JPH026617A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH026617A
JPH026617A JP63146107A JP14610788A JPH026617A JP H026617 A JPH026617 A JP H026617A JP 63146107 A JP63146107 A JP 63146107A JP 14610788 A JP14610788 A JP 14610788A JP H026617 A JPH026617 A JP H026617A
Authority
JP
Japan
Prior art keywords
carbon
component
suspension
catalyst
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63146107A
Other languages
Japanese (ja)
Other versions
JPH0665765B2 (en
Inventor
Katsuhide Murata
勝英 村田
Kenji Sato
健二 佐藤
Masabumi Matsumoto
正文 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63146107A priority Critical patent/JPH0665765B2/en
Publication of JPH026617A publication Critical patent/JPH026617A/en
Publication of JPH0665765B2 publication Critical patent/JPH0665765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To perform a commercial mass-production of a high-quality carbon fiber grown in vapor phase in high yield at a low production cost by supplying a suspension containing a carbon compound, fine particles of a catalyst and a specific surfactant into a heating zone. CONSTITUTION:A suspension containing (A) a carbon compound (preferably a liquid aliphatic or aromatic hydrocarbon), (B) fine particles of a catalyst (preferably magnetite, etc., having particle diameter of 500Angstrom ) and (C) a surfactant containing an element selected from N-group element, O-group element and halogen element (preferably sulfuric acid ester salt, etc.) is prepared beforehand. The suspension is supplied to a heating zone to effect the contact of the gas of the component A with the suspending component B under heating. Carbon is deposited in the form of fiber by this heat-treatment. Preferably, the ratio of the component B in the suspension is 0.05-5wt.% based on the component A and that of the component C is 0.1-50wt.% based on the component B.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は炭素繊維の製造方法に係り、特に、炭素繊維を
気相成長法により製造するにあたり、その収率な大幅に
向上させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing carbon fibers, and particularly to a method for significantly improving the yield when producing carbon fibers by vapor phase growth.

[従来の技術] 炭素繊維は、従来からPAN系、ピッチ系のものか商業
生産されている。しかし、PAN系は高価であり、ピッ
チ系はプロセスが複雑で品質の制御かむずかしいなどの
致命的な欠点がある。
[Prior Art] Carbon fibers have conventionally been commercially produced as PAN-based or pitch-based ones. However, the PAN system is expensive, and the pitch system has fatal drawbacks such as complicated processes and difficult quality control.

これに対し、近年、金属粒子の触媒効果を用いて炭化水
素の気相熱分解によって直接的に繊維を形成する気相成
長法が提案されている。
In contrast, in recent years, a vapor phase growth method has been proposed in which fibers are directly formed by vapor phase thermal decomposition of hydrocarbons using the catalytic effect of metal particles.

気相成長法により得られる炭素繊維は、気相成長炭素繊
維と称され、その高アスペクト比を有する微細な形態は
、結晶性、配向性に優れていることも合せて、各種構造
材、機能材としての用途に極めて有用であることが予想
される。
Carbon fibers obtained by the vapor growth method are called vapor growth carbon fibers, and their fine morphology with a high aspect ratio, as well as their excellent crystallinity and orientation, make them suitable for use in various structural materials and functional materials. It is expected that it will be extremely useful as a material.

従来、気相成長炭素繊維の製造方法としては、電気炉内
にアルミナなどの磁器、黒鉛などの基板を置き、これに
炭素成長核、鉄、ニッケルなどの超微粒子触媒を形成せ
しめ、この上にベンゼンなどの炭化水素のガスと水素キ
ャリヤガスの混合ガスを導入し、950〜1300℃の
温度下に炭化水素を分解せしめることにより、基板上に
炭素繊維を成長させる方法(シーディング法)が知られ
ている。
Conventionally, the manufacturing method for vapor-grown carbon fiber involves placing a substrate made of porcelain such as alumina or graphite in an electric furnace, forming carbon growth nuclei, ultrafine particle catalysts such as iron or nickel on this, and A method (seeding method) is known in which carbon fibers are grown on a substrate by introducing a mixed gas of a hydrocarbon gas such as benzene and a hydrogen carrier gas and decomposing the hydrocarbon at a temperature of 950 to 1300°C. It is being

