JP2005001938A - Method of manufacturing carbon nanotube - Google Patents

Method of manufacturing carbon nanotube Download PDF

Info

Publication number
JP2005001938A
JP2005001938A JP2003166872A JP2003166872A JP2005001938A JP 2005001938 A JP2005001938 A JP 2005001938A JP 2003166872 A JP2003166872 A JP 2003166872A JP 2003166872 A JP2003166872 A JP 2003166872A JP 2005001938 A JP2005001938 A JP 2005001938A
Authority
JP
Japan
Prior art keywords
substrate
cnt
catalytic metal
alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003166872A
Other languages
Japanese (ja)
Inventor
Shinji Katayama
慎司 片山
Nobuo Tanabe
信夫 田辺
Hiroki Usui
弘紀 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003166872A priority Critical patent/JP2005001938A/en
Publication of JP2005001938A publication Critical patent/JP2005001938A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a carbon nanotube (CNT) by which the production quantity of the carbon nanotube is changed without changing the synthetic condition such as a synthetic time and a flow rate of a gaseous starting material. <P>SOLUTION: A substrate 1 composed of an alloy (Cu-Ni alloy) of Ni which is a CNT forming catalyst and Cu which is a non-forming catalyst is set in a reaction tube 2. A synthetic part 8 is heated to 700°C by an infrared image furnace 4. Acetylene is supplied at a flow rate of 100 cm<SP>3</SP>/min from a pipe 7a, argon is supplied at a flow rate of 20 cm<SP>3</SP>/min from a pipe 7b and an exhausted gas is discharged from a pipe 7c. The state is kept for 10 min to react the catalytic metal with acetylene. At this time, the temperature of the substrate 1 is measured by a thermocouple 3 and the temperature of the infrared image furnace 4 is controlled based on the temperature of the substrate 1 by a temperature controller 5 to keep the temperature of the synthetic part 8 at 700°C. As a result, the CNT is formed in the quantity corresponding to Ni content in the substrate 1 on the substrate 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブの製造方法に関し、特に、化学気相成長法を使用したカーボンナノチューブの製造方法に関する。
【0002】
【従来の技術】
カーボンナノチューブ(Carbon Nano Tube:以下、CNTという)は、グラフェンシート(炭素原子が蜂の巣状の規則正しい六員環ネットワークを平面状に形成しているもの)を丸めた円筒状の物質であり、直径がナノメートルオーダーの極めて微小な物質である。CNTには、1層のグラフェンシートで構成された単層CNT(Single−Walled Carbon Nano Tube:SWCNT)と、複数層のグラフェンシートが同心筒状に配列している多層CNT(Multi−Walled Carbon Nano Tube:MWCNT)の2種類がある。このCNTは、従来の物質にない幾何学的及び物理的な特性を有していることから、ナノテクノロジー分野を代表する新素材として、複合材料、電子材料、医療又はエネルギー等の分野でその応用が検討されている。
【0003】
その製造方法としては、アーク放電法及び化学気相成長(Chemical Vapor Deposition:以下、CVDという)法等が知られている(例えば、特許文献1及び2参照。)。前記CVD法は、Si等の基板上にPd、Ni、Fe及びCo等の触媒金属の薄膜を形成したり又は触媒金属の微粒子を担持させ、この触媒金属に炭化水素系のガスを接触させることにより、炭化水素系のガスを分解し、基板上にCNTを生成する方法である。
【0004】
【特許文献1】
特開2002−180251号公報 (第2−3頁)
【特許文献2】
特開2002−180252号公報 (第2−3頁)
【0005】
【発明が解決しようとする課題】
