WO2004105940A1 - カーボンナノコイル製造用触媒、その製造方法、カーボンナノコイル製造方法及びカーボンナノコイル - Google Patents

カーボンナノコイル製造用触媒、その製造方法、カーボンナノコイル製造方法及びカーボンナノコイル Download PDF

Info

Publication number
WO2004105940A1
WO2004105940A1 PCT/JP2004/007797 JP2004007797W WO2004105940A1 WO 2004105940 A1 WO2004105940 A1 WO 2004105940A1 JP 2004007797 W JP2004007797 W JP 2004007797W WO 2004105940 A1 WO2004105940 A1 WO 2004105940A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
carbon
producing
transition metal
carbide
Prior art date
Application number
PCT/JP2004/007797
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Nakayama
Lujun Pan
Toshikazu Nosaka
Osamu Suekane
Nobuharu Okazaki
Takeshi Nagasaka
Toshiki Goto
Hiroyuki Tsuchiya
Takashi Okawa
Keisuke Shiono
Original Assignee
Japan Science And Technology Agency
Public University Corporation, Osaka Prefecture University
Taiyo Nippon Sanso Corporation
Otsuka Chemical Co., Ltd.
Nissin Electric Co., Ltd.
Osaka Prefecture
Daiken Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Public University Corporation, Osaka Prefecture University, Taiyo Nippon Sanso Corporation, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd., Osaka Prefecture, Daiken Chemical Co., Ltd. filed Critical Japan Science And Technology Agency
Priority to US10/558,291 priority Critical patent/US7829494B2/en
Priority to EP04735390A priority patent/EP1649929B1/en
Priority to DE602004020895T priority patent/DE602004020895D1/de
Priority to JP2005506584A priority patent/JP4958138B2/ja
Priority to KR1020057022649A priority patent/KR100875861B1/ko
Publication of WO2004105940A1 publication Critical patent/WO2004105940A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the present invention relates to a catalyst for producing a carbon nanocoil by a chemical vapor deposition method, and more particularly, to a catalyst for producing a carbon nanocoil capable of efficiently producing a carbon nanocoil, a production method thereof, and a carbon nanocoil.
  • the present invention relates to a coil manufacturing method and a finally obtained carbon nanocoil.
  • Carbon nanocoils wound in a coil shape having an outer diameter of 100 nm or less have been manufactured. Carbon nanocoils have the same properties as carbon nanotubes, and have remarkable electromagnetic induction, and are useful as materials for hard disk heads and as electromagnetic wave absorbers. Also, since it has the panel elasticity that returns to its original state even when it is stretched to twice its length, it is attracting attention as a material for micromachine spring actuators and also as a resin-reinforced material.
  • Carbon nanocoinole was chemically vapor-grown by Amelinks et al. It was synthesized for the first time using the Chemical Vapor Deposition method (hereinafter referred to as the CVD method). It was also revealed that the carbon microcoils that had been manufactured before had an amorphous structure, whereas the carbon nanocoils had a graphite structure.
  • CVD method Chemical Vapor Deposition method
  • Their manufacturing method is to form a single metal catalyst such as Co, Fe, Ni into fine powder, heat the vicinity of this catalyst to 600 to 700 ° C, and contact it with this catalyst.
  • an organic gas such as acetylene-benzene is circulated to decompose these organic molecules.
  • the shapes of the generated carbon nanocoils varied, and the yields were low, and they were merely generated by accident. In other words, industrial use Instead, a more efficient manufacturing method was required. .
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-192204 (Patent Document 1). 1) Published as.
  • This catalyst is obtained by depositing an iron thin film on an ITO substrate on which a mixed thin film of I ⁇ acid oxide and S ⁇ oxide has been formed.
  • ITO is an abbreviation for Indium-Tin-Oxide.
  • Patent Document 2 Japanese Patent Application Laid-Open No. Published as 310130.
  • an In organic compound and a Sn organic compound are mixed in an organic solvent to form an organic liquid, and the organic liquid is applied to a substrate to form an organic film.
  • ⁇ A Sn oxide film is formed, and an iron thin film is formed on the In ⁇ Sn oxide film.
  • the I n ⁇ S n oxide film corresponds to the aforementioned ITO film (mixed thin film).
  • Patent Document 3 JP-A-2002-255519
  • JP-A-2003-313017 Patent Document 4
  • Patent Documents 3 and 4 relate to a method for producing single-walled carbon nanotubes.
  • Both known technologies relate to a technology for producing carbon nanotubes by adsorbing a catalyst for producing carbon nanotubes on zeolite.
  • the resulting carbon nanotubes were reported to have a relatively uniform wire diameter. ing.
  • the technique is aimed at producing a relatively uniform carbon nanotube having a diameter of a micropore, in which a catalyst is adsorbed by micropores of zeolite.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-1992 204
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-301
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-205255
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-31130 '17 'CVD of carbon nanocoils using Fe-In-Sn-based catalysts developed according to Patent Documents 1 and 2.
  • the present inventors have come to notice an interesting fact in the intensive research on manufacturing by the method. This is the fact that particulate matter is attached to the tip of the carbon nanocoil taken in the electron micrograph. We refer to this particulate matter as the catalyst nucleus.
  • the catalyst nucleus attached to the tip of the carbon nanocoil is the true catalyst substance.
  • the speculation is that this catalyst nucleus decomposes the carbon compound gas existing around it and grows the carbon nanocoil while taking in carbon atoms. Since the carbon nanocoil itself is a very small carbon substance, the catalytic substance attached to the tip is a nano-sized ultrafine particle.
  • this catalyst core is a true catalyst, determining its structure is extremely important. In other words, it is an extremely important task for the present inventors to determine whether this catalyst core is a mere fine piece of Fe-In-Sn-based catalyst or another substance.
  • determining the structure of the catalyst nucleus effective catalysts can provide possibilities Mel force 51 b der by for producing carbon nano-coil.
  • Patent Document 3 a known technique disclosed in Patent Document 3 is to adsorb Fe fine particles and Ni fine particles as catalyst fine particles to zeolite. Fe and Ni particles are dissolved
  • the catalyst fine particles cannot be adsorbed in the pores.
  • the pore diameters themselves are distributed within a certain range, so that the wire diameter varies according to the distribution.
  • the particle size of the monodispersed metal fine particles is about 10 nm in the current state of the art.
  • the metal fine particles are bonded to each other to form a cluster, and the particle diameter of the clustered secondary particles reaches several 10 nm or more, so if they adhere to the zeolite surface, the wire diameter becomes extremely large.
  • the disadvantage was that carbon nanotubes grew.
  • Patent Document 4 discloses a technique for adsorbing iron nitrate molecules to zeolite in an aqueous solution. That is, it was found that iron nitrate molecules were adsorbed in the pores of the zeolite, and the catalyst filling rate in the pores was higher than that of the catalyst fine particles described above.
  • the catalyst to be adsorbed on zeolite is one kind of metal element or its metal-containing substance, but not a plurality of kinds of metal element or its metal-containing substance. Since the catalyst for carbon nanotubes is a single particle of Fe or Ni, it is possible to uniformly inject it into the pores of zeolite.
  • the catalyst for producing carbon nanocoils is composed of multiple types of metals, so it is necessary to simultaneously fill the same pores with multiple types of metals. There is. Simultaneously injecting multiple types of metals into the same pore is difficult even if it is simply considered. Therefore, it is completely unknown whether or not the catalyst for producing multiple carbon nanocoils can be adsorbed on zeolite, and no experiment has been conducted.
  • the present invention specifies a true catalyst for producing carbon nanocoils by indirectly determining the structure of the catalyst nucleus attached to the tip of the carbon nanocoils, and establishes a method for producing the catalysts for a short time. It aims to manufacture carbon nanocoils with high density and high efficiency. Another object of the present invention is to develop a new catalyst for producing carbon nanocoils other than the Fe ⁇ In ⁇ Sn catalyst. It is another object of the present invention to provide a novel catalyst for producing a carbon nanocoil in which these novel catalyst substances are supported on a porous carrier. Furthermore, the aim is to establish a method for producing carbon nanocoils using these novel catalysts for producing carbon nanocoils, and to provide uniform and inexpensive carbon nanocoils to the market. (Disclosure of the Invention)
  • a first aspect of the present invention is a catalyst for producing a carbon nanocoil having an outer diameter of 100 nm or less by a chemical vapor deposition method.
  • This catalyst is a carbon nanocoil production catalyst composed of a metal carbide containing at least one or more transition metal elements.
  • the transition metal element means a transition element shown in the periodic table, and specifically, Sc to Cu in the fourth cycle, Y to Ag in the fifth cycle, and La to A in the sixth cycle. u, etc., which are known as catalysts for producing carbon nanotubes.
  • the present inventors have found that, as seen in the Fe, In and Sn catalysts, the coexistence of this transition metal element and other elements produces carbon nanocoils, and furthermore, the catalyst becomes a carbide. Thus, the present inventors have discovered that carbon nanocoils can be efficiently grown, and have completed the present invention.
  • the catalyst core described above is the metal carbide of the present invention.
  • Second embodiment of the present invention is a catalyst having an outer diameter prepared by chemical vapor deposition following carbon nano coils 1 0 0 0 nm, the catalyst of at least one or more types of transition metal elements, i n, C
  • This is a catalyst for producing carbon nanocoils, which is a carbide catalyst containing.
  • the transition metal element is as described above, and the carbide catalyst formed by combining this transition metal element with In and C is an effective catalyst for producing carbon nanocoils.
  • the transition metal element F e, a C o, more than one selected from N i elements A, composition formula of the carbide catalyst is it express at least A X I 11 2 It is a catalyst for producing carbon nanocoils.
  • the element A is Fe
  • the composition formula of the carbide catalyst is small.
  • the fact that carbon nanocoils were grown as catalyst nuclei was confirmed.
  • X-ray powder analysis of the catalyst fine particles formed on the substrate confirmed that the catalyst was a carbide catalyst containing Fe, In, and C.
  • the composition formula of the carbide catalyst is, F e 3 1 11 C. Turns out to be given in 5 . Therefore, carbon nanocoils can be manufactured with high efficiency by using a carbide catalyst having this composition formula.
  • This carbide catalyst is the first catalyst discovered by the present inventors for the production of carbon nanocoils having a specified composition formula, and is a true catalyst for growing carbon nanocoils.
  • a fifth embodiment of the present invention is a catalyst for producing carbon nanocoils, wherein at least one other element is added to the carbide catalyst of the second embodiment.
  • the other element may be any element other than the transition metal element, In and C constituting the catalyst, and an element that promotes the growth of the carbon nanocoil is effective.
  • a transition element other than the transition metal element may be a typical element.
  • the transition metal element is Fe
  • the other element may be, for example, Co or Ni. More specifically, as other elements, for example, Si, Ge, Sn of carbon group, B, Al, Ga, T1 of boron group and P, As, Sb of nitrogen group , B i, other metal elements, non-metal elements, etc. are selected.
  • a sixth aspect of the present invention is a catalyst for producing carbon nanocoils, wherein the other element of the fifth aspect is Sn.
  • the catalyst for producing a carbon nanocoil of the present invention includes an Fe ⁇ In ⁇ Sn-based carbide catalyst.
  • the diameter of the carbon nanocoils can be controlled by controlling the diameter of the fine particles of the carbide catalyst, and a coil having an arbitrary diameter can be manufactured.
  • a catalyst for synthesizing carbon nanocoils composition formula of the carbide catalyst is represented by F e x I n y C z S n w also reduced.
  • the composition ratios of Fe, In, C, and Sn in this carbide catalyst are indicated by x, y, z, and w, and these catalyst ratios x, y, z, and w can be designed to desired values. Is proposed.
  • the composition formula of the carbide catalyst is at least Fe 31 nvC . , 5 S n w (1> ⁇ 0, w ⁇ 0) is for synthesizing carbon nanocoils carbide catalyst represented by the composition formula.
  • This form catalyst F e 3 I nC. , 5 is a carbide catalyst formed by removing In from the center composition by the composition ratio V (1> v ⁇ 0) and adding Sn only in the composition ratio w ( ⁇ 0) .
  • Composition ratio v when w is 0, an composition of F e 3 I nC 0. 5 , the removal amount V and the added amount w is Ru is set to a desired value in a range of more than zero port.
  • a carbide catalyst capable of efficiently producing carbon nanocoils can be provided.
  • the additive composition ratio w of Sn can be set freely within the range of w> 0, and it is possible to add a small amount to a large amount of Sn. There is an advantage that the production efficiency can be adjusted by the amount of Sn added.
  • Fe is selected as the element A, and when the powder is subjected to powder X-ray diffraction and the diffraction angle is measured at 2 °, it is about 40 °.
  • This is a catalyst for producing a carbon nanocoil having a first intensity peak and a diffraction intensity distribution having a second intensity peak at about 46.3 °.
  • the carbide catalyst having the first intensity peak at about 40 °, more precisely, at about 39.6 °, and having the second intensity peak at about 46.3 ° was first discovered by the present inventors.
  • This carbide catalyst is proposed as a catalyst for producing carbon nanocoils.
  • a tenth embodiment of the present invention is a catalyst for producing carbon nanocoils having an outer diameter of 1000 nm or less by chemical vapor deposition, and this catalyst contains at least one or more transition metal elements, Sn, and C. It is a catalyst for the production of carbon nanocoils, which is a selected carbide catalyst. This is a carbide catalyst in which In of the above-described second embodiment is replaced with Sn.
  • the (transition metal element, Sn, C) carbide catalyst, together with the (transition metal element, In, C) carbide catalyst is a catalyst for the production of carbon nanocoils first discovered by the present inventors.
  • the transition metal element is as described above, and the carbide catalyst formed by combining this transition metal element with Sn and C is an effective catalyst for producing carbon nanocoils. .
  • the specific selection of the transition metal is made freely as appropriate, taking into account production efficiency, synthesis conditions, etc.
  • the transition metal element is at least one element A selected from Fe, Co, and Ni
  • the composition formula of the carbide catalyst is at least. It is a catalyst for producing carbon nanocoinole represented by A X S n y C z .
  • F e ', Co, and Ni are well-known as catalysts for carbon nanotubes.However, the present inventors discovered for the first time that the presence of A x S ny C z becomes a carbon nano coil catalyst. It was done. Although the role of Sn is not clear at present, Fe, Co, and Ni grow carbon nanotubes, C becomes a raw material for forming carbon nanocoils, and Sn becomes carbon nanotubes.
  • the composition ratio of A, Sn, and C is represented by x, y, and z, and a carbide catalyst capable of designing these composition ratios x, y, and Z to desired values is proposed.
  • the form is a catalyst for producing carbon nanocoils, wherein the element A is Fe in the catalyst of the first form and the composition formula of the carbide catalyst is at least represented by Fe 3 SnC. While producing carbon nanocoils by bringing a carbon compound gas into contact with the substrate on which the Fe • Sn catalyst thin film was formed, the present inventors found that the Fe • Sn catalyst thin film became fine particles.
  • a thirteenth aspect of the present invention is the catalyst for producing a carbon nanocoil according to the tenth aspect, wherein the carbide catalyst is added with at least one other element.
  • the other element may be any element other than the transition metal element, Sn, and C that constitute the catalyst.
  • An element that promotes the growth of the oil is effective.
  • a transition element other than the transition metal element or a typical element may be used.
  • the transition metal element is Fe
  • the other element may be, for example, Co or Ni. More specifically, as other elements, for example, Si, Ge, Sn of the carbon group, B, Al, Ga, T1 of the boron group, and P, As, Sb, Bi, of the nitrogen group, Other metal elements, non-metallic elements, etc. are selected, and the appropriate amount is added freely according to the purpose.
  • a fourteenth aspect of the present invention is the catalyst according to the eleventh aspect, wherein the element A is Fe, and when the powder is subjected to powder X-ray diffraction and measured at a diffraction angle of 2 °, about 40.
  • This is a catalyst for producing carbon nanocoils that shows a diffraction intensity distribution having a first intensity peak in the vicinity.
  • the carbide catalyst having the first intensity peak at about 40 ° has been discovered by the present inventors, and this carbide catalyst is proposed as a catalyst for producing carbon nanocoils.
  • a fifteenth aspect of the present invention is a catalyst for producing a carbon nanocoil, comprising at least one or more transition metal elements, A1 and Sn elements.
  • This catalyst is a novel metal catalyst discovered by the present inventors and is not a carbide catalyst.
  • the transition metal element is as described above, and an appropriate transition metal element can be used depending on the purpose.
  • carbon nanocoils can be efficiently produced by applying to synthesis by a CVD method or the like, which contributes to industrial mass production of carbon nanocoils.
  • a sixteenth aspect of the present invention is a catalyst for producing a carbon nanocoil, wherein the transition metal element, A 1 and S ⁇ are present as oxides. If the catalyst of the fifteenth embodiment is produced by firing in an oxygen atmosphere, an acid catalyst can be obtained. Iron, aluminum or tin is used in the form of iron oxide, aluminum oxide or tin oxide to form a catalyst for producing carbon nanocoils. Therefore, a stable catalyst can be provided.
  • An eighteenth aspect of the present invention is a catalyst for producing a carbon nanocoil, comprising at least one or more transition metal elements, elements of Cr and Sn.
  • This catalyst is another novel metal catalyst discovered by the present inventors and is not a carbide catalyst.
  • the transition metal elements are as described above, and a wide variety of transition metal elements can be used depending on the purpose. If this catalyst is used, carbon nanocoils can be efficiently manufactured by applying it to the synthesis by the CVD method or the like, contributing to the industrial mass production of carbon nanocoils.
  • a nineteenth aspect of the present invention is the catalyst according to the eighteenth aspect, wherein the transition metal element, Cr and Sn is present as an oxide. If the catalyst of the eighteenth mode is produced by firing in an oxygen atmosphere, an oxide catalyst can be obtained. Since the transition metal element, chromium or tin is used in the form of a transition metal oxide, aluminum oxide or tin oxide to constitute a catalyst for the production of carbon nanocoils, even if these are used in air, they will be further acidified. And provide a stable catalyst.
  • a twenty-first embodiment of the present invention includes at least a composition (Fex-Iny-Snz) composed of the elements of Fe, In and Sn, and the composition ratio (molar ratio) of each element is (X,
  • the present inventors have already disclosed the Fe ⁇ In ⁇ Sn catalyst, but in this embodiment, the carbon nanocoils are more efficiently manufactured by limiting the composition of each constituent element to a specific range. It was a success.
  • a twenty-second embodiment of the present invention is the catalyst for producing a carbon nanocoil according to the twenty-first embodiment, wherein Fe, In, or Sn is present as an oxide.
  • Fe, In, or Sn is present as an oxide.
  • Iron, indium or Since tin is used in the form of iron oxide, oxidized tin or oxidized tin to form a catalyst for the production of carbon nanocoils, even if these are used in air, they are not oxidized anymore, and are stable catalysts. Can be provided.
  • a twenty-third embodiment of the present invention is the catalyst for producing carbon nanocoils according to any one of the first to second embodiments, wherein the catalyst is obtained as fine particles.
  • the present inventors have discovered that a catalyst nucleus exists at the tip of the grown carbon nanocoil, and the catalyst nucleus grows while decomposing the carbon compound gas and incorporating carbon atoms into the carbon nanocoil. If the carbide catalyst is provided as fine particles based on this knowledge, the fine particles themselves will function as catalyst nuclei, and it will be possible to efficiently produce carbon nanocoils. By adjusting the particle diameter of the fine particles, there is an advantage that the coil wire diameter and the coil outer diameter of the carbon nanocoil can be uniformly controlled to desired values.
  • a twenty-fourth aspect of the present invention is a method for producing a catalyst for producing a carbon nanocoil according to the second or tenth aspect, wherein at least (transition metal element, In) or (transition metal element, S n) is formed, and the surface of the thin film of the substrate is carbonized with a carbon compound gas under a heating condition, so that at least (transition metal element, In, C) or (transition metal element, Sn,
  • This is a method for producing a catalyst for producing a carbon nanocoil that forms a carbide catalyst containing the element C).
  • a twenty-fifth aspect of the present invention is a method for producing a catalyst for producing a carbon nanocoil according to the second or tenth aspect, which comprises at least (transition metal element, In) or (transition metal element, Sn). Forming fine particles, and reacting the fine particles with a carbon compound gas under a heating condition to obtain a carbide catalyst containing at least a (transition metal element, In, C) or (transition metal element, Sn, C) element.
  • This is a method for producing a catalyst for producing a carbon nanocoil, which forms the following.
  • the method of forming the fine particles includes vapor deposition 'sputtering' Ion plating, plasma, physical vapor deposition (PVD) such as molecular beam, and chemical vapor deposition (CVD) such as gas phase decomposition and spray pyrolysis can be used.
  • a twenty-sixth aspect of the present invention is a method for producing a catalyst for producing a carbon nanocoil according to the second or tenth aspect, wherein at least (a transition metal compound and an In compound) or (a transition metal compound and an Sn compound) To form a solution or dispersion in which is added to a solvent, solids are separated from the solution or dispersion, and the solids are brought into contact with a carbon compound gas under heating to carbonize, and at least (a transition metal element,
  • This is a method for producing a catalyst for producing carbon nanocoils, which forms fine particles of a carbide catalyst containing an element of (In, C) or (transition metal element, Sn, C).
  • transition metal compound, the In compound, and the Sn compound examples include a transition metal oxide, an In oxide, and a Sn oxide, and these are uniformly mixed in a solution to separate a solid content. If this solid content is carbonized with a carbon compound gas, (transition metal element, In, C) carbide catalyst fine particles or (transition metal element, Sn, C) carbide catalyst fine particles can be easily synthesized in large quantities.
  • Various compounds other than oxides can be used as the material that can be carbonized.
  • a twenty-seventh aspect of the present invention is a method for producing a catalyst for producing a carbon nanocoil according to the second or tenth aspect, wherein at least (a transition metal compound and an In compound) or (a transition metal compound and an Sn compound) Is added to a solvent to form a solution or dispersion, a solid is separated from the solution or dispersion, and the separated solid is fired.
  • transition metal element, In or (transition metal element, Fine particles of (S n) are generated, and the fine particles are brought into contact with a carbon compound gas under heating to carbonize them, and at least an element of (transition metal element, In, C) or (transition metal element, Sn, C)
  • the transition metal compound, the In compound, and the Sn compound include a transition metal organic compound, an In organic compound, and an Sn organic compound, and these are uniformly mixed in a solution to separate solids.
  • a twenty-eighth embodiment of the present invention is a method for producing a catalyst for producing carbon nanocoils according to the second or tenth embodiment, wherein at least (a transition metal compound gas and an In compound are contained in a reaction vessel under heating. Gas) or (transition metal compound gas and Sn compound gas) is brought into contact with a carbon compound gas to cause a carbide containing at least (transition metal element, In, C) or (transition metal element, Sn, C) element
  • This is a method for producing a catalyst for producing carbon nanocoils that forms fine particles of the catalyst. In this mode, it becomes possible to mass-produce the desired fine particles of the carbide catalyst by a gas chemical reaction using the gas of the catalyst raw material component, which can contribute to a reduction in catalyst price.
  • the transition metal element is at least one element A selected from Fe, Co, and Ni; composition formula is at least a X I n y C z, or a x Sn y C carbon nanocoils method of manufacturing a catalyst represented by z.
  • Fe, Co, and Ni are well known as catalysts for carbon nanotubes.However, the present inventors have found that by combining with InnC or SnC, a carbon nanocoil catalyst can be obtained. It was discovered by In this carbide catalyst, the composition ratios are indicated by x, y, and z, and a carbide catalyst that can design these composition ratios x, y, and z to desired values is provided.
  • the element A is Fe
  • the composition formula of the carbide catalyst is at least Fe 3 InC.
  • a 5 or F e 3 S force one Bon'nanokoiru method for manufacturing a catalyst represented by nC.
  • F e is particularly selected from among F e ⁇ C 0 ⁇ N i.
  • F e 3 In nC. , 5 or Fe 3 SnC is a substance discovered by the present inventors as a catalyst for the production of carbon nanocoils for the first time in the world.
  • a thirty-first embodiment of the present invention is the method for producing a carbon nanocoil production catalyst according to any one of the twenty-fourth to thirtieth embodiments, wherein one or more other elements are added to the carbide catalyst.
  • the other element may be any element other than (transition metal element, In, C) or (transition metal element, Sn, C) which constitutes the catalyst.
  • the promoting element is effective.
  • a transition element other than the transition metal element or a typical element may be used.
  • the transition metal element when the transition metal element is Fe, the other element may be, for example, Co or Ni. More specifically, as other elements, for example, Si, Ge, Sn of the carbon group, B, Al, Ga, T1 of the boron group, and P, As, Sb of the nitrogen group , B i, other metal elements, non-metal elements, etc. are selected.
  • a thirty-second embodiment of the present invention is a carbon nanocoil production catalyst in which a carbide catalyst or Z and an oxide catalyst are supported on a porous carrier for producing carbon nanocoils.
  • the catalyst used in this embodiment is a carbide catalyst and / or an acid catalyst, and can produce carbon nanocoils with high efficiency.
  • the uniform pores of the porous carrier can be filled with the catalyst for producing carbon nanocoils.
  • the size of the pores of the porous carrier is, for example, about 0.5 to 2 nm in the case of Y-type zeolite, and the minimum pore diameter of the zeolite is 0.74 nm.
  • the catalyst for producing a carbon nanocoil when the catalyst for producing a carbon nanocoil is adsorbed on the pores having a uniform cross-sectional area, the catalyst loading (filling amount) on the pores can be made uniform. In other words, it is possible to achieve both uniform catalyst area by the pore cross-sectional area of the porous carrier and uniform catalyst amount by the volume of the pores. Therefore, a carbon nanocoil having a wire diameter corresponding to the pore diameter grows, so that the wire diameter can be made uniform. According to the study by the present inventors, the correlation between the outer diameter of the carbon nanocoil and the wire diameter of the carbon nanocoil is extremely high, and by making the I diameter uniform, the outer diameter of the coil can be made uniform.
  • the wire diameter of the carbon nanocoil can be made uniform, and as a result, the outer diameter of the coil can be made uniform
  • Some porous carriers have a large number of pores, and carbon nanocoils can be formed in a number proportional to the number of pores. Therefore, it has the advantage of mass-producing carbon nanocoils with high efficiency.
  • there are various shapes of the porous carrier such as a block shape, a sheet shape, a plate shape, a granular shape, a fine particle shape, and an ultra fine particle shape.
  • a 33rd form of the present invention is the catalyst for producing carbon nanocoinole which supports any one of the 1st to 14th forms of the carbide catalyst in the 32nd form.
  • the carbide catalysts of the first embodiment to the fourteenth embodiment are the catalysts discovered by the present inventors, and There is an advantage that the die can be manufactured with high efficiency.
  • a thirty-fourth aspect of the present invention is a catalyst for producing a carbon nanocoil, wherein the catalyst according to any one of the fifteenth to twenty-second aspects is supported on a porous carrier.
  • the catalysts of the fifteenth to twenty-second modes are catalysts discovered by the present inventors and are not carbide catalysts, but have the advantage that carbon nanocoils can be produced with high efficiency, similarly to carbide catalysts.
  • a thirty-fifth aspect of the present invention is directed to a transition metal element for producing carbon nanocoils, an In-Sn-based catalyst, a transition metal element, an A1-Sn-based catalyst, a transition metal element, a Cr-Sn-based catalyst. And a transition metal element ⁇ In-based catalyst or a transition metal element ⁇ Sn-based catalyst supported on a porous carrier.
  • these catalysts are supported on the pores of a porous carrier, it is possible to mass-produce carbon nanocoils having a uniform wire diameter and a uniform coil diameter.
  • These catalysts are two-element and three-element catalysts, and the present invention makes it possible to simultaneously support multiple elements in the pores.
  • the production efficiency of carbon nanocoils varies depending on the type of catalyst. Therefore, by appropriately adjusting the combination of the catalysts, the production efficiency of the carbon nanocoils can be freely adjusted.
  • a thirty-sixth aspect of the present invention is the catalyst according to the thirty-fifth aspect, wherein the transition metal element is at least one element selected from Fe, Co and Ni.
  • the transition metal elements Fe, Co, and Ni that can efficiently produce carbon nanocoils are used.
  • the catalyst of the present embodiment enables mass production of carbon nanocoils, which can contribute to a price reduction.
  • a 37th form of the present invention is the catalyst according to the 32nd to 36th forms, wherein the porous carrier is zeolite, aluminophosphate, silica aluminophosphate, mesoporous material, porous ceramics, molecular sieves, metal A catalyst for producing a carbon nanocoil selected from an oxide-based porous material, a silica-based porous material, and a carbon-based porous material.
  • Zeorai DOO is a generic term for a multi-hole body with structures attached alternately to share the oxygen tetrahedral S i 0 4 and A 1 0 4.
  • SAPO sica aluminophosphate
  • the pore diameter of zeolite, ALPO and SAPO is 0.5 to 2 nm, and some silica porous materials have large pores of 1.5 to 10 nm.
  • carbon-based porous materials such as carbon nanostructures such as activated 10 carbon and carbon nanotubes can also be used. Therefore, when carbon nanocoils are produced using a catalyst supported on the pores of these porous carriers, the advantage of mass-producing carbon nanocoils having a wire diameter depending on these pore diameters and having a uniform outer coil diameter is obtained. have.
  • a thirty-eighth aspect of the present invention is a method for producing a catalyst for producing a carbon nanocoil according to the thirty-second to thirty-seventh aspects, wherein the catalyst fine particles for producing a carbon nanocoil are dispersed in a solvent.
  • a method for producing a catalyst for producing carbon nanocoils wherein a porous carrier is immersed in the carrier and the catalyst fine particles are carried on the surface or / and the pores of the porous carrier. When the catalyst fine particles are dispersed in the solvent, the catalyst fine particles are uniformly dispersed in the solvent. When the porous carrier is immersed in this solvent, the catalyst for producing carbon nanocoils is uniformly adsorbed in the same pores of the porous carrier.
  • optional treatment such as stirring the solvent, performing ultrasonic treatment, or treating with a homogenizer-atomizer may be added. .
  • a thirty-ninth aspect of the present invention is a method for producing a catalyst for producing a carbon nanocoil according to the thirty-second to thirty-seventh aspects, wherein the carbon nanocoil production is filled or circulated in a space, and a porous material is provided in this space.
  • This is a method for producing a carbon nanocoil production catalyst in which a porous carrier is arranged and the catalyst fine particles are supported on the surface of the porous carrier and / or the pores. Since the catalyst particles are filled or circulated in the space, the catalyst particles can be easily adsorbed on the surface and / or the pores of the porous carrier only by disposing the porous carrier in this space.
  • the porous carrier may be left standing in the processing chamber, or may be sprayed or agitated.
  • the physical conditions in the processing chamber can be arbitrarily adjusted.
  • the porous carrier can be placed under a force B ⁇ , under a vacuum, and heated and cooled. If the catalyst particles for carbon nanocoil production are adsorbed on the porous carrier by this method, carbon nanocoils can be produced efficiently and inexpensively.
  • the 40th mode of the present invention is the method for producing a carbon nanocoil production catalyst according to the 38th mode or the 39th mode, wherein the porous carrier supporting the catalyst fine particles is calcined. By baking, the catalyst fine particles are fixed in the pores of the porous carrier, and the supporting strength can be improved.
  • a catalyst for producing carbon nanocoils according to any one of the first to the twenty-second aspects and the thirty-two to three-seventh aspects is disposed in a reactor, and the vicinity of the catalyst is used as a raw material.
  • the carbon compound gas is heated to a temperature higher than the temperature at which the carbon compound gas is decomposed by the catalytic action, and the carbon compound gas is circulated so as to come into contact with the catalyst.
  • This is a carbon nanocoil manufacturing method for growing carbon nanocoils having a diameter of 100 nm or less.
  • the carbide catalyst By using the carbide catalyst, the metal catalyst, the acid catalyst or the porous carrier catalyst according to the present invention, the carbon compound gas such as hydrocarbons is efficiently decomposed, and the carbon nanocoils are formed on the surface of the catalyst. Can be produced with high efficiency, and industrial mass production of carbon nanocoils can be realized.
  • a catalyst catalyst containing at least a transition metal element, In, and C is brought into contact with a carbon compound gas under a heating condition to contain a catalyst catalyst containing at least a transition metal element and In.
  • the present invention provides a two-step continuous production method for converting a catalyst precursor containing a transition metal element, In, into a carbide catalyst, and further continuously mass-producing carbon nanocoils.
  • a 43rd form of the present invention provides a catalyst precursor containing at least a transition metal element, Sn.
  • the carbonaceous material is brought into contact with a carbon compound gas under a heated state to form a carbide catalyst having at least a transition metal element, Sn, and C.
  • This is a carbon nanocoil manufacturing method for growing nanocoils.
  • the present invention provides a two-step continuous production method for converting a catalyst precursor containing a transition metal element and Sn into a carbide catalyst and continuously mass-producing carbon nanocoils.
  • the use of a catalyst precursor obtained by adding one or more other effective elements in addition to the transition metal element and Sn can further increase the production efficiency of carbon nanocoils.
  • a catalyst precursor containing at least a transition metal element, In, Sn is brought into contact with a carbon compound gas under a heated state to convert at least the transition metal element, In, Sn, C.
  • This is a method for producing carbon nanocoinole by forming a carbon catalyst to be contained and continuously decomposing a carbon compound gas by the carbon catalyst under a heated state to grow carbon nanocoils.
  • the present invention provides a two-step continuous production method in which a catalyst precursor containing a transition metal element, In, and Sn is converted into a carbide catalyst, and furthermore, a carbon nanocoil is continuously mass-produced.
  • a film or a fine particle film of the catalyst for producing carbon nanocoils is formed on a substrate, and the catalyst is used to decompose the carbon compound gas.
  • This is a carbon nanocoil manufacturing method for growing a carbon nanocoil on a substrate. If a catalyst film is used, carbon nanocoils can be generated on the catalyst film at a high density. In addition, if a catalyst fine particle film is used, carbon nanocoils can be mass-produced on a substrate using the catalyst fine particles as a catalyst nucleus. If the particle size of the catalyst fine particles is reduced, a small-sized carbon nanocoil can be manufactured. Conversely, if the particle size of the catalyst fine particles is increased, a large-sized carbon nanocoil can be manufactured. As described above, by controlling the particle size of the catalyst fine particles, there is an advantage that carbon nanocoils can be freely mass-produced.
  • fine particles of the catalyst for producing carbon nanocoils are suspended in a reaction tank, This is a carbon nanocoil manufacturing method in which a compound gas is decomposed to grow carbon nanocoils in a floating state.
  • the fine particles of the catalyst for producing carbon nanocoils are deposited in a reactor, and the carbon compound gas is decomposed while stirring the deposited fine catalyst particles.
  • This is a method for producing carbon nanocoils by growing carbon nanocoils under stirring.
  • the catalyst fine particles are deposited in a rotary kiln and the rotary kiln is rotated while flowing a carbon compound gas, the catalyst powder is in a stirring state, and mass production of carbon nanocoils using the catalyst fine particles as catalyst nuclei can do.
  • a stirring method a rotation method, a vibration method, and other known methods can be adopted.
  • a forty-eighth aspect of the present invention is a carbon nanocoil manufactured by the carbon nanocoil manufacturing method according to any one of the forty-first to forty-fourth aspects. Therefore, since carbon nanocoils can be synthesized in large quantities, inexpensive carbon nanocoils can be provided. In addition, when manufactured by using a catalyst supported on a porous carrier, a carbon nanocoil having a uniform wire diameter and coil outer diameter can be provided. Therefore, by using a single-core nanocoil with a uniform wire diameter and outer diameter, high-quality nanomaterials such as nanosprings, nanomachines, electromagnetic wave absorbers, electron emitters, nanoelectronic devices, and hydrogen storage materials can be manufactured. To meet the needs of each field.
  • FIG. 1 is a schematic perspective view of the carbon nanocoil 1.
  • FIG. 2 is a schematic configuration diagram of the carbon nanocoil manufacturing apparatus 2.
  • FIG. 3 is a schematic diagram showing a process of growing the carbon nanocoil 1 by the catalyst thin film 14.
  • FIG. 4 is a process chart of a first method for producing a carbide catalyst.
  • FIG. 5 is a process chart of a second method for producing a carbide catalyst.
  • FIG. 6 shows a third method of the present invention for producing carbide catalyst fine particles 18 using a solution method. It is a process drawing.
  • FIG. 7 is a process chart of a first production method of carbon nanocoils using the carbide catalyst fine particles 18.
  • FIG. 8 is a process chart of the second method for producing carbon nanocoils starting from the Fe.In ⁇ Sn-based catalyst thin film.
  • ⁇ Fig. 9 is a schematic explanatory view of a third method (flow production method) for producing carbon nanocoils 1 by suspending carbide catalyst fine particles 18.
  • FIG. 10 is a schematic explanatory view of a fourth method (flow production method) for producing the carbon nanocoils 1 by forming the catalyst fine particles 18 from the sprayed oxide fine particles 26.
  • Figure 11 is a scanning electron microscope image of the Fe, In and Sn oxide thin film taken at 50,000x.
  • FIG. 12 is a powder X-ray diffraction intensity diagram of the catalyst fine particles after 10 seconds.
  • FIG. 4 is a time lapse diagram of a first peak of diffraction intensity in FIG. Figure 14 shows 650.
  • 5 is a scanning electron microscope image of carbide catalyst fine particles and grown carbon nanocoils in C.
  • Figure 15 is a scanning electron microscope image of carbide catalyst fine particles and grown carbon nanocoils at 700 ° C.
  • FIG. 16 shows an electron microscopic image of carbon nanocoils and an X-ray diffraction pattern of the catalyst using the Fe—Sn—C catalyst.
  • FIG. 17 shows an electron microscopic image of a carbon nanocoil with an Fe—Sn—C catalyst under other conditions and an X-ray diffraction pattern of the catalyst.
  • FIG. 18 is a schematic configuration diagram of a main part of the manufacturing apparatus 1 used in the embodiment of the present invention.
  • FIG. 20 is an electron microscope image of the product produced by the production apparatus 1 when the catalyst composition is a mixture of In and A1 at a ratio of 1/3 to Fe.
  • Fig. 21 is an electron microscope image of the product produced by Production Equipment 1 in which CNC production experiments were performed with various composition ratios using a mixed catalyst Fe-Sn-O containing only iron and tin.
  • Figure 22 shows the electron microscope images of the products in the CNC production experiments for various compositions of the Fex-Iny-Snz-O catalyst.
  • FIG. 23 is an electron microscope image of the product of the Fex-Iny-Snz-O catalyst having a different composition ratio from that of FIG.
  • Fig. 24 shows electron microscope images of the products in the CNC production experiments of various compositions of Fex-Aly-Snz-O catalyst.
  • Figure 25 shows electron microscope images of the products of the Fex-Cry-Snz_O catalysts in the CNC production experiments for various compositions.
  • FIG. 26 is an electron microscope image of a product in a CNC generation experiment of a Fex-Cry-Snz-O catalyst having a different composition ratio from that of FIG.
  • FIG. 27 is a crystal structure diagram of Y-type zeolite.
  • Figure 28 is a scanning electron microscope image of a carbon nanocoil formed by a catalyst carrier (zeolite) fired at 650 ° C.
  • zeolite zeolite
  • FIG. 29 is a pore distribution diagram of the zeolite used.
  • Figure 30 is a scanning electron microscope image of a carbon nanocoil formed by a catalyst carrier (zeolite) fired at 700 ° C.
  • zeolite zeolite
  • FIG. 31 is an enlarged view of FIG.
  • the present inventors have conducted intensive studies to mass-produce carbon nanocoils, and as a result, the Fe, In, and Sn-based catalysts used as departure catalysts have been converted to carbon compound gas, which is a raw material gas, in a reaction tank. And found that it had been carbonized.
  • this carbide was analyzed, it was a carbide containing at least Fe, In, and C as constituent elements, and the fact that this carbide catalyst was growing carbon nanocoils resulted in the completion of the present invention. is there.
  • the present inventors have proposed that when the catalyst nucleus decomposes the carbon compound gas to generate carbon atoms, the carbon atoms grow at the process of depositing the carbon atoms at the tip of the tube while winding and growing the carbon nanocoil. thinking.
  • FIG. 1 is a schematic perspective view of the carbon nanocoil 1.
  • the carbon nanocoil 1 is formed by winding a tubule 3 and has a coil outer diameter D, a coil length L, and a coil pitch P. Tubble means carbon fiber. What is important is the fact that the catalyst core 5 is attached to the tubular tip 3a. The diameter of the catalyst core 5 is g. It is considered that the catalyst nucleus 5 becomes a nucleus, the carbon compound gas is decomposed, carbon atoms are deposited, and the tubule 3 having a cross-sectional diameter of d extends. Tubule 3 has been observed to be a carbon nanotube.
  • the shape of the catalyst core 5 is various such as a spherical shape, a square shape, and a plug shape, and the diameter of a typical portion is g.
  • Tubular diameter d and catalyst core diameter g are not necessarily equal, but it is thought that there is a correlation between the two sizes.
  • the present inventors examined where the catalyst core 5 attached to the tubular tip 3a of the carbon nanocoil 1 came from.
  • FIG. 2 is a schematic configuration diagram of the carbon nanocoil manufacturing apparatus 2.
  • a heating device 6 is arranged on the outer periphery of the reaction tank 4, and a reaction chamber 8 serving as an isothermal region is formed in the reaction tank 4.
  • a substrate 12 on which a catalyst thin film 14 is formed is arranged at a required position in the reaction chamber 8.
  • the catalyst thin film 14 is a catalyst for producing a carbon nanocoil, and is a Fe ⁇ In ⁇ Sn-based catalyst thin film that some of the present inventors have already discovered.
  • F blending ratio of e and I n and S n can be adjusted freely, with respect to example F e 1 0 ⁇ 9 9 ⁇ 9 9 mole 0/0 to I n is, S n is I n 0 to 3 0 is adjusted to a range of mole 0/0 it is desirable.
  • Carrier gas and carbon compound gas are supplied to the reaction chamber in the direction of arrow a.
  • Carbon compound gas is a carbon source gas for growing carbon nanocoils, and PC orchid 004/007797
  • organic gases such as nitrogen-containing organic gas, sulfur-containing organic gas, and phosphorus-containing organic gas are widely used.
  • hydrocarbons are preferred because they do not generate extra substances.
  • hydrocarbons examples include alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, arylene hydrocarbons such as benzene, toluene and styrene, and aromatics such as naphthalene and phenanthrene. Hydrocarbons, cycloparaffin compounds such as cyclopropane and cyclohexane can be used. Further, a mixed hydrocarbon gas of two or more kinds may be used, and particularly, low-molecular hydrocarbons such as acetylene, arylene, ethylene, benzene, and toluene are preferable.
  • carrier gas a gas such as He, Ne, Ar, N 2 , and H 2 is used, and in this embodiment, He gas is used.
  • Carrier gas is a gas that transports carbon compound gas. While carbon compound gas is consumed by the reaction, carrier gas is used without any reaction and is not consumed.
  • the inside of the reaction chamber 8 is heated to a predetermined temperature.
  • the heating temperature may be adjusted to the minimum temperature at which the carbon compound gas is decomposed by the catalyst. Accordingly, the heating temperature is variably adjusted depending on the type of the catalyst and the type of the carbon compound gas, but is desirably set to, for example, 600 ° C. or more.
  • the carbon compound gas and the carrier gas are supplied as a mixed gas in the direction of arrow a, and the substrate 12 is arranged so that the carbon compound gas contacts the surface of the catalyst.
  • the carbon compound gas is decomposed in the process of contact with the catalyst thin film 14, and the carbon atoms generated by the decomposition are deposited on the catalyst surface to form carbon nanocoils 1. .
  • Innumerable carbon nanocoils 1 are formed on the surface of the catalyst thin film 14.
  • the catalyst thin film 14 is a Fe ⁇ In ⁇ Sn-based catalyst thin film. When this catalyst is used, the yield is reduced by the amount of carbon in the carbon compound gas and the amount of carbon nanocoils generated. It is determined to be 90%.
  • FIG. 3 is a schematic diagram showing a process of growing the carbon nanocoil 1 by the catalyst thin film 14.
  • C 2 H 2 gas of 600 sccm is used as a carbon compound gas
  • He gas of 200 sccm is used as a carrier gas
  • acetylene is decomposed.
  • Heating temperature was set at 700 ° C.
  • the catalyst thin film 14 is formed of a mixed oxide catalyst thin film of Fe oxide, In oxide and Sn oxide.
  • Sani composition formula ⁇ catalyst Unlike the blending ratio of each constituent acid I dry matter, for example, a composition formula F e 5 I n S ⁇ ⁇ ⁇ ⁇ , F e 3 1 n S n ⁇ OF e I nSn i O v a catalyst thin film of the mixed Sani ⁇ represented by like are used.
  • the composition formula is Fe 3 In S Is used.
  • the catalyst thickness t is set to 200 nm.
  • (3B) shows a state where the catalyst thin film 14 is formed into particles.
  • the catalyst thin film 14 changes to a catalyst fine particle film 16 composed of catalyst fine particles 18.
  • the catalyst thin film 14 is gradually divided into sections, and each section changes its shape into catalyst fine particles 18. It was confirmed that the diameter (particle diameter) s of the catalyst fine particles 18 gradually decreased from large to small over time.
  • the catalyst nucleus 5 is described as the catalyst nucleus 5 (18).
  • the present inventors analyzed the material structure of the catalyst fine particles 18 shown in (3B). X-ray analysis was carried out by irradiating X-rays and measuring the intensity of the diffracted X-rays with a diplacometer. The X-ray intensity distribution is 2 ⁇ ⁇ when the diffraction angle is measured at 20.
  • F e 3 In nC. . 5 is a carbide of F e ⁇ I n, summer and ensures that the catalyst thin film which is made form the F e ⁇ I n ⁇ S n based catalyst is carbonized by a chemical reaction with C 2 H 2 Was. Sr Fe 3 In C. 5. It was also found that the carbide catalyst according to the present invention was present as an impurity atom in the substance of the formula ( 5 ).
  • the carbide catalyst according to the present invention is a carbide catalyst composed of at least Fe, In, and .C. x I n y Ru carbide catalyst der represented by C z. In particular, in a limited form, the composition formula is at least Fe 3 InC. . A carbon compound catalyst represented by 5.
  • a carbide catalyst according to the present invention is at least F e, I n, C, Sn force Ranaru carbide catalyst, at least F e x I n y C z Sn w in formula Carbide catalyst to be used.
  • the limited form, composition formula at least F e 3 I nC. . 5 S nw (w> 0) is a carbide catalyst. Since the addition ratio of Sn can be adjusted, the condition of w > 0 is set.
  • the composition formula of the catalyst thin film 14 prior to being carbonized is F e 3 I n S ⁇ ⁇ ⁇ chi
  • the content of S eta is 1/30 of F e, at the same time the I n 1/10. Therefore, in terms of quantity, Sn is added only in the amount of impurities from the beginning, and even if it becomes a carbide, it is Fe 3 InC as an impurity. .
  • this carbide contains Sn, it is Fe 3 I.nC. . 5 Sn w (w> 0).
  • the composition ratio w may be larger than zero, and is added at a desired ratio.
  • the carbide true catalyst for growing carbon nano coil 1 is F e ⁇ I n ⁇ Sn-based catalyst occurs is carbonized by the carbon compound gas, i.e., F e 3 I n C 0. 5 or F e 3 I n C. It was found that 5 S n w (w> 0). Therefore, these carbides are referred to as carbide catalysts in the present invention and are distinguished from Fe • In • Sn-based catalysts. Many of the constituent elements of this carbide catalyst are boron group elements (group 3) and carbon group elements (group 4) such as In, C, and Sn. Sn belonging to the carbon group element is a growth element for carbon nanocoils. It is added to the catalyst. In addition, it has been confirmed that when Sn is added, carbon nanocoils grow at a high density, and thus Sn may be referred to as a growth promoting element.
  • the growth promoting elements are carbon group elements such as 3 1, Ge besides 3 1 1, B, A l , Ga, T boron group element such 1., N, P, As, Sb, B Nitrogen elements such as i can be used. Also, a combination of a boron group element and a nitrogen group element may be used, or a group 2 alkaline earth element (Be, Mg, Ca, Sr, Ba) and a group 6 oxygen group element (S, Se, Te) , P o) are also available. Further, it goes without saying that other metal elements and nonmetal elements having a growth promoting activity can also be used.
  • FIG. 4 is a process chart of the first method for producing a carbide catalyst.
  • a catalyst thin film 14 made of a Fe. In ⁇ Sn-based catalyst is formed on the surface of the substrate 12.
  • the Fe-In.Sn-based catalyst may be a thin film containing at least the three elements Fe, In and Sn.
  • F e oxide, I n oxide is composed of mixed oxides of S n oxide, the composition formula for example, F e 5 1 n S ⁇ ⁇ ⁇ chi, F
  • acid ridden objects such as e I ⁇ S ⁇ ⁇ ⁇ ⁇ ⁇ .
  • other compounds may be used, or an alloy of F e ⁇ I ⁇ ⁇ S ⁇ may be used.
  • the thickness t of the catalyst thin film 14 is suitably in the range of 10 nm to several m, but is not limited to this value. The smaller the thickness t, the smaller the diameter s of the catalyst fine particles 18 described later can be.
  • the catalyst thin film 14 is carbonized to form a catalyst fine particle film 16 composed of carbide catalyst fine particles 18.
  • the diameter s of the catalyst fine particles 18 decreases as the carbonization process proceeds. Therefore, if the flow of the carbon compound gas is cut off at an appropriate time, the diameter s of the catalyst fine particles 18 is determined by the size at that time.
  • Catalyst thin film 1 When 4 is an oxidizing catalyst, the catalyst thin film 14 expands in the process of absorbing C atoms and contracts in the process of releasing O atoms to form particles.
  • the catalyst fine particles 18 expand in the process of absorbing C atoms, contract in the process of releasing ⁇ atoms, and the particle diameter s gradually decreases due to the large release of O atoms. If the heating is stopped or the supply of the carbon compound gas is stopped at an arbitrary time, the expansion and contraction process of the catalyst fine particles 18 ends, and the diameter s' is determined.
  • FIG. 5 is a process chart of a second method for producing a carbide catalyst.
  • a catalyst thin film 14 composed of a Fe-In-Sn-based catalyst is formed on the surface of the substrate 12.
  • the catalyst thin film 14 is a two-layer catalyst thin film in which an Fe thin film 14b is formed on an In ⁇ Sn-based catalyst thin film 14a.
  • Examples of the In ⁇ Sn-based catalyst thin film 14a include a mixed oxide thin film of In oxide and Sn oxide, that is, an ITO thin film.
  • a carbon compound gas flows in the direction of arrow b on the surface of the catalyst thin film 14.
  • a catalyst fine particle film 16 composed of carbide catalyst fine particles 18 is generated. Even with a two-layer catalyst thin film, the carbonization process by the carbon compound gas proceeds in the same manner as in (4B). As a result, the catalyst thin film 14 is carbonized and changes into carbide catalyst fine particles 18. The diameter s of the catalyst fine particles 18 decreases as the carbonization process proceeds, and if the flow of the carbon compound gas is interrupted at an appropriate time, the diameter -s of the catalyst fine particles 18 is determined by the size at that time.
  • the reason why the diameter s of the catalyst fine particles 18 changes is considered to be exactly the same as in FIG. 4, and therefore the details are omitted. Therefore, if the heating is stopped or the supply of the carbon compound gas is stopped at an arbitrary time, the expansion and contraction process of the catalyst fine particles 18 is completed, and the diameter s is determined.
  • a gas phase method for producing the Fe-In-Sn-based catalyst thin film 14 in Figs. 4 and 5
  • a gas phase method a liquid phase method, and a solid phase method.
  • a physical vapor deposition method PVD method, Physical Vapor Deposition
  • CVD method Chemical Vapor Deposition
  • the CVD method is also called a chemical vapor deposition method.
  • PVD methods include vacuum deposition, electron beam deposition, laser application, molecular beam epitaxy (MBE), reactive deposition, ion plating, cluster ion beam, glow discharge sputtering, and ion beam. There are sputtering and reactive sputtering.
  • MBE method MOMBE using metal organic material (MO), chemical beam epitaxy (CBE), and gas source epitaxy (GSE) can be used.
  • MO metal organic material
  • CBE chemical beam epitaxy
  • GSE gas source epitaxy
  • CVD methods include thermal CVD, metal organic chemical vapor deposition (MOCVD), RF plasma CVD, ECR plasma CVD, optical CVD, laser CVD, and mercury sensitization.
  • MOCVD metal organic chemical vapor deposition
  • RF plasma CVD RF plasma CVD
  • ECR plasma CVD ECR plasma CVD
  • optical CVD optical CVD
  • laser CVD laser CVD
  • mercury sensitization mercury sensitization
  • the liquid phase method includes liquid phase epitaxy, electric plating, electroless plating, and coating method.
  • solid-phase methods include solid-phase epitaxy, recrystallization, graphe-epitaxy, laser beam, and sol-gel methods.
  • FIG. 6 is a process chart of a third method for producing carbide catalyst fine particles 18 using a solution method. This solution method is characterized in that a larger amount of catalyst fine particles 18 can be produced than in the substrate method.
  • the solvent 22 is stored in the container 20, and the Fe compound, the In compound, and the Sn compound are added to the solvent 22.
  • these three compounds are uniformly mixed and colloidally formed, forming a myriad of colloidal particles in a 24-force S solution.
  • the three compounds form an intermediate by a physical reaction or a chemical reaction, and the intermediate forms the colloid particles 24.
  • the particle size of the colloid particles 24 can be freely controlled by adjusting the concentration of the compound added. Excess colloid particles 24 may settle to the bottom of vessel 20.
  • the colloid particles 24 are separated from the solvent 22 and charged into the heating vessel as solids 27.
  • this solid content 27 is fired in an oxygen atmosphere by the heating device 28, oxide particles 26 of Fe ⁇ In ⁇ Sn are generated.
  • the diameter of the oxide fine particles 26 can be controlled by controlling the particle diameter of the colloid particles 24.
  • the particle size control of the colloid particles 24 can be realized by, for example, adjusting the concentration and the temperature.
  • carbide catalyst fine particles 18 are generated from oxide fine particles 26.
  • the firing furnace 29 is heated to an appropriate firing temperature by a heating device 36.
  • Oxide fine particles 26 are introduced in the direction of arrow c .
  • a mixed gas of a carbon compound gas and a carrier gas is introduced from the gas supply pipe 32 in the direction of arrow e.
  • the oxide fine particles 26 are carbonized by the carbon compound gas.
  • the firing temperature is preferably 300 to 1200 ° C, and the carbonization time is adjusted to several seconds to several tens of minutes.
  • the carbonization time can also be adjusted by the concentration of the carbon compound gas.
  • the carrier gas and the carbon compound gas are selected from the gas types described above. ,
  • the carbide catalyst fine particles 18 generated by the firing fall and are deposited on the bottom of the firing furnace 29.
  • the gas after the reaction is discharged from the discharge pipe 34 in the direction of arrow f.
  • F e 3 I nC 0. 5 and F e 3 I nC 0. 5 Sn x (x> 0) carbide catalyst fine particles 18 such as is manufactured.
  • the diameter s of the carbide catalyst fine particles 18 depends on the particle size of the colloid particles 24 and is adjusted in the range of 1 nm to 10 ° zrn. As the diameter s is smaller, the tubule diameter d of the carbon nanocoil 1 is smaller, and a carbon nanocoil 1 having a smaller size can be manufactured.
  • the Fe compound the In compound and the Sn compound used in this method
  • known inorganic compounds and organic compounds are used.
  • Various known compounds other than these may also be used.
  • the organic matter is completely removed by burning by burning, and a pure Fe ⁇ In ⁇ Sn carbide catalyst can be produced.
  • a mixed solution of the Fe compound and the In compound, or a mixed solution of the Fe compound, the I compound and the Sn compound, or a compound of another growth promoting element may be added.
  • the concentration of the total metal ions in the solution is not particularly limited as long as the reaction proceeds smoothly. Usually, 0.01 to 50% by weight, preferably 0.1 to 20% by weight. /. And it is sufficient.
  • the specific steps from solution formation to baking are as follows. For example, after preparing an alkaline mixed aqueous solution of an iron salt, an indium salt, and a tin salt, a solid substance is separated, the solid substance is dried, pulverized if necessary, and finally carbonized by firing. Carbide fine particles 18 are manufactured.
  • an organic compound of iron, indium, and tin is dispersed in a solvent, and a precursor of Fe-In-Sn-based compound is formed by a chemical reaction such as a hydrolysis reaction. This precursor is separated, dried, pulverized if necessary, and finally calcined to produce carbide fine particles.
  • All known separation methods can be used to separate solids from a solution. Drying is usually performed at room temperature to 300 ° C., preferably at 50 to 200 ° C., and pulverization can be carried out by a known inorganic substance pulverization method.
  • Oxide fine particles 2 6 obtained by a solution method the composition ratio of iron / Injiumu (mol 0/0) is usually 1 0-9 9.9 9 (mol 0/0), preferably 2 0-9 9 (mol 0/0).
  • the composition ratio of tin / indium is 0-3 0 (mol%), preferably from 0.1 to 1 0 (mol. / 0).
  • the diameter s of the finally formed carbide catalyst fine particles 18 is 1 nm to 100; zm, and depends on the solution parameters such as the colloid particle diameter.
  • a sputtering method is used as another method for producing the carbide catalyst. At least a target containing Fe and In is sputtered with ions to eject target fine particles.
  • the target fine particles are contacted and reacted with a carbon compound gas under heating to carbonize, thereby producing a carbide catalyst containing at least the elements of Fe, In, and C.
  • a carbide catalyst containing at least the elements of Fe, In, C and Sn is produced.
  • a gas phase reaction method is used as still another method for producing a carbide catalyst. At least a Fe compound gas and an In compound gas are brought into contact with a carbon compound gas in a reaction tank under heating to carbonize and carbonize, and fine particles of a carbide catalyst containing at least the elements of Fe, In, and C To manufacture.
  • a known gas phase reaction technique can be used. If a Sn compound gas is added as another element gas, a carbide catalyst containing at least the elements of Fe, In, C, and Sn is produced.
  • the first basic principle of this carbon nanocoil manufacturing method is that a carbon catalyst gas containing at least Fe, In, and C is brought into contact with a carbon compound gas, and the carbon compound gas is heated by the carbon catalyst under heating. Growing carbon nanocoils while decomposing them. Just contact carbon compound gas under heating to carbide catalyst This has the advantage that carbon nanocoils can be mass-produced. By using fine particles of carbide catalyst, the size of carbon nanocoils can be controlled.
  • the second basic principle is a two-stage manufacturing method.
  • a catalyst precursor containing at least Fe, In and C is brought into contact with a carbon compound gas under a heated state to form a carbide catalyst having at least Fe, In and C.
  • a carbon compound gas is decomposed in a heated state by a carbide catalyst to grow carbon nanocoils.
  • the first and second steps are performed in succession, and the catalyst precursor is changed to a carbide catalyst, and then the carbon nanocoils begin to grow.
  • the starting material is a catalyst precursor.
  • a specific method for producing a carbon nanocoil will be described.
  • FIG. 7 is a process chart of a first method for producing carbon nanocoils using carbide catalyst fine particles 18.
  • the carbide catalyst fine particles 18 are applied to the substrate 12 to form the catalyst fine particle film 16. While heating the substrate 12 to an appropriate temperature, the carbon compound gas flows in the direction of arrow b together with the carrier gas.
  • the carbide catalyst fine particles 18 serve as catalyst nuclei 5 and countless carbon nanocoils 1 grow on the substrate 12. After growing the carbon nanocoil 1, the carbon nanocoil 1 is removed from the substrate 12 with a scraper or the like, and the carbon nanocoil 1 is collected.
  • FIG. 8 is a process chart of a second method for producing carbon nanocoils starting from the Fe ⁇ In ⁇ Sn-based catalyst thin film 14.
  • (8A) a Fe ⁇ In ⁇ Sn-based catalyst thin film 14 is formed on the substrate 12. While heating the substrate 12 to an appropriate temperature, the carbon compound gas flows in the direction of arrow b together with the carrier gas.
  • the Fe ⁇ In ⁇ Sn-based catalyst thin film 14 is carbonized by the carbon compound gas to form carbide catalyst fine particles 18, and the catalyst fine particle film 18 is formed on the substrate 12. It is formed. Carbonization process from F e ⁇ In ⁇ S 11 based catalyst thin film 14 to catalyst fine particle film 18 Occurs between a few seconds and a few ten minutes. The carbonization time depends on the flow rate and concentration of the carbon compound gas and the heating temperature.
  • FIG. 9 is a schematic explanatory view of the third method (fluid production method) for producing carbon nanocoils 1 by suspending carbide catalyst fine particles 18.
  • a heating device 6 is arranged on the outer periphery of a reaction tank 4 to define a reaction chamber 8.
  • a spray nozzle 40 is arranged at the left end of the reaction tank 4.
  • the carbon compound gas flows in the direction of arrow a together with the carrier gas.
  • a powder consisting of a spray nozzle 40 force and a carbide catalyst fine particle force 18 force is sprayed in the direction of arrow h into the carbon conjugate gas.
  • the catalyst fine particles 18 diffused into the space become the catalyst nuclei 5 to grow the carbon fiber 1.
  • the catalyst particles 18 flow along with the flow of the carrier gas, and the carbon nanocoils 1 grow in the flow process of.
  • the carbo coil 1 is recovered by a recovery device (not shown).
  • FIG. 10 is a schematic explanatory view of a fourth method (fluid production method) for producing catalyst nanocoils 1 by forming catalyst particles 18 from atomized oxide particles 26. Since the carbon nanocoil manufacturing apparatus 2 is the same as that shown in FIG. 9, only the differences will be described.
  • the reaction chamber 8 is composed of a catalyst fine particle formation region X and a carbon nanocoin formation region Y, and the heating device 6 is arranged longer than in FIG. 9 to heat both regions.
  • the carbon compound gas flows in the direction of arrow a together with the carrier gas.
  • Oxide fine particles 26 are sprayed into the carbon compound gas from spray nozzle 40.
  • the oxidized fine particles 26 are carbonized by the carbon compound gas in the catalyst fine particle formation region X, and the carbide catalyst fine particles 18 are formed.
  • the carbide catalyst fine particles 18 move to the carbon nanocoil formation region Y in a floating state. In this region Y, the carbide catalyst fine particles 18 become the catalyst nuclei 5 and the carbon nanocoils 1 grow. The catalyst fine particles 18 flow along with the flow of the carrier gas, and the carbon nanocoils 1 grow during this flow process. Will 1 is recovered.
  • a stirring method is used as a method for producing carbon nanocoils.
  • fine particles of a carbide catalyst are deposited in a reaction tank, and the carbon compound gas can be decomposed while stirring the deposited catalyst fine particles to grow the carbon nanocoils under stirring.
  • the catalyst powder when the powder of carbide catalyst particles is deposited in a rotary kiln and the rotary kiln is rotated while flowing a carbon compound gas, the catalyst powder is brought into a stirring state, and the catalyst particles are converted into a catalyst.
  • Carbon nanocoils can be mass-produced as nuclei.
  • a stirring method a rotation method, a vibration method, and other known methods can be adopted.
  • a 200 nm thick Fe'In'Sn oxide thin film was formed on the (001) plane of the Si substrate.
  • the carbon nanocoil production apparatus shown in Fig. 2 produced a carbon nanocoil at about 700 ° C using this oxide thin film as a starting catalyst.
  • 60 sccm of C 2 H 2 gas was used as a carbon compound gas as a source gas, and 200 sccm of He gas was used as a carrier gas.
  • the substrate After passing the gas, the substrate was taken out after 1 second, 5 seconds, 10 seconds, 1 minute, 5 minutes and 30 minutes, and the state of the substrate surface was observed with a scanning electron microscope (SEM) . From the state of the surface of each substrate, a change in the Fe.sub.'In.sub.n Sn thin film and the degree of growth of the carbon nanocoils were confirmed.
  • SEM scanning electron microscope
  • Fig. 11 is an SEM image of the Fe, In, Sn thin film taken at 50,000 times magnification. It can be seen that graining of the Fe ⁇ In ⁇ Sn oxide thin film started after 1 second, and that graining was almost completed after 5 seconds and 10 seconds. These particles are carbide catalyst fine particles formed by carbonizing the Fe • In • Sn oxide thin film. Various particle shapes such as spherical and rhombic are mixed.
  • the reason why the size of the catalyst fine particles after 1 second is larger than the size of the catalyst fine particles after 5 seconds and 10 seconds is considered as follows.
  • C decomposed from C 2 H 2 is absorbed into the catalyst by CVD growth for 1 second, and this absorption causes the body of catalyst fine particles to be absorbed.
  • the product expands. After that, o is released and contracted, and the volume of the catalyst fine particles is reduced.
  • the size of the catalyst particles is reduced until carbonization is completed, and it is considered that the reduction stops at a certain size.
  • Example 2 1 formation of the carbide catalyst fine particles according to C 2 H 2 of sc cm]
  • Example 1 the growth rate of the carbide catalyst fine particles was too high because the C 2 H 2 gas as the raw material gas was supplied at 6 Osccm. Then, C 2 H 2 gas was supplied at 1 sccm to obtain Fe 31 nC. .
  • C 2 H 2 gas was set at 1 sccm, He was set at 50 sccm, and the heating temperature was set at 700 ° C.
  • the substrate on which the Fe, In, and Sn oxide thin films were formed exactly as in Fig. 12 was placed in the reaction chamber.
  • Figure 13 is a time-lapse diagram of the first intensity peak of the diffraction intensity when 20 is at 39.62 ° (about 40 °).
  • the behavior of this first peak F e 3 I nC. 5 shows the process of growing. In other words, as the time of the first peak elapses, the growth rate of the catalyst fine particles is observed.
  • the first peak rises rapidly from by circulating C 2 H 2 gas after 125 seconds, reaching almost maximum after 135 seconds. At this stage, the supply of C 2 H 2 gas was stopped, and the increase of the first peak was stopped. It was found that carbide catalyst fine particles of Fe 3 In C 5 were formed at a stretch in about 10 seconds.
  • the catalyst particles (diameter s) of it is sufficient to change the growth conditions.
  • the growth temperature that is, the substrate heating temperature (reaction chamber temperature) was 650 ° C and 700.
  • C was changed to C to form carbide catalyst fine particles, and carbon nanocoils were grown using the carbon catalyst fine particles.
  • C 2 H 2 gas was set at 1 sccm, He was set at 50 sccm, and the heating temperature was set at 650 ° C and 700 ° C.
  • a substrate starting from a Fe ⁇ In ⁇ Sn oxide thin film was placed in the reaction chamber. Fine catalyst particles of Fe 3 InC 5 were grown on this substrate, and carbon nanocoils were grown using this substrate.
  • Figure 14 shows 650. 5 is a scanning electron microscope image of carbide catalyst fine particles and grown carbon nanocoils in C.
  • FIG. 15 is a scanning electron microscope image of carbide catalyst fine particles and grown carbon nanocoils at 700 ° C.
  • the diameter s of the carbide catalyst fine particles formed at 650 ° C. becomes smaller than 700 ° C. That is, it was confirmed that the diameter of the carbide catalyst fine particles formed at a lower temperature became smaller. Therefore, by varying the temperature of the reaction chamber, the diameter s of the carbide catalyst fine particles can be variably controlled. Became.
  • a coil should be able to be manufactured. Comparing FIGS. 14 and 15, it can be seen that the catalyst at 65 ° C. grows a smaller size carbon nanocoil. This proved that the smaller the diameter s of the carbide catalyst fine particles, the smaller the size of the carbon nanocoil.
  • (Fe, Sn, C) carbide catalysts were prepared. Since the details of the carbide catalyst were described in Section 1, we will avoid duplication here and describe only the different parts.
  • an aqueous solution of 0.1 ⁇ 1 mol 1/1 of Shii-Danietsu and Shii-Dani Tin is mixed in a ratio of 3: 0.1.
  • an appropriate amount of an aqueous solution of ammonium carbonate having a concentration of 0.3 mol / 1 is dropped, and a mixed precipitate of iron and tin hydroxide is prepared by a neutralization reaction.
  • the mixed precipitate is calcined at 400 for 2 hours to synthesize the (Fe, Sn, 0) acid sulfide catalyst.
  • the (F e, S n, O) catalyst was checked while performing CVD to determine whether the (F e, S n, O) acid catalyst had changed to another catalyst.
  • the X-ray diffraction pattern was measured.
  • the CVD conditions at this time are: growth temperature: 700 ° C, helium 50 sccm and acetylene 1 sccm.
  • FIG. (16B) is an X-ray diffraction pattern diagram of the (F e, Sn, O) catalyst when 3 minutes have passed since the acetylene gas was introduced into the reactor.
  • 2 2 40.
  • a peak of Fe 3 SnC having the first peak (maximum peak) was observed in the vicinity. This peak is not seen in the process in which carbon nanotubes grow in the iron hornworm medium. From this, it is considered that the (Fe, Sn, O) oxide catalyst was changed to a Fe3SnC carbide catalyst during the growth process.
  • magnesium oxide powder was reacted with 200 ml of an aqueous metal chloride solution having a concentration of 0.03 mol of iron chloride and 0.01 mol of tin chloride, and a complex hydroxide of Fe and Sn was reacted.
  • the precipitate was filtered, washed 'drying to obtain composite hydroxide of F e and S n and M g, or an oxide powder.
  • 2 g of this powder catalyst was carbonized using a rotary CVD reactor. '
  • Conditions for carbonization are growth temperature 675. C, helium 400 sccm, acetylene 60 sccm, furnace speed 1 rpm, carbonization time 10 minutes. Thereafter, metals such as tin were removed with hydrochloric acid at a concentration of 17.5%, washed and filtered to obtain a carbide catalyst.
  • the (transition metal element, Al, Sn) catalyst, the (transition metal element, Cr, Sn) catalyst and the (Fe, In, Sn) catalyst are described. These catalysts are metal catalysts, not carbide catalysts.
  • the transition metal element is as described above, and an appropriate transition metal element is selected according to the purpose. In the following, representatives of transition metal elements Take Fe as an example and explain its details.
  • the present inventors have conducted intensive studies on the large-scale synthesis of carbon nanocoils, and based on the already-developed mixed catalyst of iron, indium, and tin, newly added any element to the base composition of iron and tin. We examined whether a new catalyst material could be created. In addition, the composition ratio of the three metal elements in the above catalyst, which is optimal for the growth of carbon nanocoils, was also studied.
  • iron-indium-tin mixed catalyst iron chloride FeCl 3 , indium chloride InCl 3 , and chlorinated tin SnCl 3 are dissolved in water, and the concentrations of Fe ions, In ions, and Sn ions are the same ( For example, make a 0.1 mol / 1) aqueous solution. Then, these aqueous solutions are mixed at an appropriate ratio to form a mixed aqueous solution of three metal ions.
  • metal hydroxides ie, Fe (OH) 3 , In (OH) 3 and Sn (OH) 3 are separated and deposited on the bottom of the solution container as a precipitate.
  • This precipitate is a mixture in which the above-mentioned metal hydroxides are aggregated, and the precipitate is recovered by filtering the solution. The recovered precipitate is calcined at 400 ° C to obtain an oxidized product catalyst Fe—.In—Sn—O.
  • Carbon nanocoils using the above three types of mixed catalysts, Fe—In—Sn—0, Fe—Al—Sn—0, and Fe—Cr—Sn—O (hereinafter, carbon nanocoils are referred to as CNCs)
  • CNCs carbon nanocoils
  • the CVD method of carbon-containing compound gas is used.
  • various alkanes, alkenes, alkynes, aromatic hydrocarbons and the like, including methanediethane can be used as the carbon-containing compound.
  • acetylene, arylene, benzene and the like are effective, and acetylene is particularly efficient. is there.
  • the heating temperature is more effective than the temperature at which the carbon-containing compound is decomposed by the action of the catalyst.
  • the thermal decomposition temperature of acetylene is about 400 ° C, but the synthesis temperature of CNC using acetylene is about 600 to about 800 ° C.
  • the synthesis temperature is not limited to this temperature, and can be freely set in consideration of the synthesis efficiency as long as it is equal to or higher than the catalytic decomposition temperature of the carbon-containing compound.
  • FIG. 18 is a schematic configuration diagram of a main part of a CNC manufacturing apparatus used in the present embodiment.
  • This manufacturing apparatus 101 is a flow reactor placed under atmospheric pressure, and a reaction chamber 102 is surrounded by a quartz tube 3 having a diameter of 3 Omm and a length of 700 mm.
  • a tubular heater 104 having a length of 45 Omm is arranged on the outer periphery of a central portion of the quartz tube 103, and an isothermal region 105 having a length of about 250 mm is set in the center of the reaction chamber 2.
  • a substrate (quartz or silicon) 107 on which a catalyst 106 prepared by a coprecipitation method is mounted is disposed in the isothermal region 105.
  • a helium gas is filled into the quartz chip 103 at a flow rate of 20 Osccm.
  • the upper catalyst 106 was heated to 700 ° C at a rate of 20 ° C per minute.
  • This helium gas was introduced to prevent the metal from being oxidized in the reaction chamber.
  • acetylene C 2 H 2 was supplied at a flow rate of 6 Osccm, and the total flow rate of the mixed gas of helium and acetylene was adjusted to 260 sccm.
  • the reaction time was set at about 30 minutes, after which acetylene was blocked and only helium was allowed to flow, and the catalyst 106 on the substrate 107 was slowly cooled to room temperature in this helium atmosphere.
  • a large number of carbon nanocoils 108 (also referred to as CNCs) were generated on the catalyst 106.
  • FIG. 19 is an SEM image of the product when the catalyst composition ratio, Fe: In: Sn, Fe: A1: Sn and Fe: Cr: Sn, was 3: 0.3: 0.1.
  • Figure 20 is an SEM image of a catalyst composition in which In and A1 are mixed at a ratio of 1/3 to Fe.
  • the coil diameter was large and the pitch was small when the catalyst was used. It is presumed that it is smaller than when In is used. Therefore, it is considered that In tends to increase the size of the catalyst particles, and this is suppressed when A1 is used.
  • FIG. 21 is an SEM image of part of the results of the CNC generation experiment.
  • FIGS. 25 and 26 are SEM images of some of the results of this CNC generation experiment.
  • (25b) is an enlarged view of (25a).
  • Figure 26 is a 30,000x SEM image.
  • the present inventors have concluded that the action of two or more metal elements is important for the production of carbon nanocoils in high yield, and only to produce carbon nanocoils in high yield. Instead, they came up with a method of manufacturing carbon nanocoils in order to make the outer diameters of carbon nanocoils uniform by adjusting their wire diameters. That is, a method for producing a carbon nanocoil using a catalyst carrier in which a metal compound is carried on a porous carrier is proposed.
  • porous carrier used in the present invention.
  • porous carrier used in the present invention.
  • zeolite aluminophosphate
  • SAPO siliconaluminophosphate
  • resin adsorbent porous ceramics
  • molecular sieves metal oxide-based porous bodies
  • silica porous bodies silica porous bodies
  • carbon-based porous bodies a known porous materials.
  • known porous materials are used.
  • zeolite having a stable structure even at high temperature firing is most suitable for the present invention.
  • Y-type zeolite was used.
  • Figure 27 is the crystal structure diagram of Y-type zeolite.
  • the Zeoraito is a general term for crystalline porous Aruminokei salt, has a tetrahedral structure (S I_ ⁇ 4) 4 ⁇ Pi (A 1 0 4) 5 - basic unit consisting of the bonded three-dimensionally I have.
  • the catalyst used in the present invention includes Fe ⁇ In ⁇ Sn-based catalyst, Fe ⁇ A1 ⁇ Sn-based catalyst, Fe ⁇ Cr ⁇ Sn-based catalyst, Fe ⁇ Sn-based catalyst, C oSn catalyst or Ni • Multi-element catalysts such as Sn catalysts can be used.
  • the Fe-based catalyst include metal compounds containing Fe, ie, iron oxides and organic iron compounds.
  • the iron organic compound include iron carboxylate, iron carbohydrate, iron carbonyl derivative, iron nitrosyl, and iron ditosil derivative.
  • the In-based catalyst examples include a metal compound containing indium, that is, indium oxide and an indium organic compound.
  • indium organic compounds include trimethylindium, triphenylindium, indium octylate, indium carboxylate, and the like.
  • Sn-based catalysts include tin oxide and tin organic compounds such as triethyltin, trimethyltin, and tetraphenyls. , Tin octylate, tin carboxylate and the like.
  • the Co and Ni based catalysts include metal compounds and metal organic compounds containing Co and Ni. For example, cobalt compounds, cobalt carbonyls, Eckel compounds, nickel carboels and their complexes. Among these metal organic compounds, metal organic compounds that are particularly soluble in an organic solvent are useful. For metal elements such as A 1 and Cr, the same metal compounds and metal organic compounds as described above can be used.
  • Methods for supporting a metal compound containing a plurality of metal elements on a porous carrier such as zeolite include a liquid phase method and a gas phase method.
  • a liquid phase method a plurality of types of metal compounds are dissolved in a solvent, and the porous carrier is immersed in the solvent to adsorb the solvent.
  • the method of adsorption is not particularly limited, and various methods such as mere immersion by immersion can be used.
  • an ion-exchange porous carrier an inorganic salt or an organic salt of the metal element can be ion-exchanged and adsorbed on the porous carrier.
  • natural adsorption can be used.
  • the solution may be stirred, subjected to ultrasonic treatment, or treated with a homogenizer or an atomizer.
  • the porous regenerated support having the solvent adsorbed thereon is naturally dried and then calcined to form a catalyst support comprising a plurality of metal elements.
  • the firing temperature is 400 to 700 ° C. and the firing time is about 1 hour.
  • the organic matter is burned and dissipated, and the metal compound is changed into a metal oxide.
  • various metallic substances and the like are generated in the pores, for example, organic substances are removed and turned into metals in the pores.
  • the organic solvent used in the present invention include acetone, toluene, and alcohol.
  • an organic solvent that dissolves an organic compound containing a metal element such as Fe, In, Sn, Co, Ni, Al, and Cr is useful.
  • a metal compound gas containing the above-described plural kinds of metal elements is introduced into a processing chamber, and is adsorbed on a porous carrier such as zeolite disposed in the processing chamber.
  • the porous carrier having the metal compound gas adsorbed thereon is naturally dried and then fired to form a catalyst carrier comprising a plurality of metal elements.
  • the metal compound gas include a mixed gas composed of an inorganic substance and an organic substance containing the metal element.
  • gases such as inorganic salts and organic salts of the above metal elements can be used.
  • pressurization and heating are effective.
  • the catalyst carrier such as zeolite carrying a catalyst
  • the catalyst carrier is placed in a reactor, and the reactor is heated to a predetermined temperature while flowing an inert carrier gas such as nitrogen, helium, or argon.
  • an inert carrier gas such as nitrogen, helium, or argon.
  • a carbon-containing gas is allowed to flow together with the carrier gas.
  • the flow rate of the carbon-containing gas is preferably 100 to 100 cm 3 per g of the catalyst, but can be adjusted as appropriate.
  • the flow time of the carbon-containing gas varies depending on the gas used, but is, for example, about 5 to 100 minutes, and the reaction time can be freely adjusted.
  • acetylene has a high yield.
  • the heating temperature at which the carbon-containing gas is thermally decomposed is set to a temperature higher than the temperature at which the carbon compound gas is decomposed by the action of a catalyst.
  • the synthesis temperature of carbon nanocoils using acetylene is, for example, about 600 to 800 ° C., but is not limited to this temperature range, and is not limited to the catalyst decomposition temperature of the carbon-containing gas. It can be set freely while taking into account the synthesis efficiency.
  • the carrier gas is passed through the reactor and cooled to room temperature. Take out the porous carrier from the reactor and separate the carbon nanocoils from the porous carrier .
  • separation for example, a method of immersing the catalyst carrier in an aqueous solution of hydrofluoric acid, hydrochloric acid, nitric acid, or sodium hydroxide, dissolving the porous carrier, and taking out the carbon nanocoils. is there.
  • a method of immersing the catalyst carrier in an aqueous solution of hydrofluoric acid, hydrochloric acid, nitric acid, or sodium hydroxide dissolving the porous carrier, and taking out the carbon nanocoils. is there.
  • Zeoraito uses zeolite manufactured by Tosoh Corporation of HS Z- 39 OHU A, the molar ratio (S i 0 2 / A 1 2 0 3) is 200 or more, the specific surface area (BET) is 66 OmVg, average particle diameter (D 50) has 6.5 ⁇ m, and the pore distribution has peaks at 0.2 nm and 10 nm.
  • 0.5 g of the zeolite is weighed, spread on a ceramic board, and air-dried at 100 ° C for 30 minutes.
  • F e ( ⁇ 0 3) 3 ⁇ 9 ⁇ 2 0 is 151.
  • F e ( ⁇ 0 3) 3 ⁇ 9 ⁇ 2 0 is 151.
  • I n (N0 3) ⁇ 3 ⁇ 2 0 was 42.
  • the calcined zeolite is crushed in a mortar, and 0.02 g of the crushed product is put into 3 g of ethanol and dispersed by ultrasonic waves for 15 minutes. This was dropped on a silicon substrate and placed in a quartz tube. Helium gas was passed through 200 sccm, and the temperature near the silicon substrate was raised to 700 ° C at a heating rate of 100 ° C / 5 minutes. After reaching 700 ° C (keep time: 10 minutes), acetylene was flowed at a flow rate of 60 sccm for 10 minutes. After that, cut off acetylene and let only helium flow
  • Figure 28 shows that the catalyst support (zeolite) fired at 650 ° C It is a scanning electron microscope figure (100,000 times magnification) of a carbon nanocoil. From the photograph, the fiber diameter of the produced fibrous material was found to be 20 to 25 nm. It was confirmed that the wire diameters of many grown carbon nanocoils were of the same size, and that the coil diameters were almost uniform.
  • zeolite zeolite
  • FIG. 29 is a pore distribution diagram of the zeolite used.
  • the vertical axis shows the surface area per 1 g (sq / g), and the horizontal axis shows the radius (A). From this figure, it is considered that the catalyst was intensively supported in the pores having a pore diameter of about 10 nm in radius and carbon nanocoils were formed. No catalyst was supported on the pores having a pore radius of 0.2 nm corresponding to the smaller peak.
  • a catalyst was supported on zeolite by the same composition and method as in Example 1. Further, the zeolite was dried in the same manner as in Example 1, and the dried zeolite was fired at 700 ° C. for 1 hour in a helium gas. Using this catalyst carrier, a carbon nanocoil was produced in the same manner as in Example 1.
  • FIG. 30 is a scanning electron micrograph (magnification: 100,000 times) of a carbon nanocoil formed by a catalyst carrier (zeolite) fired at 700 ° C. It can be seen that the number of grown carbon nanocoils in Example 2 is relatively larger than that in Example 1. The wire diameter of the carbon nanocoil was 20 to 25 nm, which was the same as in Example 1.
  • FIG. 31 is an enlarged view of FIG. From FIG. 31, it can be seen that the coil diameter (coil outer diameter) of the carbon nanocoil is 50 to 70 nm.
  • the wire diameter and the coil diameter (coil outer diameter) of these carbon nanocoils were confirmed, the same results as in Example 2 were obtained. That is, the wire diameter of the formed carbon nanocoil is 20 to 25 nm, and the coil diameter (coil outer diameter) is 50 to 70 nm. Therefore, it has been proved that the present invention can form the wire diameter of the carbon nanocoil uniformly and, as a result, the coil diameter (outer coil diameter) of the carbon nanocoil can be generated almost uniformly.
  • a carbon nanocoil is generated by the coexistence of this transition metal element and another element.
  • the present inventors have discovered that carbon nanocoils can be efficiently grown by turning into carbides, thereby completing the present invention.
  • the aforementioned catalyst core is the metal carbide of the present invention.
  • a carbide catalyst formed by combining a transition metal element with In and C is an effective catalyst for producing a carbon nanocoil.
  • the composition ratio of transition metal elements A, In, and C in the carbide catalyst is represented by x, y, and z, and these composition ratios x, y, and z can be designed to desired values.
  • a carbide catalyst is proposed.
  • Te cowpea to use F e 3 I n C a 5 carbide catalyst can be produced carbon nano coils with high efficiency.
  • This carbide catalyst is a catalyst for the production of carbon nanocoils whose composition formula was first discovered by the present inventors, and is a true catalyst for growing carbon nanocoils.
  • a carbon nanocoil can be efficiently produced by a carbon nanocoil production catalyst obtained by adding one or more other elements to a carbide catalyst.
  • the use of the Fe-In-Sn-based carbide catalyst increases the catalyst efficiency and allows the carbon nanocoils to grow in a short time, so that the operation efficiency of the reactor can be increased.
  • the carbide catalyst is formed as fine particles, the diameter of the carbon nanocoils can be controlled by controlling the diameter of the fine particles of the carbide catalyst, and a coil having an arbitrary diameter can be produced.
  • the composition ratio of Fe, In, C and S ⁇ in the carbide catalyst is represented by x, y, z, w, and these composition ratios x, y, z, w
  • a carbide catalyst that can be designed to the desired value is proposed.
  • Bon'nanokoiru for producing carbide catalyst Niore thus, a carbide catalyst capable of efficiently producing carbon nanocoils can be provided by optimally adjusting the composition ratios V and w.
  • a carbide catalyst having a second intensity peak in the vicinity is proposed as a catalyst for producing carbon nanocoils.
  • a carbide catalyst formed by combining a transition metal element with Sn and C is an effective catalyst for producing carbon nanocoils. The specific selection of the transition metal is made freely as appropriate, taking into account production efficiency, synthesis conditions, etc.
  • the composition ratio of the transition metal elements A, Sn, and C is represented by X, y, and z, and the carbide catalyst capable of designing these composition ratios x, y, and z to desired values Is proposed.
  • carbon nanocoils can be manufactured with high efficiency by using the Fe 3 SnC carbide catalyst.
  • This carbide catalyst is a carbon nanocoil production catalyst identified by the present inventors and having a specified composition formula, and is a catalyst for growing carbon nanocoils.
  • a catalyst for producing a carbon nanocoil in which one or more other elements are added to the carbide catalyst is proposed, and the carbon nanocoil can be produced with high efficiency.
  • a catalyst for producing a carbon nanocoinole wherein the element A is a carbide catalyst of Fe and exhibits a diffraction intensity distribution having a first intensity peak near about 40 °.
  • the carbon nanocoil can be efficiently produced by applying the synthesis to the CVD method or the like. And contribute to industrial mass production of carbon nanocoils.
  • a catalyst for producing a carbon nanocoil in which a transfer metal element, A 1 and Sn are present as an acid, and the acid is further used even in air.
  • a stable catalyst can be provided.
  • y ⁇ l A catalyst for producing carbon nanocoils, wherein z ⁇ 3 is provided.
  • the eighteenth aspect of the present invention by using a catalyst containing at least one or more transition metal elements, elements of : 1: and 311, it is possible to efficiently produce carbon nanocoils by applying to synthesis by a CVD method or the like. And contribute to the industrial mass production of carbon nanocoils.
  • a catalyst for producing carbon nanocoils is constituted by using a transition metal element, chromium or tin in the form of a transition metal oxide, aluminum oxide or aluminum oxide. Therefore, even if these are used in the air, they do not oxidize any more, and can provide a stable catalyst.
  • a catalyst for producing a carbon nanocoil wherein z ⁇ 3 is provided.
  • iron, indium or tin is used in the form of iron oxide, indium oxide or tin oxide to constitute a catalyst for producing carbon nanocoils, these are used in air.
  • the coil wire diameter and outer diameter of the coil can be controlled to desired values uniformly by adjusting the particle diameter of the catalyst fine particles.
  • a thin film containing (transition metal element, In) or (transition metal element, Sn) contains (transition metal element, In, C) or (transition metal element, Sn, It is possible to mass-produce a carbide catalyst containing the element C). As described above, there are various types of transition metal elements, and carbide catalysts containing any transition metal element can be mass-produced at low cost. According to the twenty-fifth aspect of the present invention, (transition metal element, In, C) or (transition metal element, Sn) is obtained from fine particles containing (transition metal element, In) or (transition metal element, Sn). And C) can be produced.
  • a (transition metal compound, In, C) or (transition metal) is prepared from a solution or dispersion of (transition metal compound and In compound) or (transition metal compound and Sn compound). Fine particles of carbide catalysts of metal elements, Sn, C) can be produced. It is also possible to use various compounds other than oxides as the material that can be carbonized.
  • fine particles of (transition metal element, In) or (transition metal element, Sn) are produced by a solution method, and the fine particles are carbonized to form (transition metal element, In, Fine particles of carbide catalyst of (C) or (transition metal element, Sn, C) are produced.
  • carbide catalyst fine particles can be synthesized.
  • the twenty-eighth aspect of the present invention it becomes possible to mass-produce the desired fine particles of a carbide catalyst by a gas chemical reaction using a gas of a catalyst raw material component, which can contribute to a reduction in catalyst cost.
  • a transition metal element comprises a A, A x I n y C z , or A X S n y carbon nano Koi Le production catalyst represented by C z can be produced.
  • a carbide catalyst capable of designing these composition ratios x, y, and z to desired values is provided.
  • the composition formula of the carbide catalyst is at least Fe 3 InC. , 5 or Fe 3 S nC is provided.
  • F e 3 I nC 0, 5 or carbide consisting of F e 3 S nC as catalyze a carbon nanocoils, is a substance present inventors have discovered for the first time in the world.
  • a method for producing a catalyst for producing carbon nanocoils wherein one or more other elements are added to the carbide catalyst.
  • the physical properties of the catalyst can be adjusted.
  • a catalyst for producing carbon nanocoils comprising a porous carrier supporting a carbide catalyst and / or an oxidizing catalyst for producing carbon nanocoils.
  • the wire diameter of the carbon nanocoil and the coil diameter can be made uniform.
  • porous supports such as blocks, sheets, plates, granules, fine particles, and ultrafine particles.
  • a catalyst in which a metal catalyst discovered by the present inventors is supported on a porous carrier can be realized, and there is an advantage that carbon nanocoils can be manufactured with high efficiency.
  • a catalyst for producing carbon nanocoils in which elemental or three-element catalysts are supported on a porous carrier is provided, and the production efficiency can be freely adjusted.
  • the transition metal element is a catalyst for producing carbon nanocoinole, which is one or more elements selected from Fe, Co, and Ni, and mass production of carbon nanocoil is performed. Is possible, which can contribute to price reduction. .
  • porous carrier zeolite, aluminophosphate, silica aluminophosphate, mesoporous body, porous ceramics, molecular sieves, metal oxide-based porous body, silica porous body or A carbon-based porous body is selected.
  • zeolite aluminophosphate, silica aluminophosphate, mesoporous body, porous ceramics, molecular sieves, metal oxide-based porous body, silica porous body or A carbon-based porous body is selected.
  • a catalyst in which a porous carrier is immersed in a solvent to uniformly adsorb a catalyst for producing carbon nanocoils in the same pores of the porous carrier.
  • a catalyst for producing carbon nanocoinole in which catalyst fine particles are supported on a porous carrier in a space.
  • a carbon nanocoil can be produced by using the various catalysts of the present invention and flowing the carbon compound gas so as to contact the catalyst. Carbon nanocoils can be generated on the catalyst surface with high efficiency, and the industrial mass production of carbon nanocoils can be realized.
  • the non-carbonized catalyst is carbonized in the course of the reaction, A two-step continuous production method for mass-producing carbon nanocoils by decomposing a carbon compound gas with this carbide catalyst under a heating condition is provided.
  • a two-step continuous production method for converting a catalyst precursor containing a transition metal element and Sn into a carbide catalyst, and further continuously mass-producing carbon nanocoils there is provided. . ''
  • a two-step continuous production method for converting a catalyst precursor containing a transition metal element, In, and Sn into a carbide catalyst and further continuously mass-producing carbon nanocoils Is provided.
  • carbon nanocoils can be formed on a catalyst film at a high density. Controlling the particle size of the catalyst fine particles has the advantage that carbon nanocoils can be freely mass-produced.
  • a method for producing carbon nanocoils in which carbon compound gas is decomposed by catalyst fine particles to grow carbon nanocoils in a floating state.
  • the growth time of the carbon nanocoil can be controlled relatively easily, and the size of the carbon nanocoil can be easily controlled.
  • the catalyst fine particles are deposited in a rotary kiln and the rotary kiln is rotated while flowing a carbon compound gas, the catalyst powder is in a stirring state, and the catalyst fine particles are stirred.
  • carbon nanocoils can be mass-produced.
  • an inexpensive carbon nanocoil manufactured by the carbon nanocoil manufacturing method there is provided an inexpensive carbon nanocoil manufactured by the carbon nanocoil manufacturing method.
  • a carbon nanocoil having a uniform wire diameter and coil outer diameter can be provided.
  • high-quality nanomaterials such as nanosprings, nanomachines, electromagnetic wave absorbers, electron emitters, nanoelectronic devices, and hydrogen absorbers can be manufactured. We can respond to requests from each field.

Abstract

 カーボンナノコイルの先端に付着した触媒核の構造を決定することによって真のカーボンナノコイル製造用触媒を特定して高効率にカーボンナノコイルを製造する方法を実現する。 本発明に係るカーボンナノコイル製造用触媒は、少なくとも(遷移金属元素、In、C)又は(遷移金属元素、Sn、C)の元素を含有した炭化物触媒であり、特に遷移金属元素としてFe、Co、Niが好適である。また、この炭化物触媒以外に(Fe、Al、Sn)、(Fe、Cr、Sn)の金属触媒も有効である。この中でも、Fe3InC0.5、Fe3InC0.5Snw、Fe3SnCなどの触媒が更に好適である。これらの触媒を多孔性担体に担持させた触媒は線径、コイル径を制御することができる。

Description

賺 07797
明 細 書 カーボンナノコィル製造用触媒、 その製造方法、 カーボンナノコイル 製造方法及び力一ボンナノコイル
(技術分野)
本発明は化学的気相成長法によりカーボンナノコイルを製造するための触媒に 関し、 更に詳細には、 カーボンナノコイルを効率的に製造できるカーボンナノコ ィル製造用触媒、 その製造方法、 カーボンナノコイル製造方法及び最終的に得ら れるカーボンナノコイルに関する。
(背景技術)
外直径が 1 0 0 0 n m以下のコイル状に卷回されたカーボンナノコイルが製造 されている。 カーボンナノコイルは、 カーボンナノチューブと同様の特性を有す ると共に、 電磁誘導性が顕著であり、 ハードディスク用ヘッドの材料、 電磁波の 吸収材としても有用である。 また、 2倍の長さに伸ばしても元に戻るパネ弾性を 有しているので、 マイクロマシンのスプリングゃァクチユエータの材料、 更には 樹脂強化材料としても注目を集めている。
カーボンナノコィノレは、 1 9 9 4年にァメリンクス等 (Amelinckx, X. B. Zha ng, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (19 94) 635) によって化学的気相成長法 (Chemical Vapor Deposition, 以下 C V D 法と称す) を使用して初めて合成された。 以前から製造されていたカーボンマイ クロコイルがアモルファス構造であるのに対し、 カーボンナノコイルがグラファ ィト構造であることも角旱明された。
彼らの製造方法は C o、 F e、 N iのような単一金属触媒を微小粉に成形し、 この触媒近傍を 6 0 0〜7 0 0 °Cに加熱し、 この触媒に接触するようにァセチレ ンゃベンゼンのような有機ガスを流通させ、 これらの有機分子を分解させる方法 である。 しかし、 生成されたカーボンナノコイルの形状は様々であり、 その収率 も低くて偶然的に生成されたに過ぎないものであった。 つまり、 工業的に利用で きるものではなく、 より効率的な製造方法が求められた。 .
1999年にリー等 (W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J. Material Sci. , 34 (1999) 2745) 、 新たにカーボンナノコ ィルの生成に成功した。 彼らの製造方法は、 グラフアイトシートの外周に鉄粒子 を被覆した触媒を中央に置き、 この触媒近傍をニク口ム線で 700°Cに加熱し、 この触媒に接触するように体積で 10 %のアセチレンと 90 %の窒素ガスの混合 ガスを反応させる方法である。 し力 し、 この製造方法もコィノレ収率が小さく、 ェ 業的量産法としては不十分なものであった。
CVD法によるカーボンナノコイルの収率を増大させる鍵は適切な触媒の開発 にある。 この観点から、 本発明者等の一部は、 F e · I n · Sn系触媒を開発し て 90 %以上の収率を得る事に成功し、 その成果を特開 2001— 192204 (特許文献 1 ) として公開した。 この触媒は、 I η酸ィヒ物と S η酸化物の混合薄 膜を形成した I TO基板の上に鉄薄膜を蒸着形成したものである。 I TOとは I ndium-Tin-Oxideの略称である。
また、 本発明者等の一部は、 F e · I n · S n系触媒を別の方法で形成して、 カーボンナノコイルを大量に製造することに成功し、 その成果を特開 2001— 310130 (特許文献 2) として公開した。 この触媒は、 I n有機化合物と S n有機化合物を有機溶媒に混合して有機液を形成し、 この有機液を基板に塗布し て有機膜を形成し、 この有機膜を焼成して I n · Sn酸化物膜を形成し、 この I n · Sn酸化物膜の上に鉄薄膜を形成して構成される。 I n · S n酸ィ匕物膜は前 述した I TO膜 (混合薄膜) に相当する。
他方、 化合物触媒を特定のキャリア (担体) に担持して触媒の高効率化を狙つ た研究も行われている。 この方面の研究はカーボンナノチユープの分野で行われ ており、 特開 2002— 255519号 (特許文献 3) 及び特開 2003-31 3017号 (特許文献 4) が公開されている。
これらの特許文献 3及び特許文献 4は単層カーボンナノチューブの製造方法に 関したものである。 両方の公知技術とも、 カーボンナノチューブ製造用触媒をゼ ォライトに吸着させて、 カーボンナノチューブを生成する技術に関係している。 生成されるカーボンナノチューブは、 線径が比較的に均一であることが報告され ている。 即ち、 触媒がゼォライトの微小孔に吸着され、 微小孔の径を有した比較 的均一なカーボンナノチューブを製造することを目的とした技術である。
【特許文献 1】 特開 2 0 0 1— 1 9 2 2 0 4号公報
【特許文献 2】 特開 2 0 0 1— 3 1 0 1 3 0号公報
【特許文献 3】 特開 2 0 0 2— 2 5 5 5 1 9号公報
【特許文献 4】 特開 2 0 0 3— 3 1 3 0 1 7号公報 ' 特許文献 1及び特許文献 2により開発された F e · I n · S n系触媒を用いて カーボンナノコイルを C V D法により製造する研究を精力的に行う中で、 本発明 者等は興味深い事実に気づくようになった。 電子顕微鏡写真に撮影されたカーボ ンナノコイルの先端に、 粒子状の物質が付着している事実である。 本発明者等は この粒子状物質を触媒核と称する。
本発明者等は、 カーボンナノコイルの先端に付着した触媒核こそが真の触媒物 質であると考えるようになった。 即ち、 この触媒核が周囲に存在する炭素化合物 ガスを分解し、 炭素原子を取り込みながらカーボンナノコイルを成長させるとい う推論である。 カーボンナノコイル自体が極小の炭素物質であるから、 その先端 に付着した触媒状物質はナノサイズの超微粒子である。
一つのカーボンナノコイルを試料とし、 その先端に付着した一個の極小の触媒 核を直接的に分析することは極めて困難な作業である。 触媒核は極めて小さく脱 落し易いから、 物理的又は化学的手法によりその組成や構造を決定することは困 難を極める。 また、 その触媒核の高分解能透過型電子顕微鏡像を得ることも困難 な仕事である。
し力 し、 この触媒核が真の触媒であるとすれば、 その構造を決定することは極 めて重要なことである。 つまり、 この触媒核が F e · I n · S n系触媒の単なる 微細片であるのか、 それとも他の物質であるのかを決定することは本発明者等に とつて極めて重要な課題となってきた。 この触媒核の構造を決定することにより 、 カーボンナノコイルを製造するためにより効果的な触媒を提供できる可能性が める力51 bであ 。
また、 特許文献 3に開示された公知技術はゼォライトに触媒微粒子として F e 微粒子や N i微粒子を吸着させるものである。 F e微粒子や N i微粒子は、 溶解 する化合物分子と比べてはるかに大きいので、 ゼォライトの細孔径が小さい場合 には触媒微粒子を細孔内に吸着できない欠点がある。 また、 触媒微粒子が細孔内 に吸着されたとしても、 細孔径自体がある範囲で分布するため、 その分布に応じ た線径のバラツキを有する。 更に、 単分散する金属微粒子の粒径は、 現在の技術 水準では約 1 0 n mである。 1 0 n m以下になると相互に金属微粒子が結合して 団子状になり、 団子化した 2次粒子の粒径は数 1 0 n m以上に達するため、 この ゼォライト表面に付着すると、 線径が極めて大きな力一ボンナノチューブが成長 するという欠点があった。
特許文献 4は、 水溶液中で硝酸鉄分子をゼォライトに吸着させる技術を開示し ている。 つまり、 ゼォライトの細孔中に硝酸鉄分子が吸着され、 前述した触媒微 粒子よりも細孔への触媒充填率が高くなることが分かった。 しかしながら、 ゼォ ライトに吸着させる触媒を 1種類の金属元素ないしはその金属含有物としており 、 複数種の金属元素ないしはその金属含有物ではない。 カーボンナノチューブの 触媒は、 単一の F e微粒子や N i微粒子であるから、 ゼォライトの細孔に均一に 注入することは可能である。 ところが、 F e · I n · S n触媒にみられるように 、 カーボンナノコイル製造用触媒は複数種類の金属から構成されるから、 同一の 細孔に複数種の金属を同時的に充填する必要がある。 同一の細孔に複数種の金属 を同時注入することは、 単純に考えても困難である。 従って、 複数カーボンナノ コイル製造用触媒をゼォライトに吸着できるかどうかは全く未知の領域であり、 実験されたことはなかつた。
従って、 本発明は、 カーボンナノコイルの先端に付着した触媒核の構造を間接 的に決定することによって真のカーボンナノコイル製造用触媒を特定し、 この触 媒の製造方法を確立して短時間に高密度且つ高効率にカーボンナノコイルを製造 することを目的とする。 また、 F e · I n · S n触媒以外の新規なカーボンナノ コイル製造用触媒を開発することを目的とする。 また、 これらの新規な触媒物質 を多孔性担体に担持させた新規なカーボンナノコイル製造用触媒を提供すること を目的とする。 更に、 これらの新規なカーボンナノコイル製造用触媒を用いて力 一ボンナノコイルを製造する方法を確立し、 均一で安価なカーボンナノコイルを 市場に提供することを目的とする。 (発明の開示)
本発明は上記課題を解決するために為されたものであり、 本発明の第 1の形態 は、 外直径が 1 0 0 0 n m以下のカーボンナノコイルを化学的気相成長法により 製造する触媒であり、 この触媒は一種以上の遷移金属元素を少なくとも含む金属 炭化物から構成されるカーボンナノコイル製造用触媒である。 遷移金属元素は、 周期表に示される遷移元素を意味しており、 具体的には、 第 4周期の S c〜C u 、 第 5周期の Y〜A g、 第 6周期の L a〜A uなどであり、 カーボンナノチュー ブの製造用触媒として知られている。 本発明者等は、 F e · I n · S n触媒にみ られるように、 この遷移金属元素と他の元素が共存することでカーボンナノコィ ルが生成され、 しかもこの触媒が炭化物となることで、 カーボンナノコイルを効 率的に成長させることを発見して、 本発明を完成させたものである。 前述した触 媒核は本発明の金属炭化物である。
本発明の第 2形態は、 外直径が 1 0 0 0 n m以下のカーボンナノコイルを化学 的気相成長法により製造する触媒であり、 この触媒は少なくとも一種以上の遷移 金属元素、 i n、 Cを含有した炭化物触媒であるカーボンナノコイル製造用触媒 である。 遷移金属元素は上述したとおりであり、 この遷移金属元素と I nと Cが 結合して形成された炭化物触媒が有効なカーボンナノコイル製造用触媒となる。 本発明の第 3形態は、 前記遷移金属元素が F e、 C o , N iから選ばれた一種 以上の元素 Aであり、 前記炭化物触媒の組成式が少なくとも AX I 11 2で表され るカーボンナノコイル製造用触媒である。 F e、 C o、 N iはカーボンナノチュ ーブの触媒としてよく知られているが、 AX I n yCaが存在することによって力 ーボンナノコィル触媒となることは、 本発明者等によつて初めて発見されたもの でる。 I nの役割は現在のところ明快ではないが、 F e、 C 0、 N iはカーボ ンナノチューブを成長させ、 Cはカーボンナノコイルを形成するための原料と なり、 I nはそのカーボンナノチューブを卷回させると考えることもできる。 し力 し、 そのミクロメカニズムは現在のところ不明である。 この炭化物触媒にお いて Aと I nと Cの組成比が x、 y、 zで示され、 これらの組成比 x、 y、 zを 所望値に設計できる炭化物触媒が提案される。
本発明の第 4形態は、 前記元素 Aが F eであり、 前記炭化物触媒の組成式が少 なくとも F e 3 I n C。.5で表されるカーボンナノコイル製造用触媒である。 本発 明者等は、 F e · I n触媒薄膜を形成した基板に炭素化合物ガスを接触させて力 一ボンナノコイルを製造する中で、 まず F e · I n触媒薄膜が微粒子化し、 この 微粒子が触媒核となってカーボンナノコイルを成長させる事実を確認した。 この 基板上に形成された触媒微粒子を粉末 X線解析したところ、 F e、 I n、 Cを含 有した炭化物触媒であることが確認された。 その回折パターンから、 この炭化物 触媒の組成式は、 F e 3 1 11 C。.5で与えられることが判明した。 従って、 この組 成式を有した炭化物触媒を使用することによってカーボンナノコイルを高効率に 製造することができる。 この炭化物触媒は本発明者等によって初めて発見された 組成式が特定されたカーボンナノコイル製造用触媒であり、 カーボンナノコイル を成長させる真の触媒である。
本発明の第 5形態は、 第 2形態の炭化物触媒に他の元素を一種以上添加した力 一ボンナノコイル製造用触媒である。 他の元素とは、 触媒を構成する遷移金属元 素、 I n、 C以外の元素であればよく、 カーボンナノコイルの成長を促進させる 元素が有効である。 例えば、 前記遷移金属元素以外の遷移元素でも、 典型元素で もよレ、。 例えば、 前記遷移金属元素が F eの場合に、 他の元素は例えば C oや N i等でもよい。 より具体的には、 他の元素として、 例えば、 炭素族の S i、 G e 、 S nや、 ホウ素族の B、 A l、 G a、 T 1や窒素族の P、 A s、 S b、 B i、 その他の金属元素、 非金属元素などが選択される。
本発明の第 6形態は、 第 5形態の他の元素が S nであるカーボンナノコィル製 造用触媒である。 この場合、 本発明のカーボンナノコイル製造用触媒として、 F e · I n · S n系炭化物触媒がある。 従来の F e · I n · S n系触媒を用いて力 一ボンナノコイルを製造した場合には、 カーボンナノコイルを一定度まで成長さ せるのに長時間を要していたため、 反応装置の稼動効率が低くなるという弱点を 有していた。 し力 し、 本発明形態の F e · I n · S n系炭化物触媒を用いると、 触媒効率が高く、 カーボンナノコイルを短時間に成長できるため、 反応装置の稼 動効率が高くできる利点がある。 また、 この炭化物触媒を微粒子として構成すれ ば、 炭化物触媒の微粒子径を制御することによりカーボンナノコイル径を制御で き、 任意径のコイルの製造が可能になる。 本発明の第 7形態は、 前記第 6形態において、 炭化物触媒の組成式が少なくと も F exI nyCzS nwで表されるカーボンナノコイル製造用触媒である。 この炭 化物触媒において F eと I nと Cと Snの組成比が x、 y、 z、 wで示され、 こ れらの組成比 x、 y、 z、 wを所望値に設計できる炭化物触媒が提案される。 本発明の第 8形態は、 炭化物触媒の組成式が少なくとも F e 31 n v C。,5 S n w (1 >ν≥0、 w≥0) の組成式で表されるカーボンナノコイル製造用炭化物 触媒である。 本形態触媒は F e3I nC。,5を中心とする炭化物触媒で、 この中心 組成から I nを組成比 V (1 > v≥0) だけ除去し、 S nを組成比 w (≥ 0 ) だ け添加することによって生成される。 組成比 v、 wがゼロの場合には、 F e3I nC0.5の組成となり、 除去量 Vと添加量 wはゼ口以上の範囲で所望値に設定され る。 組成比 v、 wを最適調整することによって効率的にカーボンナノコイルを製 造できる炭化物触媒を提供できる。 S nの添加組成比 wは w > 0の範囲に自在に 設定でき、 Snの微量添加から大量添加までが可能になる。 Snの添加量により 生成効率を調整できる利点がある。
本発明の第 9形態は、 第 3形態の触媒において、 前記元素 Aとして F eが選択 され、 この触媒に対し粉末 X線回折を行ったとき回折角を 2 Θで計測すると、 約 40° 近傍に第 1強度ピークを有し、 約 46. 3° 近傍に第 2強度ピークを有す る回折強度分布を示すカーボンナノコイル製造用触媒である。 前記約 40° 近傍 、 正確には 39. 6° 近傍に第 1強度ピークを有し、 46. 3° 近傍に第 2強度 ピークを有する炭化物触媒は本発明者等により初めて発見されたもので、 この炭 化物触媒がカーボンナノコイル製造用触媒として提案される。
本発明の第 10形態は、 外直径が 1000 nm以下のカーボンナノコイルを化 学的気相成長法により製造する触媒であり、 この触媒は少なくとも一種以上の遷 移金属元素、 Sn、 Cを含有した炭化物触媒であるカーボンナノコイル製造用触 媒である。 前述した第 2形態の触媒の I nを Snに置き換えた炭化物触媒である 。 (遷移金属元素、 Sn、 C) 炭化物触媒は、 (遷移金属元素、 I n、 C) 炭化 物触媒と共に、 本発明者等によって初めて発見されたカーボンナノコイル製造用 触媒である。 遷移金属元素は上述した通りであり、 この遷移金属元素と S nと C が結合して形成された炭化物触媒が有効なカーボンナノコィル製造用触媒となる 。 遷移金属の具体的選択は、 製造効率や合成条件などを勘案して適宜自在に行わ れる
本発明の第 1 1形態は、 第 1◦形態の触媒において、 前記遷移金属元素が F e 、 C o、 N iから選ばれた一種以上の元素 Aであり、 前記炭化物触媒の組成式が 少なくとも AX S nyCzで表されるカーボンナノコィノレ製造用触媒である。 F e'、 C o、 N iはカーボンナノチューブの触媒としてよく知られているが、 Ax S ny Czが存在することによってカーボンナノコイル触媒となることは、 本発明者等 によって初めて発見されたものである。 S nの役割は現在のところ明快ではな いが、 F e、 C o、 N iはカーボンナノチューブを成長させ、 Cは力一ボンナ ノコイルを形成するための原料となり、 S nはそのカーボンナノチューブを卷 回させると考えることもできる。 しかし、 そめミクロメカニズムは現在のとこ ろ不明である。 この炭化物触媒において Aと S nと Cの組成比が x、 y、 zで示 され、 これらの組成比 x、 y、 Zを所望値に設計できる炭化物触媒が提案される 本発明の第 1 2形態は、 第 1 1形態の触媒において、 前記元素 Aが F eであり 、 前記炭化物触媒の組成式が少なくとも F e 3 S n Cで表されるカーボンナノコ ィル製造用触媒である。 本発明者等は、 F e · S n触媒薄膜を形成した基板に炭 素化合物ガスを接触させてカーボンナノコイルを製造する中で、 F e · S n触媒 薄膜が微粒子ィヒし、 この微粒子が触媒核となってカーボンナノコィルを成長させ る事実を確認した。 この基板上に形成された触媒微粒子を粉末 X線解析したとこ ろ、 F e、 S n、 Cを含有した炭化物触媒であることが確認された。 その回折パ ターンから、 この炭化物触媒の組成式は、 F e 3 S n Cで与えられることが判明 した。 従って、 この組成式を有した炭化物触媒を使用することによってカーボン ナノコイルを高効率に製造することができる。 この炭化物触媒は本発明者等によ つて発見された組成式が特定されたカーボンナノコイル製造用触媒であり、 カー ボンナノコイルを成長させる触媒である。
本発明の第 1 3形態は、 第 1 0形態の触媒において、 前記炭化物触媒に他の元 素を一種以上添加したカーボンナノコイル製造用触媒である。 他の元素とは、 触 媒を構成する遷移金属元素、 S n、 C以外の元素であればよく、 カーボンナノコ ィルの成長を促進させる元素が有効である。 例えば、 前記遷移金属元素以外の遷 移元素でも、 典型元素でもよい。 例えば、 前記遷移金属元素が F eの場合に、 他 の元素は例えば C oや N i等でもよい。 より具体的には、 他の元素として、 例え ば、 炭素族の S i、 Ge、 Snや、 ホウ素族の B、 Al、 Ga、 T 1や窒素族の P、 As、 S b、 B i、 その他の金属元素、 非金属元素などが選択され、 目的に 応じて自在に適量だけ添カ卩される。
本発明の第 14形態は、 第 1 1形態の触媒において、 前記元素 Aが F eであり 、 前記触媒に対し粉末 X線回折を行つたとき回折角を 2 Θで計測すると、 約 40 。 近傍に第 1強度ピークを有する回折強度分布を示すカーボンナノコイル製造用 触媒である。 前記約 40° 近傍に第 1強度ピークを有する炭化物触媒は本発明者 等により発見されたもので、 この炭化物触媒がカーボンナノコイル製造用触媒と して提案される。
本発明の第 15形態は、 一種以上の遷移金属元素、 A 1及び Snの元素を少な くとも含むカーボンナノコイル製造用触媒である。 この触媒は本発明者等が発見 した新規な金属触媒で、 炭化物触媒ではない。 遷移金属元素は既に前述した通り であり、 目的に応じて適切な遷移金属元素を利用できる。 この触媒を用いれば、 CVD法等による合成に適用してカーボンナノコイルを効率的に製造することが でき、 カーボンナノコイルの工業的量産ィ匕に寄与する。
本発明の第 16形態は、 前記遷移金属元素、 A 1及び S ηが酸化物として存在 するカーボンナノコイル製造用触媒である。 第 15形態の触媒を酸素雰囲気中で 焼成して生成すれば、 酸ィヒ物触媒が得られる。 鉄、 アルミニウム又はスズを酸ィ匕 鉄、 酸ィヒアルミニウム又は酸化スズの形態で使用してカーボンナノコイル製造用 触媒を構成するので、 これらを空気中で使用してもそれ以上酸ィヒせず、 安定な触 媒を提供できる。
本発明の第 17形態は、 第 15形態又は第 16形態の触媒において、 前記遷移 金属元素が F eであり、 組成 (Fex-Aly-Snz) の組成比 (モル比) にお いて、 (x、 y、 z) の比例配分下で x = 3としたときに、 y^l、 z≤ 3であ るカーボンナノコイル製造用触媒である。 この組成で試用すれば、 高い生成効率 でカーボンナノコイルを製造することができる。 本形態の触媒 (Fex— Aly— S nz) は例えば、 x = 3、 y=l、 z = 0. 1といった組成比で構成される。 本発明の第 18形態は、 一種以上の遷移金属元素、 C r及び S nの元素を少な くとも含むカーボンナノコイル製造用触媒である。 この触媒は本発明者等が発見 した別の新規な金属触媒で、 炭化物触媒ではない。 遷移金属元素は既に前述した 通りであり、 目的に応じて多種多様な遷移金属元素を利用できる。 この触媒を用 いれば、 CVD法等による合成に適用してカーボンナノコイルを効率的に製造す ることができ、 カーボンナノコイルの工業的量産化に寄与する。
本発明の第 19形態は、 第 18形態の触媒において、 前記遷移金属元素、 C r 及び S nが酸化物として存在するカーボンナノ イル製造用触媒である。 第 18 形態の触媒を酸素雰囲気中で焼成して生成すれば、 酸化物触媒が得られる。 遷移 金属元素、 クロム又はスズを遷移金属酸化物、 酸化アルミニウム又は酸ィヒスズの 形態で使用してカーボンナノコイル製造用触媒を構成するので、 これらを空気中 で使用してもそれ以上酸ィヒせず、 安定な触媒を提供できる。
本発明の第 20形態は、 第 18形態又は第 19形態の触媒において、 前記遷移 金属元素が F eであり、 組成 (Fex—Cry— Snz) の組成比 (モル比) にお いて、 (x、 y、 z) の比例配分下で x = 3としたときに、 y^l、 z≤ 3であ るカーボンナノコイル製造用触媒である。 この触媒を用いれば、 高い生成効率で カーボンナノコイルを製造することができる。 本形態の触媒 (Fex— Cry— Sn z ) は例えば、 x = 3、 y = 0. 3、 z = 0. 1といった組成比で構成される。 本発明の第 21形態は、 F e、 I n及び S nの元素からなる組成 (Fex— In y-Snz) を少なくとも含み、 且つ各元素の,袓成比 (モル比) において、 (X 、 y、 z) の比例配分下で x = 3としたときに、 y^9、 z≤3であるカーボン ナノコイル製造用触媒である。 本発明者等は、 既に F e · I n · Sn触媒を公開 しているが、 本形態では、 各構成元素の組成を特定範囲に限定することにより、 より効率的にカーボンナノコイルを製造することに成功したものである。 本形態 の触媒 (Fex— Iny— Snz) は例えば、 x = 3、 y = 0. 3、 z = 0. 1とい つた糸且成比で構成される。
本発明の第 22形態は、 第 21形態の触媒において、 F e、 I n又は S nが酸 化物として存在するカーボンナノコイル製造用触媒である。 鉄、 インジウム又は スズを酸化鉄、 酸ィ匕ィンジゥム又は酸ィ匕スズの形態で使用してカーボンナノコィ ル製造用触媒を構成するので、 これらを空気中で使用してもそれ以上酸化せず、 安定な触媒を提供できる。
本発明の第 2 3形態は、 第 1形態〜第 2 2形態のいずれかの形態において、 前 記触媒が微粒子として得られるカーボンナノコイル製造用触媒である。 本発明者 等は、 成長したカーボンナノコイルの先端に触媒核が存在し、 この触媒核が炭素 化合物ガスを分解して炭素原子をカーボンナノコイルに取り込みながら成長する ことを発見した。 この知見に基づき、 炭化物触媒を微粒子として提供すれば、 こ の微粒子自体が触媒核として機能し、 カーボンナノコイルを効率的に製造するこ とが可能になる。 微粒子の粒径を調整することによって、 カーボンナノコイルの コィル線径及びコィル外直径を所望の値に均一に制御できる利点がある。
本発明の第 2 4形態は、 第 2形態又は第 1 0形態のカーボンナノコィル製造用 触媒の製造方法であり、 基板に少なくとも (遷移金属元素、 I n ) 又は (遷移金 属元素、 S n ) を含有した薄膜を形成し、 加熱状態下で前記基板の薄膜表面を炭 素化合物ガスで炭化して、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金 属元素、 S n、 C) の元素を含有した炭化物触媒を形成するカーボンナノコイル 製造用触媒の製造方法である。 基板に形成した薄膜触媒を炭化するだけで少なく とも (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C) の元素を含有 した炭化物触媒を量産することが可能になる。 遷移金属元素は前述した通りに多 種多様であり、 任意の遷移金属元素を含有した炭化物触媒を安価に量産すること ができる。
本発明の第 2 5形態は、 第 2形態又は第 1 0形態のカーボンナノコイル製造用 触媒の製造方法であり、 少なくとも (遷移金属元素、 I n ) 又は (遷移金属元素 、 S n ) を含有した微粒子を形成し、 加熱状態下でこの微粒子を炭素化合物ガス と反応させて、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C) の元素を含有した炭化物触媒を形成するカーボンナノコイル製造用触媒 の製造方法である。 各種方法を活用して (遷移金属元素、 I n、 C) 炭化物触媒 又は (遷移金属元素、 S n、 C ) 炭化物触媒を量産することが可能になり、 触媒 価格の低減に貢献できる。 前記微粒子の形成方法には、 蒸着'スパッタリング ' イオンプレーティング ·プラズマ 'モレキュラービーム等の物理的蒸着法 (P V D) や気相分解法 ·噴霧熱分解法などの化学的蒸着法 (C V D) などが利用でき る。
本発明の第 2 6形態は、 第 2形態又は第 1 0形態のカーボンナノコイル製造用 触媒の製造方法であり、 少なくとも (遷移金属化合物と I n化合物) 又は (遷移 金属化合物と S n化合物) を溶媒に添加した溶液又は分散液を形成し、 この溶液 又は分散液から固形分を分離し、 加熱状態下で前記固形分を炭素化合物ガスと接 触させて炭化し、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C ) の元素を含有した炭化物触媒の微粒子を形成するカーボンナノコイル 製造用触媒の製造方法である。 遷移金属化合物や I n化合物や S n化合物として は、 例えば遷移金属酸化物や I n酸化物や S n酸化物があり、 これらを溶液中で 均一に混合して固形分を分離する。 この固形分を炭素化合物ガスで炭化処理すれ ば、 簡単に (遷移金属元素、 I n、 C) 炭化物触媒微粒子又は (遷移金属元素、 S n、 C) 炭化物触媒微粒子を大量合成することができる。 炭化できる材料とし て、 酸化物以外の各種化合物を利用することも可能である。
本発明の第 2 7形態は、 第 2形態又は第 1 0形態のカーボンナノコイル製造用 触媒の製造方法であり、 少なくとも (遷移金属化合物と I n化合物) 又は (遷移 金属化合物と S n化合物) を溶媒に添加した溶液又は分散液を形成し、 この溶液 又は分散液から固形分を分離し、 分離された固形分を焼成.して少なくとも (遷移 金属元素、 I n ) 又は (遷移金属元素、 S n ) の微粒子を生成し、 加熱状態下で この微粒子を炭素化合物ガスと接触させて炭化し、 少なくとも (遷移金属元素、 I n、 C ) 又は (遷移金属元素、 S n、 C) の元素を含有した炭化物触媒の微粒 子を形成するカーボンナノコイル製造用触媒の製造方法である。 遷移金属化合物 、 I n化合物、 S n化合物としては、 例えば遷移金属有機ィ匕合物、 I n有機化合 物、 S n有機化合物があり、 これらを溶液中で均一に混合して固形分を分離し、 この固形分を焼成して有機物を焼成して (遷移金属元素、 I n ) 又は (遷移金属 元素、 S n ) の物粒子を簡単に作ることができる。 酸素雰囲気下での焼成であれ ば酸ィ匕物微粒子や水酸ィヒ物微粒子などが生成され、 また他の雰囲気下での焼成で あればこれら以外の微粒子が生成される。 目的とする炭化物微粒子に転ィヒする任 意の微粒子が利用できる。 この物粒子を炭化水素ガスで炭化処理すれば、 簡単に
(遷移金属元素、 I n、 C) 又は (遷移金属元素、 Sn、 C) の元素を含有した 炭化物触媒微粒子を大量合成することができる。
本発明の第 28形態は、 第 2形態又は第 10形態のカーボンナノコィル製造用 触媒の製造方法であり、 加熱状態下にある反応槽の中で、 少なくとも (遷移金属 化合物ガスと I n化合物ガス) 又は (遷移金属化合物ガスと S n化合物ガス) を 炭素化合物ガスと接触反応させ、 少なくとも (遷移金属元素、 I n、 C) 又は ( 遷移金属元素、 Sn、 C) の元素を含有した炭化物触媒の微粒子を形成するカー ボンナノコイル製造用触媒の製造方法である。 この形態では、 触媒原料成分のガ スを利用して気体化学反応により目的とする炭化物触媒の微粒子を大量生産する ことが可能になり、 触媒価格の低減化に貢献できる。
本発明の第 29形態は、 第 24形態〜第 28形態のいずれかにおいて、 前記遷 移金属元素が F e、 Co, N iから選ばれた一種以上の元素 Aであり、 前記炭化 物触媒の組成式が少なくとも AXI nyCz又は AxSnyCzで表されるカーボンナノ コイル製造用触媒の製造方法である。 F e、 Co、 N iはカーボンナノチューブ の触媒としてよく知られているが、 I n · C又は S n · Cと結合することによつ てカーボンナノコイル触媒となることは、 本発明者等によって発見されたもので る。 この炭化物触媒においては、 組成比が x、 y、 zで示され、 これらの組成比 x、 y、 zを所望値に設計できる炭化物触媒が提供される。
本発明の第 30形態は、 第 29形態において、 前記元素 Aが F eであり、 前記 炭化物触媒の組成式が少なくとも F e3I nC。, 5又は F e3S nCで表される力 一ボンナノコイル製造用触媒の製造方法である。 本形態では、 . F e · C 0 · N i の中でも、 特に F eが選択される。 F eの場合には、 炭化物が簡単に生成される 利点がある。 F e3I nC。, 5又は F e 3S n Cからなる炭化物は、 カーボンナノ コイル製造用触媒として、 本発明者等が世界に先駆けて発見した物質である。 本発明の第 31形態は、 第 24形態〜第 30形態のいずれかにおいて、 前記炭 化物触媒に他の元素を一種以上添加したカーボンナノコイル製造用触媒の製造方 法である。 他の元素とは、 触媒を構成する (遷移金属元素、 I n、 C) 又は (遷 移金属元素、 Sn、 C) 以外の元素であればよく、 カーボンナノコイルの成長を 004/007797
促進させる元素が有効である。 例えば、 前記遷移金属元素以外の遷移元素でも、 典型元素でもよい。 例えば、 前記遷移金属元素が F eの場合に、 他の元素は例え ば C oや N i等でもよい。 より具体的には、 他の元素として、 例えば、 炭素族の S i、 G e、 S nや、 ホウ素族の B、 A l、 G a、 T 1や窒素族の P、 A s、 S b、 B i、 その他の金属元素、 非金属元素などが選択される。
本発明の第 3 2形態は、 カーボンナノコイル製造用の炭化物触媒又は Z及び酸 化物触媒を多孔性担体に担持させたカーボンナノコイル製造用触媒である。 本形 態に使用される触媒は、 炭化物触媒又は/及び酸ィヒ物触媒であり、 カーボンナノ コイルを高効率で製造できる。 また、 これらの触媒を多孔性担体に担持させるか ら、 多孔性担体が有する均一な細孔にカーボンナノコイル製造用触媒を充填でき る。 多孔性担体が有する細孔の大きさは、 Y型ゼオライトを例にとれば、 約 0 . 5〜 2 n mであり、 ゼォライトでは細孔の最小口径は 0 . 7 4 n mである。 この ように、 均一な断面積を有した細孔にカーボンナノコイル製造用触媒を吸着する と、 細孔への触媒担持量 (充填量) の均一化が達成できる。 つまり、 多孔性担体 の細孔断面積による触媒面積の均一化とその細孔の有する容積による触媒分量の 均一化の両方を達成できる。 従って、 細孔径に相当した線径のカーボンナノコィ ルが成長するから、 線径の均一化が得られる。 本発明者等の研究によって、 カー ボンナノコイルの外直径とカーボンナノコイルの線径との相関関係は極めて高く 、 I径の均一化によって、 コィノレ外直径の均一化を実現できるようになった。 再 記すれば、 カーボンナノコイルの線径を規定する要因である触媒面積と触媒分量 を均一化することにより、 カーボンナノコイルの線径を均一化でき、 その結果、 コイル外直径を均一化できるカーボンナノコイルの量産用触媒を実現することに 成功した。 また、 多孔性担体には多数の細孔を有するものがあり、 その細孔数に 比例した数のカーボンナノコイルを形成できる。 従って、 高効率にカーボンナノ コイルを量産できる利点を有している。 更に、 多孔性担体の形状はプロック状、 シート状、 板状、 粒状、 微粒子状、 超微粒子状など各種存在する。
本発明の第 3 3形態は、 第 3 2形態において、 第 1形態〜第 1 4形態のいずれ カ の炭化物触媒を担持させたカーボンナノコィノレ製造用触媒である。 第 1形態〜 第 1 4形態の炭化物触媒は、 本発明者等が発見した触媒であり、 カーボンナノコ ィルを高効率に製造できる利点がある。
本発明の第 3 4形態は、 第 1 5形態〜第 2 2形態のいずれかに記載の触媒を多 孔性担体に担持させたカーボンナノコイル製造用触媒である。 第 1 5形態〜第 2 2形態の触媒は、 本発明者等が発見した触媒で、 炭化物触媒ではないが、 炭化物 触媒と同様にカーボンナノコイルを高効率に製造できる利点がある。
本発明の第 3 5形態は、 カーボンナノコイル製造用の遷移金属元素 · I n · S n系触媒、 遷移金属元素 · A 1 · S n系触媒、 遷移金属元素 · C r · S n系触媒 、 遷移金属元素 · I n系触媒又は遷移金属元素 · S n系触媒を多孔性担体に担持 させたカーボンナノコイル製造用触媒である。 これらの触媒を多孔性担体の細孔 に担持させると均一線径 ·均一コイル径のカーボンナノコイルを量産すること力 S できる。 これらの触媒は 2元素系、 3元素系であり、 本発明により細孔内に多元 素を同時担持することが可能となつた。 触媒の種類によりカーボンナノコイルの 生成効率も様々である。 従って、 触媒の組み合わせを適宜調整することにより、 カーボンナノコイルの生成効率を自在に調整することが可能になる。
本発明の第 3 6形態は、 第 3 5形態の触媒において、 前記遷移金属元素が F e 、 C o , N iから選択された一種以上の元素であるカーボンナノコイル製造用触 媒である。 遷移金属元素の中でも、 カーボンナノコイルを効率的に製造できる F e、 C o、 N iが使用される。 その結果、 本形態の触媒により、 カーボンナノコ ィルの大量生産が可能になり、 価格低減に寄与できる。
本発明の第 3 7形態は、 第 3 2形態〜第 3 6形態の触媒において、 前記多孔性 担体がゼォライト、 アルミノ燐酸塩、 シリカアルミノ燐酸塩、 メソ多孔体、 多孔 性セラミックス、 モレキュラーシーブス、 金属酸化物系多孔体、 シリカ多孔体又 は炭素系多孔体から選択されるカーボンナノコイル製造用触媒である。 ゼォライ トは S i 04と A 1 04の四面体が酸素を共有して交互に結合した構造を持つ多 孔体の総称である。 天然物、 合成物併せて 1 0 0種類以上の骨格構造があり、 S i原子と A 1原子との比率 (S i ZA l比) によりその性質が異なる。 また、 S i原子の一部が A 1原子により置換されていることから負の電荷をもっているの で、 イオン交換法により容易にカーボンナノコイル製造用触媒を担持できる。 A L P O (アルミノ燐酸塩) は、 A 1 0 と P 04の四面体が酸素を共有して交互 に結合した骨格構造を持っている。 A L P Oの細孔構造はゼォライトと同様であ るが、 中性であるためイオン交換能を持たない。 A L P Oの P原子の一部を S i 原子に置換することにより、 ゼォライトと同様のイオン交換能を持たせたのが S A P O (シリカアルミノ燐酸塩) である。 従って、 S A P Oはイオン交換法によ り容易にカーボンナノコイル製造用触媒を担持できる。 樹脂吸着剤、 多孔十生セラ ミックス、 金属酸化物系多孔体及びシリ力多孔体もゼォライトと同様な細孔構造 を有しているので、 カーボンナノコイル製造用触媒を担持できる。 ゼォライト、 A L P O、 S A P Oの細孔径は 0 . 5〜2 n mであり、 シリカ多孔体には 1 . 5 〜1 0 n mの大きな細孔を有するものがある。 更に、 活十生炭、 カーボンナノチュ ーブなどのカーボンナノ構造物などの炭素系多孔体も利用できる。 従って、 これ らの多孔性担体の細孔に担持された触媒によりカーボンナノコイルを製造すると 、 これらの細孔径に依存した線径を有し、 しかもコイル外直径が均一なカーボン ナノコイルを量産できる利点を有している。
本発明の第 3 8形態は、 第 3 2形態〜第 3 7形態のカーボンナノコィル製造用 触媒の製造方法であり、 前記カーボンナノコイル製造用の触媒微粒子を溶媒中に 分散し、 この溶媒中に多孔性担体を浸漬し、 多孔性担体の表面又は/及び細孔中 に前記触媒微粒子を担持させるカーボンナノコィル製造用触媒の製造方法である 。 触媒微粒子を溶媒中に分散すると、 この溶媒中に触媒微粒子が均一に分散する 。 この溶媒中に多孔性担体を浸漬すると、 多孔性担体の同一細孔内にカーボンナ ノコイル製造用触媒を均一に吸着する。 吸着を効率よく行うため、 溶媒中に多孔 性担体を浸 させた後、 溶媒を攪拌したり、 超音波処理を行ったりホモジナイザ ーゃァトマィザ一で処理する等、 任意の処理を追加してもよい。
本発明の第 3 9形態は、 第 3 2形態〜第 3 7形態のカーボンナノコイル製造用 触媒の製造方法であり、 前記カーボンナノコイル製造用のを空間に充填又は流通 させ、 この空間に多孔性担体を配置し、 多孔性担体の表面又は/及ぴ細孔中に前 記触媒微粒子を担持させるカーボンナノコイル製造用触媒の製造方法である。 触 媒微粒子を空間に充填又は流通させるので、 この空間中に多孔性担体を配置する だけで、 多孔性担体の表面又は/及び細孔中に前記触媒微粒子を容易に吸着でき る。 多孔性担体は処理室内に静置してもよいし、 噴霧しても攪拌してもよく、 気 相からの吸着効率を上昇させる公知の手段を採用できる。 また、 処理室内の物理 的条件は任意に調整できる。 例えば、 多孔性担体を力 B压下に置くことも、 真空下 に置くことも、 また加熱 ·冷却も可能である。 この方法で多孔性担体にカーボン ナノコイル製造用触媒微粒子を吸着させれば、 カーボンナノコイルを効率よく安 価に製造できる。
本発明の第 4 0形態は、 第 3 8形態又は第 3 9形態において、 触媒微粒子を担 持させた多孔性担体を焼成するカーボンナノコィル製造用触媒の製造方法である 。 焼成することにより、 触媒微粒子が多孔性担体の細孔内に固着され、 担持強度 を向上させることができる。
本発明の第 4 1形態は、 第 1〜2 2形.態及び第 3 2〜3 7形態のいずれかカー ボンナノコイル製造用触媒を反応器内部に配置し、 この触媒近傍を原料として使 用する炭素化合物ガスが触媒作用により分解する温度以上に加熱し、.前記触媒に 接触するように前記炭素化合物ガスを流通させて、 前記炭素化合物ガスを前記触 媒近傍で分解しながら前記触媒表面に外直径が 1 0 0 0 n m以下のカーボンナノ コイルを成長させるカーボンナノコイル製造方法である。 本発明に係る炭化物触 媒、 金属触媒、 その酸ィヒ物触媒又は多孔性担体触媒を用いることによって、 炭化 水素等の炭素化合物ガスを効率的に分解しながら、 該触媒表面にカーボンナノコ ィルを高効率に生成することができ、 カーボンナノコイルの工業的量産ィ匕を実現 できる。
本宪明の第 4 2形態は、 少なくとも遷移金属元素、 I nを含有する触媒前駆物 質を加熱状態下で炭素化合物ガスと接触させて少なくとも遷移金属元素、 I n、 Cを有する炭化物触媒を形成し、 連続して加熱状態下で前記炭化物触媒により炭 素化合物ガスを分解してカーボンナノコイルを成長させるカーボンナノコイル製 造方法である。 遷移金属元素、 I nを含有した触媒前駆物質を炭化物触媒に変化 させ、 更に連続してカーボンナノコイルを大量生産する 2段階連続製造方法を提 供する。 遷移金属元素、 I n以外に、 有効な 1種以上の他の元素を添加した触媒 前駆物質を使用すれば、 カーボンナノコイルの製造効率を更に高めることができ る。
本発明の第 4 3形態は、 少なくとも遷移金属元素、 S nを含有する触媒前駆物 質を加熱状態下で炭素化合物ガスと接触させて少なくとも遷移金属元素、 S n、 Cを有する炭化物触媒を形成し、 連続して加熱状態下で前記炭化物触媒により炭 素化合物ガスを分解してカーボンナノコイルを成長させるカーボンナノコイル製 造方法である。 遷移金属元素、 S nを含有した触媒前駆物質を炭化物触媒に変化 させ、 更に連続してカーボンナノコイルを大量生産する 2段階連続製造方法を提 供する。 遷移金属元素、 S n以外に、 有効な 1種以上の他の元素を添カ卩した触媒 前駆物質を使用すれば、 カーボンナノコイルの製造効率を更に高めることができ る。
本発明の第 4 4形態は、 少なくとも遷移金属元素、 I n、 S nを含有する触媒 前駆物質を加熱状態下で炭素化合物ガスと接触させて少なくとも遷移金属元素、 I n、 S n、 Cを含有する炭化物触媒を形成し、 連続して加熱状態下で前記炭化 物触媒により炭素化合物ガスを分解してカーボンナノコイルを成長させるカーボ ンナノコィノレ製造方法である。 遷移金属元素、 I n、 S nを含有した触媒前駆物 質を炭化物触媒に変化させ、 更に連続してカーボンナノコイルを大量生産する 2 段階連続製造方法を提供する。 遷移金属元素、 I n、 S n以外に、 有効な 1種以 上の他の元素を添加した触媒前駆物質を使用すれば、 カーボンナノコイルの製造 効率を更に高めることができる。
本発明の第 4 5形態は、 第 4 1形態〜第 4 4形態において、 前記カーボンナノ コィル製造用触媒の膜又は微粒子膜を基板上に形成し、 この触媒により炭素化合 物ガスを分解して基板上にカーボンナノコイルを成長させるカーボンナノコイル 製造方法である。 触媒膜を用いると、 触媒膜上にカーボンナノコイルを高密度に 生成することができる。 また、 触媒の微粒子膜を用いると、 触媒微粒子を触媒核 としてカーボンナノコイルを基板上に大量生産できる。 触媒微粒子の粒径を小さ くすればサイズの小さなカーボンナノコイルを製造することができ、 逆に触媒微 粒子の粒径を大きくすればサイズの大きなカーボンナノコイルを製造することが できる。 このように、 触媒微粒子の粒径を制御することによってカーボンナノコ ィルを自在に大量生産できる利点を有する。
本発明の第 4 6形態は、 第 4 1形態〜第 4 4形態において、 前記カーボンナノ コイル製造用触媒の微粒子を反応槽の中に浮遊させ、 この触媒微粒子により炭素 化合物ガスを分解してカーボンナノコィルを浮遊状態で成長させるカーボンナノ コイル製造方法である。 触媒微粒子が流通する反応領域を制限することにより、 カーボンナノコイルの成長時間を比.較的簡単に制御でき、 カーボンナノコイルの サイズ制御が容易にできる。
本発明の第 4 7形態は、 第 4 1形態〜第 4 4形態において、 前記カーボンナノ コィル製造用触媒の微粒子を反応槽に堆積させ、 この堆積した触媒微粒子を攪拌 しながら炭素化合物ガスを分解してカーボンナノコイルを攪拌状態下で成長させ るカーボンナノコイル製造方法である。 例えば、 触媒微粒子の粉末をロータリー キルンの中に堆積させておき、 炭素化合物ガスを流通させながらロータリーキル ンを回転させると、 触媒粉末が攪拌状態となり、 触媒微粒子を触媒核としてカー ボンナノコイルを大量生産することができる。 攪拌方法としては、 回転方法、 振 動方法、 その他の公知の方法が採用できる。
本発明の第 4 8形態は、 第 4 1形態〜第 4 4形態のいずれかに記載のカーボン ナノコイル製造方法により製造されるカーボンナノコイルである。 従って、 カー ボンナノコイルを大量合成できるので、 安価なカーボンナノコイルを提供できる 。 また、 多孔性担体に担持された触媒により製造すると、 線径とコイル外直径の 揃ったカーボンナノコイルを提供できる。 従って、 この線径と外直径の揃った力 一ボンナノコイルを使用すれば、 高品質なナノ物質、 例えばナノスプリング、 ナ ノマシン、 電磁波吸収体、 電子ェミッタ、 ナノ電子デバイス、 水素吸蔵体等を製 造でき、 各分野の要請に応えることができる。
(図面の簡単な説明)
図 1はカーボンナノコイル 1の概略斜視図である。
図 2はカーボンナノコィル製造装置 2の概略構成図である。
図 3は触媒薄膜 1 4によりカーボンナノコイル 1が成長する過程を示した模式 図である。
図 4は炭化物触媒を製造する第 1方法の工程図である。
図 5は炭化物触媒を製造する第 2方法の工程図である。
図 6は溶液法を用いて炭化物の触媒微粒子 1 8を製造する本発明の第 3方法の 工程図である。
図 7は炭化物触媒微粒子 18を用いたカーボンナノコイルの第 1製法の工程図 である。
図 8は F e . I n · S n系触媒薄膜 14から出発するカーボンナノコイルの第 2製法の工程図である。 ■ 図 9は炭化物触媒微粒子 18を浮遊させてカーボンナノコイル 1を製造する第 3方法 (流動製造法) の概略説明図である。
図 10は噴霧された酸化物微粒子 26から触媒微粒子 18を形成してカーボン ナノコイル 1を製造する第 4方法 (流動製造法) の概略説明図である。
図 1 1は 5万倍で撮影された F e · I n · S n酸化物薄膜の走査型電子顕微鏡 像である。
図 12は 10秒後の触媒微粒子の粉末 X線回折強度図である。
図 13は 20が約 40。 にある回折強度の第 1ピークの時間経過図である。 図 14は 650。Cにおける炭化物触媒微粒子と成長したカーボンナノコイルの 走査型電子顕微鏡像である。
図 15は 700°Cにおける炭化物触媒微粒子と成長したカーボンナノコイルの 走査型電子顕微鏡像である。
図 16は F e— Sn— C触媒によるカーボンナノコィルの電子顕微鏡像及び触 媒の X線回折パターン図である。
図 17は他の条件による F e— S n— C触媒によるカーボンナノコイルの電子 顕微鏡像及び触媒の X線回折パターン図である。
図 18は本発明の実施形態に使用する製造装置 1の要部概略構成図である。 図 19は触媒の組成比、 Fe: In : Sn、 Fe: Al: Sn及び Fe: Cr: Snを 3 : 0.3: 0.1としたときの製造装置 1による生成物の電子顕微鏡像である。 図 20は I nと A1を F eに対して 1/3の比率で混合した触媒組成のときの製 造装置 1による生成物の電子顕微鏡像である。
図 21は鉄とスズだけの混合触媒 Fe— Sn— Oにおいて種々の組成比で CNC 生成実験を試みた、 製造装置 1による生成物の電子顕微鏡像である。 図 22は Fex— Iny— Snz— O触媒の各種組成の CNC生成実験における生成 物の電子顕微鏡像である。
図 23は Fex— Iny— Snz—O触媒において、 図 5とは異なる糸且成比による生 成物の電子顕微鏡像である。
図 24は Fex— Aly— Snz— O触媒の各種組成の CNC生成実験における生成 物の電子顕微鏡像である。
図 25は Fex— Cry- S nz_ O触媒の各種組成の C N C生成実験における生成 物の電子顕微鏡像である。
図 26は、 図 25とは別組成比の、 Fex— Cry— Snz— O触媒の CNC生成実 験における生成物の電子顕微鏡像である。
図 27は Y型ゼォライトの結晶構造図である。
図 28は 650°Cで焼成された触媒担持体 (ゼオライト) により形成された力 一ボンナノコイルの走査型電子顕微鏡像である。
図 29は使用されたゼォライトの細孔分布図である。
図 30は 700°Cで焼成された触媒担持体 (ゼォライト) により形成された力 一ボンナノコイルの走査型電子顕微鏡像である。
図 31は図 4の拡大図である。
(発明を実施するための最良の形態)
本発明の実施形態の詳細な説明は、 次の 4部から構成される。 従って、 本発明 の実施形態はこの順番に図面を参照しながら説明される。 '
[1] (遷移金属元素、 I n、 C) の炭化物触媒の説明 .
[2] (遷移金属元素、 Sn、 C) の炭化物触媒の説明
[3]金属触媒の説明
C 4 ]触媒を担持した多孔性担体触媒の説明 .
[1] (遷移金属元素、 I n、 C) の炭化物触媒の説明
この第 1節では、 遷移金属元素の代表例として F eを取り上げ、 (遷移金属元 素、 I n、 C) 炭化物触媒の一例として (F e、 I n、 C) 炭化物触媒を説明す PC蘭 004/007797
る。 F eの替わりに、 C oや N iなどの遷移金属元素を用いても同様の結果が得 られる。
本発明者等はカーボンナノコイルを大量生産するために鋭意研究した結果、 出 発触媒として用いた F e、 I n、 S n系触媒が反応槽の中で原科ガスである炭素 化合物ガスによつて炭化されていることを発見した。 この炭化物を分析したとこ ろ、 少なくとも F e、 I n、 Cを構成元素とする炭化物であり、 この炭化物触媒 がカーボンナノコイルを成長させている事実を発見して本発明を完成させたもの である。
この発見の過程を次に述べる。 C VD法によりカーボンナノコィ.ルを成長させ ると、 その電子顕微鏡像からカーボンナノコイルのチュープル先端に触媒核が付 着しているのが見られる。 本発明者等はこの触媒核がカーボンナノコイルを成長 させる直接的触媒物質であると考えている。
本発明者等は、 この触媒核が炭素化合物ガスを分解して炭素原子を生成し、 こ の炭素原子をチューブル先端に堆積する過程でチューブルが卷回しながら伸長.し てカーボンナノコイルが成長すると考えている。
図 1はカーボンナノコイル 1の概略斜視図である。 このカーボンナノコイル 1 はチューブル 3が卷回して形成されており、 コイル外直径 D、 コイル長 L及びコ ィルピッチ Pを有している。 チューブルとはカーボンファイバーを意味している 。 重要なことは、 チューブル先端 3 aに触媒核 5が付着している事実である。 この触媒核 5の直径を gとする。 この触媒核 5が核となり、 炭素化合物ガスが 分解されて炭素原子が堆積され、 断面直径が dのチューブル 3が伸長すると考え られる。 チューブル 3はカーボンナノチューブであることが観察されている。 触媒核 5の形状には球型、 角型、 栓型など様々であるが、 その代表的な部分の 直径を gとする。 チューブル直径 dと触媒核直径 gは等しいとは限らないが、 両 者の大きさには相関関係があると考えられる。
本発明者等の観察によれば、 触媒核直径 gが小さいとチューブル直径 dは小さ くなり、 触媒核直径 gが大きいとチューブル直径 dも大きくなることが分かつた 。 この事実から、 触媒核直径 gが小さくなるほど、 チュープル直径 dが小さな力 一ボンナノコィノレ 1を形成することができるはずである。 この点を追求する中で、 チューブル直径 dとコイル外直径 Dとの間にも一定の 相関関係があることが本発明者等によって発見された。 つまり、 チューブル直径 dが小さいとコイル外直径 Dも小さくなり、 チュープル直径 dが大きくなるとコ ィル外直径 Dも大きくなる傾向がある。
これら二つの相関関係の発見により、 次のような結論が得られる。 触媒核直径 gが小さいほど、 チューブル直径 d及びコイル外直径 Dが小さくなり、 逆に触媒 核直径 gが大きいほど、 チューブル直径 d及びコィル外直径 Dが大きなカーボン ナノコイル 1が得られる傾向がある。 換言すれば、 直径 gが小さな触媒核 5を用 いれば、 より小さなサイズのカーボンナノコイル 1を製造でき、 また直径 gが均 一な触媒核 5を用いれば均一なサイズのカーボンナノコイル 1を製造することが できる。
次に、 本発明者等は、 カーボンナノコイル 1のチューブル先端 3 aに付着して いる触媒核 5がどこから来ているのかについて検討した。 発明者等の推測は、 触 媒薄膜を基板に形成した基板法では、 次の通りである。 まず、 基板上の触媒薄膜 に炭素化合物ガスを流通させる過程で、 触媒薄膜が粒子化して触媒微粒子膜に変 化する。 この触媒微粒子が炭素化合物ガスを分解しながら炭素原子をその下方に 堆積し、 カーボンナノコイル 1が上方に成長する。 その結果、 触媒微粒子が押し 上げられてチューブル先端 3 aに付着すると考えられる。 このことを確認するた めに、 カーボンナノコイル 1の成長実験を行った。
図 2はカーボンナノコイル製造装置 2の概略構成図である。 このカーボンナノ コイル製造装置 2では、 反応槽 4の外周に加熱装置 6が配置され、 反応槽 4の中 に等温領域となる反応室 8が形成される。 ノ
反応室 8の所要位置に、 触媒薄膜 1 4を形成した基板 1 2が配置されている。 この触媒薄膜 1 4はカーボンナノコイル製造用触媒で、 本発明者の一部が既に発 見している F e · I n · S n系触媒薄膜である。 F eと I nと S nの配合比率は 自在に調整できるが、 例えば F eは I nに対し 1 0〜 9 9 · 9 9モル0 /0、 S nは I nに対して 0〜3 0モル0 /0の範囲に調整されることが望ましい。
反応室に矢印 a方向にキャリアガスと炭素化合物ガス (原料ガス) が供給され る。 炭素化合物ガスはカーボンナノコィルを成長させる炭素源ガスで、 炭化水素 PC蘭 004/007797
のみならず、 窒素含有有機ガス、 硫黄含有有機ガス、 リン含有有機ガス等の有機 ガスが広く利用される。 この中でも、 余分な物質を生成しない意味で炭化水素が 好適である。
炭化水素としては、 メタン、 ェタンなどのアルカン化合物、 エチレン、 ブタジ ェンなどのアルケン化合物、 アセチレンなどのアルキン化合物、 ベンゼン、 トル ェン、 スチレンなどのァリーノレ炭化水素、 ナフタリン、 フエナントレンなどの芳 香族炭化水素、 シクロプロパン、 シクロへキサンなどのシクロパラフィン化合物 などが利用できる。 また、 2種以上の混合炭化水素ガスでもよく、 特に、 望まし くは、 低分子炭化水素、 例えばアセチレン、 ァリレン、 エチレン、 ベンゼン、 ト ルェンなどが好適である。
キャリアガスとしては、 H e、 N e、 A r、 N2、 H2などのガスが利用され、 この実施形態では H eガスが使用されている。 キヤリァガスは炭素化合物ガスを 搬送するガスで、 炭素化合物ガスが反応により消費されるのに対して、 キャリア ガスは全く無反応で消耗しなレ、ガスが使用される。
反応室 8の中は所定温度に加熱される。 加熱温度は炭素化合物ガスが触媒によ り分解される最低温度以上に調製されればよい。 従って、 触媒の種類と炭素化合 物ガスの種類によって加熱温度は可変調整されるが、 例えば 6 0 0 °C以上に設定 されることが望ましい。
炭素化合物ガスとキヤリァガスは混合ガスとして矢印 a方向に供給され、 この 炭素化合物ガスが触媒の表面に接触するように基板 1 2が配置されている。 炭素 化合物ガスは触媒薄膜 1 4との接触過程で分解され、 分解生成された炭素原子が 触媒表面に堆積してカーボンナノコイル 1が形成されて行く。.
触媒薄膜 1 4の表面にはカーボンナノコイル 1が無数に生成されている。 上述 したように、 触媒薄膜 1 4は F e · I n · S n系触媒薄膜であり、 この触媒を用 いると、 炭素化合物ガスの炭素量とカーボンナノコイルの生成量から、 収率が約 9 0 %と判断される。
図 3は触媒薄膜 1 4によりカーボンナノコイル 1が成長する過程を示した模式 図である。 この実施形態では、 炭素化合物ガスとして 6 0 s c c mの C2H2ガス 、 キャリアガスとして 2 0 0 s c c mの H eガスが使用され、 アセチレンを分解 PC蘭 004/007797
するために、 加熱温度は 700°Cに設定された。
触媒薄膜 14は、 F e酸ィヒ物と I n酸化物と S n酸化物の混合酸化物触媒薄膜 で形成されている。 酸ィ匕物触媒の組成式は、 各構成酸ィヒ物の配合比率によって異 なり、 例えば組成式が F e5I n S η ιΟν、 F e 31 n S n^O F e I nSn i Ovなどで表される混合酸ィ匕物の触媒薄膜が使用される。 この実施形態では、 組 成式が F e3I n S
Figure imgf000027_0001
の混合酸ィ匕物触媒薄膜が用いられている。 触媒の膜厚 tは 200 nmに設定されている。
(3 A) において、 矢印 b方向に流通する C2H2ガスは触媒薄膜 14と接触し ながら反応して分解される。 この反応過程を走査型電子顕微鏡 (以下、 SEMと 称す) で観察すると、 カーボンナノコイル 1が成長する前に、 触媒薄膜 14が粒 子化されることが観察された。
(3B) では触媒薄膜 14が粒子化された状態が示されている。 触媒薄膜 14 は触媒微粒子 18からなる触媒微粒子膜 16へと変化する。 C2H2ガスを連続的 に流通させると、 触媒薄膜 14は次第に区画に分割されて各区画が触媒微粒子 1 8へと形状変化する。 触媒微粒子 18の直径 (粒径) sは時間経過に従って大か ら小へと次第に小さくなることが確認された。
(3C) では、 この触媒微粒子膜 16に対し C2H2ガスを連続的に流通させる と、 カーボンナノコイル 1が成長することが観察された。 カーボンナノコイル 1 の先端には触媒核 5が付着していることが S E Mにより確認された。 触媒微粒子 18が極小化した段階でカーボンナノコイル 1が成長を始めていることも確認さ れた。
触媒微粒子 18が S EMでも見えなくなるほど極小化した段階でカーボンナノ コィノレ 1が成長を始めていることから、 本発明者等はこの極小化した触媒微粒子 18が触媒核 5となり、 カーボンナノコイル 1を成長させることは間違いないと 判断している。 従って、 (3 C) では触媒核 5を触媒核 5 (18) と記している 本発明者等は、 ( 3 B) に示される触媒微粒子 18の物質構造を解析するため 、 触媒面に対し X線を照射し、 回折線の強度をディプラクトメータで計測して粉 末 X線解析を行った。 その X線強度分布は、 回折角を 20で計測したとき、 2 Θ が約 39. 6 ° 近傍に第 1強度ピークを有し、 約 46. 3。 近傍に第 2強度ピー クを有することが確認された。 この強度分布を既知の物質強度データと比較した ところ、 触媒微粒子 18の構造は F e 31 n C。.5であることが強く推定された。 従って、 この触媒は組成式が F e31 n C。.5であると判断する。
F e3I nC。.5は F e · I nの炭化物であり、 F e · I n · S n系触媒から形 成されている触媒薄膜が C 2H2と化学反応して炭化されていることが確実となつ た。 Sr F e3I n C。.5の物質内に不純物原子として存在することも分かった このように、 本発明に係る炭化物触媒は少なくとも F e、 I n、 .C力 らなる炭 化物触媒であり、 組成式では少なくとも F e x I nyCzで表される炭化物触媒であ る。 特に、 限定された形では、 組成式が少なくとも F e3I nC。.5で表される炭 化物触媒である。
また添加元素として Snを考慮すると、 本発明に係る炭化物触媒は少なくとも F e、 I n、 C、 Sn力 らなる炭化物触媒であり、 組成式では少なくとも F e x I nyCzSnwで表される炭化物触媒である。 特に、 限定された形では、 組成式が 少なくとも F e3I nC。.5S nw (w〉0) で表される炭化物触媒である。 Snの 添加率が調整できるため、 w〉 0の条件が付されている。
更に、 詳しく述べると、 炭化される前の触媒薄膜 14の組成式は F e3I n S η ίχであり、 S ηの含有率は F eの 1/30であり、 同時に I nの 1/10 である。 従って、 量的にも Snは初めから不純物量程度だけ添加されており、 炭 化物になっても不純物として F e3I nC。.5の中に存在すると考えられる。 この 観点から、 この炭化物は、 Snを含有する場合には、 F e3I.nC。.5Snw (w> 0) と表記される。 組成比 wはゼロより大きければよく、 所望の割合で添加され る。
以上の事実から、 カーボンナノコイル 1を成長させる真の触媒は F e · I n · Sn系触媒が炭素化合物ガスによって炭化されて生じた炭化物、 即ち F e3I n C0.5又は F e3I n C。.5S nw (w> 0) であることが解明された。 従って、 これ らの炭化物を本発明では炭化物触媒と称して、 F e · I n · Sn系触媒と区別す る。 この炭化物触媒の構成元素は I n、 C、 Snのようなホウ素族元素 (3族) や 炭素族元素 (4族) が多く、 炭素族元素に属する Snはカーボンナノコイルの成 長用元素として触媒中に添加されている。 また、 Snが添加されると、 カーボン ナノコイルが高密度に成長することが確認されており、 S nを成長促進用元素と 言ってもよい。
この観点から、 成長促進用元素は、 311以外に3 1、 Geなどの炭素族元素、 B、 A l、 Ga、 T 1.などのホウ素族元素、 N、 P、 As、 Sb、 B iなどの窒 素族元素が利用できる。 また、 ホウ素族元素と窒素族元素の組み合わせでもよい し、 2族のアルカリ土類元素 (B e、 Mg、 Ca、 S r、 B a) と 6族の酸素族 元素 (S、 S e、 Te、 P o) の組み合わせも利用できる。 更に、 その他の成長 促進活性を有した金属元素、 非金属元素なども利用できることは言うまでもない 図 4は炭化物触媒を製造する第 1方法の工程図である。 (4A) では、 基板 1 2の表面に F e . I n · S n系触媒からなる触媒薄膜 14が形成されている。 こ の F e · I n . S n系触媒は、 少なくとも F e、 I n、 Snの 3元素が含まれて いる薄膜であればよい。 例えば、 酸ィ匕物の場合には、 F e酸化物、 I n酸化物、 S n酸化物の混合酸化物から構成され、 組成式では例えば、 F e51 n S η ιχ , F e I η S η ιΟχ等の酸ィ匕物がある。 勿論、 これ以外の化合物でもよいし、 F e · I η · S ηの合金であってもよレヽ。
この触媒薄膜 14の膜厚 tは 10 nm〜数^ mの範囲が適当であるが、 この数 値に限定されるものではない。 膜厚 tが小さいほど後述する触媒微粒子 18の直 径 sは小さくできる。 この触媒薄膜 14の表面に接触するように炭素化合物ガス を矢印 b方向に流通させると、 この炭素ィ匕合物ガスによって触媒薄膜 14が炭化 され始める。
(4B) では、 触媒薄膜 14が炭化されて炭化物の触媒微粒子 18からなる触 媒微粒子膜 16が生成される。 触媒微粒子 18の直径 sは炭化の過程が進行する に従って小さくなる。 従って、 適当な時点で炭素化合物ガスの流通を遮断すれば 、 触媒微粒子 18の直径 sはその時点での大きさで決まる。
触媒微粒子 18の直径 sが変化する理由は次のように考えられる。 触媒薄膜 1 4が酸ィ匕物触媒の場合、 触媒薄膜 1 4が C原子を吸収する過程で膨張し、 O原子 を放出する過程で収縮して粒子化する。 繞いて触媒微粒子 1 8が C原子を吸収す る過程で膨張し、 〇原子を放出する過程で収縮し、 O原子の大量放出によって粒 子直径 sが次第に小さくなつてゆく。 任意の時点で加熱を停止したり、 炭素化合 物ガスの供給を停止すれば、 触媒微粒子 1 8の膨張収縮過程が終了して直径 s'が 決まることになる。
図 5は炭化物触媒を製造する第 2方法の工程図である。 (5 A) では、 基板 1 2の表面に F e · I n · S n系触媒からなる触媒薄膜 1 4が形成されている。 こ の触媒薄膜 1 4は I n · S n系触媒薄膜 1 4 aの上に F e薄膜 1 4 bを形成した 2層触媒薄膜である。 I n · S n系触媒薄膜 1 4 aには、 例えば I n酸化物と S n酸化物の混合酸化物薄膜、 即ち I T O薄膜がある。 この触媒薄膜 1 4の表面に 炭素化合物ガスを矢印 b方向に流通させる。
( 5 B ) では、 炭化物の触媒微粒子 1 8からなる触媒微粒子膜 1 6が生成され る。 2層式触媒薄膜であっても、 炭素化合物ガスによる炭化過程は (4 B ) と同 様に進行する。 その結果、 触媒薄膜 1 4は炭化されて炭化物触媒微粒子 1 8へと 変化する。 触媒微粒子 1 8の直径 sは炭化の過程が進行するに従って小さくなり 、 適当な時点で炭素化合物ガスの流通を遮断すれば、 触媒微粒子 1 8の直径- sは その時点での大きさで決まる。 '
触媒微粒子 1 8の直径 sが変化する理由は図 4と全く同様に考えられるからそ の詳細は省略する。 従って、 任意の時点で加熱を停止したり、 炭素化合物ガスの 供給を停止すれば、 触媒微粒子 1 8の膨張収縮過程が終了して直径 sが決まるこ とになる。
図 4及び図 5における F e · I n · S n系触媒薄膜 1 4の他の作製方法には、 気相法、 液相法、 固相法がある。 気相法には、 物理的蒸着法 (P VD法、 Physic al Vapor Deposition) と化学的気相蒸着法 (C VD法、 Chemical Vapor Deposi tion) が利用できる。 C V D法は化学的気相成長法とも呼ばれる。
P VD法としては、 真空蒸着、 電子ビーム蒸着、 レーザーァプレーシヨン、 分 子線ェピタキシ (MB E、 Molecular Beam Epitaxy) 、 反応性蒸着、 イオンプレ 一ティング、 クラスタイオンビーム、 グロ一放電スパッタリング、 イオンビーム スパッタリング、 反応性スパッタリングなどがある。 MB E法でも、 有機金属原 料 (MO、 Metal Organic) を用いた MOMBEや、 化学線ェピタキシ (CBE 、 Chemical Beam Epitaxy) 、 ガスソースェピタキシ (GSE、 Gas Source Epit axy) が利用できる。
CVD法としては、 熱 CVD、 有機金属 CVD (MOCVD) 、 RFプラズマ CVD、 ECRプラズマ CVD、 光 CVD、 レーザー CVD、 水銀増感法などが め€>。
液相法には、 液相ェピタキシ、 電気メツキ、 無電解メツキ、 塗布法がある。 ま た、 固相法には、 固相ェピタ シ、 再結晶法、 グラフォェピタキシ、 レーザービ ーム法、 ゾルゲル法などがある。
図 6は溶液法を用いて炭化物の触媒微粒子 18を製造する第 3方法の工程図で ある。 この溶液法は、 基板法よりも大量に触媒微粒子 18の粉体を製造できる点 に特徴を有している。
(6 A) では、 容器 20の中に溶媒 22が貯留され、 この溶媒 22の中に F e 化合物と I n化合物と Sn化合物が添加される。 溶液を混合攪拌すると、 これら の 3種の化合物が均一に混ざり合ってコロイドィ匕し、 無数のコロイド粒子 24力 S 溶液中に形成される。
コロイド化過程では、 前記 3種の化合物が物理反応又は化学反応により中間体 を形成し、 この中間体がコロイド粒子 24を形成する。 化合物の添加濃度を調整 することにより、 コロイド粒子 24の粒径は自在に制御される。 過剰なコロイド 粒子 24が容器 20の底に沈殿する場合もある。
( 6 B ) では、 溶媒 22からコロイド粒子 24が分離され、.固形分 27として 加熱容器に投入される。 この固形分 27を加熱装置 28により酸素雰囲気中で焼 成すると、 F e · I n · Snの酸化物微粒子 26が生成される。 コロイド粒子 2 4の粒径を制御することによつて酸化物微粒子 26の直径を制御することが可能 である。 コロイド粒子 24の粒径制御は、 例えば濃度や温度を調節することによ つて実現できる。
(6C) では、 酸化物微粒子 26から炭化物触媒微粒子 18が生成される。 焼 成炉 29は加熱装置 36により適当な焼成温度に加熱される。 ノズル管 30から 矢印 c方向に酸化物微粒子 26が投入される。 ガス供給管 32から炭素化合物ガ スとキヤリァガスの混合ガスが矢印 e方向に導入される。
焼成炉 29の中では、 酸化物微粒子 26が炭素化合物ガスによって炭化される 。 焼成温度は 300〜 1200 °Cが好ましく、 炭化時間は数秒から数 10分に調 整される。 炭化時間は炭素化合物ガスの濃度によっても調整できる。 キャリアガ スと炭素化合物ガスは前述したガス種から選択される。 ,
焼成により生成された炭化物触媒微粒子 18は落下して、 焼成炉 29の底に堆 積される。 反応後のガスは吐出管 34から矢印 f方向に排出される。 このように して、 (6D) に示されるように、 F e3I nC0.5や F e3I nC0.5Snx (x >0 ) などの炭化物触媒微粒子 18が製造される。
この炭化物触媒微粒子 18の直径 sは、 コロイド粒子 24の粒径に依存し、 1 nm〜l 0◦ zrnの範囲に調整される。 直径 sが小さいほど、 カーボンナノコィ ル 1のチューブル直径 dも小さくなり、 小さなサイズのカーボンナノコイル 1が 製造できる。
この方法で使用される F e化合物、 I n化合物、 Sn化合物としては、 公知の 無機化合物 ·有機化合物が利用される。 例えば、 塩化鉄、 硫酸鉄、 硝酸鉄、 臭化 鉄、 鉄カルボニル、 塩化インジウム、 硫酸インジウム、 硝酸インジウム、 カルボ ン酸インジウム、 インジウムァセチルァセトナート、 塩化スズ、 硫酸スズ、 硝酸 スズ、 カルボン酸スズなどがある。 これら以外の公知の各種化合物も用いられる 。 特に、 有機化合物を用いると、 焼成によって有機物が燃焼により完全に除去さ. れ、 純粋な F e · I n · Sn炭化物触媒を製造できる。
F e化合物と I n化合物の混合溶液、 又は F e化合物と I ιι化合物と S n化合 物の混合溶液とすることもできるし、 他の成長促進用元素の化合物を添加しても よレ、。 溶液中における総金属イオンの濃度は特に制限されず、 反応が円滑に進行 する濃度であればよい。 通常、 0. 01〜50重量%、 好ましくは 0. 1〜20 重量。/。とすればよい。
溶液形成から焼成までの具体的工程は次のようである。 例えば、 鉄塩、 インジ ゥム塩、 スズ塩のアルカリ性混合水溶液を調製した後、 固形物を分離し、 この固 形物を乾燥し、 必要に応じて粉碎し、 最終的に焼成により炭化して炭化物微粒子 1 8が製造される。 また、 鉄、 インジウム、 スズの有機ィ匕合物を溶媒に分散し、 加水分解反応などの化学反応により F e · I n · S n系化合物の前駆体を形成す る。 この前駆体を分離し、 乾燥し、 必要に応じて粉碎し、 最終的に焼成炭化して 炭化物微粒子が製造される。
溶液からの固形分の分離は公知の分離方法の全てが利用できる。 乾燥は、 通常 、 室温〜 3 0 0 °C、 好ましくは 5 0〜2 0 0 °Cの範囲で行われ、 粉砕は公知の無 機物質粉碎方法が採用できる。
溶液法により得られる酸化物微粒子 2 6は、 鉄/ィンジゥムの組成比 (モル0 /0 ) が通常 1 0〜 9 9 · 9 9 (モル0 /0) 、 好ましくは 2 0〜 9 9 (モル0 /0) である 。 スズ /インジウムの組成比は 0〜 3 0 (モル%) であり、 好ましくは 0 . 1〜 1 0 (モル。 /0) である。 最終的に生成される炭化物触媒微粒子 1 8の直径 sは 1 n m〜 1 0 0 ;z mであり、 コロイド粒子径などの溶液パラメータに依存する。 炭化物触媒の他の製造方法として、 スパッタリング法が利用される。 少なくと も F e、 I nを含有したターゲットをイオンによりスパッタリングしてターゲッ ト微粒子を飛び出させる。 このターゲット微粒子を加熱状態下で炭素化合物ガス と接触反応させて炭化し、 少なくとも F e、 I n、 Cの元素を含有した炭化物触 媒が製造される。 他の元素として S nをターゲットに添加することによって、 少 なくとも F e、 I n、 C、 S nの元素を含有した炭化物触媒が製造される。 炭化物触媒の更に他の製造方法として、 気相反応法が利用される。 加熱状態下 にある反応槽の中で少なくとも F e化合物ガスと I n化合物ガスを炭素化合物ガ スと接触反応させて炭化し、 少なくとも F e、 I n、 Cの元素を含有した炭化物 触媒の微粒子を製造する。 気相反応法では、 公知の気相反応技術が利用できる。 他の元素ガスとして S n化合物ガスを添加すれば、 、 少なくとも F e、 I n、 C 、 S nの元素を含有した炭化物触媒が製造される。
次に、 本発明の炭化物触媒を使用したカーボンナノコイルの製造方法について 説明する。 このカーボンナノコイル製造方法の第 1の基本原理は、 少なくとも F e、 I n、 Cを含有する炭化物触媒に炭素ィヒ合物ガスを接触させ、 加熱状態下で この炭化物触媒により前記炭素化合物ガスを分解しながらカーボンナノコイルを 成長させることである。 炭化物触媒に炭素化合物ガスを加熱下で接触させるだけ で、 カーボンナノコイルを大量生産できる利点がある。 炭化物触媒の微粒子を用 いれば、 力一ボンナノコイルのサイズ制御を行える。
第 2の基本原理は 2段階製造方法である。 第 1工程で、 少なくとも F e、 I n を含有する触媒前駆物質を加熱状態下で炭素化合物ガスと接触させて少なくとも F e、 I n、 Cを有する炭化物触媒を形成する。 この第 1工程に連続して、 第 2 工程で炭化物触媒により加熱状態下で炭素化合物ガスを分解してカーボンナノコ ィルを成長させる。 第 1工程と第 2工程が連続して行われ、 触媒前駆物質は炭化 物触媒に変化し、 続いてカーボンナノコイルが成長を始める。 出発物質が触媒前 駆物質である点で、 前述した第 1基本原理と異なるだけである。 以下に、 具体的 なカーボンナノコイル製造方法を説明する。
第 1基本原理において、 F e、 I n、 C以外に他の元素として S nを添加した 炭化物触媒を使用すると、 カーボンナノコイルの高効率成長が可能になる。 また 、 第 2基本原理においても、 触媒前駆物質に他の元素として S nを添加すると、 同様にカーボンナノコィルの高効率成長が可能になることは云うまでもない。 図 7は炭化物触媒微粒子 1 8を用いたカーボンナノコイルの第 1製法の工程図 である。 ( 7 A) では、 基板 1 2に炭化物触媒微粒子 1 8を塗着して触媒微粒子 膜 1 6が形成される。 この基板 1 2を適温に'加熱しながら炭素化合物ガスをキヤ リアガスと共に矢印 b方向に流通させる。
( 7 B ) では、 炭化物触媒微粒子 1 8が触媒核 5になって無数のカーボンナノ コイル 1が基板 1 2上に成長する。 カーボンナノコイル 1を成長させた後、 基板 1 2からカーボンナノコイル 1をスクレーパなどで搔き落としてカーボンナノコ ィル 1を回収する。
図 8は F e · I n · S n系触媒薄膜 1 4から出発するカーボンナノコイルの第 2製法の工程図である。 (8 A) では、 基板 1 2に F e · I n · S n系触媒薄膜 1 4を形成する。 この基板 1 2を適温に加熱しながら炭素化合物ガスをキャリア ガスと共に矢印 b方向に流通させる。
( 8 B ) では、 炭素化合物ガスにより F e · I n · S n系触媒薄膜 1 4が炭ィ匕 されて、 炭化物の触媒微粒子 1 8が形成され、 基板 1 2に触媒微粒子膜 1 8が形 成される。 F e · I n · S 11系触媒薄膜 1 4から触媒微粒子膜 1 8への炭化過程 は数秒から数 1 0分の間に生起する。 この炭化時間は炭素化合物ガスの流量や濃 度、 及び加熱温度に依存する。
( 8 C) では、 触媒微粒子膜 1 6の形成に連続して、 炭素化合物ガスを矢印 b 方向に流通させると、 触媒微粒子膜 1 8により無数のカーボンナノコイル 1が基 板 1 2上に成長する。 触媒微粒子 1 8がカーボンナノコイル 1の触媒核 5になつ ていることが図示されている。
図 9は炭化物触媒微粒子 1 8を浮遊させてカーボンナノコイル 1を製造す ό第 3方法 (流動製造法) の概略説明図である。 このカーボンナノコイル製造装置 2 は、 反応槽 4の外周に加熱装置 6を配置して、 反応室 8が画成されている。 反応 槽 4の左端には噴霧ノズル 4 0が配置されている。
炭素化合物ガスがキヤリァガスと共に矢印 a方向に流通している。 この炭素ィ匕 合物ガスの中に噴霧ノズル 4 0力 ら炭化物触媒微粒子 1 8力、らなる粉体を矢印 h 方向に噴霧する。 空間中に拡散した触媒微粒子 1 8が触媒核 5となってカーボン コィノレ 1が成長する。, キヤリ ァガスの流れに乗って触媒微粒子 1 8が流動し .の流動過程でカーボンナノコィ.ル 1が成長し、 図示しない回収装置でカーボ コイル 1は回収される。
図 1 0は噴霧された酸化物微粒子 2 6から触媒微粒子 1 8を形成して力一ボン ナノコイル 1を製造する第 4方法 (流動製造法) の概略説明図である。 このカー ボンナノコイル製造装置 2は図 9と同様であるから相違点だけを説明する。 反応 室 8は触媒微粒子形成領域 Xとカーボンナノコィノレ形成領域 Yから構成され、 両 領域を加熱するため加熱装置 6は図 9よりも長く配置されている。
炭素化合物ガスがキヤリァガスと共に矢印 a方向に流通される。 この炭素化合 物ガスの中に噴霧ノズル 4 0から酸化物微粒子 2 6が噴霧される。 この酸ィ匕物微 粒子 2 6は触媒微粒子形成領域 Xで炭素化合物ガスにより炭ィヒされ、 炭化物触媒 微粒子 1 8が形成される。
この炭化物触媒微粒子 1 8はカーボンナノコイル形成領域 Yに浮遊状態で移動 する。 この領域 Yで炭化物触媒微粒子 1 8が触媒核 5となってカーボンナノコィ ル 1が成長する。 キャリアガスの流れに乗って触媒微粒子 1 8が流動し、 この流 動過程でカーボンナノコイル 1が成長し、 図示しない回収装置でカーボンナノコ ィル 1は回収される。
前述した基板法や流動法の他に、 攪拌法がカーボンナノコイル製造方法として 利用される。 この方法では、 炭化物触媒の微粒子を反応槽に堆積させ、 この堆積 した触媒微粒子を攪拌しながら炭素化合物ガスを分解してカーボンナノコイルを 攪拌状態下で成長させることができる。
更に具体的に説明すると、 例えば炭化物触媒微粒子の粉末をロータリ一キルン の中に堆積させておき、 炭素化合物ガスを流通させながらロータリーキルンを回 転させると、 触媒粉末が攪拌状態となり、 触媒微粒子を触媒核としてカーボンナ ノコイルを大量生産することができる。 攪拌方法としては、 回転方法、 振動方法 、 その他の公知の方法が採用できる。
[実施例 1 : F e · I n · S n酸化物薄膜からのカーボンナノコイルの製造]
S i基板の (001) 面に膜厚が 200nmの F e ' I n ' S n酸化物薄 B莫を 形成した。 図 2に示されるカーボンナノコイル製造装置により、 この酸化物薄膜 を出発触媒として約 700°Cでカーボンナノコイルを製造した。 原料ガスである 炭素化合物ガスとして 60 s c cmの C2H2ガスを使用し、 キャリアガスとして 200 s c cmの H eガスを用いた。
ガスを流通させて、 1秒後、 5秒後、 10秒後、 1分後、 , 5分後及び 30分後 に基板を取り出し、 基板表面の状態を走査型電子顕微鏡 (SEM) で観察した。 各基板表面の状態から、 Fe ·' I n · Sn酸ィヒ物薄膜の変化やカーボンナノコィ ルの成長度が確認された。
図 1 1は 5万倍で撮影された F e · I n · S n酸ィ匕物薄膜の S EM像である。 1秒後で F e · I n · S n酸化物薄膜の粒子化が始まり、 5秒後及び 10秒後で はほぼ粒子化が完成されていることが分かる。 この粒子が F e · I n · Sn酸ィ匕 物薄膜が炭化されて形成された炭化物触媒微粒子である。 粒子形状は球状、 菱形 状などの各種形状が混在している。
1秒後の触媒微粒子が、 5秒後及び 10秒後の触媒微粒子よりサイズが大きく なっているのは、 次のような理由であると考えられる。 1秒間の CVD成長で、 C 2H2から分解された Cが触媒中に吸収され、 この吸収によつて触媒微粒子の体 積が膨張する。 その後、 oを放出して収縮し、 触媒微粒子の体積が小さくなる。 この過程を繰り返しながら、 触媒微粒子のサイズは炭化が完了するまで縮小し、 一定サイズで縮小化が停止すると考えられる。
約 1分後には、 前記炭化物触媒微粒子を触媒核としてカーボンナノコイルが成 長を始める。 1分後ではサイズの小さなカーボンナノコイルが成長し、 5分後に なるとサイズの大きなカーボンナノコイルが成長していることが観察される。 更 に、 30分後になると、 コイル長の長いカーボンナノコイルが成長していること が確認された。 . 図 12は 10秒後の触媒微粒子の粉末 X線回折強度図である。 触媒微粒子が炭 化物であるかどうかは粉末 X線解析によつて決定された。 最上位の強度分布が実 測された回折強度のラインプロフアイルである。 回折角を 20で示すと、 20が 39. 6° 近傍に第 1強度ピーク、 46. 3° 近傍に第 2強度ピークが存在する 。 39, 6° 近傍を約 40° 近傍と称している。 また、 強度比は、 第 1強度ピー ク :第 2強度ピーク =7. 0 : 2. 7である。
前記ラインプロファイルの下に、 既知物質の強度図が描力れている。 7種の既 知物質は、 F e3C、 C (グラフアイト) 、 F e203、 I n23、 F e7C3、 F e C 及ぴ F e3I nC。.5である。 ラインプロファイルと最も一致するのは、 最下段の F e3I nC。.5であることが分かる。 つまり、 ラインプロファイルの第 1ピーク と第 2ピークを説明できるのは F e3I nC 5だけである。 また、 F e3I nC0.5 の強度比は、 第 1強度ピーク :第 2強度ピーク =7. 0 : 3. 0である。 強度測 定の誤差を考えると、 触媒微粒子は組成式が F e 31 n C 5で与えられる物質あ ることと判断される。
[実施例 2 : 1 s c cmの C2H2による炭化物触媒微粒子の形成]
実施例 1では、 原料ガスである C2H2ガスを 6 O s.c c mで供給していたため 、 炭化物触媒微粒子の成長速度が速すぎた。 そこで、 C2H2ガスを 1 s c cmで 供給して、 F e 31 n C。.5による回折強度の第 1強度ピークがどのように時間経 過に従って増大してゆくかを検討した。 C2H2ガスは 1 s c cm、 Heは 50 s c cm、 加熱温度は 700 °Cに設定さ れた。 図 12と全く同様の F e · I n · S n酸化物薄膜を形成した基板が反応室 に配置された。 この基板に対し X線を照射し続けて、 第 1ピークが得られる 2 Θ = 39. 62° (約 40° 近傍) の回折強度が時間経過に従って計測された。 図 13は 20が 39. 62° (約 40° 近傍) にある回折強度の第 1強度ピー クの時間経過図である。 この第 1ピークの挙動は F e3I nC。.5が成長してゆく 過程を示している。 言い換えれば、 第 1ピークの時間経過により、 触媒微粒子の 成長速度が観察されるのである。
図 13から分かるように、 C2H2ガスを流通させてから 125秒後に第 1ピー クは急激に立ち上がり、 135秒後にほぼ最大に達した。 この段階で C2H2ガス の供給を停止して、 第 1ピークの増大を停止させた。 約 10秒間で一気に F e3 I n C 5からなる炭化物触媒微粒子が形成されることが分かった。
[実施例 3 : F e 31 n C。.5の触媒微粒子の粒径制御]
F e3I nCQ.5の触媒微粒子の粒径 (直径 s ) を制御するには、 成長条件を変 化させればよい。 この実施例 3では成長温度、 即ち基板の加熱温度 (反応室の温 度) を 650 °Cと 700。Cに変化させて、 炭化物触媒微粒子を形成し、 この炭ィ匕 物触媒微粒子を用いてカーボンナノコィルを成長させた。
C2H2ガスは 1 s c cm、 Heは 50 s c cm, 加熱温度は 650°C及ぴ 70 0°Cに設定された。 図 12と全く同様に、 F e · I n · S n酸化物薄膜を出発触 媒とする基板が反応室に配置された。 この基板に Fe3I nC 5の触媒微粒子を 成長させ、 この基板を用いてカーボンナノコイルを成長させた。
図 14は 650。Cにおける炭化物触媒微粒子と成長したカーボンナノコイルの 走査型電子顕微鏡像である。 また、 図 15は 700°Cにおける炭化物触媒微粒子 と成長したカーボンナノコィルの走査型電子顕微鏡像である。
図 14と図 15の比較から分かるように、 650°Cで形成された炭化物触媒微 粒子の直径 sは 700°Cよりも小さくなる。 つまり、 より低温で形成された炭化 物触媒微粒子の直径は小さくなることが確認された。 従って、 反応室の温度を可 変することにより、 炭化物触媒微粒子の直径 sを自在に可変制御することが可能 になった。
また、 炭化物触媒微粒子の直径 Sが小さレ、方が、 サイズの小さな力
コイルを製造できるはずである。 図 1 4及び図 1 5を比較すると、 6 5 0°Cの触 媒の方が、 サイズの小さな力一ボンナノコイルを成長させることが分かる。 この ことから、 炭化物触媒微粒子の直径 sが小さい方が、 サイズの小さなカーボンナ ノコィルを製造できることが実証された。
[2] (遷移金属元素、 Sn、 C) の炭化物触媒の説明
この第 2節では、 遷移金属元素の代表例として F eを取り上げ、 (遷移金属元 素、 S n、 C) 炭化物触媒の一例として (F e、 S n, C) 炭化物触媒を説明す る。 F eの替わりに、 C oや N iなどの遷移金属元素を用いても同様の結果が得 られる。 .
[実施例 4 : F e— S n— Cの炭化物触媒微粒子による CNC成長]
まず、 (F e、 S n、 C) 炭化物触媒を作製した。 炭化物触媒の詳細は第 1節 で説明したから、 ここでは重複を避け、 異なる部分だけを説明する。 まず、 0. ■ 1 m o 1 / 1の濃度の塩ィ匕鉄及ぴ塩ィ匕スズの水溶液を 3 : 0. 1の割合で混合す る。 この混合水溶液に、 0. 3mo 1 / 1の濃度の炭酸ァンモニゥム水溶液を適 量滴下し、 中和反応により鉄及ぴスズの水酸ィヒ物の混合沈殿物を調製する。 この 混合沈殿物を 400でで 2時間焼成することにより、 (F e、 S n、 0) の酸ィ匕 物触媒が合成される。
この粉体触媒を用いて、 成長温度: 70 0°C、 ヘリウム 2 50 s c cm、 ァセ チレン 1 0 s c c m、 成長時間 3 0分の条件で CVDを行った。 その結果、 触媒 上にカーボンナノコイルが成長した。 図 (1 6A) はカーボンナノコイルが成長 した触媒の電子顕微鏡像である。 従って、 (F e、 S n、 O) の酸化物触媒から カーボンナノコイルが成長することが分かる。
成長段階で、 (F e、 S n、 O) 酸ィヒ物触媒が他の触媒に変化しているかどう かを確認するために、 CVDを行いながら、 (F e、 S n、 O) 触媒の X線回折 パターンを測定した。 このときの CVD条件は、 成長温度: 70 0°C、 ヘリウム 50 s c cm, アセチレン 1 s c cmである。
図 (16B) は、 アセチレンガスを反応炉に導入して 3分経過した時の (F e 、 Sn、 O) 触媒の X線回折パターン図である。 炭化鉄 F e3C、 酸化鉄 F e O に加えて、 2 Θ=40。 近傍に第 1ピーク (最大ピーク) を有する F e 3SnC のピークがみられた。 このピークは、 カーボンナノチューブが鉄角虫媒により成長 する過程では見られないピークである。 このことから、 (Fe、 Sn、 O) 酸ィ匕 物触媒が成長過程で F e 3 S n Cの炭化物触媒に変化していると考えられる。 更に、 塩化鉄 0. 03mo 1ノ 1、 塩化スズ 0. 01 mo 1/1の濃度の金属 塩化物水溶液 200mlに酸ィ匕マグネシウム粉末 4 gを反応させ、 F eと S nの 複合水酸化物を共沈させた。 この沈殿物をろ過 ·洗浄'乾燥し、 F eとSnとM gの複合水酸化物、 或いは酸化物粉末を得た。 この粉末触媒2 gを回転 CVD反 応炉を用いて炭化させた。 '
炭化の条件は、 成長温度 675。C、 ヘリウム 400 s c cm、 アセチレン 60 s c cm, 炉回転数 1 r p m、 炭化時間 10分である。 この後、 濃度 17. 5% の塩酸でスズ等の金属を取り除き、 洗浄'ろ過して炭化物触媒とした。 図 (17
A) は、 生成した炭化物の X線回折パターン図である。 2 Θ=約 40° の位置に 第 1ピークが現れており.、 F e3SnCであることが確認された。
また、 この粉末触媒 0. 1 gを 5 m 1のァセトンに分散させた後、 S i基板上に 展開し、 小型横型炉で 700°C、 アセチレン 60 s c cm、 ヘリウム 200 s c cmで 10分間 CVDを行った。 生成物を SEMで観察し、 その結果は図 (17
B) に示されている。 カーボンナノコイルが成長していることが分かる。 このよ うに、 図 16及ぴ図 17から (F e、 Sn、 C) の炭化物触媒は有効なカーボン コィル製造用触媒であることが実証された。
[3]金属触媒の説明
この第 3節では、 (遷移金属元素、 Al、 Sn) 触媒、 (遷移金属元素、 C r 、 Sn) 触媒及び (F e、 I n、 Sn) 触媒について説明される。 これらの触媒 は金属触媒であり、 炭化物触媒ではな 、。 遷移金属元素は前述した通りであり、 目的に応じて適切な遷移金属元素が選択される。 以下では、 遷移金属元素の代表 例として F eを取り上げ、 その詳細を説明する。
本発明者等はカーボンナノコイルの大量合成につき鋭意検討した結果、 既に開 発した鉄 ·ィンジゥム ·スズ系の混合触媒を基に、 鉄 ·スズのベース組成に何れ かの要素を加えることによって新たな触媒材料を創生できるかを検討した。 ま た、 力一ボンナノコィルの成長に最適な上記触媒中の 3つの金属元素の組成比 の検討も行った。
本実施形態においては、 鉄 ·ス 系組成にインジウム I n、 アルミニウム A1 、 クロム Crの 3種類の元素を加えた 3成分系のカーボンナノコイル製造用触媒 の具体例を実験結果に基づいて以下に説明する。
[実施例 5 : F e— I n— S n、 F e -A 1—S n及び F e一 C r一 S nによる CNCの製造]
(混合触媒の精製)
鉄 ·ィンジゥム ·スズ系の混合触媒、 鉄 ·アルミニウム ·スズ系の混合触媒及 び鉄 'クロム 'スズ系の混合触媒を共沈法によって精製する。 例えば、 鉄'イン ジゥム 'スズ系の混合触媒の場合、 塩化鉄 FeCl3、 塩化インジウム InCl3、 お よび塩ィヒスズ SnCl3を水に溶かし、 Feイオン、 Inイオン、 Snイオンの濃度が同 じ (たとえば、 0. lmol/1) 水溶液を作る。 ついで、 これらの水溶液を適当な 比率で混合し、 3つの金属イオンの混合水溶液を作る。 この混合水溶液に、 アル カリ溶液 (例えば、 炭酸アンモ-ゥム (NH4) 2C03の水溶液) を入れ中和させると 、 溶解液中の金属成分が還元され、 析出される。 この還元作用によって、 金属水 酸化物、 つまり、 Fe (OH) 3、 In (OH) 3及び Sn (OH) 3が分離され、 沈殿物として溶液容器底部に堆積する。 この沈殿物は上記の金属水酸化物が凝集 した混合物であり、 溶液のろ過処理によって沈殿物を回収する。 回収した沈殿物 を 400°Cで焼成することによって酸ィ匕物触媒 Fe—. In— Sn— Oが得られる。 同様に、 鉄 ·アルミニウム ·スズ系の混合触媒の場合、 0. lraol/1の硝酸アルミ -ゥム Al (N03) 3、 塩化鉄 FeCl3、 塩化スズ SnCl3の水溶液を作成して、 これ らの水溶液を適当な比で混合し混合水溶液を作成し、 炭酸ァンモ-ゥム水溶液を 用いて触媒成分を沈殿させ、 それの回収、 焼成を経て酸化物触媒 Fe— A1— Sn PC觀 00機 7797
一 Oを得る。 また、 鉄 'クロム ·スズ系の混合触媒の場合では、 0. lmol/1の硝 酸クロム Cr (N03) 3、 塩化鉄 FeCl3、 塩化スズ SnCl3の水溶液を作成して、 こ れらの水溶液を適当な比で混合し混合水溶液を作成し、 炭酸ァンモユウム水溶液 を用いて触媒成分を沈殿させ、 それの回収、 焼成を経て酸ィ匕物触媒 Fe— Cr一 S n— Oを得る。 なお、 原料の各硝酸化合物や塩化化合物の混合比 (モル比) を変 えることによって、 組成比が少しずつ異なる混合触媒をいくつ力精製し、 次の力 ーボンナノコィル生成実験に供した。
(CVD法によるカーボンナノコイルの生成)
上記 3種類の混合触媒、 Fe—In—Sn—0、 Fe—Al—Sn—0、 Fe— Cr— Sn— Oを用いたカーボンナノコイル (以下、 カーボンナノコイルを CNCと称 する。 ) の生成実験を説明する。 -
CNCの製造には、 炭素含有化合物ガスの CVD法.を用いる。 本発明において は、 炭素含有化合物としてメタンゃェタンをはじめ、 各種のアルカン、 アルケン 、 アルキン、 芳香族炭化水素等が利用でき、 中でもアセチレン、 ァリレン、 ベン ゼン等が有効で、 特にアセチレンは高効率である。 また、 加熱温度は炭素含有ィヒ 合物が触媒の作用で分解する温度以上が効果的である。 アセチレンの熱分解温度 は約 400度であるが、 アセチレンを用いた CNCの合成温度は約 600〜約 8 00°Cが適当である。 しかしながら、 合成温度はこの温度に限定されるものでは なく、 炭素含有化合物の触媒分解温度以上であれば、 合成効率を勘案しながら自 由に設定できるものである。
図 18は本実施形態にぉレ、て使用する C N Cの製造装置の要部概略構成図で ある。 この製造装置 101は大気圧下に置かれたフローリアクターであり、 反応 室 102は直径 3 Omm、 長さ 700 mmのクォーツチューブ 3で囲まれている 。 クォーツチューブ 103の中央部の外周には長さ 45 Ommのチューブ状ヒー ター 104が配置され、 反応室 2の中央には長さ約 250 mmに亘る等温領域 1 05が設定されている。 この等温領域 105に共沈法により作成した触媒 106 を載置した基板 (クォーツまたはシリコン) 107が配置されている。
上記構成のカーボンナノコイル (CNC) の製造装置において、 まず、 クオ一 ツチユープ 103内にヘリゥムガスを 20 Osccmの流量で充填し、 基板 107 上の触媒 106を毎分 20°Cの昇温速度で 700°Cまで加熱した。 このヘリゥム ガスは反応室内で金属が酸ィ匕されるのを防止するために導入された。 700°Cに 到達した後、 アセチレン C2H2を 6 Osccmの流量で供給し、 ヘリウムとァセチ レンの混合ガスの全流量が 260 sccmになるように調節した。 反応時間は約 3 0分に設定され、 その後、 アセチレンを遮断してヘリウムだけをフローさせ、 'こ のヘリゥム雰囲気中で基板 107上の触媒 106は室温にまでゆつくりと冷却さ れた。 触媒 106の上には多数のカーボンナノコイル 108 (CNCとも云う) が生成された。
反応後の触媒は走査型電子線微鏡 (SEM S— 4500日立) と SEM附属のェネル ギー分散 X線解析装置 (EDX) で分析された。 本実施形態において以下に示す S EM像はすべて、 10000倍以上の倍率で行われている。 図 19は、 触媒の組 成比、 Fe: In: Sn、 Fe: A1: Sn及び Fe: Cr: Snを 3 : 0.3: 0.1とし たときの生成物の SEM像である。 図 20は、 Inと A1を Feに対して 1/3の 比率で混合した触媒組成のときの S EM像である。 ( 19 a)と( 20 b)は F e— I n 一 Sn—O触媒、 (1 9b)と(2 Oa)は Fe— A1— Sn— O触媒、 (19c)«Fe—C r~Sn— O触媒を使用したときの CNCの存在を示す。 (19d)は比較のために 、 In、 Al、 Crを含有しない鉄とスズだけの Fe— Sn— O触媒を使用した場合 である。 これらの SEM像から、 炭素原子の堆積量とコイル生成量から判断して コイル生成率は 95%と推定され、 これらの触媒による製造装置 101を用いた 製法が高効率であることを示す。 - 図 19と図 20における種々の触媒の使用による CNC生成の結果をまとめる と次のようになる。 Crを Inの代わりに用いると、 Inの場合と比較してあま りコイルの生成が見られず、 コイル径ゃチューブ径も大きくなつた。 これは、 C rは炭化鉄中に混合されていると、 炭化鉄を安定させる働きがあるものと考えら れる。 このことと、 CVDを行った後の SEM像を比較すると、 Crを Fe— Sn 一 O触媒に混合することにより、 グラフアイト (カーボン繊維物) の析出が効率 よく起こらなかったために、 他の触媒と比べてチューブ状及ぴコイル状の生成物 ができないと推察される。 一方、 A1を Inの代わりに用いる場合、 Fe— Sn— O触媒を用いたときと比較すると、 卷物状の生成物の数は増えていた。 Fe— In 一 Sn— O触媒による生成物と比較すると、 ?6— 1ー311—0触媒では、 Fe— I n—Sn— O触媒で見られるようなコイル径が比較的大きくてコイルのピッチが 狭いコイルが見られず、 径の小さな二重螺旋状の生成物が多かった。 この傾向は 図 20からわかるように、 In及ぴ A1の鉄に対する比率が大きい時 (Fe : In 又は Al: Sn= 3 : 1 : 0.1) にはさらに顕著であった。
F e— A1— S n— O触媒を用レ、たときにコィル径が大きくピッチの狭レ、コイル が見られなかった原因としては、 コイル生成の 「種」 となる触媒粒子の大きさが 、 Inを用いるときよりも小さくなるからだと推察される。 従って、 Inは触媒 粒子を大きくする傾向があり、 A1を用いた場合にはそれが抑えられていると考 えられる。
( I n、 Al、 Crの最適組成の解明実験)
図 19及び図 20に示した CNC生成実験結果から、 A1及び Cr力 SI nに相 当する有効な触媒要素になると確信し、 これらの元素による最適な触媒組成を見 出すべく種々の組成比による、 製造装置 101を用いた CNC生成実験を行った 鉄とスズだけの混合触媒 F e— Sn-Oにおける有効組成比を調べるための実験 を行った。 Fex— Sny— Oの組成モル比に関し、 (x、 y) の比例配分下で x = •3として、 y値を変えた種々の組成について CNC生成状態を調べた。 図 21は 、 この CNC生成実験結果の一部の S EM像である。 (2 la)は Fe: Sn= 3 : 0 .05、 (2 lc)は Fe: Sn=3 : 0.1、 ( 21 e)は Fe: Sn= 3 : 1の組成比の場合 であり、 (21b) 、 (21d) 、 (2 If) はそれぞれ(21a)、 (21c), (21 e)の 3万倍の拡大像である。 また、 Fex— Iny- S n z— Oの組成モル比に関し、 Fe: In=3 : 1に固定して Snの組成比を種々変化させた実験も行った。 図 2 2は、 この CNC生成実験結果の SEM像である。 (22 a) 〜(22h Fe : In=3 : 1に固定して Snの組成比を 0、 0.03、 0.1、 0.15, 0.3、 0.5、 1、 3と した場合である。 この実験によれば、 Fex— Sny— Oの組成モル比に関し、 ( X、 y ) の比例配分下で X = 3とした場合、 y≤3が必要であり、 また生成効率 の最もよいのは 0く y≤0.15であるという結果が得られた。
上記の、 鉄とスズだけの触媒における鉄とスズとの組成比に関する相対関係結 果を踏まえ、 In、 Al、 Crの最適組成の追求実験を行った。 具体的には、 上記 の F ex— Sny— Oの最適組成比の実験結果、 Fe: Sn= 3 : 0· 1を組成固定情報 として利用する。 まず、 Fex— I ny— Snz— O触媒組成における、 鉄 ·スズに対 する、 インジウムの相対関係を調べるための CNC生成実験を行った。 すなわち 、 Fe : Sn=3 : 0.1に固定して I nの組成比を種々変化させた実験である。 図
23はこれらの CNC生成実験結果の一部の SEM像である。 (23a) 〜(23 g)は Fe : Sn= 3 : 0.1に固定して I nの組成比を 0、 0.05、 0.1、 0.3、 1、 3
、 9とした場合である。 この実験によれば、 Inは、 (x、 y、 z) の比例配分 下で x = 3、 z==0.1とした場合、 y = 9が生成効率の限界となっており、 最も 効率のよい組成は、 0.3≤y^lである。 これらの SEM像からは、 コィノレ径が大 きく、 コイルピッチの狭い生成物が得られる。
次に Fex— Aly— Snz— O触媒組成における、 鉄'スズに対する、 アルミニゥ ムの相対関係を調べるための CNC生成実験を行った。 図 24はこのCNC生成 実験結果の一部の SEM像である。 (24a) 、 (24c), (24e)は Fe : Sn=
3 : 0.1に固定して A1の組成比を 0.3、 1、 9とした場合である。 (24b) 、 (24d)、 (24e)はそれぞれ、 (24a) 、 (24c), ( 24 e)の 5万倍の拡大像 である。 この実験によれば、 (x、 y、 z) の比例配分下で x = 3、 z=0.1と した場合、 y = 1を越えると生成効率が低下し、 y二 9ではコイル状生成物は見 られなレ、。 これらの SEM像からは、 A1は、 Fex— Aly— Snz— Oにおいて、 A1含有の場合、 細かい卷物状のツイストコイルを生じているのがわかる。
また、 Fex— Cry— Snz— O触媒組成における、 鉄 ·スズに対する、 クロムの 相対関係を調べるための C N C生成実験を行つた。 図 25及び図 26はこの C N C生成実験結果の一部の SEM像である。 (25a) は Fe: Sn=3 : 0.1に固 定して Crの組成比を 0.3、 1とした場合である。 (25b) は(25a)の拡大図 である。 図 26は 30000倍の S EM像である。 この実験によれば、 Crは、 Fex— Cry— Snz— Oにおいて、 (x、 y、 z) の比例配分下で x = 3、 z =0. 1とした場合、 y=lにおいては、 触媒の一部分にコイルの成長が見られた。 こ れらの SEM像からは、 Cr含有の場合、 y = 0. 3とすると太い卷物状のコィ ルができ、 y = lとするとピッチの狭いコイルができていることがわかる。
[ 4 ]触媒を担持した多孔性担体触媒の説明
最後に、 前述した炭化物触媒、 金属触媒、 酸化物触媒を用いて、 より効率的に カーボンナノコイルを製造する方法を説明する。 即ち、 これらの触媒を、 無数の 細孔を有する多孔性担体に担持させ、 この触媒を担持した多孔性担体をカーボン ナノコイル製造用触媒とするのである。
本発明者達は、 力一ボンナノコイルを高収率に製造するには 2種類以上の金属 元素の働きが重要であるとの結論を得て、 カーボンナノコイルを高収率に生成す るだけでなく、 その線径の大きさを揃えてカーボンナノコイルの外直径を均一に するため、 カーボンナノコイルの製造方式を想到するに至った。 即ち、 金属化合 物を多孔性担体に担持させた触媒担持体を用いて、 カーボンナノコイルを製造す る方法を提案する。
[実施例 6 :ゼオライト担持触媒による C N C成長]
本発明に用いられる多孔性担体には、 各種の多孔性物質が利用できる。 例えば 、 ゼォライト、 A L P O (アルミノ燐酸塩) 、 S A P O (シリカアルミノ燐酸塩 ) 、 樹脂吸着剤、 多孔性セラミックス、 'モレキラーシーブス、 金属酸化物系多孔 体、 シリカ多孔体及び炭素系多孔体などである。 これら以外にも公知の多孔性物 質などが用いられる。 特に、 高温での焼成にも安定した構造を有するゼォライト が本発明には最適である。 本発明の実施例には Y型ゼォライトを使用した。 図 2 7は Y型ゼォライトの結晶構造図である。 ゼォライトとは結晶性の多孔質 アルミノケィ酸塩の総称であり、 四面体構造を有する (S i〇4) 4及ぴ (A 1 04) 5—からなる基本単位が 3次元的に結合している。 組成比は S i 02 : 9 9 . 6 w t %、 A 1 2 O a : 0 . 4 w t %、 N a 2 Oく 0 . 0 1 w t %で、 通常ゼ オライトは多数の細孔を有し、 その細孔径がほぼ均一な値を有しているので、 分 子の大きさを選別する分子ふるいなどに利用されている。
本発明に用いる触媒としては、 F e · I n · S n系触媒、 F e · A 1 · S n系 触媒、 F e · C r · S n系触媒、 F e · S n系触媒、 C o · S n系触媒又は N i • S n系触媒等の多元素系触媒が利用できる。 F e系触媒としては、 F eを含有 する金属化合物、 即ち鉄酸化物、 鉄有機化合物などである。 例えば、 鉄有機化合 物として、 カルボン酸鉄、 鉄カルボエル、 鉄カルボニル誘導体、 鉄ニトロシル、 鉄二ト口シル誘導体等がある。
I n系触媒としては、 インジウムを含有する金属化合物、 即ちインジウム酸ィ匕 物、 インジウム有機化合物などである。 例えば、 インジウム有機化合物として、 トリメチルインジウム、 トリフエニルインジウム、 ォクチル酸インジウム、 カル ボン酸インジウム等があり、 S n系触媒として、 スズ酸化物、 スズ有機化合物、 例えばトリェチルスズ、 トリメチルスズ、 テトラフヱニルスズ、 ォクチル酸スズ 、 カルボン酸スズ等がある。 C o及ぴ N i系触媒としては、 C o及び N iを含有 する金属化合物、 金属有機化合物がある。 例えば、 コバルト化合物、 コバルト力 ルボニル、 エッケル化合物、 ニッケルカルボエル及ぴそれらの錯体である。 これ らの金属有機化合物の中で、 特に有機溶媒に可溶な金属有機化合物が有用である 。 A 1や C r等の金属元素についても、 上述と同様の金属化合物、 金属有機化合 物が利用できる。
ゼォライト等の多孔性担体に上記複数種の金属元素を含有する金属化合物を担 持させる方法には、 液相法と気相法などがある。 液相法による場合は、 複数種の 金属化合物を溶媒中に溶解させて、 この溶媒中に多孔性担体を浸漬して溶媒を吸 着させる。 吸着させる方法は、 特に制限がなく、 浸漬による単なる自然吸着など の様々な方法を用いることができる。 例えば、 イオン交換性の多孔性担体では、 上記金属元素の無機塩や有機塩をィオン交換して、 多孔性担体に吸着させること ができる。 また、 非イオン交換性の多孔性担体では、 自然吸着によることができ る。 吸着を効率よく行うため、 溶液を攪拌したり、 超音波処理を行ったりホモジ ナイザーやアトマイザ一で処理してもよい。 溶媒を吸着した多孔†生担体は、 自然 乾燥後焼成されて複数種の金属元素からなる触媒担持体を形成する。 焼成温度は 4 0 0〜 7 0 0 °Cで焼成時間は約 1時間が適当である。 酸化雰囲気中で焼成する と、 有機物は燃焼散逸して金属化合物は金属酸ィ匕物に変化する。 非酸化雰囲気中 の焼成では、 有機物が除去されて細孔中で金属へ変化する等、 種々の金属物等が 細孔中で生成される。 本発明に用いられる有機溶媒として、 アセトン、 トルエン、 アルコール等があ る。 特に、 F e、 I n、 S n、 C o、 N i、 A l、 C r等の金属元素を含有する 有機化合物を溶解させる有機溶媒が有用である。
気相法による場合は、 上記複数種の金属元素を含有する金属化合物ガスを処理 室内に導入して、 処理室内に配置されたゼォライト等の多孔性担体に吸着させる 。 前記金属化合物ガスを吸着させた多孔性担体を自然乾燥後焼成して、 複数種の 金属元素からなる触媒担持体を形成する。 金属化合物ガスとしては、 上記金属元 素を含有する無機物及ぴ有機物からなる混合ガスがある。 例えば、 上記金属元素 の無機塩、 有機塩等のガスが利用できる。 この混合ガスを気相法で吸着させるに は、 処理室内の物理条件を適当に調整して容易に吸着させれる。 特に加圧、.加熱 等が有効である。
次ぎに、 触媒を担持させたゼォライト等の触媒担持体を用いてカーボンナノコ ィルを生成する方法を説明する。 まず、 反応器に前記触媒担持体を配置して、 窒 素、 ヘリウム、 アルゴンなどの不活性なキャリアガスを流通させながら、 反応器 を所定の温度まで加熱する。 所定の温度に達したら、 上記キャリアガスと共に炭 素含有ガスを流通させる。 炭素含有ガス流量は触媒 1 gについて 1 0 0〜 1 0 0 0 c m3が望ましいが、 適宜調整することができる。 炭素含有ガスの流通時間は 使用されるガスにより異なるが、 例えば 5〜 1 0 0分程度であり、 この反応時間 も自在に調整可能である。 導入される炭素含有ガスとして、 メタン、 ェタン、 各 種のアルカン、 アルケン、 アルキン、 芳香族炭化水素等が利用でき、 特にァセチ レン、 ァリ レン、 ベンゼン等が有効である。 中でも、 アセチレンは高収率である 上記炭素含有ガスを熱分解させる加熱温度は、 炭素化合物ガスが触媒の作用で 分解する温度以上に設定されている。 アセチレンを用いたカーボンナノコイルの 合成温度は、 例えば約 6 0 0〜8 0 0 °Cが選択されるがこの温度範囲に限定され るものでなく、 炭素含有ガスの触媒分解温度以上であればよく、 合成効率を勘案 しながら自由に設定できる。
反応終了後は、 反応器に前記キャリアガスを流通させて室温まで冷却する。 反 応器から多孔性担体を取り出し、 多孔性担体からカーボンナノコイルを分離する 。 分離する方法には種々あるが、 例えばフッ化水素酸、 塩酸、 硝酸、 水酸化ナト リゥム水溶液などに触媒担持体を浸漬し、 多孔性担体を溶解してカーボンナノコ ィルを取り出す等の方法がある。 この様にして、 多孔性担体に複数種の金属触媒 や金属酸ィヒ物触媒などを担持させ、 カーボンナノコイルを生成すると、 線径が均 一でコイル径の揃ったカーボンナノコイルを高収率に、 しかも簡便に量産でぎる
[実施例 6-1 :焼成温度 650 °C]
ゼォライトは、 東ソー製の HS Z— 39 OHU Aのゼオライトを使用し、 モル 比 (S i 02/A 1203) は 200以上、 比表面積 (BET) は 66 OmVg、 平均粒子径 (D 50 ) は 6. 5 ^m, 細孔分布は 0. 2 n m及ぴ 10 n mにピ一 クを有している。 このゼォライト 0. 5 gを秤量し、 セラミックボードに広げる ように入れ、 100°Cで 30分間自然乾燥させる。 F e (Ν03) 3 · 9Η20 が 151. 94 g、 I n (N03) · 3Η20が 42. l l g、 SnC204 が 1. 30 gをィオン交換水 600mlに溶解させた溶液を調製する。 この溶 液 4 Om 1中に前記ゼォライト 0. 5 gを投入し、 超音波で 30分間攪拌する。 これを 24時間放置しゼォライトを沈殿させる。 上澄み液を除去し、 沈殿したゼ オライトと溶液をスポイトで、 セラミックボードに取り出し自然乾燥させる。 自 然乾燥させたゼォライトを再度 100°Cで、 30分間空気中で乾燥させ、 その後 ヘリゥムガス中で 650°C, 1時間焼成した。 この焼成により F e I n S n酸ィ匕 物触媒をゼォライトの表面及び細孔中に担持させた。
この焼成したゼォ'ラィトを乳鉢で粉砕し、 粉砕物 0. 02 gをエタノール 3 g に投入し、 超音波で 15分間分散させる。 これをシリコン基板に滴下したものを クォーツチューブ内に配置し、 ヘリゥムガス 200 s c cmを流通させ、 昇温速 度 100 °C/ 5分でシリコン基板近傍の温度を 700 °Cまで上昇させた。 700 °C (キープタイム: 10分間) に到達した後、 アセチレンを 60 s c cmの流量 で 10分間流通させた。 その後、 アセチレンを遮断してヘリウムだけを流通させ
、 室温まで冷却させた。
図 28は、 650°Cで焼成された触媒担持体 (ゼオライト) により形成された カーボンナノコイルの走查型電子顕微鏡図 (倍率 1 0万倍) である。 生成された 繊維物の線径は、 写真から 2 0〜 2 5 n mであることが判明した。 成長した多数 のカーボンナノコイルの線径は同等サイズであり、 コイル径もほぼ均一であるこ とが確認された。
図 2 9は、 使用されたゼォライトの細孔分布図である。 縦軸に 1 gあたりの表 面積 ( s q / g ) を示し、 横軸は半径 (A) を示す。 この図から考えると、 細孔 径が半径 1 0 n m付近の細孔に触媒が集中的に担持されて、 カーボンナノコイル が形成されたものと考えられる。 小さい方のピークに相当する細孔半径 0 . 2 n mの細孔には触媒の担持は確認できなかった。
[実施例 6 - 2 :焼成温度 7 0◦ °C]
実施例 1と同様の組成 ·方法によりゼォライトに触媒を担持させた。 また、 実 施例 1と同様の方法で乾燥し、 乾燥したゼォライトをヘリゥムガス中において 7 0 0 °Cの温度で 1時間焼成した。 この触媒担持体を用いて、 実施例 1と同様の方 法でカーボンナノコイルを生成した。
図 3 0は、 7 0 0 °Cで焼成された触媒担持体 (ゼオライト) により形成された カーボンナノコイルの走查型電子顕微鏡図 (倍率; 1 0万倍) である。 実施例 1と 比較して、 実施例 2は、 成長したカーボンナノコイルの数が相対的に多いことが 分かる。 カーボンナノコイルの線径は 2 0〜 2 5 n mであり、 実施例 1と同様で あることが分かった。
図 3 1は、 図 3 0の拡大図である。 図 3 1から、 カーボンナノコイルのコイル 径 (コイル外直径) は、 5 0〜7 0 n mであることが分かる。. これらのカーボン ナノコイルにおいて線径とコイル径 (コイル外直径) の大きさを確認したところ 、 実施例 2と同様の結果が得られた。 即ち、 形成されたカーボンナノコイルの線 径は 2 0〜2 5 n mであり、 コイル径 (コイル外直径) は 5 0〜7 0 n mである 。 従って、 本発明によりカーボンナノコイルの線径を均一に形成でき、 しかもそ の結果、 カーボンナノコイルのコイル径 (コイル外直径) をほぼ均一に生成でき ることが証明された。
本発明は上記実施形態及び実施例に限定されるものではなく、 本発明の技術的 思想を逸脱しない範囲における種々の変形例、 設計変更などをその技術的範囲內 に包含するものである。
(産業上の利用可能性)
本発明の第 1の形態によれば、 F e · I n · S n触媒にみられるように、 この 遷移金属元素と他の元素が共存することでカーボンナノコイルが生成され、 しか もこの触媒が炭化物となることで、 カーボンナノコイルを効率的に成長させるこ とを発見して、 本発明を完成させたものである。 前述した触媒核は本発明の金属 炭化物である。
本発明の第 2形態によれば、 遷移金属元素と I nと Cが結合して形成された炭 化物触媒が有効なカーボンナノコイル製造用触媒となる。
本発明の第 3形態によれば、 炭化物触媒において遷移金属元素 Aと I nと Cの 組成比が x、 y、 zで示され、 これらの組成比 x、 y、 zを所望値に設計できる 炭化物触媒が提案される。
本発明の第 4形態によれば、 F e 3 I n Ca 5炭化物触媒を使用することによつ てカーボンナノコイルを高効率に製造することができる。 この炭化物触媒は本発 明者等によって初めて発見された組成式が特定されたカーボンナノコイル製造用 触媒であり、 カーボンナノコイルを成長させる真の触媒である。
本発明の第 5形態によれば、 炭化物触媒に他の元素を一種以上添加したカーボ ンナノコイル製造用触媒により、 カーボンナノコイル (C N C) を効率的に製造 することができる。
本発明の第 6形態によれば、 F e · I n · S n系炭化物触媒を用いると、 触媒 効率が高く、 カーボンナノコイルを短時間に成長できるため、 反応装置の稼動効 率が高くできる利点がある。 また、 この炭化物触媒を微粒子として構成すれば、 炭化物触媒の微粒子径を制御することによりカーボンナノコイル径を制御でき、 任意径のコィルの製造が可能になる。 '
本発明の第 7形態によれば、 炭化物触媒において F eと I nと Cと S ιιの組成 比が x、 y、 z、 wで示され、 これらの組成比 x、 y、 z、 wを所望値に設計で きる炭化物触媒が提案される。 本発明の第 8形態によれば、 F e 3 I n i v CQ.5 S n w ( 1 > v≥ 0 , w≥ 0 ) の組成式で表されるカー-ボンナノコィル製造用炭化物触媒にぉレ、て、 組成比 V、 wを最適調整することによって効率的にカーボンナノコイルを製造できる炭化物 触媒を提供できる。
本発明の第 9形態によれば、 3 9 . 6。 近傍に第 1強度ピークを有し、 4 6 . 3。 近傍に第 2強度ピークを有する炭化物触媒がカーボンナノコイル製造用触媒 として提案される。 . 本発明の第 1 0形態によれば、 遷移金属元素と S nと Cが結合して形成された 炭化物触媒が有効なカーボンナノコイル製造用触媒となる。 遷移金属の具体的選 択は、 製造効率や合成条件などを勘案して適宜自在に行われる
本発明の第 1 1形態によれば、 遷移金属元素 Aと S nと Cの組成比が X、 y、 zで示され、 これらの組成比 x、 y、 zを所望値に設計できる炭化物触媒が提案 される。
本発明の第 1 2形態によれば、 F e 3 S n C炭化物触媒を使用することによつ てカーボンナノコイルを高効率に製造することができる。 この炭化物触媒は本発 明者等によつて発見された組成式が特定されたカーボンナノコィル製造用触媒で あり、 カーボンナノコイルを成長させる触媒である。
本発明の第 1 3形態によれば、 前記炭化物触媒に他の元素を一種以上添加した カーボンナノコイル製造用触媒が提案され、 カーボンナノコイルを高効率に製造 することができる。
本発明の第 1 4形態によれば、 前記元素 Aが F eの炭化物触媒であり、 約 4 0 ° 近傍に第 1強度ピークを有する回折強度分布を示すカーボンナノコィノレ製造用 触媒が提供される。
本発明の第 1 5形態によれば、 一種以上の遷移金属元素、 1及ぴ3 11の元素 を少なくとも含む触媒を用いれば、 C VD法等による合成に適用してカーボンナ ノコイルを効率的に製造することができ、 カーボンナノコイルの工業的量産化に 寄与する。
本発明の第 1 6形態によれば、 移金属元素、 A 1及び S nが酸ィヒ物として存在 するカーボンナノコイル製造用触媒が提案され、 空気中で使用してもそれ以上酸 化せず、 安定な触媒を提供できる。
本発明の第 1 7形態によれば、 (Fex— Aly— Snz) の組成比 (モル比) において、 (x、 y、 z) の比例配分下で x= 3としたときに、 y≤l、 z≤3 であるカーボンナノコィル製造用触媒が提供される。
本発明の第 18形態によれば、 一種以上の遷移金属元素、 〇1:及び311の元素 を少なくとも含む触媒を用いれば、 CVD法等による合成に適用してカーボンナ ノコイルを効率的に製造することができ、 カーボンナノコイルの工業的量産化に 寄与する。
本発明の第: I 9形態によれば、 遷移金属元素、 クロム又はスズを遷移金属酸ィヒ 物、 酸ィ匕アルミニウム又は酸ィ匕スズの形態で使用してカーボンナノコイル製造用 触媒を構成するので、 これらを空気中で使用してもそれ以上酸化せず、 安定な触 媒を提供できる。
本発明の第 20形態によれば、 (Fex— Cry— Snz) の組成比 (モル比) において、 (x、 y、 z) の比例配分下で x= 3としたときに、 y≤l、 z≤ 3 であるカーボンナノコイル製造用触媒が提供される。
本発明の第 21形態によれば、 (Fex— Iny— Snz) において (x、 y、 z) の比例配分下で x== 3としたときに、 y≤9、 z≤ 3であるカーボンナノコ ィル製造用触媒が提供される。
本発明の第 22形態によれば、 鉄、 インジウム又はスズを酸化鉄、 酸化インジ ゥム又は酸化スズの形態で使用してカーボンナノコイル製造用触媒を構成するの で、 これらを空気中で使用してもそれ以上酸化せず、 安定な触媒を提供できる。 本発明の第 23形態によれば、 触媒微粒子の粒径を調整することによって、 力 一ボンナノコイルのコイル線径及ぴコィノレ外直径を所望の値に均一に制御できる 利点がある。
本発明の第 24形態によれば、 (遷移金属元素、 I n) 又は (遷移金属元素、 Sn) を含有した薄膜から (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C) の元素を含有した炭化物触媒を量産することが可能になる。 遷移金属元 素は前述した通りに多種多様であり、 任意の遷移金属元素を含有した炭化物触媒 を安価に量産することができる。 本発明の第 25形態によれば、 (遷移金属元素、 I n) 又は (遷移金属元素、 Sn) を含有した微粒子から、 (遷移金属元素、 I n、 C) 又は (遷移金属元素 、 S n、 C) の元素を含有した炭化物触媒が製造できる。
本発明の第 26形態によれば、 (遷移金属化合物と I n化合物) 又は (遷移金 属化合物と Sn化合物) の溶液又は分散液から、 (遷移金属元素、 I n、 C) 又 は (遷移金属元素、 Sn、 C) の炭化物触媒の微粒子を製造できる。 炭化できる 材料として、 酸化物以外の各種化合物を利用することも可能である。
本発明の第 27形態によれば、 溶液法により (遷移金属元素、 I n) 又は (遷 移金属元素、 Sn) の微粒子を生成し、 この微粒子を炭化して (遷移金属元素、 I n、 C) 又は (遷移金属元素、 Sn、 C) の炭化物触媒の微粒子が製造される 。 炭化物触媒微粒子を大量合成できる利点がある。
本発明の第 28形態によれば、 触媒原料成分のガスを利用して気体化学反応に より目的とする炭化物触媒の微粒子を大量生産することが可能になり、 触媒価格 の低減化に貢献できる。
本発明の第 29形態によれば、 遷移金属元素 Aを含み、 AxI nyCz又は AXS nyCzで表されるカーボンナノコィル製造用触媒が製造できる。 これらの組成比 x、 y、 zを所望値に設計できる炭化物触媒が提供される。
本発明の第 30形態によれば、 炭化物触媒の組成式が少なくとも F e3I nC。 , 5又は F e3S nCで表されるカーボンナノコイル製造用触媒が提供される。 F e3I nC0, 5又は F e3S nCからなる炭化物は、 カーボンナノコイル製造用触 媒として、 本発明者等が世界に先駆けて発見した物質である。
本発明の第 31形態によれば、 前記炭化物触媒に他の元素を一種以上添加した カーボンナノコイル製造用触媒の製造方法である。 適当な元素を添加して、 触媒 の物性を調整できる。
本発明の第 32形態によれば、 カーボンナノコイル製造用の炭化物触媒又は/ 及び酸ィ匕物触媒を多孔性担体に担持させたカーボンナノコィル製造用触媒が提供 される。 カーボンナノコイルの線径とコイル径の均一化を実現できる。 多孔性担 体の形状はブロック状、 シート状、 板状、 粒状、 微粒子状、 超微粒子状など各種 存在する。 本発明の第 3 3形態によれば、 本発明者等が発見した各種触媒を多孔性担体に 担持した触媒が実現され、 カーボンナノコイルを高効率に製造できる利点がある 本発明の第 3 4形態によれば、 本発明者等が発見した金属触媒を多孔性担体に 担持した触媒が実現でき、 カーボンナノコイルを高効率に製造できる利点がある 本発明の第 3 5形態によれば、 2元素系、 3元素系の触媒を多孔性担体に担持 させたカーボンナノコイル製造用触媒が提供され、 生成効率を自在に調整するこ とが可能になる。
本発明の第 3 6形態によれば、 遷移金属元素が F e、 C o、 N iから選択され た一種以上の元素であるカーボンナノコィノレ製造用触媒であり、 カーボンナノコ ィルの大量生産が可能になり、 価格低減に寄与できる。 .
本発明の第 3 7形態によれば、 前記多孔性担体としてゼォライト、 アルミノ燐 酸塩、 シリカアルミノ燐酸塩、 メソ多孔体、 多孔性セラミックス、 モレキュラー シーブス、 金属酸化物系多孔体、 シリカ多孔体又は炭素系多孔体が選択される。 本発明の第 3 8形態によれば、 溶媒中に多孔性担体を浸漬して、 多孔性担体の 同一細孔内にカーボンナノコイル製造用触媒を均一に吸着した触媒を提供できる 本発明の第 3 9形態によれば、 空間中で触媒微粒子を多孔性担体に担持させ たカーボンナノコィノレ製造用触媒が提供される。 この方法で多孔十生担体にカーボ ンナノコイル製造用触媒微粒子を吸着させれば、 カーボンナノコイルを効率よく 安価に製造できる。
• 本発明の第 4 0形態によれば、 触媒微粒子を担持させた多孔性担体を焼成して 耐久性のあるカーボンナノコィル製造用触媒を提供できる。
本発明の第 4 1形態によれば、 本発明の各種触媒を使用し、 この触媒に接触す るように前記炭素化合物ガスを流通させてカーボンナノコイルを製造できる。 触 媒表面にカーボンナノコイルを高効率に生成することができ、 カーボンナノコィ ルの工業的量産化を実現できる。
本発明の第 4 2形態によれば、 非炭化物触媒を反応過程で炭化させ、 連続して 加熱状態下でこの炭化物触媒により炭素化合物ガスを分解して、 カーボンナノコ ィルを大量生産する 2段階連続製造方法が提供される。
本発明の第 4 3形態によれば、 遷移金属元素、 S nを含有した触媒前駆物質を 炭化物触媒に変化させ、 更に連続してカーボンナノコイルを大量生産する 2段階 連続製造方法が提供される。 ' 本発明の第 4 4形態によれば、 遷移金属元素、 I n、 S nを含有した触媒前駆 物質を炭化物触媒に変化させ、 更に連続してカーボンナノコイルを大量生産する 2段階連続製造方法が提供される。 - 本発明の第 4 5形態によれば、触媒膜上にカーボンナノコイルを高密度に生成 することができる。 触媒微粒子の粒径を制御することによってカーボンナノコィ ルを自在に大量生産できる利点を有する。 ' 本発明の第 4 6形態によれば、 触媒微粒子により炭素化合物ガスを分解して力 一ボンナノコイルを浮遊状態で成長させるカーボンナノコイル製造方法が提供さ れる。 カーボンナノコイルの成長時間を比較的簡単に制御でき、 カーボンナノコ ィルのサイズ制御が容易にできる。
本発明の第 4 7形態によれば、 例えば、 触媒微粒子の粉末をロータリーキルン の中に堆積させておき、 炭素化合物ガスを流通させながらロータリーキルンを回 転させると、 触媒粉末が攪拌状態となり、 触媒微粒子を触媒核としてカーボンナ ノコイルを大量生産することができる。
本発明の第 4 8形態によれば、 前記カーボンナノコイル製造方法により製造さ れる安価なカーボンナノコイルが提供される。 また、 線径とコイル外直径の揃つ たカーボンナノコイルを提供できる。 この線径と外直径の揃ったカーボンナノコ ィルを使用すれば、 高品質なナノ物質、 例えばナノスプリング、 ナノマシン、 電 磁波吸収体、 電子ェミッタ、 ナノ電子デバイス、 水素吸蔵体等を製造でき、 各分 野の要請に応えることができる。

Claims

請 求 の 範 囲
1. 外直径が 1000 nm以下のカーボンナノコイルを化学的気相成長法によ り製造する触媒であり、 この触媒は一種以上の遷移金属元素を少なくとも含む金 属炭化物から構成されることを特徴とするカーボンナノコイル製造用触媒。
2. 外直径が 1000 nm以下のカーボンナノコイルを化学的気相成長法によ り製造する触媒であり、 この触媒は少なくとも一種以上の遷移金属元素、 I 、 Cを含有した炭化物触媒であることを特徴とするカーボンナノコィル製造用触媒
3. 前記遷移金属元素が F e、 Co, N iから選ばれた一種以上の元素 Aであ り、 前記炭化物触媒の組成式が少なくとも AXI 11 2で表される請求項 2に記載 のカーボンナノコィル製造用触媒。
4. 前記元素 Aが F eであり、 前記炭化物触媒の組成式が少なくとも F e 31 n C。.5で表される請求項 3に記載の力一ボンナノコィル製造用触媒。
5. 前記炭化物触媒に他の元素を一種以上添加した請求項 2に記載のカーボン ナノコイル製造用触媒。
6. 前記他の元素が S nである請求項 5に記載のカーボンナノコイル製造用触 媒。
7. 前記炭化物触媒の組成式が少なくとも F exI nyCzSnwで表される請求 項 6に記載のカーボンナノコイル製造用触媒。
8. 前記炭化物触媒の組成式が少なくとも F e3 l n ivC0.5Snw (1 > v≥ 0、 w≥ 0) で表される請求項 7に記載のカーボンナノコイル製造用触媒。
9. 前記元素 Aが F eであり、 前記触媒に対し粉末 X線回折を行つたとき回折 角を 2 Θで計測すると、 約 40° 近傍に第 1強度ピークを有し、 約 46. 3° 近 傍に第 2強度ピークを有する回折強度分布を示す請求項 3に記載のカーボンナノ コイル製造用触媒。 .
10. 外直径が 1000 nm以下のカーボンナノコイルを化学的気相成長法に より製造する触媒であり、 この触媒は少なくとも一種以上の遷移金属元素、 Sn 、 Cを含有した炭化物触媒であることを特徴とするカーボンナノコィル製造用触 媒。
1 1. 前記遷移金属元素が F e、 Co, N iから選ばれた一種以上の元素 Aで あり、 前記炭化物触媒の組成式が少なくとも AxSnyCzで表される請求項 10に 記載のカーボンナノコイル製造用触媒。
12. 前記元素 Aが F eであり、 前記炭化物触媒の,組成式が少なくとも F e 3 SnCで表される請求項 1 1に記載のカーボンナノコイル製造用触媒。
13. 前記炭化物触媒に他の元素を一種以上添加した請求項 10に記載のカー ボンナノコイル製造用触媒。
14. 前記元素 Aが F eであり、 前記触媒に対し粉末 X線回折を行つたとき回 折角を 2 Θで計測すると、 約 40 ° 近傍に第 1強度ピークを有する回折強度分布 を示す請求項 1 1に記載のカーボンナノコイル製造用触媒。
1 5.
一種以上の遷移金属元素、 A 1及び S nの元素を少なくとも含むことを特徴とす るカーボンナノコイル製造用触媒。
16. 前記遷移金属元素、 A 1及び S nが酸化物として存在する請求項 15に 記載のカーボンナノコイル製造用触媒。
17. 前記遷移金属元素が F eであり、 組成 (Fex-Aly-Snz) の組成 比 (モル比) において、 (x、 y、 z) の比例配分下で x = 3としたときに、 y ≤ 1, z≤ 3である請求項 15又は 16に記載のカーボンナノコイル製造用触媒
18. —種以上の遷移金属元素、 C r及び Snの元素を少なくとも含むことを 特徴とするカーボンナノコイル製造用触媒。
1 9. 前記遷移金属元素、 C r及び S nが酸化物として存在する請求項 18に 記載のカーボンナノコイル製造用触媒。
20. 前記遷移金属元素が F eであり、 組成 (Fex— Cry— Snz) の組成 比 (モル比) において、 (x、 y、 z) の比例配分下で x= 3としたときに、 y ≤1、 z ^3である請求項 18又は 19に記載のカーボンナノコイル製造用触媒
21. F e、 I n及び S nの元素からなる組成 (Fex— Iny— Snz) を少 なくとも含み、 且つ各元素の,組成比 (モル比) において、 (x、 y、 z) の比例 配分下で x 3としたときに、 y ^ 9、 z 3であることを特徴とするカーボン ナノコイル製造用触媒。
2 2 . F e、 I n又は S nが酸化物として存在する請求項 2 1に記載のカーボ ンナノコイル製造用触媒。
2 3 . 前記触媒が微粒子として得られる請求項 1〜 2 2のいずれかに記載の'力 一ボンナノコイル製造用触媒。
2 4 . 請求項 2又は請求項 1 0に記載のカーボンナノコイル製造用触媒の製造 方法であり、 基板に少なくとも (遷移金属元素、 I n ) 又は (遷移金属元素、 S n ) を含有した薄膜を形成し、 加熱状態下で前記基板の薄膜表面を炭素化合物ガ スで炭化して、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C) の元素を含有した炭化物触媒を形成することを特徴とするカーボンナノ コィル製造用触媒の製造方法。
2 5 . 請求項 2又は請求項 1 0に記載のカーボンナノコイル製造用触媒の製造 方法であり、 少なくとも (遷移金属元素、 I n ) 又は (遷移金属元素、 S n ) を 含有した微粒子を形成し、 加熱状態下でこの微粒子を炭素化合物ガスと反応させ て、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C ) の 元素を含有した炭化物触媒を形成することを特徴とするカーボンナノコイル製造 用触媒の製造方法。
2 6 . 請求項 2又は請求項 1 0に記載のカーボンナノコイル製造用触媒の製造 方法であり、 少なくとも (遷移金属化合物と I n化合物) 又は (遷移金属化合物 と S n化合物) を溶媒に添加した溶液又は分散液を形成し、 この溶液又は分散液 から固形分を分離し、 加熱状態下で前記固形分を炭素化合物ガスと接触させて炭 化し、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C) の元素を含有した炭化物触媒の微粒子を形成することを特徴とするカーボンナノ コィル製造用触媒の製造方法。
2 7 . 請求項 2又は請求項 1 0に記載のカーボンナノコイル製造用触媒の製造 方法であり、 少なくとも (遷移金属化合物と I n化合物) 又は (遷移金属化合物 と S n化合物) を溶媒に添加した溶液又は分散液を形成し、 この溶液又は分散液 から固形分を分離し、 分離された固形分を焼成して少なくとも (遷移金属元素、 I n ) 又は (遷移金属元素、 S n ) の微粒子を生成し、 加熱状態下でこの微粒子 を炭素化合物ガスと接触させて炭化し、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金属元素、 S n、 C) の元素を含有した炭化物触媒の微粒子を形成す ることを特徴とするカーボンナノコイル製造用触媒の製造方法。
2 8 . 請求項 2又は請求項 1 0に記載のカーボンナノコィル製造用触媒の製造 方法であり、 加熱状態下にある反応槽の中で少なくとも (遷移金属化合物ガスと
1 n化合物ガス) 又は (遷移金属化合物ガスと S n化合物ガス) を炭素化合物ガ スと接触反応させ、 少なくとも (遷移金属元素、 I n、 C) 又は (遷移金属元素 、 S n、 C) の元素を含有した炭化物触媒の微粒子を形成することを特徴とする カーボンナノコイル製造用触媒の製造方法。
2 9 . 前記遷移金属元素が F e、 C o , N iから選ばれた一種以上の元素 Aで あり、 前記炭化物触媒の組成式が少なくとも AX I nyCz又は 11 2で表され る請求項 2 4〜2 8·のいずれかに記載のカーボンナノコイル製造用触媒の製造方 —法。 ·
3 0 . 前記元素 Aが F eであり、 前記炭化物触媒の組成式が少なくとも F e 3 I n C。, 5又は F e 3 S n Cで表される請求項 2 9に記載のカーボンナノコイル 製造用触媒の製造方法。 "
3 1 . 前記炭化物触媒に他の元素を一種以上添加した請求項 2 4〜 3 0のいず れかに記載のカーボンナノコィル製造用触媒の製造方法。
3 2 . カーボンナノコイル製造用の炭化物触媒又は Z及び酸ィ匕物触媒を多孔性 担体に担持させたことを特徴とするカーボンナノコィル製造用触媒。
3 3 . 請求項 1〜 1 4のいずれかに記載の炭化物触媒を担持させた請求項 3 2 に記載のカーボンナノコイル製造用触媒。
3 4 . 請求項 1 5〜 2 2のいずれかに記載の触媒を多孔性担体に担持させたこ とを特徴とするカーボンナノコイル製造用触媒。
3 5 . カーボンナノコイル製造用の遷移金属元素 · I n · S n系触媒、 遷移金 属元素 · A 1 · S n系触媒、 遷移金属元素 · C r · S n系触媒、 遷移金属元素 · I n系触媒又は遷移金属元素 ' S n系触媒を多孔性担体に担持させたことを特徴 とするカーボンナノコイル製造用触媒。
3 6 . 前記遷移金属元素は F e、 C o , N iから選択された一種以上の元素で ある請求項 3 5に記載のカーボンナノコイル製造用触媒。
3 7 . 前記多孔性担体がゼォライト、 アルミノ燐酸塩、 シリカアルミノ燐酸塩 、 メソ多孔体、 多孔性セラミックス、 モレキュラーシーブス、 金属酸化物系多孔 体、 シリカ多孔体又は炭素系多孔体から選択される請求項 3 2〜3 6のいずれか に記載のカーボンナノコイル製造用触媒。 ,
3 8 . 請求項 3 2〜3 7のいずれかに記載のカーボンナノコイル製造用触媒の 製造方法であり、 前記カーボンナノコィル製造用の触媒微粒子を溶媒中に分散し
、 この溶媒中に多孔性担体を浸漬し、 多孔性担体の表面又は Z及び細孔中に前記 触媒微粒子を担持させることを特徴とするカーボンナノコイル製造用触媒の製造 方法。
3 9 . 請求項 3 2〜 3 7のいずれかに記載のカーボンナノコイル製造用触媒の 製造方法であり、 前記カーボンナノコイル製造用の触媒微粒子を空間に充填又は 流通させ、 この空間に多孔性担体を配置し、 ·多孔性担体の表面又は Z及び細孔中 に前記触媒微粒子を担持させることを特徴とするカーボンナノコイル製造用触媒 の製造方法。
4 0 . 触媒微粒子を担持させた多孔性担体を焼成する請求項 3 8又は 3 9に記 載のカーボンナノコイル製造用触媒の製造方法。
4 1 . 請求項 1〜2 2及び請求項 3 2〜3 7のいずれかに記載のカーボンナノ コイル製造用触媒を反応器内部に配置し、 この触媒近傍を原料として使用する炭 素化合物ガスが触媒作用により分解する温度以上に加熱し、 前記触媒に接触する ように前記炭素化合物ガスを流通させて、 前記炭素化合物ガスを前記触媒近傍で 分解しながら前記触媒表面に外直径が 1 0 0 0 n m以下のカーボンナノコイルを 成長させることを特徴とするカーボンナノコィル製造方法。
4 2 . 少なくとも遷移金属元素、 I nを含有する触媒前駆物質を加熱状態下で 炭素化合物ガスと接触させて少なくとも遷移金属元素、 I n、 Cを有する炭化物 触媒を形成し、 連続して加熱状態下で前記炭化物触媒により炭素化合物ガスを分 解してカーボンナノコイルを成長させることを特徴とするカーボンナノコイル製 造方法。
4 3 . 少なくとも遷移金属元素、 S nを含有する触媒前駆物質を加熱状態下で 炭素化合物ガスと接触させて少なくとも遷移金属元素、 S n、 Cを有する炭化物 触媒を形成し、 連続して加熱状態下で前記炭化物触媒により炭素化合物ガスを分 解してカーボンナノコイルを成長させることを特徴とするカーボンナノコイル製 造方法。
4 4 . 少なくとも遷移金属元素、 I n、 S nを含有する触媒前駆物質を加熱状 態下で炭素化合物ガスと接触させて少なくとも遷移金属元素、 I n、 S n、 Cを 含有する炭化物触媒を形成し、 連続して加熱状態下で前記炭化物触媒により炭素 化合物ガスを分解してカーボンナノコイルを成長させることを特 ¾とするカーボ ンナノコイル製造方法。
4 5 . 前記カーボンナノコィル製造用触媒の膜又は微粒子膜を基板上に形成し 、 この触媒により炭素化合物ガスを分解して基板上にカーボンナノコイルを成長 させる請求項 4 1 ~ 4 4のいずれかに記載のカーボンナノコイル製造方法。
4 6 . 前記カーボンナノコイル製造用触媒の微粒子を反応槽の中に浮遊させ、 この触媒微粒子により炭素化合物ガスを分解してカーボンナノコイルを浮遊状態 で成長させる請求項 4 1〜4 4のいずれかに記載のカーボンナノコイル製造方法
4 7 . 前記カーボンナノコイル製造用触媒の微粒子を反応槽に堆積させ、 この 堆積した触媒微粒子を攪拌しながら炭素化合物ガスを分解してカーボンナノコィ ルを攪拌状態下で成長させる請求項 4:!〜 4 4のいずれかに記載のカーボンナノ コイル製造方法。
4 8 . 請求項 4 1〜4 7のいずれかに記載のカーボンナノコイル製造方法によ り製造されることを特徴とするカーボンナノコイル。
PCT/JP2004/007797 2003-05-29 2004-05-28 カーボンナノコイル製造用触媒、その製造方法、カーボンナノコイル製造方法及びカーボンナノコイル WO2004105940A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/558,291 US7829494B2 (en) 2003-05-29 2004-05-28 Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
EP04735390A EP1649929B1 (en) 2003-05-29 2004-05-28 Method for preparing carbon nanocoil
DE602004020895T DE602004020895D1 (de) 2003-05-29 2004-05-28 Verfahren zur herstellung von kohlenstoffnanospulen
JP2005506584A JP4958138B2 (ja) 2003-05-29 2004-05-28 カーボンナノコイル製造用触媒
KR1020057022649A KR100875861B1 (ko) 2003-05-29 2004-05-28 카본 나노 코일 제조용 촉매, 그 제조방법 및 카본 나노 코일 제조방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003152297 2003-05-29
JP2003-152297 2003-05-29
JP2004-040852 2004-02-18
JP2004040852 2004-02-18
JP2004040736 2004-02-18
JP2004-040736 2004-02-18

Publications (1)

Publication Number Publication Date
WO2004105940A1 true WO2004105940A1 (ja) 2004-12-09

Family

ID=33493923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007797 WO2004105940A1 (ja) 2003-05-29 2004-05-28 カーボンナノコイル製造用触媒、その製造方法、カーボンナノコイル製造方法及びカーボンナノコイル

Country Status (6)

Country Link
US (1) US7829494B2 (ja)
EP (2) EP2062642A1 (ja)
JP (1) JP4958138B2 (ja)
KR (2) KR100875861B1 (ja)
DE (1) DE602004020895D1 (ja)
WO (1) WO2004105940A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108455A1 (ja) * 2006-03-20 2007-09-27 Osaka Industrial Promotion Organization カーボンナノコイル製造用触媒粒子およびその製造方法ならびにカーボンナノコイルの製造方法
JP2009018234A (ja) * 2007-07-10 2009-01-29 Osaka Prefecture Univ カーボンナノコイル製造用触媒およびカーボンナノコイルの製造方法
WO2010005118A1 (ja) * 2008-07-10 2010-01-14 財団法人大阪産業振興機構 カーボンナノコイル製造用触媒及び該触媒を用いたカーボンナノコイルの製造方法
WO2010035439A1 (ja) * 2008-09-25 2010-04-01 日新電機株式会社 カーボンナノコイルの製造方法および製造装置
JP2010163531A (ja) * 2009-01-15 2010-07-29 Pentel Corp 焼成鉛筆芯
JP2011057551A (ja) * 2010-11-08 2011-03-24 Osaka Prefecture Univ カーボンナノ構造物製造方法及び装置
JP2011167598A (ja) * 2010-02-16 2011-09-01 Osaka Univ カーボンナノコイル製造用触媒、その製造方法及びカーボンナノコイル
JP2012129201A (ja) * 2010-11-22 2012-07-05 National Institute Of Advanced Industrial & Technology カーボン材料に金属微粒子が担持された金属微粒子担持体およびその製造方法
JP2014184359A (ja) * 2013-03-22 2014-10-02 Technology Research Institute Of Osaka Prefecture カーボンナノコイル生成用触媒の製造方法およびこのカーボンナノコイル生成用触媒を用いて生成されるカーボンナノコイル
US8999441B2 (en) 2012-08-22 2015-04-07 National Defense University Method for fabricating coiled nano carbon material, coiled nano carbon layered substrate and coiled nano carbon material thereof
JP2021529716A (ja) * 2019-09-23 2021-11-04 大連理工大学 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365289B2 (en) * 2004-05-18 2008-04-29 The United States Of America As Represented By The Department Of Health And Human Services Production of nanostructures by curie point induction heating
US7473873B2 (en) * 2004-05-18 2009-01-06 The Board Of Trustees Of The University Of Arkansas Apparatus and methods for synthesis of large size batches of carbon nanostructures
JP3935479B2 (ja) * 2004-06-23 2007-06-20 キヤノン株式会社 カーボンファイバーの製造方法及びそれを使用した電子放出素子の製造方法、電子デバイスの製造方法、画像表示装置の製造方法および、該画像表示装置を用いた情報表示再生装置
JP5374801B2 (ja) * 2004-08-31 2013-12-25 富士通株式会社 炭素元素からなる線状構造物質の形成体及び形成方法
US7754183B2 (en) * 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
EP1943186A4 (en) * 2005-09-23 2012-06-06 Northrop Grumman Systems Corp MICROSCOPIC ELECTRO-MECHANICAL SYSTEMS, NANOSCULES USING HIGH FREQUENCY DEVICES AND SPIRAL TERMINATION TECHNIQUES FOR PRODUCING THE SAME
WO2009016546A2 (en) * 2007-07-30 2009-02-05 Philips Intellectual Property & Standards Gmbh Nanostructures and method for making them
WO2014202740A1 (en) * 2013-06-19 2014-12-24 Katholieke Universiteit Leuven Systems and methods for synthesis of carbon nanotubes
US10376355B2 (en) * 2017-07-05 2019-08-13 Tina Saber Artificial diaphragm having intelligent nanomagnetic particles for treatment of diaphragmatic paralysis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037024A (ja) * 1996-07-16 1998-02-10 Kagaku Gijutsu Shinko Jigyodan コイル状炭素繊維の製造方法及び製造装置
JP2001192204A (ja) * 1999-12-31 2001-07-17 Yoshikazu Nakayama カーボンナノコイルの製造方法
JP2002255519A (ja) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc 単層カーボンナノチューブの製造方法およびゼオライトの除去方法
JP2003026410A (ja) * 2001-07-11 2003-01-29 Yoshikazu Nakayama カーボンナノコイルの量産方法
JP2003200053A (ja) * 2001-12-28 2003-07-15 Daiken Kagaku Kogyo Kk 炭素物質製造用触媒
JP2004105827A (ja) * 2002-09-17 2004-04-08 Gifu Univ コイル状炭素繊維製造用触媒及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520829A (en) * 1968-11-07 1970-07-21 Chevron Res Hydroconversion catalyst
CA1108114A (en) 1977-04-14 1981-09-01 Gregor H. Riesser Dehydrogenation catalyst
US4737480A (en) * 1986-03-25 1988-04-12 Uop Inc. Process for the oligomerization of olefins and a catalyst thereof
CN1017796B (zh) 1986-03-25 1992-08-12 环球油品公司 用于烯烃低聚的复合催化剂
US4795851A (en) * 1987-03-12 1989-01-03 Uop Inc. Process for the oligomerization of olefins and a catalyst thereof
AU628031B2 (en) * 1987-11-17 1992-09-10 Mobil Oil Corporation A dehydrogenation and dehydrocyclization catalyst, its synthesis and use
US6037295A (en) * 1998-03-25 2000-03-14 Council Of Scientific & Industrial Research Process for the preparation of a new catalyst useful for producing alkylated aromatic amines
DE19853491A1 (de) * 1998-11-19 2000-05-25 Bayer Ag Verfahren zur Hydroxylierung von Benzol mit Wasserstoffperoxid
US6936565B2 (en) * 1999-01-12 2005-08-30 Hyperion Catalysis International, Inc. Modified carbide and oxycarbide containing catalysts and methods of making and using thereof
US6461539B1 (en) * 1999-10-18 2002-10-08 Conoco Inc. Metal carbide catalysts and process for producing synthesis gas
JP3585033B2 (ja) 2000-04-29 2004-11-04 喜萬 中山 カーボンナノコイル生成用のインジウム・スズ・鉄系触媒の製造方法
US6855460B2 (en) * 2001-02-08 2005-02-15 The University Of Chicago Negative electrodes for lithium cells and batteries
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
JP2003313017A (ja) 2002-04-19 2003-11-06 Petroleum Energy Center カーボンナノチューブの製造方法
DE10220086A1 (de) * 2002-05-05 2003-11-13 Itn Nanovation Gmbh Verfestigung mineralischer Werkstoffe
JP3962773B2 (ja) * 2002-12-05 2007-08-22 独立行政法人科学技術振興機構 原料吹き付け式カーボンナノ構造物の製造方法及び装置
JP2004261630A (ja) * 2003-01-28 2004-09-24 Japan Science & Technology Agency カーボンナノコイル製造用触媒及びその製造方法並びにカーボンナノコイル製造方法
CN1960942B (zh) 2004-06-04 2013-04-10 独立行政法人科学技术振兴机构 原料喷射式碳纳米结构体制造方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037024A (ja) * 1996-07-16 1998-02-10 Kagaku Gijutsu Shinko Jigyodan コイル状炭素繊維の製造方法及び製造装置
JP2001192204A (ja) * 1999-12-31 2001-07-17 Yoshikazu Nakayama カーボンナノコイルの製造方法
JP2002255519A (ja) * 2000-12-28 2002-09-11 Toyota Central Res & Dev Lab Inc 単層カーボンナノチューブの製造方法およびゼオライトの除去方法
JP2003026410A (ja) * 2001-07-11 2003-01-29 Yoshikazu Nakayama カーボンナノコイルの量産方法
JP2003200053A (ja) * 2001-12-28 2003-07-15 Daiken Kagaku Kogyo Kk 炭素物質製造用触媒
JP2004105827A (ja) * 2002-09-17 2004-04-08 Gifu Univ コイル状炭素繊維製造用触媒及びその製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEN X. ET AL.: "Morphology of carbon micro-coils grown by catalytic decomposition of hydrocarbon", PROCEEDINGS ELECTROCHEMICAL SOCIETY, vol. 2000-13, 2000, pages 385 - 392, XP002981443 *
COLOMER J.F. ET AL.: "Purification of multi-wall carbon nanotubes produced over supported catalysts", PROCEEDINGS ELECTROCHEMICAL SOCIETY, vol. 98, no. 8, 1998, pages 830 - 842, XP008026842 *
HOYOKAWA S. ET AL.: "Syntheses of carbon nanocoils using fine particle, extended abstracts (The 50th spring meeting, 2003), 30a-ZG-9", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, no. 2, 2003, pages 1040, XP002979137 *
LI, X. ET AL.: "Preparation of catalyst of Fe-In-Sn compound oxide and synthesis of carbon nanocoils, extended abstracts (The 50th spring meeting, 2003), 30a-ZG-8", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, no. 2, 2003, pages 1039, XP002979136 *
MOTOJIMA S. ET AL.: "Catalytic effects of metal carbides, oxides and Ni single crystal on the vapor growth of micro-coiled carbon fibers", CARBON, vol. 34, no. 3, 1996, pages 289 - 296, XP004022341 *
NISHIMURA K. ET AL.: "X-ray diffraction analysis of Fe-ITO catalyst for growth of carbon nanocoils, extended abstracts (The 50th spring meeting, 2003), 30a-ZG-11", THE JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, no. 2, 2003, pages 1040, XP002979135 *
See also references of EP1649929A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252982A (ja) * 2006-03-20 2007-10-04 Osaka Industrial Promotion Organization カーボンナノコイル製造用触媒粒子およびその製造方法ならびにカーボンナノコイルの製造方法
WO2007108455A1 (ja) * 2006-03-20 2007-09-27 Osaka Industrial Promotion Organization カーボンナノコイル製造用触媒粒子およびその製造方法ならびにカーボンナノコイルの製造方法
JP2009018234A (ja) * 2007-07-10 2009-01-29 Osaka Prefecture Univ カーボンナノコイル製造用触媒およびカーボンナノコイルの製造方法
WO2010005118A1 (ja) * 2008-07-10 2010-01-14 財団法人大阪産業振興機構 カーボンナノコイル製造用触媒及び該触媒を用いたカーボンナノコイルの製造方法
WO2010035439A1 (ja) * 2008-09-25 2010-04-01 日新電機株式会社 カーボンナノコイルの製造方法および製造装置
JP2010163531A (ja) * 2009-01-15 2010-07-29 Pentel Corp 焼成鉛筆芯
JP2011167598A (ja) * 2010-02-16 2011-09-01 Osaka Univ カーボンナノコイル製造用触媒、その製造方法及びカーボンナノコイル
JP2011057551A (ja) * 2010-11-08 2011-03-24 Osaka Prefecture Univ カーボンナノ構造物製造方法及び装置
JP2012129201A (ja) * 2010-11-22 2012-07-05 National Institute Of Advanced Industrial & Technology カーボン材料に金属微粒子が担持された金属微粒子担持体およびその製造方法
US8999441B2 (en) 2012-08-22 2015-04-07 National Defense University Method for fabricating coiled nano carbon material, coiled nano carbon layered substrate and coiled nano carbon material thereof
JP2014184359A (ja) * 2013-03-22 2014-10-02 Technology Research Institute Of Osaka Prefecture カーボンナノコイル生成用触媒の製造方法およびこのカーボンナノコイル生成用触媒を用いて生成されるカーボンナノコイル
JP2021529716A (ja) * 2019-09-23 2021-11-04 大連理工大学 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法
JP7008373B2 (ja) 2019-09-23 2022-01-25 大連理工大学 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法

Also Published As

Publication number Publication date
KR100875861B1 (ko) 2008-12-24
US7829494B2 (en) 2010-11-09
EP1649929A1 (en) 2006-04-26
US20070098622A1 (en) 2007-05-03
JPWO2004105940A1 (ja) 2006-07-20
EP1649929A4 (en) 2006-12-20
EP1649929B1 (en) 2009-04-29
KR20070116290A (ko) 2007-12-07
JP4958138B2 (ja) 2012-06-20
KR20060029219A (ko) 2006-04-05
EP2062642A1 (en) 2009-05-27
DE602004020895D1 (de) 2009-06-10

Similar Documents

Publication Publication Date Title
WO2004105940A1 (ja) カーボンナノコイル製造用触媒、その製造方法、カーボンナノコイル製造方法及びカーボンナノコイル
JP6056904B2 (ja) カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置
Tessonnier et al. Recent progress on the growth mechanism of carbon nanotubes: a review
JP5898618B2 (ja) カーボンナノチューブ凝集体
JP5702043B2 (ja) 不均一触媒でガス状炭素化合物を分解することによりカーボンナノチューブを製造するための触媒
US6558645B2 (en) Method for manufacturing carbon nanocoils
CN101189371B (zh) 单壁碳纳米管催化剂
Aliyu et al. Synthesize multi-walled carbon nanotubes via catalytic chemical vapour deposition method on Fe-Ni bimetallic catalyst supported on kaolin
CN104619414A (zh) 合成多壁碳纳米管用的催化剂组合物
WO2004052973A2 (en) Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition
US20080063589A1 (en) Production Method for Carbon Nano Structure of Catalyst Particle Diameter Control Mode, Production Device, and Carbon Nano Structure
JP2004238261A (ja) カーボンナノファイバの製造方法及び製造装置
CN105517707A (zh) 制造具有可控堆密度的碳纳米管团聚体的方法
Liu et al. A simple method for coating carbon nanotubes with Co–B amorphous alloy
JP2020534152A (ja) 調整可能な根元成長多層カーボンナノチューブ用の触媒とプロセス
JP4020410B2 (ja) 炭素物質製造用触媒
Toussi et al. Effect of synthesis condition on the growth of SWCNTs via catalytic chemical vapour deposition
KR20070082141A (ko) 탄소나노튜브 합성용 촉매의 제조방법
Kariim et al. Studies on the suitability of alumina as bimetallic catalyst support for MWCNTs growth in a CVD reactor
Sun et al. Dispersion-enhanced supported Pd catalysts for efficient growth of carbon nanotubes through chemical vapor deposition
JP2019005740A (ja) 形態制御されたcntを生成するための多重金属触媒組成物およびそのプロセス
Mudi et al. Optimization of bi-metallic (Fe–Co) catalyst on kaolin support for carbon nanofiber growth in a CVD reactor
Buhari et al. Optimisation of synthesis parameters for Co-Mo/MgO catalyst yield in MWCNTs production
Buhari et al. Synthesis of carbon nanotubes using catalytic chemical vapour decomposition of acetylene over Co-Mo bimetallic catalyst supported on magnesia
CN105016322A (zh) 一种易于分散的碳纳米管防静电材料的制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048147424

Country of ref document: CN

Ref document number: 1020057022649

Country of ref document: KR

Ref document number: 2005506584

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004735390

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057022649

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004735390

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007098622

Country of ref document: US

Ref document number: 10558291

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10558291

Country of ref document: US