JPS6249363B2 - - Google Patents

Info

Publication number
JPS6249363B2
JPS6249363B2 JP58162606A JP16260683A JPS6249363B2 JP S6249363 B2 JPS6249363 B2 JP S6249363B2 JP 58162606 A JP58162606 A JP 58162606A JP 16260683 A JP16260683 A JP 16260683A JP S6249363 B2 JPS6249363 B2 JP S6249363B2
Authority
JP
Japan
Prior art keywords
gas
vapor
grown carbon
organic
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58162606A
Other languages
Japanese (ja)
Other versions
JPS6054998A (en
Inventor
Kohei Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP58162606A priority Critical patent/JPS6054998A/en
Priority to US06/638,941 priority patent/US4572813A/en
Priority to EP84109710A priority patent/EP0136497B2/en
Priority to DE8484109710T priority patent/DE3463529D1/en
Publication of JPS6054998A publication Critical patent/JPS6054998A/en
Publication of JPS6249363B2 publication Critical patent/JPS6249363B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、気相中で炭素繊維を製造する方法に
関し、更に詳細には、有機遷移金属化合物のガス
とキヤリヤガスと有機化合物のガスとの混合ガス
を600℃〜1300℃の範囲で加熱することを特徴と
する気相成長炭素繊維の製造方法に関する。 〔従来の技術〕 炭素繊維は、軽量且つ高強度という材料特性に
よつて、航空宇宙産業、スポーツ・レジヤー産業
等にその利用が急ピツチに拡大されている。 炭素繊維は、一般にPAN(ポリアクリロニト
リル)の紡糸、耐炎化、炭素化処理またはピツチ
の溶融紡糸、不融化、炭化焼成等によつて製造さ
れている。一方、気相成長法による炭素繊維は、
不連続繊維であるが、結晶性良好な易黒鉛化性炭
素繊維であり、2800℃以上の熱処理によつて、従
来の炭素繊維では達成できない極めて機械的特性
に優れた素材になることで注目を集めている。 〔発明が解決しようとする問題点〕 気相成長炭素繊維の生成には、原料として一酸
化炭素や炭化水素が使われ、遷移金属の微粒子が
重要な触媒として機能することが分つている。一
酸化炭素を原料として炭素繊維を生成する実験は
非常に多く試みられている。この種の炭素繊維は
微細な遷移金属を触媒として350℃〜750℃程度の
低い温度領域で生成されるもので、直径0.01μm
〜0.5μmの微細繊維である。この種の炭素繊維
の生成速度の最適温度は550℃前後であり、400℃
以下の低温では無定形炭素と気相成長炭素繊維の
混合物の生成が見られる。また、より高い温度で
は板状グラフアイトの生成が支配的となり、気相
成長炭素繊維だけを優先的に生成させることが難
しい。また500℃前後の低い温度領域では成長速
度が10-9〜10-7m/s程度と極めて遅いこともあ
り、質的且つ量的問題において、今日に至つても
工業化される見通しがない。 一方、前者と比較し、大幅に進歩した方法とし
て遷移金属の微粒子を担持した基材上で約1100℃
の温度雰囲気で炭化水素の熱分解によつて、直径
1μm以上、長さ数cm以上の炭素繊維を生成する
方法が知られている。基材上に遷移金属の微粒子
を担持する方法としては、100Å〜300Å程度の遷
移金属の酸化物をアルコール等の揮発性が高く表
面張力の低い液体に懸濁させて、該懸濁液を基材
上にスプレーして乾燥する方法や、硫酸鉄のよう
な遷移金属化合物を溶解した水に基材を浸し、軽
く水洗いして後約1100℃で2時間、窒素中で焼成
し、担持基材を作る方法が一般である。次に該基
板を反応炉に入れ、水素ガスで還元して後ベンゼ
ン等の炭化水素ガスの1100℃前後の熱分解反応に
より基材上に気相成長炭素繊維を生成する。この
方法は、COを原料とした低温反応と比較し、繊
維の成長速度は極めて速いものの、工業化という
観点ではまだまだ多くの問題を有する。 まず、基板表面の別妙な温度ムラや、周囲の
繊維の密生度によつて長さの不均一が起り易いこ
と、また炭素の供給源としてのガスが反応によ
つて消費されることにより反応管の入口に近い所
と出口に近い所で繊維径が相当異なること、基
板表面でのみ生成が行われるため、反応管の中心
部分は反応に関与せず収率が悪いこと、超微粒
子を担持した基材の作製、基材の反応炉内へのセ
ツト、昇温、超微粒子の還元、炭素繊維の気相成
長、長時間を要する降温、基材の取り出し、繊維
の基材からのかき取り等のプロセスを必要とし連
続製造が不可能であり、1日1回のバツチ生産と
なつてしまう。また、1バツチで生成する量も基
材100cm2当り0.1g程度のため、生産性が極めて低
く、コスト面において、すでに商品化されている
PAN系炭素繊維、ピツチ系炭素繊維に対抗する
ことは不可能である。 それ故、この発明の一般的な目的は、上述の問
題点を除去し、生産性を高めることのできる気相
成長炭素繊維の連続製造方法を提供するにある。 〔問題点を解決するための手段〕 この目的を達成するため、この発明に係る気相
成長炭素繊維の製造方法は、有機遷移金属化合物
のガスとキヤリヤガスと有機化合物のガスとの混
合ガスを800〜1300℃に加熱することにより浮遊
状態で気相成長炭素繊維を生成することを特徴と
する。有機遷移金属化合物のガスとキヤリヤガス
と必要に応じて炭素化合物のガスとの混合ガスを
加熱することを特徴とする。 本発明における炭素供給源としての有機化合物
とは、有機鎖式化合物または有機還式化合物から
なる有機化合物全般が対象となるが、特に高い収
率を得るには脂肪族炭化水素、芳香族炭化水素で
ある。しかし、炭化水素化合物以外に窒素、酸
素、硫黄、弗素、塩素、臭素、沃素、燐、砒素等
の内の一種類以上の元素を含むものも使用でき
る。特に炭素と水素と硫黄との組合せからなる場
合には収率面で好適である。具体的な個々の化合
物の例を挙げると、メタン、エタン等のアルカン
化合物、エチレン、ブタジエン等のアルケン化合
物、アセチレン等のアルキン化合物、ベンゼン、
トルエン、スチレン等のアリール炭化水素化合
物、インデン、ナフタリン、フエナントレン等の
縮合環を有する芳香族炭化水素、シクロプロパ
ン、シクロヘキサン等のシクロパラフイン化合
物、シクロペンテン、シクロヘキサン等のシクロ
オレフイン化合物、ステロイド等の縮合環を有す
る脂環式炭化水素化合物、メチルチオール、メチ
ルエチルスルフイド、ジメチルチオケトン等の含
硫脂肪族化合物、フエニルチオール、ジフエニル
スルフイド等の含硫芳香族化合物、ベンゾチオフ
エン、チオフエン等の含硫複素環式化合物等であ
る。また、以上の化合物の2種以上を混合した混
合物を使用することも可能である。 キヤリヤガスとしては、周期律表O族のアルゴ
ン、ヘリウム等の希ガスおよび水素、窒素または
これらの混合ガスの中から選択されるガスを主体
とし、水素ガスが最も好ましい。主体とするとい
う意味は、上記以外に他のガスを含むことが許さ
れることを意味し、その割合はキヤリアガス成分
中20%以内である。この種の少量成分ガスとして
は、硫化水素、二硫化炭素が好ましい。水素ガス
以外のガスをキヤリアガスとして使用する場合、
一般に有機化合物の熱分解が促進されすぎ、かえ
つて炭素繊維の生成を阻害する要因になるため、
有機化合物の濃度を大幅に低下させる必要性がで
てくる。 本発明における有機遷移金属化合物は、遷移金
属を含む有機化合物であり、具体的にはアルキル
基と金属が結合したアルキル金属、アリル基と金
属が結合したアリル錯体、炭素間2重結合や3重
結合等と金属とが結合した化合物に代表されるπ
結合が関与する錯体とキレート型化合物等に代表
される。 また、ここで遷移金属としては、スカンジウ
ム、チタン、バナジウム、クロム、マンガン、
鉄、コバルト、ニツケル、イツトリウム、ジルコ
ニウム、ニオブ、モリブデン、ルテニウム、ロジ
ウム、パラジウム、タンタル、タングステン、レ
ニウム、イリジウムまたは白金を指すものである
が、これらの内特に周期律表族に属するもの、
その内で特に鉄、ニツケル、コバルトが好適であ
つて、鉄が最も好適である。 有機遷移金属化合物の一部具体的例を挙げる
と、アルキル金属として(C4H94Ti,CH2
CHCH2Mn(CO)5
[Industrial Application Field] The present invention relates to a method for producing carbon fiber in a gas phase, and more specifically, a mixed gas of an organic transition metal compound gas, a carrier gas, and an organic compound gas is heated at 600°C to 1300°C. The present invention relates to a method for producing vapor-grown carbon fiber, which is characterized by heating in a temperature range of .degree. [Prior Art] Carbon fiber is rapidly being used in the aerospace industry, sports/leisure industry, etc. due to its material properties of light weight and high strength. Carbon fibers are generally produced by spinning PAN (polyacrylonitrile), making it flameproof, carbonizing it, or by melt spinning pitch, making it infusible, carbonizing it, and firing it. On the other hand, carbon fiber produced using the vapor phase growth method is
Although it is a discontinuous fiber, it is a graphitizable carbon fiber with good crystallinity, and is attracting attention because it can be heat-treated at over 2800℃ to become a material with extremely excellent mechanical properties that cannot be achieved with conventional carbon fibers. are collecting. [Problems to be Solved by the Invention] Carbon monoxide and hydrocarbons are used as raw materials in the production of vapor-grown carbon fibers, and it is known that fine particles of transition metals function as important catalysts. Many experiments have been attempted to produce carbon fiber using carbon monoxide as a raw material. This type of carbon fiber is produced in the low temperature range of 350℃ to 750℃ using fine transition metals as a catalyst, and has a diameter of 0.01μ.
It is a fine fiber of ~0.5 μm. The optimum temperature for the production rate of this kind of carbon fiber is around 550℃, and 400℃
At lower temperatures, a mixture of amorphous carbon and vapor-grown carbon fibers is observed to form. Furthermore, at higher temperatures, the production of plate-like graphite becomes dominant, making it difficult to preferentially produce only vapor-grown carbon fibers. In addition, in the low temperature range of around 500°C, the growth rate is extremely slow at about 10 -9 to 10 -7 m/s, and there is no prospect of industrialization in both qualitative and quantitative terms. On the other hand, compared to the former method, a method that is significantly more advanced is that it can be heated to approximately 1100℃ on a substrate supporting fine particles of transition metals.