しかしながら、CVD法を使用した従来のCNTの製造方法においては、基板上にCNTを生成させる場合、CNTの生成量を調節するためには、合成時間を変える等の方法がとられているが、合成時間を長くすると、生成するCNTの結晶構造が乱れてくる等の問題点がある。
【0006】
本発明はかかる問題点に鑑みてなされたものであって、合成時間及び原料ガスの流量等の合成条件を変更せずにカーボンナノチューブの生成量を変えることができるカーボンナノチューブの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係るカーボンナノチューブの製造方法は、化学気相成長法によるカーボンナノチューブの製造方法において、炭化水素ガスを分解する触媒金属と非触媒金属との合金からなる基板を反応管内に設置し、前記反応管内を炭化水素ガスが前記触媒金属により分解される温度に加熱した状態で、炭化水素ガスを前記反応管内に供給することにより、前記炭化水素ガスを分解して前記基板上にカーボンナノチューブを生成させる工程を有し、前記基板の前記触媒金属含有量を変化させることにより前記カーボンナノチューブの生成量を調節することを特徴とする。
【0008】
本発明者等は、上述の問題点を解決するために鋭意実験研究を行った結果、原料ガスにアセチレン、キャリアガスにアルゴンを使用したCVD法によるCNTの合成において、基板としてCNT生成の触媒金属と非触媒金属との全率固溶型2原型合金を使用すると、基板の触媒金属含有量に依存してCNT生成量が変化することを見出した。そこで、本発明においては、基板を触媒金属と非触媒金属との合金により構成し、この合金における触媒金属含有量を変更することにより、CNT生成量を調節する。これにより、合成時間、原料ガス流量等の合成条件を変更することなく、CNTの生成量を調節することができる。
【0009】
前記基板は、例えば、触媒金属であるNiと非触媒金属であるCuとの合金により構成することができる。また、その場合のNi含有量は10乃至70質量%であることが好ましい。Ni−Cu合金は全率固溶型の合金であるため、金属間化合物等の析出がなく、触媒金属をランダムに存在させることができる。
【0010】
また、前記炭化水素ガスとしては、例えば、アセチレンを使用することができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態に係るカーボンナノチューブの製造方法について、添付の図面を参照して具体的に説明する。本実施形態のカーボンナノチューブの製造方法においては、加熱条件下で原料ガスを触媒金属に接触させる熱CVD法によりCNTを合成する。図1は本実施形態におけるカーボンナノチューブを製造する装置を示す模式図である。図1に示すように、本実施形態のカーボンナノチューブの製造方法で使用する熱CVD装置は、横型に設置された反応管2の両端が栓6により閉塞されており、一方の栓6には、反応ガスを供給するパイプ7aと、キャリアガスを供給するパイプ7bとが挿入されている。また、他方の栓6には排気ガスを排気するパイプ7bが挿入されている。更に、反応管2を取り囲むようにして赤外線イメージ炉4が設けられており、この赤外線イメージ炉4により、反応管2内の合成部8が加熱される。
【0012】
次に、上述の如く構成された製造装置を使用して、カーボンナノチューブを製造する方法を説明する。先ず、図1に示すように、反応管2内の合成部8に、炭化水素ガスを分解する(CNTを生成する)触媒作用を有する触媒金属と触媒作用がない非触媒金属との合金からなる基板1を設置する。本実施形態における基板1としては、例えば、触媒金属であるNiと、非触媒金属であるCuとの合金(Ni−Cu合金)等を使用することができる。なお、基板1には、熱処理、表面研磨及び脱脂等の前処理が施されていてもよい。
【0013】
次に、赤外線イメージ炉4により合成部8を反応ガスの分解温度、例えば、700℃程度に加熱する。そして、パイプ7aから反応ガスを供給し、パイプ7bからキャリアガスを供給すると共に、パイプ7cから排気ガスを排気する。このとき、熱電対3により基板1の温度を測定し、温度コントローラ5により赤外線イメージ炉4の温度が調整して合成部8を所定の温度に保持する。本実施形態における反応ガスとしては、例えば、アセチレン等の炭化水素ガスが使用され、その流量は、例えば100cm/分である。また、キャリアガスとしては、例えば、アルゴン等の不活性ガスを使用することができ、その流量は、例えば、20cm/分である。これにより、炭化水素ガスが触媒金属と接触して分解され、基板1上にCNTが生成する。なお、CNTの生成の有無及び大きさ等は、TEM(Transmission Electron Microscope:透過型電子顕微鏡)観察により確認することができる。
【0014】
本実施形態のカーボンナノチューブの製造方法においては、基板1を触媒金属と非触媒金属との合金により構成する。そして、基板1に含まれる触媒金属の量を変えることにより、この基板1上に生成するCNTの量を調節する。以下、本実施形態における基板1の触媒金属含有量とCNT生成量との関係について、触媒金属であるNiと、非触媒金属であるCuとの合金(Cu−Ni合金)を例に説明する。
【0015】
例えば、縦10mm、横20mm、厚さ0.5mmのCu板、Ni板及び夫々Ni含有量が異なるCu−Ni合金板を、ダイヤモンドにより表面粗さが1μmになるまで研磨を行い、アセトン中で超音波洗浄により脱脂する。そして、このCu−Ni合金板、Cu板及びNi板を基板にして、図1に示す熱CVD装置で、原料ガスとしてアセチレンを100cm/分の流量で供給し、キャリアガスとしてアルゴンを20cm/分の流量で供給し、700℃で10分間CNT合成を行う。この場合のNi含有量と基板面積に占めるCNT生成領域との関係を表1に示す。また、図2は横軸に基板中のNi含有量をとり、縦軸に基板面積に占めるCNT生成領域の割合をとって、Cu−Ni合金基板におけるNi含有量とCNT生成領域との関係を示すグラフ図である。表1及び図2におけるCNT生成領域は、FE−SEM(Field Emission − Scanning Electron Microscope:電界放射型走査電子顕微鏡)により、各基板の組織及びCNT生成の分布状態を観察し、その結果から求めている。
【0016】
【表1】

