JPH0413447B2 - - Google Patents

Info

Publication number
JPH0413447B2
JPH0413447B2 JP59037246A JP3724684A JPH0413447B2 JP H0413447 B2 JPH0413447 B2 JP H0413447B2 JP 59037246 A JP59037246 A JP 59037246A JP 3724684 A JP3724684 A JP 3724684A JP H0413447 B2 JPH0413447 B2 JP H0413447B2
Authority
JP
Japan
Prior art keywords
gas
metal carbonyl
carrier gas
compounds
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59037246A
Other languages
Japanese (ja)
Other versions
JPS60185818A (en
Inventor
Kohei Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP3724684A priority Critical patent/JPS60185818A/en
Priority to US06/638,941 priority patent/US4572813A/en
Priority to DE8484109710T priority patent/DE3463529D1/en
Priority to EP84109710A priority patent/EP0136497B2/en
Publication of JPS60185818A publication Critical patent/JPS60185818A/en
Publication of JPH0413447B2 publication Critical patent/JPH0413447B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の属する技術分野〕 本発明は、気相中で炭素繊維を製造する方法に
関し、更に詳細には炭素供給源としての有機化合
物のガスと触媒形成用の有機基を含まない金属カ
ルボニル化合物のガスとキヤリヤガスとの混合ガ
スを1000〜1300℃の範囲で加熱することを特徴と
する気相法炭素繊維の製造方法に関するものであ
る。 〔従来技術とその問題点〕 気相法炭素繊維は、結晶配向性に優れているた
め、機械的特性、電気的特性、生化学的特性等に
おいて、従来の炭素繊維にみられない優れた特性
を有し、その工業的生産が望まれている。 従来、気相法炭素繊維の製造方法としては、電
気炉内にアルミナ、黒鉛などの基板を置き、この
基板表面に鉄、ニツケルなどの超微粒子触媒を形
成せしめ、この上にベンゼンなどの炭化水素のガ
スと水素ガス等のキヤリヤガスとの混合ガスを導
入し、1010℃〜1300℃の温度下に炭化水素を分解
せしめることにより、基板上に炭素繊維を成長さ
せる方法が知られている。 しかし、この方法では、基板表面の微妙な温
度ムラや、周囲の繊維の密生度によつて長さの不
均一が起り易いこと、また炭素の供給源として
のガスが反応によつて消費されることにより、反
応管の入口と出口において濃度差が生じ、そのた
め入口に近い所と出口に近い所で繊維径が相当異
なること、また基板表面でのみ生成が行なわれ
るため、反応管の中心部分は反応に関与せず収率
が悪いこと、更に超微粒子の基板への分散、還
元、成長、次いで繊維の取り出しという独立に実
施を必要とする工程があるため、連続製造が不可
能であり、従つて生産性が悪い等の問題点を有す
る。 発明者等は、上述の問題点を除去し、生産性と
品質を高めることのできる気相法による炭素繊維
の連続製造方法につき鋭意研究を重ね、炭素化合
物のガスと有機遷移金属化合物のガスとキヤリヤ
ガスとの混合ガスを1000〜1300℃の範囲で加熱す
ることを特徴とする気相法による炭素繊維の連続
製造方法を発明し特許出願した(特願昭58−
162606号)。 その後引続き、発明者等は研究改良を重ねた結
果、Fe(CO)5,Fe2(CO)9,Fe3(CO)12,Fe
(NO)2(CO)2,Ni(CO)4,Cr(CO)6,No(CO)6
W(CO)6等の有機基を含まない金属カルボニル化
合物を使用することにより、経済性並びに作業性
に優れ、品質の安定した炭素繊維を工業的に製造
できることを突止めた。 〔発明の目的〕 それ故、本発明の一般的な目的は、経済的で、
生産管理性、作業安全性に富み、優れた性質の気
相法炭素繊維の連続的製造方法を提供するにあ
る。 〔発明の要点〕 この目的を達成するため、この発明に係る気相
法炭素繊維の製造方法は、有機化合物のガスと、
有機基を含まない金属カルボニル化合物のガス
と、キヤリヤガスとの混合ガスを、1000〜1300℃
に加熱して、浮遊状態で気相成長炭素繊維を生成
せしめることを特徴とする。 本発明における有機化合物とは、有機鎖式化合
物または有機環式化合物からなる有機化合物全般
が対象となるが、特に高い収率を得るには、脂肪
族炭化水素、芳香族炭化水素である。また、これ
らの他、窒素、酸素、硫素、弗素、臭素、沃素、
燐、ヒ素等の元素を含んだ誘導体も使用可能であ
る。具体的な個々の化合物の例の一部を挙げる