A method is known in which carbon fibers with a diameter of 1 μm or more and a length of several cm or more are produced by thermal decomposition of hydrocarbons in an atmosphere at a temperature of . A method for supporting fine particles of transition metals on a substrate is to suspend transition metal oxides with a size of about 100 Å to 300 Å in a liquid with high volatility and low surface tension, such as alcohol, and then use the suspension as a base material. The support substrate can be prepared by spraying it onto the material and drying it, or by immersing the substrate in water in which a transition metal compound such as iron sulfate is dissolved, washing it lightly with water, and then baking it in nitrogen at about 1100℃ for 2 hours. The common method is to make Next, the substrate is placed in a reactor and reduced with hydrogen gas, followed by a thermal decomposition reaction of hydrocarbon gas such as benzene at around 1100° C. to produce vapor-grown carbon fibers on the substrate. Although this method allows for extremely fast fiber growth compared to low-temperature reactions using CO as a raw material, there are still many problems in terms of industrialization. First of all, length non-uniformity tends to occur due to strange temperature unevenness on the substrate surface and the density of surrounding fibers, and also because the gas that serves as a carbon supply source is consumed by the reaction. The fiber diameter is quite different between the tube inlet and the outlet, and since production occurs only on the substrate surface, the center of the reaction tube does not participate in the reaction and yield is poor, and ultrafine particles are supported. preparation of the base material, setting the base material in the reactor, raising the temperature, reducing ultrafine particles, vapor phase growth of carbon fiber, lowering the temperature which requires a long time, taking out the base material, scraping the fibers from the base material. Continuous production is impossible, and batch production is required once a day. In addition, the amount produced in one batch is about 0.1 g per 100 cm 2 of base material, so productivity is extremely low, and from a cost standpoint, it is difficult to produce products that have already been commercialized.
It is impossible to compete with PAN-based carbon fiber and pitch-based carbon fiber. Therefore, a general object of the present invention is to provide a method for continuously manufacturing vapor-grown carbon fibers that eliminates the above-mentioned problems and increases productivity. [Means for Solving the Problems] In order to achieve this object, the method for producing vapor-grown carbon fiber according to the present invention is to produce a mixed gas of an organic transition metal compound gas, a carrier gas, and an organic compound gas at 800% It is characterized by producing vapor-grown carbon fibers in a suspended state by heating to ~1300°C. It is characterized by heating a mixed gas of an organic transition metal compound gas, a carrier gas, and, if necessary, a carbon compound gas. The organic compound as a carbon supply source in the present invention refers to all organic compounds consisting of organic chain compounds or organic cyclic compounds, but in order to obtain a particularly high yield, aliphatic hydrocarbons and aromatic hydrocarbons are used. It is. However, in addition to hydrocarbon compounds, compounds containing one or more elements such as nitrogen, oxygen, sulfur, fluorine, chlorine, bromine, iodine, phosphorus, arsenic, etc. can also be used. In particular, a combination of carbon, hydrogen and sulfur is suitable in terms of yield. Specific examples of individual compounds include alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, benzene,
Aryl hydrocarbon compounds such as toluene and styrene; aromatic hydrocarbons with fused rings such as indene, naphthalene, and phenanthrene; cycloparaffin compounds such as cyclopropane and cyclohexane; cycloolefin compounds such as cyclopentene and cyclohexane; and fused rings such as steroids. alicyclic hydrocarbon compounds having the following, sulfur-containing aliphatic compounds such as methylthiol, methylethyl sulfide, and dimethylthioketone, sulfur-containing aromatic compounds such as phenylthiol and diphenyl sulfide, benzothiophene, thiophene, etc. sulfur-containing heterocyclic compounds, etc. It is also possible to use a mixture of two or more of the above compounds. The carrier gas is mainly selected from rare gases such as argon and helium of group O of the periodic table, hydrogen, nitrogen, or a mixture thereof, and hydrogen gas is most preferred. The term "mainly" means that other gases other than those mentioned above are allowed to be included, and the proportion thereof is within 20% of the carrier gas component. Hydrogen sulfide and carbon disulfide are preferred as this type of minor component gas. When using a gas other than hydrogen gas as a carrier gas,
Generally, the thermal decomposition of organic compounds is accelerated too much, which can actually inhibit the production of carbon fibers.
There arises a need to significantly reduce the concentration of organic compounds. The organic transition metal compound in the present invention is an organic compound containing a transition metal, and specifically includes an alkyl metal in which an alkyl group and a metal are bonded, an allyl complex in which an allyl group and a metal are bonded, a carbon-carbon double bond or a triple bond. π, which is represented by compounds in which a metal is bonded with a bond, etc.
Typical examples include complexes and chelate-type compounds that involve bonding. In addition, the transition metals here include scandium, titanium, vanadium, chromium, manganese,
Refers to iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium, or platinum, especially those belonging to the periodic table group,
Among these, iron, nickel, and cobalt are particularly preferred, with iron being the most preferred. Some specific examples of organic transition metal compounds include (C 4 H 9 ) 4 Ti, CH 2 =
CHCH2Mn (CO) 5 ,

【式】(C2H52FeBr・(C2H5)FeBr2; アリル錯体として(C6H53PtI;π結合が関与す
る錯体として(C5H52Fe,(C6H62Mo,
(C9H72Fe,〔C5H5Fe(CO)22,〔C5H5Fe
(CO)2〕Cl,〔C5H5Fe(CO)2〕CN,
[Formula] (C 2 H 5 ) 2 FeBr・(C 2 H 5 )FeBr 2 ; As an allyl complex, (C 6 H 5 ) 3 PtI; As a complex involving a π bond, (C 5 H 5 ) 2 Fe, ( C 6 H 6 ) 2 Mo,
(C 9 H 7 ) 2 Fe, [C 5 H 5 Fe(CO) 2 ] 2 , [C 5 H 5 Fe
(CO) 2 ]Cl, [ C5H5Fe ( CO ) 2 ]CN,

【式】【formula】 〔発明の作用〕[Action of the invention]

本発明によれば、有機金属化合物を使用し、そ
れを蒸発して気相中で金属触媒を作成するという
新しい手法によつて、従来の触媒の基板への分散
と還元という2つの操作の省略を可能としたもの
で、すなわち気相中で炭素源としての有機化合物
のガスと触媒源としての有機遷移金属化合物のガ
スとを熱分解することにより、触媒と炭素繊維を
浮遊状態で連続的に生産させることが可能となつ
た。 〔発明の効果〕 本発明によれば、従来のように反応が基板表面
だけでなく全域にわたつているため高収率が得ら
れ、気相中で生成している炭素繊維は、浮遊運動
をしているため各繊維は平均的に同一の条件で生
成していると考えてよく、生成炭素繊維はアスペ
クト比の均一なものが得られ、また本発明によれ
ば装置の大きさや、ガスの線速度、電気炉の温度
を制御することによりアスペクト比を変えること
が容易である。実験によると、1100℃以下では主
として長さ成長が起り、1100℃を越える温度では
径の成長速度が目立つてくる。また、長さの成長
範囲においては、生成する炭素繊維の長さが混合
ガスの炉内の滞留時間にほぼ比例するため、1100
℃以下の加熱炉と1100℃以上の加熱炉を直列につ
なぐことによつて希望する径、長さの炭素繊維を
連続的に生成することが可能である。長さ0.2μ
〜2000μ、径0.05μ〜10μの範囲のアスペクト比
一定の短い炭素繊維を高収率で連続的に製造する
ことが可能である。また、短繊維をランダムに充
填する複合材料という用途を検討した場合、高強
度高弾性でアスペクト比100〜200が好ましいとい
うことが言われており、本発明がアスペクト比を
自由にコントロール可能であり、特にアスペクト
比100〜200は極めて容易に作製でき、気相成長炭
素繊維の高強度高弾性という機械的特性を有する
という点で複合材料には理想的素材と言える。 〔発明の実施例〕 次に、この発明に係る気相成長炭素繊維の製造
方法の好適な実施例につき添付図面を参照しなが
ら以下詳細に説明する。 まず、本発明における気相成長炭素繊維を製造
するために使用した装置につき、その概略を示せ
ば、第1図および第2図に示す通りである。 第1図において、参照符号10,12,14は
ガスボンベを示し、それぞれボンベ10には高純
度水素ガス、ボンベ12には窒素ガス、ボンベ1
4には硫化水素ガスが充填される。ボンベ10,
12は、それぞれ流量計16,18およびバルブ
20,22を介してステンレスパイプ24に接続
されている。このパイプ24は、バルブ26を介
してベンゼンを充填した原料ガス発生器28に連
通している。また、この原料ガス発生器28から
ステンレスパイプ30が導出され、このパイプ3
0はフエロセンを充填したガス発生器32に連通
している。さらにこのガス発生器32からステン
レスパイプ34が導出され、このパイプ34はバ
ルブ36を介して反応管38に連通している。し
かるに、この反応管38に連通する前記パイプ3
4の一部に、前記ボンベ14が流量計40および
バルブ42を介して接続されている。なお、前述
したパイプ24からバルブ26より両ガス発生器
28,32およびバルブ36を介して反応管38
に接続されるパイプ34に至る系に対し、ステン
レスパイプ44をそれぞれバルブ46,48を介
して接続する。 反応管38は、内径22mm、長さ1000mmの石英管
で構成し、その長さ約600mmに亘つてこれを電気
炉50内に設置する。この電気炉50の温度は、
熱電対52と3回路PID温度制御器54とからな
る制御系で制御し、この温度は温度記録計56で
記録するよう構成する。そして、前記反応管38
の終端部にはステンレス繊維フイルタ58を介し
て排気パイプ60を連通する。 このように構成した装置は、運転に際し、最初
ボンベ12から供給される窒素ガスをバイパスパ
イプ44を介して反応管38に供給し、反応管3
8内部を窒素ガスで置換して爆発の危険を防止す
る。次いで、ボンベ10より水素ガスを両ガス発
生器28,32に順次供給して水素−ベンゼン−
フエロセンの混合ガスとなし、これをさらに硫化
水素と混合して反応管38に導入し、電気炉50
の作用下に炭素繊維の気相成長が行われ、得られ
た炭素繊維はステンレス繊維フイルタ58に捕集
される。 第2図は、第1図に示す装置にさらに付加し得
る装置を示すものである。すなわち、第2図にお
いて、参照符号62は第2の反応管を示し、この
第2の反応管62は内径85mm、長さ約1700mmの石
英管で構成し、第1図に示す第1の反応管38に
直結したものである。この場合、第2の反応管6
2の入口部に対し、アセチレンガスをさらに混合
し得るように構成する。このため、アセチレンガ
スを充填してガスボンベ64を設け、このボンベ
を流量計66およびバルブ68を介して前記反応
管62の入口部に設けた栓部材70に接続する。
また、第2の反応管62は、第1の反応管38と
同様に、電気炉72、熱電対74、3回路PID温
度制御器76、温度記録計78、ステンレス繊維
フイルタ80および排気パイプ82を設ける。な
お、この場合、第1の反応管38に対しては、ス
テンレス繊維フイルタ58および排気パイプ60
が省略されることは勿論である。 実施例 1 第1図に示す装置において、ボンベ10に高純
度水素ガス、ボンベ14に硫化水素ガス、原料ガ
ス発生器28にベンゼン、有機金属化合物のガス
発生器32にフエロセンを入れて、まず原料ガス
発生器28と有機金属化合物のガス発生器32を
加熱してベンゼンとフエロセンのガスを生成さ
せ、バルブ20,42を調節して流量計16,4
0により所定流量の水素、硫化水素を流す。水素
ガスはステンレスパイプ24よりバルブ26を経
て原料ガス発生器28に入り、ベンゼンガスと混
合されてステンレスパイプ30を経て有機金属化
合物のガス発生器32に入り、ここにて水素−ベ
ンゼン−フエロセンの混合ガスを生成し、ステン
レスパイプ34よりバルブ36を経て硫化水素と
混合されて反応管38に入る。ベンゼンやフエロ
センがパイプ内に凝縮しないようにステンレスパ
イプ30は200℃に加熱した。混合ガスの組成は
水素:硫化水素:ベンゼン:フエロセン=91.0:
2.7:1.8:4.5、総流量は200℃で176ml/分〜352
ml/分の範囲で変化させた。電気炉50は1080℃
の温度に設定した。反応管38の内部の温度分布
を調べたところ、均熱帯はパイプの中央附近300
mmであつた。混合ガスは連続的に供給され、反応
管38内で連続的に熱分解し、触媒と気相成長炭
素繊維が連続的に生成する。生成した気相成長炭
素繊維はステンレス繊維フイルタ58で捕集し重
量増加分より収率を計算した。また、炭素繊維の
径、長さについては顕微鏡で観察した。結果を第
1表に示す。表中滞留時間は反応管38の300mm
の均熱帯を通過する時間として求めた。
According to the present invention, a new method of using an organometallic compound and evaporating it to create a metal catalyst in the gas phase eliminates the two operations of conventional catalyst dispersion onto a substrate and reduction. In other words, by thermally decomposing the organic compound gas as a carbon source and the organic transition metal compound gas as a catalyst source in the gas phase, the catalyst and carbon fibers can be continuously generated in a suspended state. It became possible to produce it. [Effects of the Invention] According to the present invention, a high yield can be obtained because the reaction is not limited to the surface of the substrate as in the past but is spread over the entire area, and the carbon fibers produced in the gas phase have no floating motion. Therefore, it can be assumed that each fiber is produced under the same conditions on average, and the carbon fibers produced have a uniform aspect ratio. The aspect ratio can be easily changed by controlling the linear velocity and the temperature of the electric furnace. Experiments have shown that at temperatures below 1100°C, growth mainly occurs in length, and at temperatures above 1100°C, the growth rate in diameter becomes noticeable. In addition, in the length growth range, the length of the carbon fiber produced is approximately proportional to the residence time of the mixed gas in the furnace, so 1100
By connecting a heating furnace below ℃ and a heating furnace above 1100 ℃ in series, it is possible to continuously produce carbon fibers with the desired diameter and length. Length 0.2μ
It is possible to continuously produce short carbon fibers with a constant aspect ratio in the range of ~2000μ and diameters of 0.05μ to 10μ with high yield. Furthermore, when considering the use of a composite material randomly filled with short fibers, it is said that an aspect ratio of 100 to 200 is preferable for high strength and high elasticity, and the present invention makes it possible to freely control the aspect ratio. In particular, carbon fiber with an aspect ratio of 100 to 200 can be produced extremely easily, and it can be said to be an ideal material for composite materials in that it has the mechanical properties of high strength and high elasticity of vapor grown carbon fiber. [Embodiments of the Invention] Next, preferred embodiments of the method for producing vapor grown carbon fibers according to the present invention will be described in detail below with reference to the accompanying drawings. First, the outline of the apparatus used for manufacturing the vapor-grown carbon fiber in the present invention is as shown in FIGS. 1 and 2. In FIG. 1, reference numerals 10, 12, and 14 indicate gas cylinders, and cylinder 10 is a high-purity hydrogen gas, cylinder 12 is a nitrogen gas cylinder, and cylinder 1 is a high-purity gas cylinder.
