TWI703237B - 奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法 - Google Patents

奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法 Download PDF

Info

Publication number
TWI703237B
TWI703237B TW107140938A TW107140938A TWI703237B TW I703237 B TWI703237 B TW I703237B TW 107140938 A TW107140938 A TW 107140938A TW 107140938 A TW107140938 A TW 107140938A TW I703237 B TWI703237 B TW I703237B
Authority
TW
Taiwan
Prior art keywords
copper
nanoporous
copper oxide
oxide nanosheet
composite material
Prior art date
Application number
TW107140938A
Other languages
English (en)
Other versions
TW202012701A (zh
Inventor
劉元鋒
侯澤成
陳璐
朱琳
李文珍
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Publication of TW202012701A publication Critical patent/TW202012701A/zh
Application granted granted Critical
Publication of TWI703237B publication Critical patent/TWI703237B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Abstract

一種奈米多孔銅負載氧化銅奈米片陣列複合材料,由一奈米多孔銅基底及一氧化銅奈米片陣列組成。所述奈米多孔銅基底與所述氧化銅奈米片陣列化學結合在一起,且所述氧化銅奈米片陣列設置在所述奈米多孔銅基底的一個表面。另外,本發明還涉及一種奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法。

Description

奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方 法
本發明涉及奈米氧化物材料製備技術領域,尤其涉及一種奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法。
隨著新能源、催化等領域的不斷發展,轉變金屬氧化物作為一種重要的功能材料體系,在新能源、電化學催化、光催化、分子檢測等領域顯示出其優異特性及巨大的應用前景,受到廣泛的研究與關注。其中氧化銅作為一種P型半導體,具有較窄的帶隙(1.2~2eV),由於其在成本、環境友好性、易合成等方面具有獨到的優勢,是一種極具發展前景的金屬氧化物材料。
氧化銅的顯微形貌和結構是決定其性能的關鍵因素,其中奈米陣列結構(如:一維奈米線陣列、二維奈米片陣列等)具有其獨到的優勢和特性。 當前製備氧化銅奈米結構的方法主要包括:水溶液法、化學氣相沉積法、熱氧化法等。這些方法為製備具有特殊奈米結構的轉變金屬氧化物提供了多種選擇,但是各自都在不同的方面存在一定的局限性。水溶液法可調參數多,可以製備出具有各種各樣奈米結構的轉變金屬氧化物,但是這種方法只能夠得到分散的粉體材料,難以實現功能結構一體化的材料的製備。化學氣相沉積法能夠實現轉變金屬氧化物顯微結構的精確調控,獲得結構功能一體化的材料,但是其成本較高,效率較低。通過熱氧化的方法也能夠實現從金屬到金屬氧化物的轉變,如:對金屬銅片進行熱處理獲得一維氧化銅奈米陣列,但是熱氧化過程中的熱應力,以及相結構不匹配性問題,使得氧化物層的剝落現象嚴重。由此,開發一種低成本、高效率製備轉變金屬氧化物奈米陣列結構,同時實現轉變金屬氧化物結構功能一體化的方法,將尤為重要。
有鑑於此,確有必要提供一種奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法,氧化銅奈米片陣列不易脫落且該方法步驟簡單容易操作且成本低。
一種奈米多孔銅負載氧化銅奈米片陣列複合材料,由一奈米多孔銅基底及一氧化銅奈米片陣列組成,所述奈米多孔銅基底與所述氧化銅奈米片陣列化學結合在一起,且所述氧化銅奈米片陣列設置在所述奈米多孔銅基底的一個表面。
一種奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法,包括:步驟一、將奈米多孔銅基底放置在含有氨根離子的鹼性溶液裡,所述奈米多孔銅基底漂浮在所述含有氨根離子的鹼性溶液的表面;步驟二、所述奈米多孔銅基底與所述含有氨根離子的鹼性溶液發生反應,形成一複合材料;步驟三、將所述複合材料乾燥處理,形成奈米多孔銅負載氧化銅奈米片陣列複合材料。
相較於先前技術,本發明奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法具有以下優點:第一、本案提供的方法適用於不同方法製備的奈米多孔銅片材作為基底進行氧化處理生成氧化銅奈米片陣列,基底奈米多孔銅片材取材容易;第二、奈米多孔銅負載的單面氧化銅奈米片陣列複合材料的製備過程方便高效,無需複雜昂貴設備,可在室溫下進行,實現奈米多孔銅的快速氧化生成氧化銅奈米片陣列,且氧化銅奈米片形貌方便可調;第三、氧化銅奈米片陣列與奈米多孔銅基底為化學結合,具有很強的結合作用力,不存在一般純銅片氧化後出現氧化層易剝落現象。
圖1為本發明實施例提供的奈米多孔銅的掃描電鏡照片。
圖2為本發明實施例提供的奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法的流程示意圖。
圖3為本發明實施例提供的奈米多孔銅氧化後生成的氫氧化銅的掃描電鏡照片。
圖4為本發明實施例提供的氧化銅的拉曼光譜圖譜。
圖5為本發明實施例提供的不同氧化條件下的氧化銅奈米片的掃描電鏡照片。
下面將結合附圖及具體實施例對本發明提供的奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法作進一步的詳細說明。
本發明實施例提供一種奈米多孔銅負載氧化銅奈米片陣列複合材料,由一奈米多孔銅基底及一氧化銅奈米片陣列組成。所述氧化銅奈米片陣列設置在所述奈米多孔銅基底的一個表面。所述奈米多孔銅基底與所述氧化銅奈米片陣列化學結合在一起。所述氧化銅奈米片陣列包括多個氧化銅奈米片,所述多個氧化銅奈米片垂直於所述奈米多孔銅基底且交錯排列形成陣列結構。
所述奈米多孔銅基底為片狀結構。請參見圖1,所述奈米多孔銅基底包括個金屬韌帶。所述金屬韌帶相互交錯形成多個孔。所述多個孔可以呈規則分佈,如三維雙連續網路形式分佈,也可以呈不規則分佈。所述奈米多孔銅基底中各個孔的孔徑為20nm~200nm。所述奈米多孔銅基底的厚度為0.01mm~1mm。本實施例中,所述奈米多孔銅基底的厚度為10μm~100μm。所述奈米多孔銅基底的孔的孔徑為20nm~200nm。
進一步,所述奈米多孔銅基底中可以設置增強體,該增強體穿插在所述奈米多孔銅基底中,可以提高所述奈米多孔銅基底的機械強度。所述增強體的材料不限,可以為奈米碳管結構、石墨烯等。所述奈米碳管結構不限,可以包括一根或多根奈米碳管。當所述奈米碳管結構包括多根奈米碳管時,該多根奈米碳管可以雜亂無章,無規則設置,也可以是多根奈米碳管形成膜狀結構。該膜狀結構可以為奈米碳管拉膜、奈米碳管碾壓膜和奈米碳管絮化膜中的一種或多種。
所述奈米碳管拉膜中的多根奈米碳管通過凡德瓦爾力首尾相連且沿同一方向延伸。所述奈米碳管碾壓膜中的多根奈米碳管無序,沿同一方向或不同方向擇優取向排列。所述奈米碳管絮化膜中的多根奈米碳管之間通過凡德瓦爾力相互吸引、纏繞形成網狀結構。
所述氧化銅奈米片的高度為200nm~1.5μm,所述氧化銅奈米片的厚度為20nm~80nm。所述氧化銅奈米片陣列的高度指的是垂直於所述奈米多孔銅基底方向上的所述所述氧化銅奈米片的長度。
請參見圖2,本發明實施例提供一種奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法,包括以下步驟: 步驟一、將奈米多孔銅基底放置在含有氨根離子的鹼性溶液裡,所述奈米多孔銅基底漂浮在所述含有氨根離子的鹼性溶液的表面; 步驟二、所述奈米多孔銅基底與所述含有氨根離子的鹼性溶液發生反應,形成一複合材料; 步驟三、將所述複合材料乾燥處理,形成奈米多孔銅負載氧化銅奈米片陣列複合材料。
在步驟一中,所述奈米多孔銅基底可以通過現有技術中的方法製備獲得。本實施例中通過脫合金的方法處理合金基底獲得所述奈米多孔銅基底。 所述合金基底為銅合金基底,可以為銅鋅合金或銅鋁合金,脫合金方法可以採用自由腐蝕或者電化學脫合金的方法。所述奈米多孔銅基底的厚度由所述合金基底的厚度有關。所述奈米多孔銅基底為片狀結構。所述奈米多孔銅基底的厚度為0.01mm~1mm。所述奈米多孔銅基底具有多個孔,各個孔的的孔徑為20nm~200nm。本實施例中,所述奈米多孔銅基底的厚度為0.05mm,所述奈米多孔銅基底的孔的孔徑為20nm~200nm。
將所述奈米多孔銅基底裁剪為所需的大小和形狀放置在含有氨根離子的鹼性溶液裡。將所述奈米多孔銅基底輕輕放置在含有氨根離子的鹼性溶液表面,避免對所述奈米多孔銅基底造成破壞,影響後續形成的氧化銅奈米片陣列的形貌。由於所述奈米多孔銅基底本身密度小,並且具有較高的比表面積,因此,所述奈米多孔銅基底能夠自由的漂浮在含有氨根離子的鹼性溶液的表面。 所述含有氨根離子的鹼性溶液包括但不限於氨水或氫氧化鈉。所述含有氨根離子的鹼性溶液的濃度為0.016M~1M。本實施例中,所述含有氨根離子的鹼性溶液的濃度為0.016M~0.033M。進一步地,步驟一之前可以包括一去除雜質的步驟,以使最終形成的奈米多孔銅負載氧化銅奈米片陣列複合材料具有良好的形貌。具體地,可對由脫合金的方法形成所述奈米多孔銅基底進行清洗和乾燥處理。例如,可使用鹽酸對所述奈米多孔銅基底進行清洗,去掉表面的氧化層;其次再使用純水、酒精對所述奈米多孔銅基底進行去酯清洗處理。將清洗後的所述奈米多孔銅基底放置真空乾燥箱中,在溫度140℃~200℃下進行乾燥處理2~6小時。本實施例中,將清洗後的所述奈米多孔銅基底放置真空乾燥箱中,在溫度80℃下進行乾燥處理2小時。
進一步地,當所述奈米多孔銅基底中設置增強體時,所述銅合金基底中設置有增強體,該增強體穿插在所述銅合金中,可以提高所述奈米多孔銅基底的機械強度。所述增強體的材料不限,可以為奈米碳管結構、石墨烯。 所述奈米碳管結構不限,可以包括一根或多根奈米碳管。當所述奈米碳管結構包括多根奈米碳管時,該多根奈米碳管可以雜亂無章,無規則設置,也可以是多根奈米碳管形成膜狀結構。該膜狀結構可以為奈米碳管拉膜、奈米碳管碾壓膜和奈米碳管絮化膜中的一種或多種。
所述奈米碳管拉膜中的多根奈米碳管通過凡德瓦爾力首尾相連且沿同一方向延伸。所述奈米碳管碾壓膜中的多根奈米碳管無序,沿同一方向或不同方向擇優取向排列。所述奈米碳管絮化膜中的多根奈米碳管之間通過凡德瓦爾力相互吸引、纏繞形成網狀結構。
本發明的提供的奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法不會影響增強體的結構。即,當所述奈米多孔銅基底中設置增強體時,最終形成的奈米多孔銅負載氧化銅奈米片陣列複合材料中也具有增強體,且增強體的結構不變。
請參見圖3,在步驟二中,所述奈米多孔銅與所述含有氨根離子的鹼性溶液發生反應,形成一複合材料的步驟中,所述奈米多孔銅被氧化形成氫氧化銅陣列。即,形成了一奈米多孔銅負載氫氧化銅陣列的複合材料。具體地,在氧氣、水分子、氨根離子以及氫氧根的作用下,所述奈米多孔銅基底與所述含有氨根離子的鹼性溶液接觸的一面快速發生氧化反應,而所述奈米多孔銅裸露在外與空氣接觸的表面則不發生氧化反應。即,所述奈米多孔銅的氧化過程是單面發生的。所述奈米多孔銅基底的氧化時間可為1~72小時。優選地,所述奈米多孔銅基底的氧化時間可為1~12小時。所述奈米多孔銅的氧化時間最小可縮短到1小時。本實施例中,所述奈米多孔銅的氧化時間12小時。
所述奈米多孔銅基底被氧化快速生成氫氧化銅陣列主要依賴於:氨根離子的配位作用、所述奈米多孔銅基底的金屬韌帶處原子的活潑性以及所述鹼性溶液表面處的快速的氧傳輸。所述奈米多孔銅基底快速發生氧化反應原理為:由於所述奈米多孔銅基底的金屬韌帶尺寸很小,韌帶處的銅原子具有很高的活性,因而發生銅原子的溶解現象;溶解後的銅原子位於所述奈米多孔銅基底與所述鹼性溶液的接觸表面位置,該接觸表面位置具有很高的氧濃度,進 而有利於氧傳輸,因此溶解的銅原子會在所述鹼性溶液中氧氣的作用下發生氧化,變為二價銅離子;在強的配位體(NH3)的作用下,所述二價銅離子傾向於形成四配位平面四邊形構型的配位體[Cu(H2O)2(NH3)]2+;形成的銅配位體不斷在韌帶位置富集生長,進而形成熱力學更加穩定的Cu(OH)2結晶;所述Cu(OH)2結晶依託於韌帶形核生長,在重力場的作用下發生沿重力方向的單向生長,進而形成一維針狀奈米Cu(OH)2陣列。
在步驟三中,將所述複合材料放入真空乾燥箱中對所述複合材料進行真空乾燥脫水處理,使所述複合材料中的所述氫氧化銅陣列轉變為氧化銅陣列,進而形成奈米多孔銅負載氧化銅奈米片陣列複合材料。由圖4的拉曼圖譜可判斷出對所述複合材料進行真空乾燥脫水處理後形成了氧化銅陣列,即,所述複合材料中的氫氧化銅轉變為氧化銅。具體地,在乾燥過程中,Cu(OH)2會發生脫水反應,發生顯著的原子擴散,彼此鄰近的針狀Cu(OH)2會在表面能的作用下發生聚合生長,最終形成二維片狀奈米氧化銅陣列。該氧化銅奈米片的高度為200nm~1.5μm,該氧化銅奈米片的厚度為20nm~80nm。
進一步地,可分階段設置真空乾燥箱的溫度及乾燥時間對所述複合材料進行乾燥脫水處理,以獲得結晶度更佳的CuO奈米片陣列。較低溫度下乾燥,實現部分水在溫和條件下的脫除;進一步提高乾燥溫度實現CuO的聚合生長,獲得結晶度更好的CuO奈米片陣列。優選地,最終對所述複合材料進行乾燥脫水的溫度為150℃以上。本實施例中,最終乾燥脫水溫度為180℃。
圖5顯示不同氧化條件下的所述氧化銅奈米片的掃描電鏡照片。 圖5(a)為氨水濃度為0.016M,氧化時間為6小時;圖5(b)為氨水濃度為0.016M,氧化時間為12小時;圖5(c)為氨水濃度為0.033M,氧化時間為6小時;圖5(d)為氨水濃度為0.033M,氧化時間為12小時。由此可見,氧化時間相同,氨水濃度越大,形成的氧化銅奈米片尺寸越大;氨水濃度相同時,氧化時間越長,形成的氧化銅奈米片尺寸越大。
進一步地,在步驟三之前可以包括一清洗乾燥所述複合材料去除雜質的步驟,以便後續形成的氧化銅奈米片陣列具有良好的形貌。具體地,可將所述複合材料放置在純水或酒精中清洗後,進行抽真空乾燥。
所述氧化銅奈米片陣列的形貌與鹼性溶液的濃度與種類、氧化時間、乾燥脫水溫度與時間有關,因此,可通過調控鹼性溶液的濃度與種類、氧化時間、乾燥脫水溫度與時間來調控氧化銅奈米片陣列的形貌。
實施例1
選取大小為1cm*1cm的奈米多孔銅作為基底。首先使用鹽酸對該材料進行清洗,去掉表面的氧化層;其次再適用純水、酒精進行去酯清洗處理;最後在真空乾燥箱中進行乾燥處理,乾燥條件為80攝氏度2小時。然後進行氧化處理:將奈米多孔銅輕輕放置在濃度為0.033M氨水溶液表面,使其處於自然漂浮狀態,室溫保持靜置12小時,奈米多孔銅被氧化形成氫氧化銅陣列,形成複合材料。將氧化後的複合材料取出,分別在純水、酒精中清洗,進行抽真空乾燥。將乾燥後的樣品放置在真空乾燥箱中,首先在60攝氏度下保溫2小時;再設置為120攝氏度保溫2小時;最後設置為180攝氏度保溫2小時,並自然冷卻至室溫,便獲得了奈米多孔銅單面負載的氧化銅奈米片陣列複合材料。在該條件下生成的氧化銅奈米片在高度方向上的平均尺寸約為1.2μm,在厚度方向上的平均尺寸約為40nm。
本發明提供的奈米多孔銅負載的單面氧化銅奈米片陣列複合材料及其製備方法具有以下優點:第一、這種方法適用於不同方法製備的奈米多孔銅片材作為基底進行氧化處理生成氧化銅奈米片陣列,基底奈米多孔銅片材取材容易;第二、奈米多孔銅負載的單面氧化銅奈米片陣列複合材料的製備過程方便高效,無需複雜昂貴設備,可在室溫下進行,實現奈米多孔銅的快速氧化生成氧化銅奈米片陣列,且氧化銅奈米片形貌方便可調;第三、該方法實現了奈米多孔銅單面負載氧化銅,使得該材料既有氧化銅奈米片陣列的性能,同時保留奈米多孔銅的結構特點和性能,實現兩種材料複合後的結構功能一體化,進而充分二者的協同作用;第四、氧化銅奈米片陣列與奈米多孔銅基底為化學結合,具有很強的結合作用力,不存在一般純銅片氧化後出現氧化層易剝落現象。第五,當奈米多孔銅基底中設置有增強體時,可以提高奈米多孔銅的機械強度。
另外,本領域技術人員還可在本發明精神內做其他變化,當然,這些依據本發明精神所做的變化,都應包含在本發明所要求保護的範圍之內。

Claims (7)

  1. 一種奈米多孔銅負載氧化銅奈米片陣列複合材料,由一奈米多孔銅基底及一氧化銅奈米片陣列組成,且所述氧化銅奈米片陣列設置在所述奈米多孔銅基底的一個表面,所述奈米多孔銅基底與所述氧化銅奈米片陣列化學結合在一起,所述氧化銅奈米片陣列包括複數個氧化銅奈米片,所述複數個氧化銅奈米片垂直於所述奈米多孔銅基底且交錯排列形成陣列結構。
  2. 如請求項1所述之奈米多孔銅負載氧化銅奈米片陣列複合材料,其中,所述氧化銅奈米片的高度為200nm~1.5μm,所述氧化銅奈米片的厚度為20nm~80nm。
  3. 如請求項1所述之奈米多孔銅負載氧化銅奈米片陣列複合材料,其中,所述奈米多孔銅基底的厚度為0.01mm~1mm,所述奈米多孔銅基底的孔徑為20nm~200nm。
  4. 如請求項1所述之奈米多孔銅負載氧化銅奈米片陣列複合材料,其中,所述奈米多孔銅基底中設置增強體,所述增強體的材料為奈米碳管結構或石墨烯。
  5. 一種奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法,包括:步驟一、將奈米多孔銅基底放置在氨水裡,該奈米多孔銅基底漂浮在氨水的表面;步驟二、所述奈米多孔銅基底與所述氨水發生反應,形成一奈米多孔銅負載針狀奈米氫氧化銅陣列複合材料;步驟三、將所述複合材料乾燥處理,形成奈米多孔銅負載氧化銅奈米片陣列複合材料。
  6. 如請求項5所述之奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法,其中,所述氨水的濃度為0.016M~1M。
  7. 如請求項5所述之奈米多孔銅負載氧化銅奈米片陣列複合材料的製備方法,其中,所述奈米多孔銅基底的氧化時間為1~72小時。
TW107140938A 2018-09-29 2018-11-16 奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法 TWI703237B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811146610.7 2018-09-29
CN201811146610.7A CN110963523B (zh) 2018-09-29 2018-09-29 纳米多孔铜负载氧化铜纳米片阵列复合材料及其制备方法

Publications (2)

Publication Number Publication Date
TW202012701A TW202012701A (zh) 2020-04-01
TWI703237B true TWI703237B (zh) 2020-09-01

Family

ID=69947733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107140938A TWI703237B (zh) 2018-09-29 2018-11-16 奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法

Country Status (3)

Country Link
US (1) US20200102227A1 (zh)
CN (1) CN110963523B (zh)
TW (1) TWI703237B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111517358B (zh) * 2020-06-16 2021-11-02 盐城工学院 一种花状氧化铜纳米球的合成方法及应用
CN113394343B (zh) * 2021-01-07 2022-08-05 湖州师范学院 一种背入射p-i-n结构钙钛矿太阳电池及其制备方法
CN112892534B (zh) * 2021-03-05 2022-05-13 内蒙古大学 用于VOC净化的MOx/CuxO/Cu光催化剂制备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410227A (zh) * 2016-12-12 2017-02-15 珠海格力电器股份有限公司 一种氧化铜及其制备方法
CN108597892A (zh) * 2018-04-28 2018-09-28 河北工业大学 一种纳米多孔铜负载形貌可控铜基氧化物复合材料及其制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201020214A (en) * 2008-11-17 2010-06-01 Univ Nat Taiwan Manufacturing method of copper oxide nano-particles
CN103757569B (zh) * 2013-09-18 2015-12-09 中国科学院苏州纳米技术与纳米仿生研究所 有序碳纳米管增强铝基复合材料及其制备方法
CN106229462B (zh) * 2016-07-29 2019-02-19 四川大学 三维纳米多孔铜/二维氧化亚铜纳米片阵列型锂离子电池负极及其一步制备法
CN107871627A (zh) * 2016-09-28 2018-04-03 南京大学 泡沫铜担载CuO纳米片的高电容柔性电极材料及其制备方法
CN106947995B (zh) * 2017-04-28 2018-12-21 合肥工业大学 一种单相CuO纳米片阵列薄膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106410227A (zh) * 2016-12-12 2017-02-15 珠海格力电器股份有限公司 一种氧化铜及其制备方法
CN108597892A (zh) * 2018-04-28 2018-09-28 河北工业大学 一种纳米多孔铜负载形貌可控铜基氧化物复合材料及其制备方法及应用

Also Published As

Publication number Publication date
TW202012701A (zh) 2020-04-01
CN110963523A (zh) 2020-04-07
CN110963523B (zh) 2021-11-05
US20200102227A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
TWI703237B (zh) 奈米多孔銅負載氧化銅奈米片陣列複合材料及其製備方法
Xu et al. Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates
Zhang et al. Graphene-based hybrid aerogels for energy and environmental applications
CN101654245B (zh) 氧化石墨烯薄膜的固-液界面自组装制备方法
Zhang et al. Preparation of silver nanowire arrays in anodic aluminum oxide templates
JP5939593B2 (ja) カーボンナノチューブスポンジ状構造体及びその製造方法
CN103332689B (zh) 一种多孔石墨烯纳米带及其制备方法与应用
CN112758950A (zh) 一种硼烯纳米片及其制备方法
TWI677429B (zh) 奈米多孔銅的製備方法
CN109626364A (zh) 一种氮硫双掺杂三维石墨烯的制备方法
TWI531407B (zh) 石墨烯過濾膜及其製作方法
CN107673332A (zh) 一种利用复合金属模板制备大面积3d石墨烯的方法
TWI737968B (zh) 多孔銅複合材料及其製備方法
Hu et al. Study on wet etching of AAO template
CN111153393A (zh) 一种聚苯胺基炭材料及其孔隙结构的调控方法和应用
CN105734335B (zh) 一种铜基纳米多孔薄膜及其制备方法
JP2000191302A (ja) 水素吸蔵体及び水素吸蔵体の製造方法
CN110526228B (zh) 一种类花瓣状碳纳米片的制备方法
CN111653760B (zh) 一种二维金属片及其制备方法和应用
CN112939128A (zh) 一种具有高集热效应海水淡化气凝胶的制备方法
Yin et al. Fabrication of highly ordered anodic aluminium oxide templates on silicon substrates
Yin et al. Template-growth of highly ordered carbon nanotube arrays on silicon
Kim Multi-walled carbon nanotube with multivacancy defects: porous structure and Pt decoration
Kim et al. Sucrose-derived graphitic porous carbon replicated by mesoporous silica
LIU et al. Preparation and characterization of layered boron nitride nanosheets