と、メタン、エタン等のアルカン化合物、エチレ
ン、ブタジエン等のアルケン化合物、アセチレン
等のアルキン化合物、ベンゼン、トルエン、スチ
レン等のアリール炭化水素化合物、インデン、ナ
フタリン、フエナントレン等の縮合環を有する芳
香族炭化水素、シクロプロパン、シクロヘキサン
等のシクロパラフイン化合物、シクロベンテン、
シクロヘキセン等のシクロオレフイン化合物、ス
テロイド等の縮合環を有する脂環式炭化水素化合
物、メチルチオール、メチルエチルスルフイド、
ジメチルチオケトン等の含硫脂肪族化合物、フエ
ニルチオール、ジフエニルスルフイド等の含硫芳
香族化合物、ベンゾチオフエン、チオフエン等の
含硫複素環式化合物等である。また、以上の化合
物の2種以上を混合した混合物を使用することも
可能である。 また、本発明における金属カルボニル化合物と
は、遷移金属カルボニル、遷移金属ニトロシルカ
ルボニルおよび遷移金属ヒドロカルボニルを含む
遷移金属とカルボニルの化合物を意味する。金属
カルボニル化合物は、一般に室温で液体または低
融点の固体で、かなり揮発性を示すものであり、
気化が容易である。金属カルボニル化合物の中
で、本発明で有効なものは、鉄、ニツケル、コバ
ルト、クロム、モリブデン、タングステン等の遷
移金属とカルボニルとの化合物であり、一部を例
示すると、Fe(CO)5,Fe2(CO)9,Fe(CO)2
(NO)2,テトラカルボニル鉄、鉄カルボニルハ
ロゲン化物、ペンタンシアノカルボニル鉄、Ni
(CO)4,K2〔Ni(CN)2(CO)2〕,K〔Ni(CN)
(CO)3〕,K2〔Ni(CN)2(CO)2〕,K3〔Ni(CN)3
(CO)〕,〔Ni(CN)3(CO)〕,Cr(CO)6,Mo
(CO)6,W(CO)6等である。 遷移金属カルボニル化合物は、大気圧下に加熱
して本発明の触媒目的に使用できる蒸気圧もしく
は昇華性を有するので、加熱蒸気をキヤリヤガス
でキヤリヤして使用することができる。 本発明におけるキヤリヤガスとは、直接反応に
関与しないガス全般を指すが、特に周期律表O族
のアルゴン、ヘリウム等の希ガスおよび水素、窒
素、二酸化炭素またはこれらの混合ガスの中から
選択されるガスを主体としたガスである。上記以
外に、キヤリヤガス成分中、好ましくは20%以下
の割合で他のガスを混合することが可能である。
この種の少量成分ガスとしては、硫化水素ガスま
たは二硫化炭素等の炭素と硫黄の化合物、ハロゲ
ン、ハロゲン化水素、水蒸気等があるが、特に硫
黄の化合物が収率の点から好ましい。 本発明で使用される混合ガスは、一方法とし
て、キヤリヤガスと有機化合物のガスとの混合ガ
ス、およびキヤリヤガスと金属カルボニル化合物
のガスとの混合ガス、この両混合ガスを夫々別々
に調製して作ることができるが、混合ガスの調製
方法に限定はない。 詳説すると、キヤリヤガスと金属カルボニル化
合物のガスとの混合ガスは、ジヤケツト付加熱密
閉容器、または電熱加熱密閉容器に金属カルボニ
ル化合物を入れ、一定温度に加熱して密閉容器の
ヘツドスペースに一定濃度の金属カルボニル化合
物のガスまたは昇華ガスを発生せしめ、一方この
密閉容器上部にキヤリヤガスを導入して、一定濃
度のキヤリヤガスと金属カルボニル化合物のガス
との混合ガスを密閉容器より排出させる第1手段
と有機化合物が液体の場合は第1手段に準じて一
定濃度のキヤリヤガスと有機化合物のガスとの混
合ガスを得、一方有機化合物がメタン、エタンな
どのように気体の場合は、夫々のガスを流量計に
より一定割合に混合して一定濃度のキヤリヤガス
と有機化合物との混合ガスを得る第2手段とより
なり、第1手段と第2手段により得られる混合ガ
スを一定割合に混合して目的の混合ガスを調製す
ることができる。金属カルボニル化合物のガスの
一定量の調製は、金属カルボニル化合物の種類、
加熱密閉容器ごとに予め加熱温度と蒸発量を重量
減またはガス分析により決定される。 次に、混合ガスの加熱は、電気炉により反応管
内で1000〜1300℃、好適には1050〜1200℃に加熱
する。反応管は水平、直立いずれの方式でもよ
い。 実験によると、1100℃以下では主として長さの
成長が起り、1100℃を越えると径の成長速度が目
立つてくる。また、長さの成長範囲においては、
生成する炭素繊維の長さが混合ガスの炉内の滞留
時間にほぼ比例するため、1100℃以下の加熱炉と
1100℃以上の加熱炉を直列に連結することにより
所望の径、直さの炭素繊維を連続的に生成するこ
とが可能である。特に、従来の炭素繊維からは得
ることができなかつた長さ0.2μ〜2000μ、径0.05μ
〜10μの範囲のアスペクト比の揃つた短繊維を高
収率にかつ連続的に製造することが可能である。 〔発明の実施例〕 次に、本発明に係る気相法炭素繊維の製造方法
を添付図面を参照しながら詳説する。 実施例 1〜11 第1図は、本発明の実施例に使用した実験装置
の概略系統図であつて、直立する内径5.2cm長さ
170cmのアルミナ製反応管10はその大部分を包
囲する電熱器12により約1070℃に加熱されてい
る。入口管14は反応管10より少しく隔つた部
分で4つに分岐し、分岐管16は流量計18、バ
ルブ20を介して図示されていないH2Sなどの少
量ガス容器に連結され、分岐管22は金属カルボ
ニル化合物24を加熱する加熱容器26の頂部2
8に連結され、頂部28に連結されるキヤリヤガ
ス導入管30は流量計32とバルブ34を介して
図示されてないキヤリヤガス容器に連結され、分