しかし、このような方法では、■基板表面の微妙な温度
ムラや、周囲の繊維の密生環によって長さの不均一が起
り易いこと、また■炭素の供給源としてのカスが反応に
よって消費されることにより反応管の入口に近い所と出
口に近い所で繊維径が相当界なること、■基板表面での
み生成が行なわれるため、反応管の中心部分は反応に関
与せず収率が悪いこと、■超微粒子の基板への分散、還
元、成長次いで繊維の取出しという独立に実施を必要と
するプロセスがあるため、連続製造が不可能であり、従
って生産性が悪いなどの問題点を有する。
However, with this method, there are two issues: (1) Subtle temperature unevenness on the substrate surface and non-uniformity in length due to dense rings of surrounding fibers; and (2) scum, which is a source of carbon, is consumed by the reaction. As a result, there is a considerable difference in fiber diameter between the inlet and the outlet of the reaction tube, and (1) the production occurs only on the substrate surface, so the central part of the reaction tube does not participate in the reaction and the yield is poor. , (2) Since there are processes that must be carried out independently, such as dispersion of ultrafine particles onto a substrate, reduction, growth, and extraction of fibers, continuous production is impossible, and therefore there are problems such as poor productivity.

そこで、炭素化合物のガスと無機もしくは有機遷移金属
化合物のガスとキャリヤガスとの混合ガスを高温反応さ
せる炭素繊維の製造方法(流動気相法)が提案された(
特開昭60−54998.60−54999.60−2
24816など)。
Therefore, a carbon fiber production method (fluidized gas phase method) was proposed in which a mixed gas of a carbon compound gas, an inorganic or organic transition metal compound gas, and a carrier gas is reacted at high temperature (
JP-A-60-54998.60-54999.60-2
24816 etc.).

[発明か解決しようとする課題] しかしなから、上記特開昭60−54998.60−5
4999.60−224816などの方法では、原料に
対する製品としての炭素繊維への転化率か低く収率か低
い、あるいは生成速度か低い等の問題があった。
[Problem to be solved by the invention] However, the above-mentioned Japanese Patent Application Laid-Open No. 60-54998.60-5
Methods such as No. 4999.60-224816 have problems such as a low conversion rate of raw materials into carbon fiber as a product, a low yield, or a low production rate.

このため、従来においては、気相成長炭素t&維の大量
生産プロセスは開発されておらず、このことが気相成長
炭素繊維の工業的規模での生産を阻む原因となっていた
For this reason, no mass production process for vapor-grown carbon T&fibers has been developed in the past, which has hindered the production of vapor-grown carbon fibers on an industrial scale.

本発明は上記従来の問題点を解決し、高品質の気相成長
炭素繊維を高収率で得ることができ、その商業的大量生
産を可能とする炭素繊維の製造方法を提供することを目
的とする。
The purpose of the present invention is to solve the above-mentioned conventional problems and provide a method for manufacturing carbon fibers that can obtain high-quality vapor-grown carbon fibers at a high yield and enable commercial mass production thereof. shall be.