4 is filled with hydrogen sulfide gas. cylinder 10,
12 are connected to a stainless steel pipe 24 via flowmeters 16, 18 and valves 20, 22, respectively. This pipe 24 communicates via a valve 26 with a raw material gas generator 28 filled with benzene. Further, a stainless steel pipe 30 is led out from this raw material gas generator 28, and this pipe 3
0 communicates with a gas generator 32 filled with ferrocene. Furthermore, a stainless steel pipe 34 is led out from this gas generator 32, and this pipe 34 communicates with a reaction tube 38 via a valve 36. However, the pipe 3 communicating with this reaction tube 38
The cylinder 14 is connected to a part of 4 through a flow meter 40 and a valve 42. Note that the reaction tube 38 is connected from the pipe 24 mentioned above to the valve 26 via both gas generators 28, 32 and the valve 36.
A stainless steel pipe 44 is connected to the system leading to the pipe 34 connected to the pipe 34 via valves 46 and 48, respectively. The reaction tube 38 is composed of a quartz tube with an inner diameter of 22 mm and a length of 1000 mm, and is installed in the electric furnace 50 over a length of about 600 mm. The temperature of this electric furnace 50 is
It is controlled by a control system consisting of a thermocouple 52 and a three-circuit PID temperature controller 54, and the temperature is recorded by a temperature recorder 56. Then, the reaction tube 38
An exhaust pipe 60 is connected to the terminal end of the exhaust pipe 60 through a stainless steel fiber filter 58. When the apparatus configured as described above is operated, nitrogen gas supplied from the cylinder 12 is first supplied to the reaction tube 38 via the bypass pipe 44.
8.Purge the inside with nitrogen gas to prevent the risk of explosion. Next, hydrogen gas is sequentially supplied from the cylinder 10 to both gas generators 28 and 32 to generate hydrogen-benzene-
A mixed gas of ferrocene is formed, which is further mixed with hydrogen sulfide, introduced into the reaction tube 38, and then heated into the electric furnace 50.
Carbon fibers are grown in a vapor phase under the action of , and the obtained carbon fibers are collected by a stainless steel fiber filter 58 . FIG. 2 shows a device that can be further added to the device shown in FIG. That is, in FIG. 2, reference numeral 62 indicates a second reaction tube, and this second reaction tube 62 is composed of a quartz tube with an inner diameter of 85 mm and a length of about 1700 mm, and is used for the first reaction shown in FIG. It is directly connected to the pipe 38. In this case, the second reaction tube 6
The inlet portion of No. 2 is configured to be able to further mix acetylene gas. For this purpose, a gas cylinder 64 filled with acetylene gas is provided, and this cylinder is connected to a plug member 70 provided at the inlet of the reaction tube 62 via a flow meter 66 and a valve 68.
Similarly to the first reaction tube 38, the second reaction tube 62 is equipped with an electric furnace 72, a thermocouple 74, a three-circuit PID temperature controller 76, a temperature recorder 78, a stainless steel fiber filter 80, and an exhaust pipe 82. establish. In this case, the stainless steel fiber filter 58 and the exhaust pipe 60 are connected to the first reaction tube 38.
Of course, is omitted. Example 1 In the apparatus shown in FIG. 1, high-purity hydrogen gas is placed in the cylinder 10, hydrogen sulfide gas is placed in the cylinder 14, benzene is placed in the raw material gas generator 28, and ferrocene is placed in the organometallic compound gas generator 32. The gas generator 28 and the organometallic compound gas generator 32 are heated to generate benzene and ferrocene gases, and the valves 20 and 42 are adjusted to generate the flow meters 16 and 4.
0, a predetermined flow rate of hydrogen and hydrogen sulfide is caused to flow. Hydrogen gas enters the raw material gas generator 28 from the stainless steel pipe 24 via the valve 26, is mixed with benzene gas, passes through the stainless steel pipe 30, enters the organometallic compound gas generator 32, and is converted into hydrogen-benzene-ferrocene. A mixed gas is generated and mixed with hydrogen sulfide from the stainless steel pipe 34 through the valve 36 and enters the reaction tube 38. The stainless steel pipe 30 was heated to 200°C to prevent benzene and ferrocene from condensing inside the pipe. The composition of the mixed gas is hydrogen: hydrogen sulfide: benzene: ferrocene = 91.0:
2.7:1.8:4.5, total flow rate is 176ml/min ~ 352 at 200℃
It was varied in the range of ml/min. Electric furnace 50 is 1080℃
The temperature was set to . When we investigated the temperature distribution inside the reaction tube 38, we found that the soaking zone was 300°C near the center of the pipe.
It was warm in mm. The mixed gas is continuously supplied and thermally decomposed continuously in the reaction tube 38, and a catalyst and vapor-grown carbon fibers are continuously produced. The produced vapor-grown carbon fibers were collected by a stainless steel fiber filter 58, and the yield was calculated from the weight increase. In addition, the diameter and length of the carbon fibers were observed using a microscope. The results are shown in Table 1. The residence time in the table is 300mm of reaction tube 38.
It was calculated as the time it takes to pass through the soaking zone.

【表】 第1表より長さはほぼ滞留時間に比例すること
が示される。 実施例 2 第2図に示す装置により、実施例1で生成した
炭素繊維を1160℃に加熱した第2の反応管62で
更に径のコントロールを行つた。反応管62の
1160℃における均熱帯は300mmであつた。第1の
反応では炭素供給量が少なかつたので、第2図の
ボンベ64よりアセチレンガスを標準状態で10
ml/分送つた。そのときの結果を第2表に示す。
[Table] Table 1 shows that the length is approximately proportional to the residence time. Example 2 Using the apparatus shown in FIG. 2, the diameter of the carbon fibers produced in Example 1 was further controlled in the second reaction tube 62 heated to 1160°C. of reaction tube 62
The soaking zone at 1160℃ was 300mm. In the first reaction, the amount of carbon supplied was small, so acetylene gas was added from cylinder 64 in Figure 2 under standard conditions at 10
ml/min was sent. The results are shown in Table 2.

【表】 第2表より、第2の炉では径のみが成長したこ
とが示される。 実施例 3 混合ガスとして水素:アセチレン:
(C5H52Ni=91.5:5.3:3.7、総流量110ml/分
(25℃換算)、電気炉温度1080℃の条件で実施し、
収率1.3%、炭素繊維(径×長さ)0.15μ×3μ
の気相成長炭素繊維が得られた。 実施例 4 混合ガスとして窒素:ベンゾチオフエン:
〔C5H5Fe(CO)22=92.4:3.4:4.2、総流量108
ml/分(25℃換算)、電気炉温度1065℃の条件で
実施し、収率1.0%、炭素繊維(径×長さ)0.1μ
×10μの気相成長炭素繊維が得られた。 実施例 5 混合ガスとしてアルゴン:CH4
C6H15ScC4H10O=90.9:6.1:3.0、総流量110
ml/分(25℃換算)、電気炉温度1065℃の条件で
実施し、収率0.1%、炭素繊維(径×長さ)0.05
μ×1.0μの気相成長炭素繊維が得られた。 実施例 6 混合ガスとして水素:チオフエン:
C10H10Br2Zr=92.0:6.1:4.3、総流量120ml/分
(25℃換算)、電気炉温度1080℃の条件で実施し、
収率0.1%以下、炭素繊維(径×長さ)0.07μ×
1.3μの気相成長炭素繊維が得られた。 実施例 7 混合ガスとして水素:ベンゼン:C10H10V=
93.0:3.1:3.9、総流量110ml/分(25℃換算)、
電気炉温度1080℃の条件で実施し、収率0.7%、
炭素繊維(径×長さ)0.1μ×2.5μの気相成長炭
素繊維が得られた。 実施例 8 混合ガスとして水素:アセチレン:
(C6H62Mo=91.0:5.3:3.7、総流量113ml/分
(25℃換算)、電気炉温度1070℃の条件で実施し、
収率0.3%、炭素繊維(径×長さ)0.05μ×0.5μ
の気相成長炭素繊維が得られた。 実施例 9 混合ガスとして水素:C10H8:(C5H52ReH=
94.4:1.9:3.7、総流量106ml/分(25℃換算)、
電気炉温度1090℃の条件で実施し、収率0.1%以
下、炭素繊維(径×長さ)0.05μ×0.5μの気相
成長炭素繊維が得られた。 実施例1〜9における収率は、ステンレス繊維
フイルタに捕集された炭素繊維をもとに計算され
ているため、捕集効率等を換算すると実際の収率
はもつと高くなると考えられる。 比較例 1 比較の目的で、特公昭53−7538号の実施例1を
追試した。 活性アルミナ(半井化学製乾燥用活性アルミナ
8〜14mesh)10gとFeSO4・7H2O14gを含む水
溶液100c.c.に浸し、軽く水洗した後1100℃で2時
間、窒素中で焼成して担持した基材を作つた。こ
こから約1gをアルミナ磁気のポートに入れ内径
約24mmの石英管の中央部に置いた。キヤリヤガス
を水素とし80c.c./minでこれにベンゼン蒸気(蒸
気圧約39mmHg)を含ませて系内を十分パージ
し、900℃まで基材を昇温した。ここでベンゼン
の蒸気圧を75mmHgとし温度を3時間かけて1100
℃まで上昇させた。系内には多量の繊維が生成し
ており、供給したベンゼンに対して繊維の収率は
約5wt%であつた。繊維の直径は5〜20μ、長さ
は5〜50mmであつた。 この方法は、実質生成時間が1〜3時間のバツ
チ法であり、1日1回の運転が限度である。また
実施例と比較例との対比から判るように、本発明
は連続運転であり、かつ収率に限つても上記従来
法より著しく高い。
[Table] Table 2 shows that only the diameter grew in the second furnace. Example 3 Hydrogen:acetylene as mixed gas:
( C5H5 ) 2Ni = 91.5:5.3:3.7, total flow rate 110ml/ min (25℃ conversion), electric furnace temperature 1080℃.
Yield 1.3%, carbon fiber (diameter x length) 0.15μ x 3μ
A vapor-grown carbon fiber of 100% was obtained. Example 4 Nitrogen:benzothiophene as mixed gas:
[ C5H5Fe (CO ) 2 ] 2 =92.4:3.4:4.2, total flow rate 108
ml/min (25℃ conversion), electric furnace temperature 1065℃, yield 1.0%, carbon fiber (diameter x length) 0.1μ
Vapor grown carbon fibers of ×10μ were obtained. Example 5 Argon: CH 4 as mixed gas:
C 6 H 15 ScC 4 H 10 O=90.9:6.1:3.0, total flow rate 110
ml/min (25℃ conversion), electric furnace temperature 1065℃, yield 0.1%, carbon fiber (diameter x length) 0.05
Vapor grown carbon fibers of μ×1.0μ were obtained. Example 6 Hydrogen:thiophene as mixed gas:
Conducted under the conditions of C 10 H 10 Br 2 Zr = 92.0:6.1:4.3, total flow rate 120ml/min (25℃ conversion), electric furnace temperature 1080℃,
Yield 0.1% or less, carbon fiber (diameter x length) 0.07μ
Vapor grown carbon fibers of 1.3μ were obtained. Example 7 Hydrogen as a mixed gas: Benzene: C 10 H 10 V=
93.0:3.1:3.9, total flow rate 110ml/min (25℃ conversion),
Conducted at an electric furnace temperature of 1080℃, yield 0.7%,
Vapor-grown carbon fibers (diameter x length) of 0.1 μ x 2.5 μ were obtained. Example 8 Hydrogen:acetylene as mixed gas:
( C6H6 ) 2Mo =91.0:5.3:3.7, total flow rate 113ml/min (25℃ conversion ) , electric furnace temperature 1070℃.
Yield 0.3%, carbon fiber (diameter x length) 0.05μ x 0.5μ
A vapor-grown carbon fiber of 100% was obtained. Example 9 Hydrogen as a mixed gas: C 10 H 8 :(C 5 H 5 ) 2 ReH=
94.4:1.9:3.7, total flow rate 106ml/min (25℃ conversion),
The process was carried out at an electric furnace temperature of 1090°C, and vapor-grown carbon fibers with a yield of 0.1% or less and carbon fibers (diameter x length) of 0.05μ x 0.5μ were obtained. Since the yields in Examples 1 to 9 were calculated based on the carbon fibers collected by the stainless steel fiber filter, it is thought that the actual yields would be higher if the collection efficiency etc. were converted. Comparative Example 1 For the purpose of comparison, Example 1 of Japanese Patent Publication No. 53-7538 was repeated. It was soaked in 100 c.c. of an aqueous solution containing 10 g of activated alumina (8-14 mesh activated alumina for drying manufactured by Hanui Chemical Co., Ltd.) and 14 g of FeSO 4 7H 2 O, washed lightly with water, and then calcined in nitrogen at 1100°C for 2 hours to support it. I made the base material. Approximately 1 g of this was put into an alumina magnetic port and placed in the center of a quartz tube with an inner diameter of approximately 24 mm. Hydrogen was used as the carrier gas, and benzene vapor (vapor pressure approximately 39 mmHg) was added to the carrier gas at 80 c.c./min to sufficiently purge the system, and the substrate was heated to 900°C. Here, the vapor pressure of benzene is set to 75 mmHg, and the temperature is increased to 1100 for 3 hours.
It was raised to ℃. A large amount of fiber was produced in the system, and the yield of fiber was approximately 5 wt% based on the supplied benzene. The diameter of the fibers was 5-20μ and the length was 5-50mm. This method is a batch method in which the actual production time is 1 to 3 hours, and the operation is limited to once a day. Further, as can be seen from the comparison between Examples and Comparative Examples, the present invention is a continuous operation and the yield is significantly higher than the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気相成長炭素繊維の製造に使用した実
験装置の系統図、第2図は第1図の装置に接続す
る第2の気相成長炭素繊維の製造に使用した実験
装置の系統図である。 10,12,14,64……ガスボンベ、1
6,18,40,66……流量計、20,22,
26,36,42,46,48,68……バル
ブ、24,30,34,44……ステンレスパイ
プ、28,32……ガス発生器、38……反応管
(第1)、50,72……電気炉、52,74……
熱電対、54,76……3回路PID温度制御器、
56,78……温度記録計、58,80……ステ
ンレス繊維フイルタ、60,82……排気パイ
プ、62……反応管(第2)、70……栓部材。
Figure 1 is a system diagram of the experimental equipment used to manufacture vapor-grown carbon fibers, and Figure 2 is a system diagram of the experimental equipment used to manufacture the second vapor-grown carbon fiber, which is connected to the equipment in Figure 1. It is. 10, 12, 14, 64...gas cylinder, 1
6, 18, 40, 66...flow meter, 20, 22,
26, 36, 42, 46, 48, 68... Valve, 24, 30, 34, 44... Stainless steel pipe, 28, 32... Gas generator, 38... Reaction tube (first), 50, 72... ...Electric furnace, 52,74...
Thermocouple, 54, 76...3 circuit PID temperature controller,
56, 78... Temperature recorder, 58, 80... Stainless steel fiber filter, 60, 82... Exhaust pipe, 62... Reaction tube (second), 70... Plug member.