Figure 2005001938
【0017】
表1及び図2に示すように、Cu板(Ni含有量0質量%)は非触媒金属であるため、CNTは生成しない。一方、Cu−Ni合金板を基板として使用した場合、Cu−10Ni基板(Ni含有量10質量%)ではCNT生成領域が2%であるが、Ni含有量が増加するに従いCNT生成領域が増し、Cu−60Ni基板(Ni含有量60質量%)ではCNT生成領域が90%になる。但し、Cu−70Ni基板(Ni含有量70質量%)では、CNT生成領域は70%になり、Ni含有量が70質量%を超えたCu−80Ni基板(Ni含有量80質量%)では、CNT生成量が50%になる。また、非触媒金属を含有しない純Ni基板においては、CNT生成量はNi含有量ではなくNiの結晶粒の大きさに依存し、CNTはNiの粒界に沿って生成する。
【0018】
このように、Cu−Ni合金を基板として使用する場合、CNT生成量は基板中のNi含有量が60質量%付近で最大になり、その後減少する。これは、Cu−Ni合金中のNi含有量が増えると、CNTの生成がNi含有量だけでなく、純Ni基板を使用した場合のようにNiの結晶粒の大きさにも影響されるためである。そこで、Cu−Ni合金により基板を構成する場合、基板中のNi含有量は10乃至70質量%の範囲内で調節することが好ましい。
【0019】
【発明の効果】
以上詳述したように、本発明によれば、炭化水素ガスを分解する触媒作用を有する触媒金属と非触媒金属との合金により基板を構成することにより、この合金中の触媒金属含有量を変更することで、CNTの生成量を調節することができるようになるため、合成時間及び原料ガス流量等の合成条件を変更することなく、CNTの生成量を調節することができる。
【図面の簡単な説明】
【図1】本発明の実施形態のカーボンナノチューブの製造方法において使用する熱CVD装置を示す模式図である。
【図2】横軸に基板中のNi含有量をとり、縦軸に基板面積に占めるCNT生成領域の割合をとって、Cu−Ni合金基板におけるNi含有量とCNT生成領域との関係を示すグラフ図である。
【符号の説明】
1;基板
2;反応管
3;熱電対
4;赤外線イメージ炉
5;温度コントローラー
6;栓
7;パイプ
8;合成部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing carbon nanotubes, and more particularly to a method for producing carbon nanotubes using chemical vapor deposition.
[0002]
[Prior art]
A carbon nanotube (Carbon Nano Tube: hereinafter referred to as CNT) is a cylindrical substance obtained by rounding a graphene sheet (a carbon atom in which a regular six-membered ring network having a honeycomb shape is formed in a planar shape) and having a diameter. It is a very small substance of nanometer order. The CNT includes single-walled CNT (Single-Walled Carbon Nano Tube: SWCNT) composed of a single-layer graphene sheet and multi-walled CNT (Multi-Walled Carbon Nano) in which a plurality of layers of graphene sheets are arranged concentrically. There are two types: Tube: MWCNT). Since this CNT has geometric and physical characteristics not found in conventional substances, it is a new material that represents the nanotechnology field, and its application in the fields of composite materials, electronic materials, medicine, and energy. Is being considered.
[0003]
As its manufacturing method, an arc discharge method and a chemical vapor deposition (hereinafter referred to as CVD) method are known (for example, refer to Patent Documents 1 and 2). In the CVD method, a thin film of catalytic metal such as Pd, Ni, Fe and Co is formed on a substrate such as Si, or catalytic metal fine particles are supported, and a hydrocarbon gas is brought into contact with the catalytic metal. Is a method for decomposing a hydrocarbon-based gas and generating CNTs on a substrate.
[0004]
[Patent Document 1]
JP 2002-180251 A (page 2-3)
[Patent Document 2]
JP 2002-180252 A (page 2-3)
[0005]
[Problems to be solved by the invention]
However, in the conventional CNT manufacturing method using the CVD method, when generating CNTs on a substrate, in order to adjust the amount of CNTs generated, methods such as changing the synthesis time are taken, When the synthesis time is lengthened, there is a problem that the crystal structure of the generated CNT is disturbed.
[0006]
The present invention has been made in view of such problems, and provides a carbon nanotube production method capable of changing the production amount of carbon nanotubes without changing the synthesis conditions such as the synthesis time and the flow rate of the raw material gas. For the purpose.
[0007]
[Means for Solving the Problems]
The method for producing carbon nanotubes according to the present invention is the method for producing carbon nanotubes by chemical vapor deposition, wherein a substrate made of an alloy of a catalytic metal and a non-catalytic metal for decomposing hydrocarbon gas is installed in a reaction tube, In a state where the hydrocarbon gas is heated to a temperature at which the hydrocarbon gas is decomposed by the catalyst metal, supplying the hydrocarbon gas into the reaction tube decomposes the hydrocarbon gas to generate carbon nanotubes on the substrate. And the production amount of the carbon nanotubes is adjusted by changing the catalytic metal content of the substrate.
[0008]
