feeding a mixed gas of H 2 and Ar into the reaction vessel. Is generated, and at least carbon evaporated from the anode is put in the flow of the mixed gas to deposit as a net-like single-walled carbon nanotube between the electrode and the inner wall of the reaction vessel. After the completion of the arc discharge, the mixed gas of O 2 and Ar is produced. A method for producing single-walled carbon nanotubes, comprising removing impurity carbon from net-like deposits of single-walled carbon nanotubes by heating the entire reaction vessel while feeding the gas. Fe触媒を配合したグラファイト棒から作製された一対の電極間に交流アーク放電を発生させる請求項1記載の製造方法。2. The method according to claim 1, wherein an alternating current arc discharge is generated between a pair of electrodes made of a graphite rod containing an Fe catalyst. 基端がプレチャンバに接続され、先端に排気管が開口している水平方向に延びた筒状反応容器と、該反応容器内で管軸直交方向に対向させた少なくとも陽極側がFe触媒配合カーボンから作製された一対の炭素電極と、該炭素電極が接続された放電電源と、反応容器の周囲に配置された加熱機構と、アーク放電中にH,Arの混合ガスを、アーク放電終了後に加熱機構をオンした状態でO,Arの混合ガスを排気管に向けて流すプレチャンバに開口したガス供給管と、排気管側の反応容器内に配置された捕集装置を備えていることを特徴とする単層カーボンナノチューブの製造装置。A tubular reaction vessel having a base end connected to the pre-chamber and an exhaust pipe opened at the tip, and a tubular reaction vessel extending in the horizontal direction, and at least the anode side opposed to the pipe axis orthogonal direction in the reaction vessel is made of Fe catalyst-containing carbon. A pair of carbon electrodes produced, a discharge power source to which the carbon electrodes are connected, a heating mechanism arranged around the reaction vessel, and a mixed gas of H 2 and Ar during the arc discharge is heated after the end of the arc discharge. A gas supply pipe opened to a pre-chamber for flowing a mixed gas of O 2 and Ar toward an exhaust pipe with the mechanism turned on, and a trapping device arranged in a reaction vessel on the exhaust pipe side are provided. Characteristic single-walled carbon nanotube manufacturing equipment.
JP2003132770A 2003-05-12 2003-05-12 Method and apparatus for producing single-walled carbon nanotubes Expired - Fee Related JP3810756B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003132770A JP3810756B2 (en) 2003-05-12 2003-05-12 Method and apparatus for producing single-walled carbon nanotubes
PCT/JP2004/002491 WO2004099072A1 (en) 2003-05-12 2004-03-01 Production method and device for single layer carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003132770A JP3810756B2 (en) 2003-05-12 2003-05-12 Method and apparatus for producing single-walled carbon nanotubes

Publications (3)

Publication Number Publication Date
JP2004331477A true JP2004331477A (en) 2004-11-25
JP2004331477A5 JP2004331477A5 (en) 2005-08-11
JP3810756B2 JP3810756B2 (en) 2006-08-16

Family

ID=33432176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003132770A Expired - Fee Related JP3810756B2 (en) 2003-05-12 2003-05-12 Method and apparatus for producing single-walled carbon nanotubes

Country Status (2)

Country Link
JP (1) JP3810756B2 (en)
WO (1) WO2004099072A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182379A (en) * 2005-11-29 2007-07-19 Univ Meijo Production method and purification method for carbon nanotube
KR100827387B1 (en) 2006-09-04 2008-05-06 세종대학교산학협력단 method for refining carbon nanotube using beads
JP2015096848A (en) * 2013-10-07 2015-05-21 株式会社日本自動車部品総合研究所 Carbon soot generator and carbon soot generation method
US9067793B2 (en) 2005-11-29 2015-06-30 Meijo University Method for production of carbon nanotube and method for purification of the same
KR102107167B1 (en) * 2018-12-21 2020-05-06 이한성 Device for nanotube synthesis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661843B (en) * 2020-05-27 2022-12-13 富耐克超硬材料股份有限公司 Activated nano graphite powder and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2526782B2 (en) * 1993-05-14 1996-08-21 日本電気株式会社 Carbon fiber and its manufacturing method
JP2591497B2 (en) * 1994-09-22 1997-03-19 日本電気株式会社 Purification method of carbon single tube
JP3017161B2 (en) * 1998-03-16 2000-03-06 双葉電子工業株式会社 Method for producing single-walled carbon nanotube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182379A (en) * 2005-11-29 2007-07-19 Univ Meijo Production method and purification method for carbon nanotube
US9067793B2 (en) 2005-11-29 2015-06-30 Meijo University Method for production of carbon nanotube and method for purification of the same
KR100827387B1 (en) 2006-09-04 2008-05-06 세종대학교산학협력단 method for refining carbon nanotube using beads
JP2015096848A (en) * 2013-10-07 2015-05-21 株式会社日本自動車部品総合研究所 Carbon soot generator and carbon soot generation method
KR102107167B1 (en) * 2018-12-21 2020-05-06 이한성 Device for nanotube synthesis

Also Published As

Publication number Publication date
JP3810756B2 (en) 2006-08-16
WO2004099072A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US6765949B2 (en) Carbon nanostructures and methods of preparation
Liu et al. Thermal and chemical durability of nitrogen-doped carbon nanotubes
WO2009107603A1 (en) Process and apparatus for producing carbon nanotube, carbon nanotube fiber, and the like
US20090226361A1 (en) Cvd-grown graphite nanoribbons
US20130062195A1 (en) Process for preparation of carbon nanotubes from vein graphite
Zhao et al. Study on purification and tip-opening of CNTs fabricated by CVD
Mahanandia et al. A one-step technique to prepare aligned arrays of carbon nanotubes
Chen et al. Microwave digestion and acidic treatment procedures for the purification of multi-walled carbon nanotubes
Hosseini et al. Synthesis of carbon nanotubes, nano fibbers and nano union by electric arc discharge method using NaCl accuse as solution and Fe and Ni particles and catalysts
CN107792846A (en) The purification process of CNT
JP3657574B2 (en) Manufacturing method of carbon nanowire
JP2016147803A (en) Carbon nano-tube production method and apparatus
JPWO2004106234A1 (en) Method for producing single-walled carbon nanotubes with uniform diameter
US8124044B2 (en) Carbon nanotubes, a method of preparing the same and an element using the same
JP3810756B2 (en) Method and apparatus for producing single-walled carbon nanotubes
JP4696598B2 (en) carbon nanotube
Dimitrov et al. Production, purification, characterization, and application of CNTs
JP3650076B2 (en) Manufacturing method of single-walled carbon nanotube
JP3970817B2 (en) Method for purifying crude carbon nanotubes
Malathi et al. Purification of multi walled carbon nanotubes (mwcnts) synthesized by arc discharge set up
KR20200128276A (en) Synthesis method for Single-walled carbon nanotubes by post-annealing
Nguyen et al. Purification process for vertically aligned carbon nanofibers
Wang et al. Influence of Mo on the growth of single-walled carbon nanotubes in arc discharge
Liu et al. Purifying double-walled carbon nanotubes by vacuum high-temperature treatment
Awasthi et al. Formation of carbon nanotubes without iron inclusion and their alignment through ferrocene and ferrocene–ethylene pyrolysis

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees