JPH01298214A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH01298214A
JPH01298214A JP63124897A JP12489788A JPH01298214A JP H01298214 A JPH01298214 A JP H01298214A JP 63124897 A JP63124897 A JP 63124897A JP 12489788 A JP12489788 A JP 12489788A JP H01298214 A JPH01298214 A JP H01298214A
Authority
JP
Japan
Prior art keywords
source compound
carbon source
fibers
carbon
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63124897A
Other languages
Japanese (ja)
Inventor
Masayuki Nakatani
雅行 中谷
Kimihide Sugimori
杉森 公英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP63124897A priority Critical patent/JPH01298214A/en
Publication of JPH01298214A publication Critical patent/JPH01298214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain thin and long carbon fibers having excellent moldability, by heating a carbon source compound, catalyst source compound and carrier gas and then additionally blending the resulting material with a specific amount of the carbon source compound during or after formation of fibers. CONSTITUTION:First, a carbon source compound such as methane, ethane or benzene, a catalyst source compound such as iron acetylacetonate or ferric chloride and a carrier gas such as hydrogen gas or helium gas are fed to a heating zone space of electric furnace and heated in a uniformly mixed state. Then during or after formation of fibers of the heated materials, 0.01-10g/mol based on the amount (mol) of the carrier gas used per unit time of the carbon source compound is additionally blended with the resulting material and heated to give carbon fibers having excellent productivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維の製造法に関し、さらに詳しくは、
触媒源化合物等を触媒源として炭素源化合物を反応させ
、加熱帯空間で繊維を生成させる炭素繊維の製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing carbon fiber, and more specifically,
The present invention relates to a method for producing carbon fibers in which a carbon source compound is reacted with a catalyst source compound or the like as a catalyst source to produce fibers in a heating zone space.

(従来の技術) 炭素繊維は高強度、高弾性率などの優れた性質を有し、
各種複合材料として近年脚光を浴びている材料である。
(Prior art) Carbon fiber has excellent properties such as high strength and high modulus of elasticity.
It is a material that has been in the spotlight in recent years as a variety of composite materials.

従来、炭素繊維は有機繊維を炭化することによって主に
製造されているが、炭化水素類の熱分解および触媒反応
によって生成する炭素繊維も知られている。後者の気相
法炭素繊維は前者の炭素繊維に比べ、優れた結晶性、配
向性を有しているため、高強度、高弾性率を兼備する複
合材料として、多方面の用途が期待されている。
Conventionally, carbon fibers have been mainly produced by carbonizing organic fibers, but carbon fibers produced by thermal decomposition and catalytic reactions of hydrocarbons are also known. The latter type of vapor-grown carbon fiber has superior crystallinity and orientation compared to the former type of carbon fiber, so it is expected to be used in a variety of fields as a composite material that has both high strength and high modulus. There is.

気相法による炭素繊維の一般的製造法は、例えば「工業
材料、昭和57年7月号、109頁(遠胚、小山)」に
示されているように、a 1%金属からなる微粒子を散
布した繊維生成用基材を電気炉の反応管内に設置し、炉
温を所定温度にした後、反応管内に炭化水素と水素の混
合ガスを通して炭化させ、基材上に炭素繊維を生成せし
めるものである。
A general method for producing carbon fibers by the vapor phase method is as shown in "Kogyo Zasei, July 1980 issue, p. 109 (Engeo, Koyama)", in which fine particles made of a 1% metal are The sprinkled base material for fiber production is placed in the reaction tube of an electric furnace, and after the furnace temperature is brought to a specified temperature, a mixed gas of hydrocarbon and hydrogen is passed into the reaction tube to carbonize it, thereby producing carbon fibers on the base material. It is.

しかしながら、このような基材を用いる方法では、反応
域が2次元であることや、プロセスが複雑であることな
どから生産性が低いものであった。
However, the method using such a base material has low productivity because the reaction zone is two-dimensional and the process is complicated.

これに対して特開昭58−180615号公報には、高
融点金属または該金属の化合物の超微粉末を炭化水素(
炭素源化合物)の熱分解帯域に浮遊させる方法が記載さ
れている。また、特開昭60−54998号公報、特開
昭dO−224816号公報には、遷移金属化合物のガ
スと炭素源化合物のガスとキャリヤガスとの混合ガスを
高温反応させる方法が記載されている。これらは、ガス
気流中、反応空間を3次元に利用し、ガス気流と供に炭
素繊維も反応域から排出させようとする方法であり、本
願発明者らも特開昭60−231821号公報、特開昭
61−108723号公報、特開昭61−225322
号公報、特開昭61−225327号公報、特開昭61
−275425号公報等に出願してきた。
On the other hand, JP-A No. 58-180615 discloses that ultrafine powder of a high-melting point metal or a compound of the metal is mixed with a hydrocarbon (
A method for suspending carbon source compounds) in a pyrolysis zone is described. Further, JP-A No. 60-54998 and JP-A-224816 disclose a method of causing a high-temperature reaction of a mixed gas of a transition metal compound gas, a carbon source compound gas, and a carrier gas. . These are methods that utilize the reaction space three-dimensionally in a gas stream and discharge carbon fibers from the reaction zone along with the gas stream. JP-A-61-108723, JP-A-61-225322
No. 1, JP-A-61-225327, JP-A-61-Sho.
-275425, etc. have been applied for.

(発明が解決しようとする問題点) しかしながら、従来の方法においては非常に細く長い繊
維、特に径が0.3μm以下、長さが50μm以上の繊
維を生産性よく製造するのが困難であった。一方、本発
明者らの検討によると、このような炭素繊維はシートに
なり易く、非常に成形性に優れていることが判明した。
(Problems to be solved by the invention) However, with conventional methods, it is difficult to produce very thin and long fibers, especially fibers with a diameter of 0.3 μm or less and a length of 50 μm or more, with good productivity. . On the other hand, according to studies conducted by the present inventors, it has been found that such carbon fibers are easily formed into sheets and have excellent moldability.

またシートにしたものを樹脂を含浸したところ、補強効
果および電気、熱伝導性に優れていることが判明した。
Furthermore, when a sheet was impregnated with resin, it was found to have excellent reinforcing effects and excellent electrical and thermal conductivity.

本発明の目的は、非常に細く長い炭素繊維を生産性よく
製造する方法を提供することにある。
An object of the present invention is to provide a method for manufacturing very thin and long carbon fibers with high productivity.

(問題点を解決するための手段) 本発明は、炭素源化合物、触媒源化合物およびキャリヤ
ガスを加熱して炭素繊維を製造する方法において、繊維
の生成時又は繊維を生成せしめたのち、さらに単位時間
あたりに用いたキャリヤガス量(mof)に対して炭素
源化合物0.01〜10g/manを追加混合すること
を特徴とする炭素繊維の製造法である。
(Means for Solving the Problems) The present invention provides a method for producing carbon fibers by heating a carbon source compound, a catalyst source compound, and a carrier gas. This method of producing carbon fibers is characterized in that 0.01 to 10 g/man of a carbon source compound is added to the amount (mof) of carrier gas used per hour.

本発明における炭素源化合物とは、800〜1800゛
Cに加熱することによって炭素を析出し得る化合物をい
い、炭素化合物全般を対象としている。例えば CO、
メタン、エタン等のアルカン化合物、エチレン、ブタジ
ェン等のアルケン化合物、アセチレン等のアルキン化合
物、ベンゼン、トルエン、スチレン、ナフタレン、アン
トラセン等の芳香族化合物、シクロヘキサン、シクロペ
ンタジェン、ジシクロペンタジェン等の脂環式炭化水素
化合物、またはこれらの窒素、酸素、ハロゲン等の誘導
体、ガソリン、灯油、重油、ピッチ等があげられ、これ
らの混合物も用いることがゼきる。
The carbon source compound in the present invention refers to a compound that can precipitate carbon by heating to 800 to 1800°C, and covers carbon compounds in general. For example, CO,
Alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, aromatic compounds such as benzene, toluene, styrene, naphthalene and anthracene, and fats such as cyclohexane, cyclopentadiene and dicyclopentadiene. Examples include cyclic hydrocarbon compounds, derivatives thereof such as nitrogen, oxygen, halogen, etc., gasoline, kerosene, heavy oil, pitch, etc., and mixtures thereof may also be used.

本発明における触媒源化合物とは、FeCl3、F e
(N O)、、NiCff12、Co(No)2C1!
、等の無機遷移金属化合物、Fe(CsHs)z 、N
1(CsHs)z、Co(CsHs)z 、Fe(Co
)s、Fez(CO)1、N1(Co)、等の有機遷移
金属化合物、アセチルアセトン鉄、カルボン酸鉄、鉄ア
ルコキシド、鉄アリールオキシド、ニッケルチオアルコ
キシド、コバルトアルコキシド、チオ酢酸鉄等の遷移金
属化合物等が用いられる。これら触媒源化合物は2種以
上同時に用いてもよい。さらに触媒化合物として、特開
昭60−54998号公報、特開昭60−54999号
公報、特開昭60−181319号公報、特開昭60−
185818号公報、特開昭60−224815号公報
、特開昭60−224816号公報、特開昭60−23
1822号公報、特開昭61−108723号公報、特
開昭61−225322号公報、特開昭61−2253
27号公報、特開昭61−275425号公報、特願昭
60−123201号等に記載されている化合物を用い
てもよい。
The catalyst source compound in the present invention is FeCl3, Fe
(NO),, NiCff12, Co(No)2C1!
, inorganic transition metal compounds such as Fe(CsHs)z, N
1(CsHs)z, Co(CsHs)z, Fe(Co
)s, Fez(CO)1, N1(Co), etc., transition metal compounds such as iron acetylacetonate, iron carboxylate, iron alkoxide, iron aryloxide, nickel thioalkoxide, cobalt alkoxide, iron thioacetate, etc. etc. are used. Two or more of these catalyst source compounds may be used simultaneously. Furthermore, as a catalyst compound, JP-A-60-54998, JP-A-60-54999, JP-A-60-181319, JP-A-60-60-
185818, JP 60-224815, JP 60-224816, JP 60-23
1822, JP 61-108723, JP 61-225322, JP 61-2253
Compounds described in Japanese Patent Application Publication No. 27-27, Japanese Patent Application Laid-Open No. 61-275425, Japanese Patent Application No. 123201-1986, etc. may also be used.

また、特開昭58−180615号公報に記載されてい
るような金属または金属化合物の超微粉末を用いてもよ
い。これら触媒源化合物の内、Fe。
Further, ultrafine powder of a metal or a metal compound as described in JP-A-58-180615 may also be used. Among these catalyst source compounds, Fe.

Ni、Co化合物は好ましく用いられる。Ni and Co compounds are preferably used.

本発明におけるキャリヤガスとは、N2ガス、Heガス
、N2ガス、Neガス、Arガス、Krガス、CO2ガ
ス、を主体とするガスであり、これらの混合物を用いて
もよい。
The carrier gas in the present invention is a gas mainly composed of N2 gas, He gas, N2 gas, Ne gas, Ar gas, Kr gas, and CO2 gas, and a mixture thereof may also be used.

キャリヤガスは、用いる炭素源化合物によっても異なる
が、30νo2%以上を水素ガスとするのが好ましく、
特に50vOI!、%以上とするのが好ましい。水素ガ
スが少ないと得られる繊維の長さが短くなる傾向にある
Although the carrier gas varies depending on the carbon source compound used, it is preferable that 30νo2% or more is hydrogen gas,
Especially 50vOI! , % or more is preferable. When the amount of hydrogen gas is low, the length of the fibers obtained tends to be short.

本発明において、炭素源化合物、触媒源化合物およびキ
ャリヤガスの加熱は、電気炉加熱、燃焼熱を利用した加
熱、レーザー加熱、赤外線加熱、プラズマ加熱等、いか
なる加熱手段を用いてもよい。−船釣には電気炉加熱が
便利である。加熱温度は800〜1800°Cが一般的
であるが、900〜1500°C1特に1000〜15
00°Cは好ましく用いられる。
In the present invention, the carbon source compound, catalyst source compound, and carrier gas may be heated by any heating means such as electric furnace heating, heating using combustion heat, laser heating, infrared heating, plasma heating, etc. -Electric furnace heating is convenient for boat fishing. The heating temperature is generally 800 to 1800°C, but 900 to 1500°C, especially 1000 to 15
00°C is preferably used.

本発明においては、まず炭素源化合物、触媒源化合物お
よびキャリヤガスを加熱帯空間へ供給して加熱する(以
後これを第1段供給と称する)。
In the present invention, first, a carbon source compound, a catalyst source compound, and a carrier gas are supplied to a heating zone space and heated (hereinafter, this is referred to as first-stage supply).

これらは加熱帯空間で、できるだけ均一な混合状態で加
熱するのが好ましい。
It is preferable to heat these in a heating zone space in a mixed state as uniform as possible.

第1段供給における炭素源化合物の量は、単位時間当た
り加熱帯に供給するキャリヤガス量(moffi)に対
して0.01〜15 g/mo lが好ましく、特に0
.5〜5 g/mo Eが好ましく用いられる。炭素源
化合物の量が多すぎると後述する第2段以降の手段を採
用しても、細長い繊維が充分に得られにくく、少なすぎ
ると生産性が充分でなく、実用的でない。
The amount of carbon source compound in the first stage supply is preferably 0.01 to 15 g/mol, particularly 0.01 to 15 g/mol relative to the carrier gas amount (moffi) supplied to the heating zone per unit time.
.. 5 to 5 g/moE is preferably used. If the amount of the carbon source compound is too large, it will be difficult to obtain a sufficient amount of long and thin fibers even if the second and subsequent steps described below are employed, and if the amount is too small, the productivity will be insufficient and it will not be practical.

また、触媒源化合物の量は、炭素源化合物の量に対して
0.001〜15−1%が好ましく、特に0.1〜5w
t%が好ましい。触媒源化合物の量が多すぎても少なす
ぎても粒状物が炭素繊維に混入する傾向にある。 本発
明においては炭素源化合物、触媒源化合物およびキャリ
ヤガス以外に、硫黄化合物を第1段供給時に供給して加
熱するのは好ましい。硫黄化合物としては、硫化水素、
二硫化炭素および有機硫黄化合物などがあげられ、有機
硫黄化合物としては、メチルチオール、エチルチオール
、ブチルチオール、フェニルチオール等のチオール類、
ジメチルスルフィド、ジエチルスルフィド、フェニルメ
チルスルフィド等のスルフィド類、ジメチルスルホキシ
ド、ジエチルスルホキシド、ジフェニルスルホキシド等
のスルホキシド類、ジメチルスルホン、ジエチルスルホ
ン等のスルホン類、チオフェン、イソベンヅチオフェン
等の含硫黄複素環化合物、その他、スルフェン酸類、ス
ルフェン酸エステル類、スルホン酸類、スルホン酸エス
テルおよびその無水物等、スルフィン酸類、スルフィン
酸エステル類、チオールスルフイナー1・fn、チオカ
ルボニル化合物、チオカルボン酸類、チオカルボン酸エ
ステル類、ジチオカルボン酸類、スルフィン類、チオカ
ルボン酸誘導体S−オキシ)・頚、スルホニウムイリド
類、スルフラン類等があげられる。これらは1種または
2種以上組合わせて用いられる。
Further, the amount of the catalyst source compound is preferably 0.001 to 15-1%, particularly 0.1 to 5w% relative to the amount of the carbon source compound.
t% is preferred. If the amount of the catalyst source compound is too large or too small, particulate matter tends to be mixed into the carbon fibers. In the present invention, in addition to the carbon source compound, catalyst source compound, and carrier gas, it is preferable to supply and heat a sulfur compound during the first stage supply. Sulfur compounds include hydrogen sulfide,
Examples include carbon disulfide and organic sulfur compounds. Examples of organic sulfur compounds include thiols such as methylthiol, ethylthiol, butylthiol, and phenylthiol;
Sulfides such as dimethyl sulfide, diethyl sulfide, and phenylmethyl sulfide; sulfoxides such as dimethyl sulfoxide, diethyl sulfoxide, and diphenyl sulfoxide; sulfones such as dimethyl sulfone and diethyl sulfone; and sulfur-containing heterocyclic compounds such as thiophene and isobenduthiophene. , Others, sulfenic acids, sulfenic esters, sulfonic acids, sulfonic esters and their anhydrides, sulfinic acids, sulfinic esters, thiolsulfiner 1/fn, thiocarbonyl compounds, thiocarboxylic acids, thiocarboxylic esters , dithiocarboxylic acids, sulfines, thiocarboxylic acid derivatives (S-oxy), sulfonium ylides, sulfurans, and the like. These may be used alone or in combination of two or more.

第1段供給時に供給する硫黄化合物の量は、単位時間当
たり第1段供給時に供給するキャリヤガス量(1110
1)に対して5X10−’〜2X10−”mo (2/
mo 1.が好ましく用いられる。硫黄化合物を供給す
ることによって炭素繊維が安定して得られる(頃向にあ
る。
The amount of sulfur compound supplied during the first stage supply is determined by the amount of carrier gas supplied during the first stage supply per unit time (1110
5X10-' to 2X10-"mo (2/
mo1. is preferably used. By supplying sulfur compounds, carbon fibers can be stably obtained.

炭素源化合物、触媒源化合物、キャリヤガス、硫黄化合
物を加熱帯に供給する方法は、特に限定されず、例えば
それぞれをガスで供給する方法、混合ガスで供給する方
法、液状で供給する方法、混合液状で供給する方法、粉
末状で供給する方法、これらの組合わせ等いずれの方法
を用いてもよい。
The method of supplying the carbon source compound, the catalyst source compound, the carrier gas, and the sulfur compound to the heating zone is not particularly limited. For example, each of them may be supplied as a gas, as a mixed gas, as a liquid, or as a mixture. Any method such as a method of supplying in liquid form, a method of supplying in powder form, or a combination thereof may be used.

本発明においては、第1段供給後、すなわち繊維の生成
時、叉は繊維を生成せしめたのち炭素源化合物もさらに
追加混合して加熱することを特徴としている。
The present invention is characterized in that the carbon source compound is further mixed and heated after the first stage of supply, that is, during the production of fibers, or after the production of fibers.

第1段供給後、さらに追加混合する炭素源化合物として
は、第1段供給時に供給できる炭素源化合物と同様に炭
素化合物全般が対象となる。
The carbon source compound to be further mixed after the first stage supply includes all carbon compounds as well as the carbon source compounds that can be supplied during the first stage supply.

本発明者らの検討によると、第1段供給における炭素繊
維の生成において、第1段供給後朋の非常に短かい時間
内に炭素繊維の長さ成長速度のきわめて速い領域が存在
することが判明した。さらに詳細に検討したところ、炭
素繊維の長さ成長速度の低下が、炭素源化合物の消費(
炭素繊維になるため)に起因することが判明した。本発
明は、これらの発見に基づき詳細に検討したところ、第
1段供給後、さらに炭素源化合物を追加混合(以後、第
2段供給と称する)して加熱することにより炭素繊維の
長さ成長速度の速い領域を拡げることに成功したもので
ある。
According to the studies of the present inventors, in the production of carbon fibers during the first stage supply, there exists a region in which the length growth rate of the carbon fibers is extremely high within a very short period of time after the first stage supply. found. A more detailed study revealed that the decrease in the length growth rate of carbon fibers was caused by the consumption of carbon source compounds (
It was found that this is due to the carbon fiber. The present invention was developed based on these findings in detail, and it was found that after the first stage supply, a carbon source compound is further mixed (hereinafter referred to as second stage supply) and heated to increase the length of carbon fibers. This succeeded in expanding the area of high speed.

第1段供給後、さらに炭素源化合物を追加混合するタイ
ミングは特に限定されないが、第1段加熱時間の0.0
5秒以後が好ましく、特に0.1秒〜10.0秒の間が
好ましく用いられる。ここで、第1段加熱時間とは、第
1段供給時に供給された物質が繊維生成加熱帯域におい
てすべて理想気体になったと仮定し、また、該理想気体
が加熱帯温度に瞬時に加熱されたとした場合の該理想気
体の加熱帯での滞留時間をいう。実際には理想気体では
なく、また伝熱速度も遅いが、第2段供給で混合する炭
素源化合物もずれるため、特に上記仮定で算出するタイ
ミングで問題はない。第1段加熱時間が短かすぎると、
炭素繊維の長さ成長の効率が充分でなく、また長すぎる
と設備上、大きな加熱帯が必要となるので不便である。
After the first stage supply, the timing of additionally mixing the carbon source compound is not particularly limited, but 0.0 of the first stage heating time
The time period is preferably 5 seconds or more, and particularly preferably 0.1 seconds to 10.0 seconds. Here, the first stage heating time is based on the assumption that all the substances supplied during the first stage supply have become an ideal gas in the fiber generation heating zone, and that the ideal gas is instantaneously heated to the heating zone temperature. This is the residence time of the ideal gas in the heating zone. In reality, it is not an ideal gas and the heat transfer rate is slow, but since the carbon source compound mixed in the second stage supply is also shifted, there is no problem especially with the timing calculated based on the above assumption. If the first stage heating time is too short,
The length growth of carbon fibers is not efficient enough, and if the length is too long, a large heating zone is required in terms of equipment, which is inconvenient.

本発明において、第1段供給後、第2段供給における加
熱温度は第1段供給時と同様の温度範囲が適用される。
In the present invention, the heating temperature in the second stage supply after the first stage supply is the same temperature range as in the first stage supply.

第1段供給と第2段供給は、同一の炉で行なってもよい
し、叉は異なる炉で行なってもよい。その際、第1段供
給と第2段供給との間で冷却しない方が好ましく、特に
800°C以下に冷却しない方が好ましい。冷却しすぎ
ると長さ成長が充分に継続されない場合がある。
The first stage supply and the second stage supply may be performed in the same furnace or in different furnaces. In this case, it is preferable not to cool the product between the first stage supply and the second stage supply, and particularly preferably not to cool it to 800° C. or less. If it is cooled too much, length growth may not continue sufficiently.

本発明において、第2段供給時における炭素源化合物の
供給態様は、炭素源化合物のみをさらに混合する方法、
キャリヤガスと炭素源化合物とをさらに混合する方法、
キャリヤガスと硫黄化合物と炭素源化合物とをさらに混
合する方法があり、いずれの方法を用いてもよい。
In the present invention, the method of supplying the carbon source compound during the second stage supply is a method in which only the carbon source compound is further mixed;
a method of further mixing a carrier gas and a carbon source compound;
There is a method of further mixing the carrier gas, the sulfur compound, and the carbon source compound, and any method may be used.

第2段供給において、混合する炭素源化合物の星は、第
1段及び第2段供給時に供給されるキャリヤガス量(m
of)(第2段供給時に、キャリヤガスと炭素源化合物
とをさらに混合する場合は、その両方のキャリヤガス量
の合計量olとする)に対して、0.O1〜10g/m
olである。この内、0.1〜3g/moffiが好ま
しく用いられ、1.0〜5 g/mo 42が特に好ま
しく用いられる。第2段供給時に混合する炭素源化合物
の量が多すぎると粒状物の混入が生じたり、炭素繊維の
長さ成長を効率よく行うことができない。また少なすぎ
ると充分な生産性が得られない。
In the second stage supply, the star of the carbon source compound to be mixed is determined by the amount of carrier gas (m
of) (if the carrier gas and carbon source compound are further mixed during the second stage supply, the total amount of both carrier gases is ol), 0. O1~10g/m
It is ol. Among these, 0.1 to 3 g/moffi is preferably used, and 1.0 to 5 g/mo 42 is particularly preferably used. If the amount of the carbon source compound mixed during the second stage supply is too large, particulate matter may be mixed in or the length of carbon fibers cannot be grown efficiently. Moreover, if it is too small, sufficient productivity cannot be obtained.

本発明において、第2段供給時に供給する炭素源化合物
は、混合する以前にできるだけ高温長時間の熱履歴を与
えない方が好ましい。炭素源化合物によっても異なるが
、−船釣には 1000°C以上で0.5秒以上、特に
0.3秒以上の熱履歴を与えない方が好ましい。高温か
つ長時間の熱履歴を与えると、粒状物の混入が多くなる
傾向にある。
In the present invention, it is preferable that the carbon source compound supplied during the second stage supply is not subjected to a high temperature and long-term thermal history as much as possible before being mixed. Although it varies depending on the carbon source compound, - For boat fishing, it is preferable not to apply a thermal history of 0.5 seconds or more, especially 0.3 seconds or more at 1000° C. or higher. When high temperature and long-term thermal history is applied, particulate matter tends to increase.

本発明において、第2段供給後、さらに炭素源化合物を
追加混合(すなわち、第3段供給)する方法も好ましく
、第4段、第5段と段階的に炭素源化合物をさらに追加
混合する方法も好ましく用いられる。その場合(第3段
供給以降)に用いられる条件は、前述した同様の条件が
用いられる。
In the present invention, a method of additionally mixing the carbon source compound after the second stage supply (i.e., third stage supply) is also preferable, and a method of further additionally mixing the carbon source compound in stages such as the fourth stage and the fifth stage is also preferable. is also preferably used. In that case (after the third stage supply), the same conditions as described above are used.

例えば、第3段供給で供給される炭素源化合物の量は、
第1段、第2段及び第3段供給で供給するキャリヤガス
It (moffi)  (すなわち、第2段供給後、
第3段供給においてキャリヤガスを炭素源化合物とをさ
らに混合する場合は、その3者のキャリヤガス量の合計
量offとする)に対して0.01〜10g/mo 1
である。
For example, the amount of carbon source compound supplied in the third stage feed is
Carrier gas It (moffi) supplied in the first stage, second stage and third stage supply (i.e. after the second stage supply,
When the carrier gas is further mixed with the carbon source compound in the third stage supply, the total amount of the three carrier gases is off) 0.01 to 10 g/mo 1
It is.

本発明の方法によって、細長い繊維が得られるが、太く
て長い繊維を得る場合、本発明の方法の後、連続的に繊
維の太さ成長反応を行ってもよい。
By the method of the present invention, long and thin fibers can be obtained, but if thick and long fibers are to be obtained, a fiber thickness growth reaction may be carried out continuously after the method of the present invention.

(実施例) 実施例1〜5、比較例1〜3 第1図に示すように、モリブデンヒーターを存する電気
炉(1)(均熱長120cm)にSiC管(2)(内径
90mm、長さ2m)を設置し、SiC管(2)の一端
にボックス(3)を接続した。そしてボックス(3)に
フィルター(4)を設け、ボックス(3)から飛び出る
繊維を収集できるようにした。またSiC管(2)の他
の一端には原料を第1段供給するための導入パイプ(5
)、(6)およびその先端に導入ノズル(7)をそれぞ
れ設置した。また、第1段供給後、炭素源化合物をさら
に追加混合するための導入パイプ(8)及びノズル(9
)を設置し、導入パイプ(8)及びノズル(9)の位置
を変更することで、第1段加熱時間の調整を行った。
(Example) Examples 1 to 5, Comparative Examples 1 to 3 As shown in Fig. 1, a SiC tube (2) (inner diameter 90 mm, length 2 m) was installed, and a box (3) was connected to one end of the SiC pipe (2). A filter (4) was installed in the box (3) to collect fibers coming out of the box (3). Also, at the other end of the SiC pipe (2) there is an introduction pipe (5) for supplying raw materials to the first stage.
), (6), and an introduction nozzle (7) was installed at the tip thereof, respectively. In addition, after the first stage supply, an introduction pipe (8) and a nozzle (9) are used to further mix the carbon source compound.
), and the first stage heating time was adjusted by changing the positions of the introduction pipe (8) and nozzle (9).

なお、導入パイプ(8ンは多重管にして、導入パイプ(
8)内を通る炭素源化合物が800°C以上に加熱され
ないようにN2ガスで冷却した。
In addition, the introduction pipe (8) should be made into multiple pipes, and the introduction pipe (
8) Cooled with N2 gas so that the carbon source compound passing through the chamber was not heated above 800°C.

SiC管内壁温度を1250°Cに設定した後、SiC
管内を窒素置換し、導入パイプ(6)から水素ガス量4
.0 mol 7分で導入した。次にベンゼンに第1表
に示した触媒源化合物および硫黄化合物を溶解させたベ
ンゼン溶液を、導入パイプ(5)から導入し、水素ガス
とともにノズル(7)からSiC管内の加熱帯へ20分
間噴出させた。
After setting the SiC tube inner wall temperature to 1250°C,
The inside of the pipe is replaced with nitrogen, and the amount of hydrogen gas is 4 from the introduction pipe (6).
.. 0 mol was introduced in 7 minutes. Next, a benzene solution in which the catalyst source compounds and sulfur compounds shown in Table 1 are dissolved in benzene is introduced from the introduction pipe (5), and is ejected together with hydrogen gas from the nozzle (7) into the heating zone inside the SiC pipe for 20 minutes. I let it happen.

ノズル(7)からベンゼン。溶液噴出後、0.5秒後に
ノズル(9)からトルエン蒸気を第1表に示したように
加熱帯へ噴出させて、均一に混合した。
Benzene from nozzle (7). 0.5 seconds after the solution was ejected, toluene vapor was ejected from the nozzle (9) to the heating zone as shown in Table 1, and mixed uniformly.

ノズル(7)及びノズル(9)からの噴出を20分間行
った後、SiC管内を窒素置換して、ボンクス(3)及
びフィルター(4)から生成物を取出し評価した。これ
らの結果を第1表に要約した。
After ejecting from the nozzle (7) and nozzle (9) for 20 minutes, the inside of the SiC tube was replaced with nitrogen, and the product was taken out from the box (3) and filter (4) and evaluated. These results are summarized in Table 1.

なお、第1表中の「第1段加熱時間」は、電気炉lの両
端の温度勾配が急であるため、1250’C(第1段加
熱)の滞留時間を示した。
Note that the "first stage heating time" in Table 1 indicates the residence time of 1250'C (first stage heating) because the temperature gradient at both ends of the electric furnace I is steep.

以下余白 (発明の効果) 本発明の方法によれば、成形性に優れた細く長い炭素繊
維を生産性よく製造することができる。
Margins below (Effects of the Invention) According to the method of the present invention, long and thin carbon fibers with excellent moldability can be manufactured with good productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の好ましい実施態様の一例を示す炭素
繊維製造装置の断面図である。 ■ −電気炉、2− 反応容器(SiC管)3− 生成
物を貯蔵するためのボックス4− フィルター、 5.6.8 − 導入パイプ 7.9− ノズル 特許出願人 旭化成工業株式会社 第1図
FIG. 1 is a sectional view of a carbon fiber manufacturing apparatus showing an example of a preferred embodiment of the present invention. ■ - Electric furnace, 2 - Reaction vessel (SiC tube) 3 - Box for storing the product 4 - Filter, 5.6.8 - Inlet pipe 7.9 - Nozzle patent applicant Asahi Kasei Corporation Figure 1

Claims (1)

【特許請求の範囲】[Claims] 炭素源化合物、触媒源化合物およびキャリヤガスを加熱
して炭素繊維を製造する方法において、繊維の生成時又
は繊維を生成せしめたのち、さらに単位時間あたりに用
いたキャリヤガス量(mol)に対して炭素源化合物0
.01〜10g/molを追加混合することを特徴とす
る炭素繊維の製造法
In a method of producing carbon fiber by heating a carbon source compound, a catalyst source compound, and a carrier gas, the amount of carrier gas used per unit time (mol) during or after producing the fibers is Carbon source compound 0
.. A method for producing carbon fiber characterized by additionally mixing 01 to 10 g/mol
JP63124897A 1988-05-24 1988-05-24 Production of carbon fiber Pending JPH01298214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63124897A JPH01298214A (en) 1988-05-24 1988-05-24 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63124897A JPH01298214A (en) 1988-05-24 1988-05-24 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH01298214A true JPH01298214A (en) 1989-12-01

Family

ID=14896811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63124897A Pending JPH01298214A (en) 1988-05-24 1988-05-24 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH01298214A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497003A2 (en) * 1991-01-03 1992-08-05 Air Products And Chemicals, Inc. Use of helium and argon diluent gases in modification of carbon molecular sieves
US6143689A (en) * 1992-05-22 2000-11-07 Hyperion Catalysis Int'l Inc. Methods and catalysts for the manufacture of carbon fibrils
JP2002211909A (en) * 2001-01-12 2002-07-31 Mitsubishi Chemicals Corp Carbon manufacturing apparatus and manufacturing method using the same
KR100541744B1 (en) * 2001-09-10 2006-01-10 캐논 가부시끼가이샤 Electron emitting device using carbon fiber, electron source, image display device, method of manufacturing the electron emitting device, method of manufacturing electron source using the electron emitting device, and method of manufacturing image display device
CN104499095A (en) * 2014-12-10 2015-04-08 哈尔滨工业大学 Method for preparing carbon fiber yarns by direct flame carbon deposition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497003A2 (en) * 1991-01-03 1992-08-05 Air Products And Chemicals, Inc. Use of helium and argon diluent gases in modification of carbon molecular sieves
US6143689A (en) * 1992-05-22 2000-11-07 Hyperion Catalysis Int'l Inc. Methods and catalysts for the manufacture of carbon fibrils
US6294144B1 (en) 1992-05-22 2001-09-25 Hyperion Catalysis International, Inc. Methods and catalysts for the manufacture of carbon fibrils
US8470284B2 (en) 1992-05-22 2013-06-25 Hyperion Catalysis International, Inc. Methods and catalysts for the manufacture of carbon fibrils
JP2002211909A (en) * 2001-01-12 2002-07-31 Mitsubishi Chemicals Corp Carbon manufacturing apparatus and manufacturing method using the same
KR100541744B1 (en) * 2001-09-10 2006-01-10 캐논 가부시끼가이샤 Electron emitting device using carbon fiber, electron source, image display device, method of manufacturing the electron emitting device, method of manufacturing electron source using the electron emitting device, and method of manufacturing image display device
CN104499095A (en) * 2014-12-10 2015-04-08 哈尔滨工业大学 Method for preparing carbon fiber yarns by direct flame carbon deposition

Similar Documents

Publication Publication Date Title
JP4968643B2 (en) Method for producing single-walled carbon nanotube
EP0136497B2 (en) A process for preparing fine carbon fibers in a gaseous phase reaction
JP2004339676A (en) Method for producing carbon fiber from vapor phase
JPS60224816A (en) Gas-phase production of carbon fiber
CN104995134B (en) Produce carbon nano-structured method and device
JPS6249363B2 (en)
JP4953606B2 (en) Vapor grown carbon fiber and method for producing the same
JPH01298214A (en) Production of carbon fiber
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
US20060269468A1 (en) Apparatus and method for mass production of carbon nanotubes
JP3071571B2 (en) Method for producing vapor grown carbon fiber
JPH0314623A (en) Production of carbon fiber
JPS61282427A (en) Production of carbonaceous fiber
JPS62282020A (en) Production of carbon fiber
JPS61225328A (en) Production of carbonaceous fiber
JPS63219630A (en) Production of carbon fiber
JP2018016521A (en) Method for producing single layer carbon nanotube-containing composition
JP2007169838A (en) Vapor grown carbon fiber and method for producing the same
JPH026617A (en) Production of carbon fiber
JPH0978360A (en) Production of gas phase-grown carbon fiber
JPS6262914A (en) Production of carbonaceous fiber
JPH0413447B2 (en)
KR20050078456A (en) Continuous thermochemical vapour deposit system and mass production methods of carbon nanotubes thereof
JPS62238826A (en) Production of carbon fiber
KR102459718B1 (en) Manufacturing apparatus for composite particle