Claims (1)

【特許請求の範囲】 1 有機遷移金属化合物のガスとキヤリヤガスと
有機化合物のガスとの混合ガスを800〜1300℃に
加熱することにより浮遊状態で気相成長炭素繊維
を生成することを特徴とする気相成長炭素繊維の
製造方法。 2 有機化合物が脂肪族炭化水素又は芳香族炭化
水素である特許請求の範囲第1項記載の気相成長
炭素繊維の製造方法。 3 キヤリヤガスが最高20%の硫黄化合物のガス
を含む水素ガス又は不活性ガスである特許請求の
範囲第1項記載の気相成長炭素繊維の製造方法。 4 有機遷移金属化合物のガス濃度が0.01%〜40
%である特許請求の範囲第1項記載の気相成長炭
素繊維の製造方法。 5 有機化合物のガス濃度が最高40%である特許
請求の範囲第1項記載の気相成長炭素繊維の製造
方法。 6 有機遷移金属化合物のガスとキヤリヤガスと
有機化合物のガスとの混合ガスの供給が連続的で
ある特許請求の範囲第1項記載の気相成長炭素繊
維の製造方法。 7 濃度コントロールした有機遷移金属化合物の
ガスとキヤリヤガスと有機化合物のガスとの混合
ガスを温度コントロールした反応帯域に導入し、
該有機遷移金属化合物の分解によつて生成した遷
移金属の還元及び分散の必要のない浮遊状態の微
粒子を触媒として炭素繊維の気相生成を浮遊状態
で行わせる特許請求の範囲第1項乃至第6項のい
ずれかに記載の気相成長炭素繊維の製造方法。
[Claims] 1. A method characterized in that vapor-grown carbon fibers are produced in a suspended state by heating a mixed gas of an organic transition metal compound gas, a carrier gas, and an organic compound gas to 800 to 1300°C. A method for producing vapor grown carbon fiber. 2. The method for producing vapor-grown carbon fiber according to claim 1, wherein the organic compound is an aliphatic hydrocarbon or an aromatic hydrocarbon. 3. The method for producing vapor-grown carbon fibers according to claim 1, wherein the carrier gas is hydrogen gas or inert gas containing at most 20% sulfur compound gas. 4 Gas concentration of organic transition metal compound is 0.01% to 40
% of the vapor grown carbon fiber according to claim 1. 5. The method for producing vapor-grown carbon fiber according to claim 1, wherein the gas concentration of the organic compound is at most 40%. 6. The method for producing vapor-grown carbon fibers according to claim 1, wherein the mixed gas of the organic transition metal compound gas, the carrier gas, and the organic compound gas is continuously supplied. 7 Introducing a mixed gas of a concentration-controlled organic transition metal compound gas, a carrier gas, and an organic compound gas into a temperature-controlled reaction zone,
Claims 1 to 5, in which carbon fibers are produced in a suspended state using suspended fine particles that do not require reduction or dispersion of the transition metal produced by decomposition of the organic transition metal compound as a catalyst. 7. The method for producing a vapor-grown carbon fiber according to any one of Item 6.
JP58162606A 1983-09-06 1983-09-06 Production of carbon fiber grown in vapor phase Granted JPS6054998A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58162606A JPS6054998A (en) 1983-09-06 1983-09-06 Production of carbon fiber grown in vapor phase
US06/638,941 US4572813A (en) 1983-09-06 1984-08-08 Process for preparing fine carbon fibers in a gaseous phase reaction
EP84109710A EP0136497B2 (en) 1983-09-06 1984-08-16 A process for preparing fine carbon fibers in a gaseous phase reaction
DE8484109710T DE3463529D1 (en) 1983-09-06 1984-08-16 A process for preparing fine carbon fibers in a gaseous phase reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162606A JPS6054998A (en) 1983-09-06 1983-09-06 Production of carbon fiber grown in vapor phase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11703487A Division JPS62282021A (en) 1987-05-15 1987-05-15 Production of carbon yarn fiber of vapor phase growth

Publications (2)

Publication Number Publication Date
JPS6054998A JPS6054998A (en) 1985-03-29
JPS6249363B2 true JPS6249363B2 (en) 1987-10-19

Family

ID=15757786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162606A Granted JPS6054998A (en) 1983-09-06 1983-09-06 Production of carbon fiber grown in vapor phase

Country Status (1)

Country Link
JP (1) JPS6054998A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128650A2 (en) 2009-05-06 2010-11-11 株式会社インキュベーション・アライアンス Carbon material and manufacturing method therefor
WO2010137592A1 (en) 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
WO2011102473A1 (en) 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
WO2017221895A1 (en) 2016-06-23 2017-12-28 昭和電工株式会社 Graphite material and secondary battery electrode using same