岐管36は有機化合物38を加熱する加熱容器4
0の頂部42に連結され、頂部42に連結される
キヤリヤガス導入管44は流量計46とバルブ4
8を介して図示されないキヤリヤガス容器に連結
され、更に頂部42に連結される気体有機化合物
導入管50は流量計52とバルブ54を介して図
示されない気体有機化合物容器に連結される。反
応管10の上部には、ステンレス繊維フイルタ部
56を介して排出管58が連結される。加熱容器
26,40は、ジヤケツトを有し、熱媒体は、蒸
気または電熱などにより一定温度に加熱される。
有機化合物が液体の場合は、加熱容器40に収容
して加熱して気化させ、一方気体有機化合物の場
合は、加熱容器40は空にしてバルブ54を流量
計52により調節して一定流量の有機化合物のガ
スを容器40に導入すると共にバルブ48と流量
計46により一定流量のキヤリヤガスを容器40
に導入して一定濃度のキヤリヤガスと有機化合物
のガスの混合ガスを得、分岐管36を介して入口
管14に流入させる。一方、加熱容器26に金属
カルボニル化合物を収容し、所定温度に加熱して
容器26のヘツドスペースに金属カルボニル化合
物の蒸気を充満せしめると共に、バルブ34と流
量計32とにより一定流量のキヤリヤガスを容器
26に導入し、キヤリヤガスと金属カルボニルの
ガスとの所定濃度の混合ガスを得て分岐管22を
介して入口管14に流入させる。必要に応じ、バ
ルブ20と流量計18により一定流量の少量ガス
(例えばH2S)を入口管14に流入させ、入口管
には所定濃度のキヤリヤガスと有機化合物のガス
と金属カルボニルのガスと必要に応じH2Sのガス
が調製され、反応管10に導入される。金属カル
ボニル化合物の加熱により、所定濃度のキヤリヤ
ガスと金属カルボニル化合物の混合ガスを調製す
るには、予め試験により加熱温度、キヤリヤガス
流量を決定する。本実施例の場合、例えばFe
(CO)6を加熱容器26に収容し、加熱オイルによ
り150℃に加熱してFe(CO)6昇華ガスを生成せし
め、キヤリヤガス水素により3.1容量%に希釈し
た。有機化合物としてベンゼンを使用し、キヤリ
ヤガスにより5.2容量%に希釈した。第1表には、
第1図に示される実験装置を使用して実施例1〜
11の夫々の実験パラメータを示した。
[Technical field to which the invention pertains] The present invention relates to a method for producing carbon fibers in a gas phase, and more particularly to a method for producing carbon fibers in a gas phase, and more particularly, a method for producing carbon fibers in a gas phase using a gas of an organic compound as a carbon source and a metal carbonyl compound containing no organic group for forming a catalyst. The present invention relates to a method for producing vapor-grown carbon fiber, which is characterized by heating a mixed gas of a gas and a carrier gas in a range of 1000 to 1300°C. [Prior art and its problems] Vapor-grown carbon fiber has excellent crystal orientation, so it has excellent mechanical properties, electrical properties, biochemical properties, etc. that are not found in conventional carbon fibers. , and its industrial production is desired. Conventionally, the method for manufacturing vapor-grown carbon fiber involves placing a substrate made of alumina, graphite, etc. in an electric furnace, forming ultrafine particle catalysts such as iron or nickel on the surface of this substrate, and then injecting hydrocarbons such as benzene on top of this. A method is known in which carbon fibers are grown on a substrate by introducing a mixed gas of a carrier gas such as hydrogen gas and a carrier gas such as hydrogen gas, and decomposing