As a result of diligent experimental research to solve the above-mentioned problems, the present inventors have found that a catalyst metal for generating CNT as a substrate in the synthesis of CNT by CVD using acetylene as a source gas and argon as a carrier gas. It has been found that the amount of CNT produced varies depending on the content of the catalytic metal in the substrate when a completely solid solution type two-prototype alloy of selenium and a non-catalytic metal is used. Therefore, in the present invention, the substrate is made of an alloy of a catalytic metal and a non-catalytic metal, and the amount of CNT produced is adjusted by changing the content of the catalytic metal in the alloy. Thereby, the production amount of CNT can be adjusted without changing the synthesis conditions such as the synthesis time and the raw material gas flow rate.
[0009]
The said board | substrate can be comprised with the alloy of Ni which is a catalyst metal, and Cu which is a non-catalyst metal, for example. In this case, the Ni content is preferably 10 to 70% by mass. Since the Ni—Cu alloy is a solid solution type alloy, there is no precipitation of intermetallic compounds and the like, and catalyst metals can be present at random.
[0010]
Moreover, as said hydrocarbon gas, acetylene can be used, for example.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a method for producing a carbon nanotube according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings. In the carbon nanotube production method of the present embodiment, CNTs are synthesized by a thermal CVD method in which a source gas is brought into contact with a catalyst metal under heating conditions. FIG. 1 is a schematic view showing an apparatus for producing carbon nanotubes in the present embodiment. As shown in FIG. 1, in the thermal CVD apparatus used in the carbon nanotube production method of the present embodiment, both ends of a reaction tube 2 installed horizontally are closed by plugs 6. A pipe 7a for supplying a reaction gas and a pipe 7b for supplying a carrier gas are inserted. The other plug 6 is inserted with a pipe 7b for exhausting exhaust gas. Further, an infrared image furnace 4 is provided so as to surround the reaction tube 2, and the synthesis unit 8 in the reaction tube 2 is heated by the infrared image furnace 4.
[0012]
Next, a method for manufacturing carbon nanotubes using the manufacturing apparatus configured as described above will be described. First, as shown in FIG. 1, the synthesizing portion 8 in the reaction tube 2 is made of an alloy of a catalytic metal having a catalytic action for decomposing hydrocarbon gas (generating CNT) and a non-catalytic metal having no catalytic action. The substrate 1 is installed. As the substrate 1 in this embodiment, for example, an alloy (Ni—Cu alloy) of Ni that is a catalytic metal and Cu that is a non-catalytic metal can be used. The substrate 1 may be subjected to pretreatment such as heat treatment, surface polishing, and degreasing.
[0013]
Next, the synthesis unit 8 is heated to the decomposition temperature of the reaction gas, for example, about 700 ° C. by the infrared image furnace 4. Then, the reactive gas is supplied from the pipe 7a, the carrier gas is supplied from the pipe 7b, and the exhaust gas is exhausted from the pipe 7c. At this time, the temperature of the substrate 1 is measured by the thermocouple 3, the temperature of the infrared image furnace 4 is adjusted by the temperature controller 5, and the synthesis unit 8 is held at a predetermined temperature. As the reactive gas in the present embodiment, for example, a hydrocarbon gas such as acetylene is used, and the flow rate thereof is, for example, 100 cm 3 / min. Moreover, as carrier gas, inert gas, such as argon, can be used, for example, The flow rate is 20 cm < 3 > / min. Thereby, the hydrocarbon gas comes into contact with the catalytic metal and is decomposed, and CNTs are generated on the substrate 1. In addition, the presence or absence, the size, and the like of CNT can be confirmed by observation with a TEM (Transmission Electron Microscope).
[0014]