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase
JPS60224816A (en) * 1984-04-20 1985-11-09 Nikkiso Co Ltd Gas-phase production of carbon fiber
JPS60231821A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber
JPS61225325A (en) * 1985-03-23 1986-10-07 Asahi Chem Ind Co Ltd Carbonaceous fiber
JPH0121980Y2 (en) * 1985-12-03 1989-06-29
JPH0197214A (en) * 1987-10-06 1989-04-14 Showa Denko Kk Vapor-phase production of carbon fiber
JP2579512B2 (en) * 1988-01-25 1997-02-05 川崎製鉄 株式会社 Cold drawing method of steel pipe
JP2643984B2 (en) * 1988-05-18 1997-08-25 昭和電工株式会社 Manufacturing method of carbon fiber molded heat insulating material and heat insulating material
JPH0665765B2 (en) * 1988-06-14 1994-08-24 三井造船株式会社 Carbon fiber manufacturing method
JPH0280398A (en) * 1988-09-12 1990-03-20 Nkk Corp Whisker-shaped carbon fiber
JPH038210A (en) * 1989-06-02 1991-01-16 Kitagawa Kogyo Kk Conductive tape
JP3502490B2 (en) * 1995-11-01 2004-03-02 昭和電工株式会社 Carbon fiber material and method for producing the same
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
US6464950B1 (en) 1998-05-22 2002-10-15 Showa Denko K.K. Method for separating and treating exhaust gas of carbon fiber
US6489025B2 (en) 2000-04-12 2002-12-03 Showa Denko K.K. Fine carbon fiber, method for producing the same and electrically conducting material comprising the fine carbon fiber
US6565971B2 (en) 2000-11-10 2003-05-20 Showa Denko Kabushiki Kaisha Fine carbon fiber and method for producing the same
ATE496573T1 (en) 2000-12-20 2011-02-15 Showa Denko Kk BRANCHED STEAM-GROWN CARBON FIBER, ELECTRICALLY CONDUCTIVE TRANSPARENT COMPOSITION AND USE THEREOF
US7150911B2 (en) 2001-02-08 2006-12-19 Showa Denko Kabushiki Kaisha Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
ATE428009T1 (en) 2001-08-03 2009-04-15 Showa Denko Kk FINE CARBON FIBERS AND COMPOSITIONS THEREOF
US6730398B2 (en) 2001-08-31 2004-05-04 Showa Denko K.K. Fine carbon and method for producing the same
WO2003027368A1 (en) 2001-09-20 2003-04-03 Showa Denko K. K. Fine carbon fiber mixture and composition thereof
JP4663187B2 (en) * 2001-09-20 2011-03-30 昭和電工株式会社 Fine carbon fiber mixture and composition containing the same
US7150840B2 (en) 2002-08-29 2006-12-19 Showa Denko K.K. Graphite fine carbon fiber, and production method and use thereof
JP4454353B2 (en) * 2003-05-09 2010-04-21 昭和電工株式会社 Linear fine carbon fiber and resin composite using the same
TW200508431A (en) 2003-08-26 2005-03-01 Showa Denko Kk Crimped carbon fiber and production method thereof
WO2005026430A1 (en) 2003-09-16 2005-03-24 Showa Denko K. K. Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
JP4834957B2 (en) 2004-02-27 2011-12-14 住友電気工業株式会社 Catalyst structure and carbon nanotube production method using the same
WO2005087991A1 (en) 2004-03-11 2005-09-22 Teijin Limited Carbon fiber
JP4379247B2 (en) 2004-04-23 2009-12-09 住友電気工業株式会社 Method for producing carbon nanostructure
JP4604563B2 (en) 2004-06-08 2011-01-05 住友電気工業株式会社 Method for producing carbon nanostructure
US7846415B2 (en) 2004-07-23 2010-12-07 Showa Denko K.K. Production method of vapor-grown carbon fiber and apparatus therefor
CN102057086B (en) 2008-04-08 2013-05-29 帝人株式会社 Carbon fiber and method for production thereof
WO2010140612A1 (en) 2009-06-03 2010-12-09 昭和電工株式会社 Catalyst for fuel cell, and solid polymer fuel cell utilizing same
WO2011049199A1 (en) 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
JP5140781B2 (en) 2011-04-21 2013-02-13 昭和電工株式会社 Graphite / carbon mixed material, carbon material for battery electrode, and battery
EP2667436B1 (en) 2011-04-21 2018-04-11 Showa Denko K.K. Graphite material, carbon material for battery electrodes, and batteries
US20150303460A1 (en) 2012-11-20 2015-10-22 Showa Denko K.K. Method for producing negative electrode material for lithium ion batteries
US9583760B2 (en) 2012-11-21 2017-02-28 Showa Denko K.K. Method for producing negative electrode material for lithium ion batteries
CN110098399B (en) 2013-08-05 2022-08-23 优美科公司 Method for producing composite and negative electrode material for lithium ion battery
WO2017213083A1 (en) 2016-06-08 2017-12-14 昭和電工株式会社 Negative electrode for lithium ion secondary cell, and lithium ion secondary cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796331A (en) * 1954-06-09 1957-06-18 Pittsburgh Coke & Chemical Co Process for making fibrous carbon
US3512934A (en) * 1968-07-01 1970-05-19 Phillips Petroleum Co Production of carbon black
JPS537538A (en) * 1976-06-24 1978-01-24 Felten & Guilleaume Carlswerk Method of producing metallophobic surface on object article
JPS57117622A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber through vapor-phase process
JPS58180615A (en) * 1982-04-10 1983-10-22 Morinobu Endo Preparation of carbon fiber by vapor phase method
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796331A (en) * 1954-06-09 1957-06-18 Pittsburgh Coke & Chemical Co Process for making fibrous carbon
US3512934A (en) * 1968-07-01 1970-05-19 Phillips Petroleum Co Production of carbon black
JPS537538A (en) * 1976-06-24 1978-01-24 Felten & Guilleaume Carlswerk Method of producing metallophobic surface on object article
JPS57117622A (en) * 1981-01-14 1982-07-22 Showa Denko Kk Production of carbon fiber through vapor-phase process
JPS58180615A (en) * 1982-04-10 1983-10-22 Morinobu Endo Preparation of carbon fiber by vapor phase method
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128650A2 (en) 2009-05-06 2010-11-11 株式会社インキュベーション・アライアンス Carbon material and manufacturing method therefor
WO2010137592A1 (en) 2009-05-26 2010-12-02 株式会社インキュベーション・アライアンス Carbon material and method for producing the same
US9783423B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
US9783422B2 (en) 2009-05-26 2017-10-10 Incubation Alliance, Inc. Carbon material and method for producing same
WO2011102473A1 (en) 2010-02-19 2011-08-25 株式会社インキュベーション・アライアンス Carbon material and method for producing same
JP2015044737A (en) * 2010-02-19 2015-03-12 株式会社インキュベーション・アライアンス Carbon material and production method of the same
WO2017221895A1 (en) 2016-06-23 2017-12-28 昭和電工株式会社 Graphite material and secondary battery electrode using same

Also Published As

Publication number Publication date
JPS6054998A (en) 1985-03-29

Similar Documents

Publication Publication Date Title
JPS6249363B2 (en)
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
AU642401B2 (en) Carbon fibrils and a catalytic vapor growth method for producing carbon fibrils
US6423288B2 (en) Fibrils
US5500200A (en) Fibrils
JPH0413449B2 (en)
EP1966420A1 (en) Vapor-grown carbon fiber and production process thereof
CN113578315B (en) Method for growing powder single-wall carbon nano tube by using magnesium oxide loaded ruthenium catalyst
CN109622000A (en) A kind of base metal selective hydrocatalyst of acetylene and its preparation method and application
JP4010974B2 (en) Method for producing vapor grown carbon fiber
JPH0246691B2 (en)
JPS5924119B2 (en) Manufacturing method of graphite whiskers
JPH0437166B2 (en)
JP2007169838A (en) Vapor grown carbon fiber and method for producing the same
JPH0413447B2 (en)
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS61119713A (en) Production of carbon fiber
JPH0280619A (en) Production of carbon fiber
CA2005642C (en) Fibrils
JPS61119715A (en) Production of carbon fiber
JPS61257000A (en) Production of silicon carbide whisker
JPH0813254A (en) Hollow carbon yarn by fluidized vapor-phase growth method
JPH0465526A (en) Production of carbon fiber by vapor phase technique
JP2001207342A (en) Method for producing vapor-grown carbon fiber