hydrocarbons at a temperature of 1010°C to 1300°C. However, with this method, length non-uniformity is likely to occur due to subtle temperature unevenness on the substrate surface and the density of surrounding fibers, and gas as a source of carbon is consumed by the reaction. As a result, a concentration difference occurs between the inlet and outlet of the reaction tube, and as a result, the fiber diameters differ considerably between the areas near the inlet and the outlet.Also, since production occurs only on the substrate surface, the central part of the reaction tube Continuous production is not possible due to the poor yield as it does not involve the reaction, and the steps that must be carried out independently, such as dispersion of ultrafine particles onto a substrate, reduction, growth, and then extraction of fibers. However, there are problems such as poor productivity. The inventors have conducted intensive research into a method for continuous production of carbon fiber using a gas phase method that eliminates the above-mentioned problems and improves productivity and quality. Invented and applied for a patent for a method for continuously manufacturing carbon fiber using a gas phase method, which is characterized by heating a gas mixture with a carrier gas in the range of 1000 to 1300°C (Patent application 1983-
No. 162606). After that, the inventors continued to research and improve, and as a result, Fe(CO) 5 , Fe 2 (CO) 9 , Fe 3 (CO) 12 , Fe
(NO) 2 (CO) 2 , Ni(CO) 4 , Cr(CO) 6 , No(CO) 6 ,
We have discovered that by using metal carbonyl compounds that do not contain organic groups, such as W(CO) 6 , it is possible to industrially produce carbon fibers that are economical, workable, and of stable quality. OBJECTS OF THE INVENTION It is therefore a general object of the invention to
It is an object of the present invention to provide a method for continuously producing vapor-grown carbon fiber with excellent production controllability, work safety, and excellent properties. [Summary of the Invention] In order to achieve this object, the method for producing vapor-grown carbon fiber according to the present invention includes a method for producing vapor-grown carbon fiber using an organic compound gas;
A mixed gas of a metal carbonyl compound gas that does not contain organic groups and a carrier gas is heated to 1000 to 1300℃.
It is characterized by heating to produce vapor-grown carbon fibers in a suspended state. The organic compound in the present invention refers to all organic compounds consisting of organic chain compounds or organic cyclic compounds, but in order to obtain particularly high yields, aliphatic hydrocarbons and aromatic hydrocarbons are preferred. In addition to these, nitrogen, oxygen, sulfur, fluorine, bromine, iodine,
Derivatives containing elements such as phosphorus and arsenic can also be used. Some specific examples of individual compounds include alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, aryl hydrocarbon compounds such as benzene, toluene, and styrene, and inden , aromatic hydrocarbons with condensed rings such as naphthalene and phenanthrene, cycloparaffin compounds such as cyclopropane and cyclohexane, cyclobentene,
Cycloolefin compounds such as cyclohexene, alicyclic hydrocarbon compounds having condensed rings such as steroids, methylthiol, methylethyl sulfide,
These include sulfur-containing aliphatic compounds such as dimethylthioketone, sulfur-containing aromatic compounds such as phenylthiol and diphenyl sulfide, and sulfur-containing heterocyclic compounds such as benzothiophene and thiophene. It is also possible to use a mixture of two or more of the above compounds. Moreover, the metal carbonyl compound in the present invention means a compound of a transition metal and a carbonyl, including a transition metal carbonyl, a transition metal nitrosylcarbonyl, and a transition metal hydrocarbonyl. Metal carbonyl compounds are generally liquids or solids with low melting points at room temperature and exhibit considerable volatility;
Easy to vaporize. Among metal carbonyl compounds, those effective in the present invention are compounds of carbonyl and transition metals such as iron, nickel, cobalt, chromium, molybdenum, and tungsten, and some examples include Fe(CO) 5 , Fe2 (CO) 9 ,Fe(CO) 2
(NO) 2 , iron tetracarbonyl, iron carbonyl halide, iron pentanecyanocarbonyl, Ni
(CO) 4 , K 2 [Ni(CN) 2 (CO) 2 ], K[Ni(CN)
(CO) 3 ], K 2 [Ni(CN) 2 (CO) 2 ], K 3 [Ni(CN) 3
(CO)], [Ni(CN) 3 (CO)], Cr(CO) 6 , Mo
(CO) 6 , W(CO) 6 , etc. Since the transition metal carbonyl compound has a vapor pressure or sublimation property that allows it to be heated under atmospheric pressure and used for the catalyst purpose of the present invention, it can be used by carrying the heated steam with a carrier gas. The carrier gas in the present invention refers to all gases that do not directly participate in the reaction, but is particularly selected from rare gases such as argon and helium in group O of the periodic table, and hydrogen, nitrogen, carbon dioxide, or a mixture thereof. It is mainly gas. In addition to the above, it is possible to mix other gases in the carrier gas component, preferably in a proportion of 20% or less.