In the carbon nanotube manufacturing method of the present embodiment, the substrate 1 is made of an alloy of a catalytic metal and a non-catalytic metal. And the quantity of CNT produced | generated on this board | substrate 1 is adjusted by changing the quantity of the catalyst metal contained in the board | substrate 1. FIG. Hereinafter, the relationship between the catalytic metal content of the substrate 1 and the CNT generation amount in the present embodiment will be described by taking an alloy (Cu—Ni alloy) of Ni as a catalytic metal and Cu as a non-catalytic metal as an example.
[0015]
For example, a Cu plate, a Ni plate, and a Cu-Ni alloy plate having different Ni contents, each having a length of 10 mm, a width of 20 mm, and a thickness of 0.5 mm, are polished with diamond until the surface roughness becomes 1 μm, and in acetone. Degrease by ultrasonic cleaning. Then, using this Cu—Ni alloy plate, Cu plate, and Ni plate as substrates, acetylene is supplied as a source gas at a flow rate of 100 cm 3 / min, and argon is used as a carrier gas at 20 cm 3 in the thermal CVD apparatus shown in FIG. CNT synthesis at 700 ° C. for 10 minutes. Table 1 shows the relationship between the Ni content and the CNT generation region in the substrate area. FIG. 2 shows the relationship between the Ni content in the Cu—Ni alloy substrate and the CNT generation region, with the Ni content in the substrate on the horizontal axis and the ratio of the CNT generation region in the substrate area on the vertical axis. FIG. The CNT generation region in Table 1 and FIG. 2 is obtained by observing the structure of each substrate and the distribution state of the CNT generation by FE-SEM (Field Emission-Scanning Electron Microscope). Yes.
[0016]
[Table 1]
Figure 2005001938
[0017]
As shown in Table 1 and FIG. 2, since the Cu plate (Ni content 0 mass%) is a non-catalytic metal, CNT is not generated. On the other hand, when a Cu-Ni alloy plate is used as the substrate, the CNT generation region is 2% in the Cu-10Ni substrate (Ni content 10 mass%), but the CNT generation region increases as the Ni content increases. In a Cu-60Ni substrate (Ni content 60 mass%), the CNT generation region is 90%. However, in the Cu-70Ni substrate (Ni content 70% by mass), the CNT generation region is 70%, and in the Cu-80Ni substrate (Ni content 80% by mass) in which the Ni content exceeds 70% by mass, The production amount is 50%. In a pure Ni substrate that does not contain a non-catalytic metal, the amount of CNT produced depends not on the Ni content but on the size of Ni crystal grains, and CNTs are produced along the Ni grain boundaries.
[0018]
Thus, when using a Cu-Ni alloy as a substrate, the amount of CNT produced becomes maximum when the Ni content in the substrate is around 60% by mass, and then decreases. This is because when the Ni content in the Cu-Ni alloy increases, the generation of CNTs is affected not only by the Ni content but also by the size of Ni crystal grains as in the case of using a pure Ni substrate. It is. Therefore, when the substrate is composed of a Cu—Ni alloy, the Ni content in the substrate is preferably adjusted within a range of 10 to 70 mass%.
[0019]
【The invention's effect】
As described above in detail, according to the present invention, the content of the catalytic metal in the alloy is changed by configuring the substrate with an alloy of a catalytic metal having a catalytic action for decomposing hydrocarbon gas and a non-catalytic metal. By doing so, the amount of CNT produced can be adjusted, so the amount of CNT produced can be adjusted without changing the synthesis conditions such as the synthesis time and the raw material gas flow rate.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a thermal CVD apparatus used in a carbon nanotube production method according to an embodiment of the present invention.
FIG. 2 shows the relationship between the Ni content in a Cu—Ni alloy substrate and the CNT generation region, with the Ni content in the substrate on the horizontal axis and the ratio of the CNT generation region in the substrate area on the vertical axis. FIG.
[Explanation of symbols]
1; substrate 2; reaction tube 3; thermocouple 4; infrared image furnace 5; temperature controller 6; plug 7; pipe 8;

Claims (4)

化学気相成長法によるカーボンナノチューブの製造方法において、炭化水素ガスを分解する触媒作用を有する触媒金属と触媒作用がない非触媒金属との合金からなる基板を反応管内に設置し、前記反応管内を炭化水素ガスが前記触媒金属により分解される温度に加熱した状態で、炭化水素ガスを前記反応管内に供給することにより、前記炭化水素ガスを分解して前記基板上にカーボンナノチューブを生成させる工程を有し、前記基板の前記触媒金属含有量を変化させることにより前記カーボンナノチューブの生成量を調節することを特徴とするカーボンナノチューブの製造方法。In the method of producing carbon nanotubes by chemical vapor deposition, a substrate made of an alloy of a catalytic metal having a catalytic action for decomposing hydrocarbon gas and a non-catalytic metal having no catalytic action is placed in a reaction tube, A step of generating a carbon nanotube on the substrate by decomposing the hydrocarbon gas by supplying the hydrocarbon gas into the reaction tube in a state heated to a temperature at which the hydrocarbon gas is decomposed by the catalytic metal. And producing the carbon nanotubes by changing the catalytic metal content of the substrate and changing the amount of the carbon nanotubes produced. 前記基板が、触媒金属であるNiと前記非触媒金属であるCuとの合金からなることを特徴とする請求項1に記載のカーボンナノチューブの製造方法。The method for producing carbon nanotubes according to claim 1, wherein the substrate is made of an alloy of Ni as a catalytic metal and Cu as the non-catalytic metal. Ni含有量が10乃至70質量%であることを特徴とする請求項2に記載のカーボンナノチューブの製造方法。The method for producing carbon nanotubes according to claim 2, wherein the Ni content is 10 to 70 mass%. 前記炭化水素ガスがアセチレンであることを特徴とする請求項1乃至3のいずれか1項に記載のカーボンナノチューブの製造方法。The method for producing carbon nanotubes according to any one of claims 1 to 3, wherein the hydrocarbon gas is acetylene.
JP2003166872A 2003-06-11 2003-06-11 Method of manufacturing carbon nanotube Pending JP2005001938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166872A JP2005001938A (en) 2003-06-11 2003-06-11 Method of manufacturing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166872A JP2005001938A (en) 2003-06-11 2003-06-11 Method of manufacturing carbon nanotube