[課題を解決するための手段コ 本発明の炭素繊維の製造方法は、炭素化合物のガスと、
浮遊状態にある触媒粒子とを加熱下で接触させて炭素を
繊維状に析出させる方法において、炭素化合物と、触媒
微粒子と、窒素族元素、酸素族元素及びハロゲン元素よ
りなる群から選ばれる1種又は2種以上の元素を含む界
面活性剤とを含有する懸濁液を加熱帯域に供給すること
を特徴とする。
[Means for Solving the Problems] The method for producing carbon fiber of the present invention includes a carbon compound gas,
In a method of depositing carbon in the form of fibers by bringing catalyst particles in a suspended state into contact with each other under heating, a carbon compound, catalyst fine particles, and one type selected from the group consisting of nitrogen group elements, oxygen group elements, and halogen elements. Alternatively, a suspension containing a surfactant containing two or more elements is supplied to the heating zone.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明の方法において、原料となる炭素化合物としては
、CCJ24、CHCl13、CH2Cf12、CHs
 Cfl、Co、C32等の無機化合物のばか有機化合
物全般を特徴とする特に有用性の高い化合物は、脂肪族
炭化水素、芳香族炭化水素である。また、これらの他窒
素、酸素、硫黄、弗素、沃素、燐、砒素等の元素を含ん
だ誘導体も使用可能である。具体的な個々の化合物の例
の一部を挙げると、メタン(天然ガスでも良い。)、エ
タン、プロパン等のアルカン化合物、エヂレン、ブタジ
ェン等のアルケン化合物、アセチレン等のアルキレン化
合物、ベンゼン、トルエン、キシレン、スチレン等のア
リール炭化水素化合物、インデン、ナフタリン、アント
ラセン、フェナントレン等の縮合環を有する芳香族炭化
水素、シクロプロパン、シクロヘキサン等のシクロパラ
フィン化合物、シクロペンテン、シクロヘキセン、シク
ロペンタジェン、ジシクロペンタジェン等の脂環式炭化
水素化合物、ステロイド等の縮合環を有する脂環式炭化
水素−化合物、これらの炭化水素化合物に、酸素、硫黄
、ハロゲン等を含む誘導体、例えば、メチルチオール、
メチルエチルスルフィド、ジメチルチオケトン等の含硫
黄脂肪族化合物、フェニルチオール、ジフェニルスルフ
ィド等の含硫黄芳香族化合物、ピリジン、キノリン、ベ
ンゾチオフェン、チオフェン等の含硫黄又は含窒素複素
環式化合物、クロロホルム、四塩化炭素、クロルエタン
、トリクロルエチレン等のハロゲン化炭化水素、また単
体ではないがガソリン、灯油、重油、タレオソート油、
ケロシン、テレピン油、樟脳油、松根油、ギヤー油、シ
リンダ油等も有効に使用できる。また、これら混合物も
使用できることは言うに及ばない。
In the method of the present invention, carbon compounds serving as raw materials include CCJ24, CHCl13, CH2Cf12, CHs
Particularly useful compounds that are characterized by inorganic compounds such as Cfl, Co, and C32 as well as organic compounds in general are aliphatic hydrocarbons and aromatic hydrocarbons. In addition to these, derivatives containing elements such as nitrogen, oxygen, sulfur, fluorine, iodine, phosphorus, and arsenic can also be used. Some specific examples of individual compounds include methane (natural gas may also be used), alkane compounds such as ethane and propane, alkene compounds such as ethylene and butadiene, alkylene compounds such as acetylene, benzene, toluene, Aryl hydrocarbon compounds such as xylene and styrene; aromatic hydrocarbons with condensed rings such as indene, naphthalene, anthracene, and phenanthrene; cycloparaffin compounds such as cyclopropane and cyclohexane; cyclopentene, cyclohexene, cyclopentadiene, and dicyclopentadiene. alicyclic hydrocarbon compounds having condensed rings such as steroids, derivatives containing oxygen, sulfur, halogen, etc. in these hydrocarbon compounds, such as methylthiol,
Sulfur-containing aliphatic compounds such as methyl ethyl sulfide and dimethylthioketone, sulfur-containing aromatic compounds such as phenylthiol and diphenyl sulfide, sulfur-containing or nitrogen-containing heterocyclic compounds such as pyridine, quinoline, benzothiophene, and thiophene, chloroform, Halogenated hydrocarbons such as carbon tetrachloride, chloroethane, and trichlorethylene, as well as gasoline, kerosene, heavy oil, taleosote oil,
Kerosene, turpentine oil, camphor oil, pine oil, gear oil, cylinder oil, etc. can also be used effectively. It goes without saying that mixtures of these can also be used.

本発明においては、特に懸濁液の調整上、液体の炭素化
合物を用いるのが好ましい。
In the present invention, it is preferable to use a liquid carbon compound, especially for the purpose of preparing a suspension.

これらの原料炭素化合物のガスを反応させて炭素繊維を
成長させるための触媒としては、炭素繊維生成の触媒作
用を有し、かつ微粒子状態とすることが可能なものであ
れば良く、特に制限はないが、好ましくは、マグネタイ
ト(Fe304 )、フェライト(F e 203 )
 、あるいはこれらを含む合金、例えばM n  F 
e 203、C0Fe20s、Ba−Fe2Cl5、N
iFe20s、Ni−Fe2O3Zn −FeaO3等
か挙げられる。これらの触媒は、H2S等で予備硫化し
、硫化物として用いても良く、この場合には、より優れ
た収率の向上効果が得られる。
The catalyst for growing carbon fibers by reacting these raw carbon compound gases may be any catalyst as long as it has a catalytic effect for producing carbon fibers and can be made into fine particles, and there are no particular restrictions. No, but preferably magnetite (Fe304), ferrite (Fe203)
, or alloys containing these, such as M n F
e 203, C0Fe20s, Ba-Fe2Cl5, N
Examples include iFe20s and Ni-Fe2O3Zn-FeaO3. These catalysts may be presulfurized with H2S or the like and used as a sulfide, and in this case, a more excellent yield improvement effect can be obtained.

本発明において、このような触媒は、粒径200OA以
下、特に100OA以下、とりわけ500A程度の超微
粒子として用いるのが好適である。
In the present invention, such a catalyst is preferably used in the form of ultrafine particles with a particle size of 200 OA or less, particularly 100 OA or less, especially about 500 Å.

方、本発明において用いる界面活性剤は、N、P、As
、Sb、Biの窒素族元素、0、S、Se、Te、Po
の酸素族元素、F、Cu、Br、1.Atのハロゲン元
素の1 fffl又は2種以上を含有するものである。
On the other hand, the surfactants used in the present invention include N, P, As
, Sb, Bi nitrogen group elements, 0, S, Se, Te, Po
Oxygen group elements, F, Cu, Br, 1. It contains 1 fffl or two or more types of At halogen elements.

具体的には次のようなものか挙げられる。Specifically, the following can be mentioned.

■ 硫酸エステル塩型又はスルポン酸塩型アニオン界面
活性剤 ■ ポリエチレングリコール型非イオン界面活性剤 ■ 第4級アンモニウム塩型カチオン界面活性剤 ■ ポリスチレンスルホン酸ナトリウム、ポリアクリル
酸ナトリウム高分子界面活性剤これらのうち、特にアニ
オン系で、とりわけS、PXNを含有する硫酸エステル
塩、スルホン酸塩、リン酸エステル塩、ジチオリン酸エ
ステル塩等の界面活性剤が好適である。なお、これらの
界面活性剤に、脂肪酸塩系の界面活性剤を併用すること
により、分散性をより長期間維持することができる。
■ Sulfate ester salt type or sulfonate type anionic surfactant ■ Polyethylene glycol type nonionic surfactant ■ Quaternary ammonium salt type cationic surfactant ■ Sodium polystyrene sulfonate, sodium polyacrylate polymeric surfactant These Among these, anionic surfactants such as sulfuric acid ester salts, sulfonic acid salts, phosphoric acid ester salts, and dithiophosphoric acid ester salts containing S and PXN are particularly suitable. In addition, by using a fatty acid salt type surfactant in combination with these surfactants, dispersibility can be maintained for a longer period of time.

本発明においては、原料の炭素化合物、触媒微粒子及び
界面活性剤を混合して懸濁液とする。
In the present invention, a raw material carbon compound, catalyst fine particles, and a surfactant are mixed to form a suspension.

懸濁液の調整にあたり、各物質の混合割合は例えば次の
ような範囲とするのが好ましい。
In preparing the suspension, the mixing ratio of each substance is preferably within the following range, for example.

触媒微粒子:炭素化合物に対して 0.05〜5.0重量% 界面活性剤:触媒微粒子に対して 0.10〜50重量% なお、炭素化合物が気体であったり、良好な懸濁液を生
成し得ないものである場合には、適当な溶媒を用い得る
Catalyst fine particles: 0.05 to 5.0% by weight based on the carbon compound Surfactant: 0.10 to 50% by weight based on the catalyst fine particles In addition, if the carbon compound is a gas or produces a good suspension. If this is not possible, a suitable solvent may be used.

これらは、ホモミキサー、超音波分散、ボールミル等で
強制分散させるなどの方法により、容易に懸濁状態とす
ることができる。
These can be easily made into a suspended state by a method such as forced dispersion using a homomixer, ultrasonic dispersion, ball mill, or the like.

本発明の実施にあたっては、このようにして調整される
原料の炭素化合物、触媒微粒子及び界面活性剤を含む懸
濁液を、キャリアガスと共に反応容器内に導入して反応
させるが、ここで用いられるキャリアガスとしては、具
体的にはN2ガス、N2ガス、NH3ガス、Arガス、
Heガス、Krガス、CO2ガス、Xeガス又はこれら
の混合ガスを主体とするガスが挙げられる。このうち、
N2ガスが通常の場合用いられる。
In carrying out the present invention, the suspension containing the raw material carbon compound, catalyst fine particles, and surfactant prepared in this way is introduced into a reaction vessel together with a carrier gas and reacted. Specifically, the carrier gas includes N2 gas, N2 gas, NH3 gas, Ar gas,
Examples include gases mainly consisting of He gas, Kr gas, CO2 gas, Xe gas, or a mixture thereof. this house,
N2 gas is commonly used.

次に本発明の実施方法について図面を参照してより詳細
に説明する。
Next, a method of implementing the present invention will be explained in more detail with reference to the drawings.

第1図及び第2図は本発明の実施に好適な反応装置を示
す構成説明図であって、第1図は横型反応装置、第2図
は縦型反応装置を示す、第1図の反応装置において、符
号10はヒータ11を備える反応容器(本例では反応管
)であり、その一端側には、原料を含む懸濁液及びキャ
リアガスの供給用配管12と、キャリアガスの供給用配
管13とが接続され、これらの配管12.13の先端1
2a、13aは、ヒータ10の設置位置近傍にまで延び
ている。また、反応容器11の他端側には炭素繊維捕集
器14が接続され、この炭素繊維捕集器14には排ガス
の抜出管15が接続されている。
1 and 2 are configuration explanatory diagrams showing a reaction apparatus suitable for carrying out the present invention, in which FIG. 1 shows a horizontal reaction apparatus, and FIG. 2 shows a vertical reaction apparatus. In the apparatus, reference numeral 10 is a reaction vessel (in this example, a reaction tube) equipped with a heater 11, and one end thereof includes a suspension containing a raw material and a carrier gas supply pipe 12, and a carrier gas supply pipe 12. 13 are connected, and the tip 1 of these pipes 12.13
2a and 13a extend to the vicinity of the installation position of the heater 10. Further, a carbon fiber collector 14 is connected to the other end of the reaction vessel 11, and an exhaust gas extraction pipe 15 is connected to the carbon fiber collector 14.

このような反応装置において、配管12より反応容器1
0内に供給された懸濁液中の原料炭素化合物及び触媒は
、配管12の先端12aの近傍の加熱帯域T+において
、ヒータ11により加熱される。このT+において、触
媒は活性化される。
In such a reactor, the reaction vessel 1 is connected to the pipe 12.
The raw carbon compound and catalyst in the suspension supplied into the tube 1 are heated by the heater 11 in the heating zone T+ near the tip 12a of the pipe 12. At this T+ the catalyst is activated.

この加熱帯域TIの温度が500℃未満であると、ター
ルや煤が多くなり収率が悪くなる。逆に1000℃を超
えると炭素化合物がガス化して収率が落ちる。従って、
この加熱帯域TIの温度は、500〜1000℃、好ま
しくは600〜800℃とするのが好ましい。
If the temperature of this heating zone TI is less than 500° C., tar and soot will increase and the yield will be poor. On the other hand, if the temperature exceeds 1000°C, the carbon compound will be gasified and the yield will drop. Therefore,
The temperature of this heating zone TI is preferably 500 to 1000°C, preferably 600 to 800°C.

加熱帯域T1で活性化された触媒及び原料炭素化合物は
、更に反応容器10内をキャリアガスにより送られ、加
熱帯域T2において、活性化された触媒の作用により反
応が進行し、炭素繊維が生成する。この加熱帯域T2の
温度は反応効率の面から800〜1500℃程度とする
のが好ましい。
The catalyst and the raw material carbon compound activated in the heating zone T1 are further sent through the reaction vessel 10 by a carrier gas, and in the heating zone T2, the reaction proceeds due to the action of the activated catalyst, and carbon fibers are produced. . The temperature of this heating zone T2 is preferably about 800 to 1500°C from the viewpoint of reaction efficiency.

懸濁液中の界面活性剤は、原料炭素化合物と触媒とが均
一にかつ一定の割合で加熱帯域に供給されるように、そ
の分散性を安定に保つ役割を担う。同時に、含有される
窒素族元素、酸素族元素、ハロゲン元素が触媒作用を高
め、収率の向上に寄与する。
The surfactant in the suspension plays the role of stably maintaining the dispersibility of the raw carbon compound and catalyst so that they are uniformly supplied to the heating zone at a constant rate. At the same time, the nitrogen group elements, oxygen group elements, and halogen elements contained enhance the catalytic action and contribute to improving the yield.

反応容器10内において生成した炭素繊維(図示せず)
は、キャリアガスと共に炭素繊維捕集器14内に導入さ
れる。この捕集方法は従来から知られている重力沈降法
、電気集塵法等の各種方法を採用することができる。な
お、炭素繊維捕集器14は、生成した炭素繊維を冷却す
る役割をも果す。炭素繊維捕集器14から抜出管15に
て抜き出された排ガス(キャリアガス)は、そのまま排
気処理手段に導入して放出しても良いのであるが、精製
後回循環させて用いるようにしても良い。
Carbon fibers (not shown) produced in the reaction vessel 10
is introduced into the carbon fiber collector 14 together with the carrier gas. As this collection method, various conventionally known methods such as gravity sedimentation method and electrostatic precipitation method can be employed. Note that the carbon fiber collector 14 also serves to cool the generated carbon fibers. The exhaust gas (carrier gas) extracted from the carbon fiber collector 14 through the extraction pipe 15 may be directly introduced into the exhaust treatment means and released, but it is preferable to circulate it and use it after purification. It's okay.

第2図に示す装置は、第1図に示す装置を縦型に設計し
た点のみが異なり、各部の構成、機能は同様であるので
、同一の機能を有する部材に同符号を付し、その説明を
省略する。
The device shown in Fig. 2 differs from the device shown in Fig. 1 only in that it is designed vertically, and the configuration and function of each part are the same. The explanation will be omitted.

本発明によれば通常長さ10μm〜500mm程度であ
り、直径が0.1〜300μm程度の炭素繊維を界面活
性剤と併用しない従来の方法に比し、2倍以上の高い収
率で容易に製造することができる。
According to the present invention, carbon fibers having a length of usually about 10 μm to 500 mm and a diameter of about 0.1 to 300 μm can be easily used at a yield more than twice that of the conventional method in which carbon fibers are not used in combination with a surfactant. can be manufactured.

[作用] 原料炭素化合物及び触媒微粒子を界面活性剤を用いて均
一な懸濁状態で反応系に供給することにより、原料炭素
化合物と触媒との割合が良好な割合で安定に維持された
状態で加熱され反応に供されるようになるため、反応活
性が向上し、収率が高められると共に、生成する炭素繊
維の品質も安定する。
[Operation] By supplying the raw material carbon compound and catalyst fine particles to the reaction system in a uniform suspension state using a surfactant, the ratio of the raw material carbon compound and catalyst is stably maintained at a good ratio. Since the carbon fibers are heated and subjected to the reaction, the reaction activity is improved, the yield is increased, and the quality of the produced carbon fibers is stabilized.

しかも、本発明において用いる炭素繊維はS、P、N等
の、触媒に作用して触媒作用を高める、いわば副触媒効
果を有する元素を含有するものであるため、収率はより
高められる。
Moreover, since the carbon fibers used in the present invention contain elements such as S, P, and N that act on the catalyst and enhance the catalytic action, that is, have a so-called by-catalyst effect, the yield can be further increased.

[実施例コ 以下、実施例及び比較例を挙げて本発明をより具体的に
説明するが、本発明はその要旨を超えない限り、以下の
実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1〜7 内径60mmの石英ガラス管を反応容器とする第1図に
示す如き装置により炭素繊維の製造を行なった。即ち、
反応容器の内部を十分にH2で置換した後、供給用配管
12より第1表に示す配合割合の懸濁液をキャリアガス
(H2)と共に導入し、また配管13からはキャリアガ
ス(H2)を導入して、60〜90分間供給を行なった
Examples 1 to 7 Carbon fibers were produced using an apparatus as shown in FIG. 1 using a quartz glass tube with an inner diameter of 60 mm as a reaction vessel. That is,
After the inside of the reaction vessel was sufficiently replaced with H2, a suspension having the proportion shown in Table 1 was introduced from the supply piping 12 together with the carrier gas (H2), and the carrier gas (H2) was introduced from the piping 13. The feed was carried out for 60-90 minutes.

なお、用いた物質、反応条件は以下に示す通りとした。The substances and reaction conditions used were as shown below.

圧力、常圧 導入部温度T、、600℃ 内部温度T2:1150℃ 結果(収率)を第1表に示す。pressure, normal pressure Introductory temperature T, 600℃ Internal temperature T2: 1150℃ The results (yield) are shown in Table 1.

比較例1 界面活性剤を用いな力じたこと以外は実施例1と同様に
して炭素繊維の製造を行なった。
Comparative Example 1 Carbon fibers were produced in the same manner as in Example 1, except that no surfactant was used.

結果(収率)を第1表に示す。The results (yield) are shown in Table 1.

第1表より明らかなように、本発明の方法によれば炭素
繊維を著しく高い収率て得ること力くできる。
As is clear from Table 1, the method of the present invention makes it possible to obtain carbon fibers at a significantly high yield.

[発明の効果コ 以上詳述した通り、本発明の炭素繊維の製造方法によれ
ば、著しく高い収率で高品質の炭素繊維を安定に製造す
ることができるので、気相成長炭素繊維の工業的大量生
産が可能とされる。しかして、収率の向上により原料コ
ストの低廉化が図れ、効率的な製造が可能とされる。
[Effects of the Invention] As detailed above, according to the method for producing carbon fiber of the present invention, high-quality carbon fiber can be stably produced with an extremely high yield, and therefore, it is possible to stably produce high-quality carbon fiber in an extremely high yield. mass production is possible. As a result, the cost of raw materials can be reduced by improving the yield, and efficient production is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施に好適な装置の構成説
明図である。 0・・・反応容器、 1・・・ヒータ、 2・・・原料等供給管、 3・・・キャリアガス供給管、 4・・・炭素繊維捕集器。 代 理 人 弁理士 重 野 剛
FIGS. 1 and 2 are diagrams illustrating the configuration of an apparatus suitable for carrying out the present invention. 0... Reaction container, 1... Heater, 2... Raw material supply pipe, 3... Carrier gas supply pipe, 4... Carbon fiber collector. Representative Patent Attorney Tsuyoshi Shigeno

Claims (1)

【特許請求の範囲】[Claims] (1)炭素化合物のガスと、浮遊状態にある触媒粒子と
を加熱下で接触させて炭素を繊維状に析出させる方法に
おいて、炭素化合物と、触媒微粒子と、窒素族元素、酸
素族元素及びハロゲン元素よりなる群から選ばれる1種
又は2種以上の元素を含む界面活性剤とを含有する懸濁
液を加熱帯域に供給することを特徴とする炭素繊維の製
造方法。
(1) In a method in which a carbon compound gas and catalyst particles in a suspended state are brought into contact with each other under heating to precipitate carbon in the form of fibers, a carbon compound, a catalyst fine particle, a nitrogen group element, an oxygen group element, and a halogen A method for producing carbon fibers, comprising supplying a suspension containing a surfactant containing one or more elements selected from the group consisting of elements to a heating zone.
JP63146107A 1988-06-14 1988-06-14 Carbon fiber manufacturing method Expired - Lifetime JPH0665765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63146107A JPH0665765B2 (en) 1988-06-14 1988-06-14 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63146107A JPH0665765B2 (en) 1988-06-14 1988-06-14 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JPH026617A true JPH026617A (en) 1990-01-10
JPH0665765B2 JPH0665765B2 (en) 1994-08-24

Family

ID=15400308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63146107A Expired - Lifetime JPH0665765B2 (en) 1988-06-14 1988-06-14 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPH0665765B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118473A1 (en) * 2004-06-04 2005-12-15 Japan Science And Technology Agency Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
WO2006030642A1 (en) 2004-09-17 2006-03-23 National Institute Of Advanced Industrial Science And Technology Nanocapsule-type structure
JP2007085792A (en) * 2005-09-20 2007-04-05 Kaitokui Denshi Kogyo Kofun Yugenkoshi Optical module for page recognition of electronic book
US7390475B2 (en) 2002-05-22 2008-06-24 Showa Denko K.K. Process for producing vapor-grown carbon fibers
US7846415B2 (en) 2004-07-23 2010-12-07 Showa Denko K.K. Production method of vapor-grown carbon fiber and apparatus therefor
JP2011057551A (en) * 2010-11-08 2011-03-24 Osaka Prefecture Univ Method and apparatus for producing carbon nanostructure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943120A (en) * 1982-09-01 1984-03-10 Asahi Chem Ind Co Ltd Preparation of carbon fiber of gaseous phase growth method
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943120A (en) * 1982-09-01 1984-03-10 Asahi Chem Ind Co Ltd Preparation of carbon fiber of gaseous phase growth method
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390475B2 (en) 2002-05-22 2008-06-24 Showa Denko K.K. Process for producing vapor-grown carbon fibers
WO2005118473A1 (en) * 2004-06-04 2005-12-15 Japan Science And Technology Agency Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
JPWO2005118473A1 (en) * 2004-06-04 2008-09-18 独立行政法人科学技術振興機構 Raw material spray type high efficiency carbon nanostructure manufacturing method and apparatus
JP4674355B2 (en) * 2004-06-04 2011-04-20 独立行政法人科学技術振興機構 Raw material spray type high efficiency carbon nanostructure manufacturing method and apparatus
US7846415B2 (en) 2004-07-23 2010-12-07 Showa Denko K.K. Production method of vapor-grown carbon fiber and apparatus therefor
WO2006030642A1 (en) 2004-09-17 2006-03-23 National Institute Of Advanced Industrial Science And Technology Nanocapsule-type structure
EP1790612A1 (en) * 2004-09-17 2007-05-30 National Institute of Advanced Industrial Science and Technology Nanocapsule-type structure
US7897536B2 (en) 2004-09-17 2011-03-01 National Institute Of Advanced Industrial Science And Technology Nanocapsule-type structure
EP1790612A4 (en) * 2004-09-17 2011-07-06 Nat Inst Of Advanced Ind Scien Nanocapsule-type structure
JP2007085792A (en) * 2005-09-20 2007-04-05 Kaitokui Denshi Kogyo Kofun Yugenkoshi Optical module for page recognition of electronic book
JP4499638B2 (en) * 2005-09-20 2010-07-07 海徳威電子工業股▲ふん▼有限公司 Optical module for e-book page recognition
JP2011057551A (en) * 2010-11-08 2011-03-24 Osaka Prefecture Univ Method and apparatus for producing carbon nanostructure

Also Published As

Publication number Publication date
JPH0665765B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
JPS6249363B2 (en)
JPH0424320B2 (en)
JP2004339676A (en) Method for producing carbon fiber from vapor phase
WO2006033367A1 (en) Process and apparatus for producing carbon nanostructure
JPS62242B2 (en)
JPH026617A (en) Production of carbon fiber
CN103249672B (en) For the system and method that hydrogen is produced
JPH0246691B2 (en)
JP3071571B2 (en) Method for producing vapor grown carbon fiber
JP3404543B1 (en) Method for producing carbon nanotube
JPH07843B2 (en) Method for producing vapor grown carbon fiber
JP3071536B2 (en) Carbon fiber
JPH062222A (en) Production of carbon fiber by gaseous phase growth
CN1960942B (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
JPH0314623A (en) Production of carbon fiber
JP3117523B2 (en) Method for producing vapor grown carbon fiber
JPS6278217A (en) Vapor-phase production of carbon fiber
JP2521982B2 (en) Method for producing vapor grown carbon fiber
JPH02127523A (en) Carbon fiber of vapor growth
JPH0665764B2 (en) Carbon fiber manufacturing method
JPH0519341Y2 (en)
JP2721075B2 (en) Method for producing vapor grown carbon fiber
JPS62238826A (en) Production of carbon fiber
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPS6312720A (en) Production of carbon fiber grown in gaseous phase