JPS61225328A - Production of carbonaceous fiber - Google Patents

Production of carbonaceous fiber

Info

Publication number
JPS61225328A
JPS61225328A JP5882085A JP5882085A JPS61225328A JP S61225328 A JPS61225328 A JP S61225328A JP 5882085 A JP5882085 A JP 5882085A JP 5882085 A JP5882085 A JP 5882085A JP S61225328 A JPS61225328 A JP S61225328A
Authority
JP
Japan
Prior art keywords
gas
oxidizing gas
carbon
organometallic compound
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5882085A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nakamura
克之 中村
Yukinari Komatsu
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5882085A priority Critical patent/JPS61225328A/en
Priority to US06/807,355 priority patent/US4816289A/en
Publication of JPS61225328A publication Critical patent/JPS61225328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a carbon fiber having excellent mechanical strength in high yield, preventing the generation of soot even in a large-sized apparatus, by carrying out the thermal reaction of a hydrocarbon with an organometallic compound in the presence of an oxidizing gas at a specific temperature. CONSTITUTION:The space in the reaction tube 12 is substituted with an inert gas 18, and a raw material liquid 5 obtained by dissolving an organometallic compound (e.g. iron carbonyl) in a hydrocarbon is introduced into the reaction tube 12 while supplying a gaseous mixture 11 of a carrier gas (e.g. hydrogen) and an oxidizing gas (e.g. carbon dioxide, steam, oxygen, etc.) to the reactor. The raw material liquid is made to react at 500-1,800 deg.C to obtain the objective carbon fiber 14. The amount of the oxidizing gas is preferably 0.1-1wt% based on the whole gas including the carrier gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素質繊維の製造法に関し、さらに詳しくは炭
化水素類を有機金属化合物の存在下で接触反応させる際
に煤状物の発生を防止した炭素質繊維の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing carbonaceous fibers, and more specifically to a method for preventing the generation of soot when hydrocarbons are catalytically reacted in the presence of an organometallic compound. This invention relates to a method for producing carbonaceous fibers that prevents the above-mentioned problems.

(従来の技術) 炭素繊維は優れた機械的物性を有することから各種複合
材料として近年急速に伸びつつある材料である。従来、
炭素繊維の製法としては、有機繊維を炭化する方法、炭
化水素を触媒の存在下に気相中で熱分解させる方法など
があるが、後者の気相法による炭素繊維は、前者の方法
による炭素繊維に比較して優れた結晶性、配向性を有し
、高強度、高弾性率を兼備しているので、各種の複合材
料やその他の用途への展開が可能である。
(Prior Art) Carbon fiber is a material that has been rapidly gaining popularity in recent years as a variety of composite materials because it has excellent mechanical properties. Conventionally,
Carbon fibers can be produced by carbonizing organic fibers or by thermally decomposing hydrocarbons in the gas phase in the presence of a catalyst. It has superior crystallinity and orientation compared to fibers, as well as high strength and high modulus of elasticity, so it can be used in various composite materials and other applications.

気相法による炭素繊維の製造法としては、例えば特開昭
58−180615号には、950ないし1300℃に
おいて気化しない金属や、かかる金属の酸化物、窒化物
、塩類などの金属化合物の超微粉末を炭化水素の熱分解
帯域に浮遊するように存在させ、ここで炭化水素を気相
法により熱分解させる炭素繊維の製造方法が開示されて
いる。
For example, Japanese Patent Application Laid-open No. 180615/1983 describes a method for producing carbon fibers using a vapor phase method, which describes ultrafine amounts of metals that do not vaporize at 950 to 1300°C, and metal compounds such as oxides, nitrides, and salts of such metals. A method for producing carbon fibers is disclosed in which a powder is suspended in a hydrocarbon pyrolysis zone and the hydrocarbons are pyrolyzed there by a gas phase method.

この方法においては、超微粒子粉末をアルコール等に懸
濁して用いたり、該超微粒子粉末と炭化水素を別々の糸
路から反応帯域に導入するために、該超微粒子が凝集し
て鎖状になり、反応に充分寄与しなかったり、選択的触
媒反応による炭化水素の熱分解による炭素繊維形成が起
こりに<<、炭化水素が該超微粒子粉末と無関係に反応
する気相熱分解炭素化を生じやすい欠点があり、得られ
た繊維状物は、アスペクト比が小さく、枝分かれしたよ
うな形態を示すものが多く含まれ、収率も低いものであ
った。
In this method, the ultrafine particles are suspended in alcohol or the like, and the ultrafine particles and the hydrocarbon are introduced into the reaction zone from separate threads, so the ultrafine particles aggregate into chains. , they do not contribute sufficiently to the reaction, or carbon fibers are formed due to thermal decomposition of hydrocarbons due to selective catalytic reactions.<<, gas phase pyrolysis carbonization in which hydrocarbons react independently with the ultrafine powder is likely to occur. The disadvantages were that the obtained fibrous materials had a small aspect ratio, many of them had a branched morphology, and the yield was low.