Examples of this type of minor component gas include compounds of carbon and sulfur such as hydrogen sulfide gas or carbon disulfide, halogens, hydrogen halides, and water vapor, but sulfur compounds are particularly preferred from the viewpoint of yield. The mixed gas used in the present invention can be prepared by separately preparing a mixed gas of a carrier gas and an organic compound gas, a mixed gas of a carrier gas and a metal carbonyl compound gas, and a mixed gas of a carrier gas and a metal carbonyl compound gas, respectively. However, there are no limitations on the method for preparing the mixed gas. To explain in detail, a mixed gas of a carrier gas and a metal carbonyl compound gas is prepared by placing a metal carbonyl compound in a jacket-added heat sealed container or an electric heating sealed container, heating it to a constant temperature, and injecting a certain concentration of metal into the head space of the sealed container. A first means for generating a carbonyl compound gas or sublimation gas, and introducing a carrier gas into the upper part of the sealed container to discharge a mixed gas of the carrier gas and metal carbonyl compound gas at a certain concentration from the sealed container; In the case of a liquid, a mixed gas of a carrier gas and an organic compound gas at a constant concentration is obtained according to the first method.On the other hand, when the organic compound is a gas such as methane or ethane, each gas is controlled at a constant concentration using a flow meter. A second means for obtaining a mixed gas of a carrier gas and an organic compound at a constant concentration by mixing in a constant ratio, and preparing a target mixed gas by mixing the mixed gas obtained by the first means and the second means at a constant ratio. can do. Preparation of a certain amount of metal carbonyl compound gas depends on the type of metal carbonyl compound,
The heating temperature and evaporation amount for each heated sealed container are determined in advance by weight reduction or gas analysis. Next, the mixed gas is heated to 1000 to 1300°C, preferably 1050 to 1200°C, in the reaction tube using an electric furnace. The reaction tube may be either horizontal or vertical. According to experiments, below 1100°C growth mainly occurs in length, and above 1100°C the growth rate in diameter becomes noticeable. In addition, in the growth range of length,
Since the length of the carbon fibers produced is approximately proportional to the residence time of the mixed gas in the furnace, it is possible to
By connecting heating furnaces of 1100°C or higher in series, it is possible to continuously produce carbon fibers of desired diameter and length. In particular, lengths of 0.2μ to 2000μ and diameters of 0.05μ cannot be obtained from conventional carbon fibers.
It is possible to continuously produce short fibers with a uniform aspect ratio in the range of ~10μ in high yield. [Embodiments of the Invention] Next, a method for producing vapor-grown carbon fiber according to the present invention will be explained in detail with reference to the accompanying drawings. Examples 1 to 11 Figure 1 is a schematic system diagram of the experimental apparatus used in the examples of the present invention.
A 170 cm alumina reaction tube 10 is heated to approximately 1070° C. by an electric heater 12 surrounding most of the tube. The inlet pipe 14 branches into four parts slightly apart from the reaction tube 10, and the branch pipe 16 is connected to a small amount gas container such as H 2 S (not shown) via a flow meter 18 and a valve 20. 22 is the top 2 of a heating container 26 that heats the metal carbonyl compound 24;
8 and the top 28 is connected to a carrier gas container (not shown) via a flow meter 32 and a valve 34, and a branch pipe 36 is connected to a heating container 4 for heating an organic compound 38.
A carrier gas inlet pipe 44 connected to the top 42 is connected to a flowmeter 46 and a valve 4.
A gaseous organic compound inlet pipe 50, which is connected to a carrier gas container (not shown) via 8 and further connected to the top 42, is connected to a gaseous organic compound container (not shown) via a flow meter 52 and a valve 54. A discharge pipe 58 is connected to the upper part of the reaction tube 10 via a stainless steel fiber filter section 56 . The heating containers 26, 40 have jackets, and the heat medium is heated to a constant temperature by steam or electric heat.
If the organic compound is a liquid, it is placed in the heating container 40 and heated to vaporize it, while if it is a gaseous organic compound, the heating container 40 is emptied and the valve 54 is adjusted by the flow meter 52 to provide a constant flow rate of the organic compound. A compound gas is introduced into the container 40, and a constant flow rate of carrier gas is introduced into the container 40 using a valve 48 and a flow meter 46.
A mixed gas of a carrier gas and an organic compound gas having a certain concentration is obtained by introducing the mixed gas into the inlet pipe 14 through the branch pipe 36. On the other hand, a metal carbonyl compound is stored in the heating container 26 and heated to a predetermined temperature to fill the head space of the container 26 with vapor of the metal carbonyl compound, and a constant flow rate of carrier gas is supplied to the container 26 using a valve 34 and a flow meter 32. A mixed gas of a carrier gas and a metal carbonyl gas at a predetermined concentration is obtained, and the mixed gas is caused to flow into the inlet pipe 14 via the branch pipe 22. If necessary, a small amount of gas (for example, H 2 S) is introduced into the inlet pipe 14 using a valve 20 and a flow meter 18, and the inlet pipe contains a carrier gas, an organic compound gas, and a metal carbonyl gas at a predetermined concentration. H 2 S gas is prepared according to the conditions and introduced into the reaction tube 10. In order to prepare a mixed gas of a carrier gas and a metal carbonyl compound at a predetermined concentration by heating the metal carbonyl compound, the heating temperature and carrier gas flow rate are determined in advance through a test. In this example, for example, Fe
(CO) 6 was placed in a heating vessel 26 and heated to 150° C. with heating oil to produce Fe(CO) 6 sublimation gas, which was diluted to 3.1% by volume with carrier gas hydrogen. Benzene was used as the organic compound and diluted to 5.2% by volume with a carrier gas. In Table 1,
Examples 1 to 1 using the experimental apparatus shown in FIG.
11 respective experimental parameters are shown.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明に係る気相法炭素繊維の製造方法による
と、均一で性質の優れた気相法炭素繊維を工業的
に連続して容易にかつ経済的に製造することがで
きる。
According to the method for producing vapor-grown carbon fibers according to the present invention, vapor-grown carbon fibers that are uniform and have excellent properties can be produced industrially, continuously, easily and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は気相法炭素繊維の製造に使用した実験
装置の系統図である。 10……反応管、12……電気炉、14……入
口管、16,22,36……分岐管、18,3
2,46,52……流量計、20,34,48,
54……バルブ、24……金属カルボニル化合
物、26,40……加熱容器、28,42……頂
部、30,44……キヤリヤガス導入管、38…
…液体有機化合物、50……気体有機化合物導入
管、56……ステンレス繊維フイルタ部、58…
…排出管。
FIG. 1 is a system diagram of the experimental apparatus used for producing vapor-grown carbon fiber. 10... Reaction tube, 12... Electric furnace, 14... Inlet pipe, 16, 22, 36... Branch pipe, 18, 3
2, 46, 52...flow meter, 20, 34, 48,
54... Valve, 24... Metal carbonyl compound, 26, 40... Heating container, 28, 42... Top, 30, 44... Carrier gas introduction pipe, 38...
...Liquid organic compound, 50...Gas organic compound introduction pipe, 56...Stainless steel fiber filter section, 58...
...Exhaust pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 有機化合物のガスと、有機基を含まない金属
カルボニル化合物のガスと、キヤリヤガスとの混
合ガスを、1000〜1300℃に加熱して、前記有機化
合物のガスおよび有機基を含まない金属カルボニ
ル化合物のガスの両者を熱分解することにより、
浮遊状態で気相成長炭素繊維を生成せしめること
を特徴とする気相法炭素繊維の製造方法。
1 A mixed gas of an organic compound gas, a metal carbonyl compound gas that does not contain an organic group, and a carrier gas is heated to 1000 to 1300°C to form a mixture of the organic compound gas and the metal carbonyl compound that does not contain an organic group. By thermally decomposing both gases,
A method for producing vapor-grown carbon fibers, which comprises producing vapor-grown carbon fibers in a suspended state.
JP3724684A 1983-09-06 1984-03-01 Preparation of carbon fiber by gaseous phase method Granted JPS60185818A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3724684A JPS60185818A (en) 1984-03-01 1984-03-01 Preparation of carbon fiber by gaseous phase method
US06/638,941 US4572813A (en) 1983-09-06 1984-08-08 Process for preparing fine carbon fibers in a gaseous phase reaction
DE8484109710T DE3463529D1 (en) 1983-09-06 1984-08-16 A process for preparing fine carbon fibers in a gaseous phase reaction
EP84109710A EP0136497B2 (en) 1983-09-06 1984-08-16 A process for preparing fine carbon fibers in a gaseous phase reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3724684A JPS60185818A (en) 1984-03-01 1984-03-01 Preparation of carbon fiber by gaseous phase method

Publications (2)

Publication Number Publication Date
JPS60185818A JPS60185818A (en) 1985-09-21
JPH0413447B2 true JPH0413447B2 (en) 1992-03-09

Family

ID=12492268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3724684A Granted JPS60185818A (en) 1983-09-06 1984-03-01 Preparation of carbon fiber by gaseous phase method

Country Status (1)

Country Link
JP (1) JPS60185818A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703759B2 (en) * 1986-08-28 1998-01-26 日機装株式会社 Graphite fiber / lithium rechargeable battery
JP2615054B2 (en) * 1987-06-23 1997-05-28 矢崎総業株式会社 Non-aqueous electrolyte secondary battery
JPH01167955A (en) * 1987-12-24 1989-07-03 Showa Denko Kk Na-s secondary battery
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
CA2099808C (en) * 1992-07-06 2000-11-07 Minoru Harada Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537538A (en) * 1976-06-24 1978-01-24 Felten & Guilleaume Carlswerk Method of producing metallophobic surface on object article
JPS58180615A (en) * 1982-04-10 1983-10-22 Morinobu Endo Preparation of carbon fiber by vapor phase method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537538A (en) * 1976-06-24 1978-01-24 Felten & Guilleaume Carlswerk Method of producing metallophobic surface on object article
JPS58180615A (en) * 1982-04-10 1983-10-22 Morinobu Endo Preparation of carbon fiber by vapor phase method

Also Published As

Publication number Publication date
JPS60185818A (en) 1985-09-21

Similar Documents

Publication Publication Date Title
JPH0413449B2 (en)
EP0136497B2 (en) A process for preparing fine carbon fibers in a gaseous phase reaction
JPS6249363B2 (en)
US5102647A (en) Method of producing vapor growth carbon fibers
EP1786958B1 (en) Production method of vapor-grown carbon fiber and apparatus therefor
JP2004339676A (en) Method for producing carbon fiber from vapor phase
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
JPH0413447B2 (en)
JPS6054999A (en) Production of carbon fiber grown in vapor phase
JPS60181319A (en) Manufacture of carbon fiber by vapor-phase process
JPS61225328A (en) Production of carbonaceous fiber
JPS5924119B2 (en) Manufacturing method of graphite whiskers
JPH0314623A (en) Production of carbon fiber
JPS61257000A (en) Production of silicon carbide whisker
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition
Masuda et al. Rapid vapor grown carbon fiber production using the intermittent liquid pulse injection technique
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPH0413448B2 (en)
JPS60252721A (en) Production of carbon fiber
JPH0192423A (en) Production of carbon fiber with vapor growth
JPH0192421A (en) Production of carbon fiber with vapor growth
JPS60260497A (en) Preparation of silicon carbide whisker
JPH0192425A (en) Production of carbon fiber with vapor growth
JPS61225322A (en) Production of carbonaceous fiber
JPS63230513A (en) Powdery titanium carbide containing iron family element or alloy containing said element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term