Publications (1)

Publication Number Publication Date
JP2005001938A true JP2005001938A (en) 2005-01-06

Family

ID=34092890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166872A Pending JP2005001938A (en) 2003-06-11 2003-06-11 Method of manufacturing carbon nanotube

Country Status (1)

Country Link
JP (1) JP2005001938A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126311A (en) * 2005-11-01 2007-05-24 Sonac Kk Method for producing carbon fiber and catalyst substrate
JP2012116733A (en) * 2010-12-03 2012-06-21 Kao Corp Method for producing fibrous carbon
TWI410615B (en) * 2010-07-05 2013-10-01 Hon Hai Prec Ind Co Ltd Ir detective device
CN103361625A (en) * 2012-03-31 2013-10-23 姜辛 Carbon nanofiber membrane photo-thermal converting material and preparation method thereof
JP2017519099A (en) * 2015-04-20 2017-07-13 中国科学院上海微系統与信息技術研究所 Local carbon supply apparatus and wafer level graphene single crystal manufacturing method by local carbon supply
US10336618B1 (en) * 2018-06-29 2019-07-02 The Florida International University Board Of Trustees Apparatus and method for synthesizing vertically aligned carbon nanotubes
US11476464B1 (en) 2021-09-10 2022-10-18 The Florida International University Board Of Trustees Coated vertically aligned carbon nanotubes on nickel foam

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126311A (en) * 2005-11-01 2007-05-24 Sonac Kk Method for producing carbon fiber and catalyst substrate
TWI410615B (en) * 2010-07-05 2013-10-01 Hon Hai Prec Ind Co Ltd Ir detective device
JP2012116733A (en) * 2010-12-03 2012-06-21 Kao Corp Method for producing fibrous carbon
CN103361625A (en) * 2012-03-31 2013-10-23 姜辛 Carbon nanofiber membrane photo-thermal converting material and preparation method thereof
JP2017519099A (en) * 2015-04-20 2017-07-13 中国科学院上海微系統与信息技術研究所 Local carbon supply apparatus and wafer level graphene single crystal manufacturing method by local carbon supply
US10336618B1 (en) * 2018-06-29 2019-07-02 The Florida International University Board Of Trustees Apparatus and method for synthesizing vertically aligned carbon nanotubes
US10961123B2 (en) * 2018-06-29 2021-03-30 The Florida International University Board Of Trustees Apparatus and method for synthesizing vertically aligned carbon nanotubes
US11476464B1 (en) 2021-09-10 2022-10-18 The Florida International University Board Of Trustees Coated vertically aligned carbon nanotubes on nickel foam
US11929504B2 (en) 2021-09-10 2024-03-12 The Florida International University Board Of Trustees Coated vertically aligned carbon nanotubes on nickel foam

Similar Documents

Publication Publication Date Title
CN1946635B (en) Method for preparing carbon nano structure
JP5549984B2 (en) Method for producing aggregate of carbon nanotubes with high specific surface area
Levchenko et al. Low-temperature plasmas in carbon nanostructure synthesis
EP1919826B1 (en) Process and reactor for producing carbon nanotubes
Khorrami et al. Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst
JP5574257B2 (en) Reusable substrate for producing carbon nanotubes, substrate for producing carbon nanotubes and method for producing the same
Gangele et al. Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review
JP4642658B2 (en) Method for producing single-walled carbon nanotubes with uniform diameter
JP5608952B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
JP2017019718A (en) Manufacturing method of carbon nano-tube
JP6492598B2 (en) Method for producing carbon nanotube
WO2005082528A1 (en) Catalyst structure and method for producing carbon nanotube using same
JP2008201648A (en) Carbon nanotube production apparatus and carbon nanotube production method
KR101313753B1 (en) Method for growth of carbon nanoflakes and carbon nanoflakes structure
JP2005001938A (en) Method of manufacturing carbon nanotube
Lee et al. Synthesis of aligned carbon nanofibers at 200 C
JP2004083293A (en) Method for manufacturing carbon nanotube using fullerene
JP2005001936A (en) Method of manufacturing carbon nanotube
JP2005001937A (en) Method of manufacturing carbon nanotube
JP6476759B2 (en) Method of manufacturing aligned carbon nanotube assembly
JP7272855B2 (en) Multi-walled carbon nanotube, multi-walled carbon nanotube aggregate, and method for producing multi-walled carbon nanotube
JP5549983B2 (en) Method for producing aggregate of carbon nanotubes with high specific surface area
JP3711384B2 (en) Carbon nanotube aggregate array film and manufacturing method thereof
JP2004244252A (en) Carbon nanotube assembly and method of manufacturing the same
JP2015147706A (en) Method of manufacturing single crystal graphene using plastic waste and the like as raw material, and touch panel using single crystal graphene