本発明の目的は、上記従来技術の欠点を除去し、装置を
大型化しても煤等が発生することなく、極めて高い収率
で機械的強度等に優れた極めて細い炭素質繊維を製造す
る方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques, and to produce extremely thin carbonaceous fibers with excellent mechanical strength etc. at an extremely high yield without generating soot even when the equipment is enlarged. Our goal is to provide the following.

(問題点を解決するための手段) これを改善するため、本発明者らは、特願昭59−83
495号、特願昭59−253550号において、基板
を用いずに炭素質繊維を製造する方法として、炭化水素
類を特定の有機金属化合物と共に、必要によりキャリヤ
ガスを用いて400℃以上の加熱帯域に導入し、該炭化
水素類を熱分解、触媒反応させることにより、極めて細
い直径を有し、繊維長/繊維径が大きく、条件によって
は捲縮を有する、特異な炭素質繊維を提案した。
(Means for solving the problem) In order to improve this, the inventors of the present invention proposed a patent application filed in
No. 495, Japanese Patent Application No. 59-253550 discloses a method for manufacturing carbon fibers without using a substrate, in which hydrocarbons are heated in a heating zone of 400° C. or higher using a carrier gas if necessary, together with a specific organometallic compound. By thermally decomposing and catalytically reacting the hydrocarbons, we have proposed a unique carbonaceous fiber that has an extremely small diameter, a large fiber length/fiber diameter, and is crimped depending on the conditions.

本発明者らはさらにこれらの技術の工業化を研究したと
ころ、装置のスケールを大きくすると煤状炭素の副生物
が生じ易いことが明らかになった。
The present inventors further researched the industrialization of these technologies and found that increasing the scale of the device tends to produce sooty carbon byproducts.

この煤状炭素を発生させない方法についてtil恵検討
したところ、以外にもガス中に酸素が存在しても炭素質
繊維が良好な収率で生成し、この酸素の存在によって煤
が出来にくくなることを見出し、本発明に到達した。
When we investigated methods to prevent the generation of soot-like carbon, we found that carbon fibers can be produced at a good yield even if oxygen is present in the gas, and that the presence of oxygen makes it difficult for soot to form. They discovered this and arrived at the present invention.

本発明は、炭化水素類を有機金属化合物の存在下で加熱
反応させて炭素質繊維を製造するに際し、反応域の温度
を500〜1800℃とし、かつ酸化性ガスを共存させ
ることを特徴とする。
The present invention is characterized in that when producing carbonaceous fibers by heating and reacting hydrocarbons in the presence of an organometallic compound, the temperature of the reaction zone is set to 500 to 1800°C, and an oxidizing gas is allowed to coexist. .

本発明に用いる炭化水素類は、特に制限されるものでは
なく、アントラセン、ナフタレン等を含む室温で固体状
の炭化水素、ベンゼン、トルエン、キシレン、スチレン
、ヘキサン、ヘプタン、オクタン、イソオクタン、シク
ロペンタジェン等を含む室温で液体状の炭化水素、また
はメタン、エタン、プロパン、ブタン、エチレン、プロ
ピレン、ブチレン、ブタジェン、アセチレン等を含む気
体状の炭化水素のいずれでもよい。
The hydrocarbons used in the present invention are not particularly limited, and include hydrocarbons that are solid at room temperature including anthracene, naphthalene, etc., benzene, toluene, xylene, styrene, hexane, heptane, octane, isooctane, and cyclopentadiene. Hydrocarbons that are liquid at room temperature, including methane, ethane, propane, butane, ethylene, propylene, butylene, butadiene, acetylene, etc., may be used.

本発明において、反応系に存在させる酸化性ガスとして
は、炭化水素類の脱水素を促進するものであればどのよ
うなものでもよいが、例えば二酸化炭素、水蒸気、酸素
等を挙げることができる。
In the present invention, the oxidizing gas present in the reaction system may be any gas as long as it promotes dehydrogenation of hydrocarbons, and examples thereof include carbon dioxide, water vapor, and oxygen.

キャリヤガスを含む全ガス中の酸化性ガスの割合は0.
05〜10重量%が好ましく、o、 i〜5%(特に0
.1〜1%)が特に好ましい。酸化性ガスの量が上記下
限に達しないと煤状物が出易くなり、炭素質繊維の収量
が低下する。
The proportion of oxidizing gas in the total gas including carrier gas is 0.
05 to 10% by weight is preferred, o, i to 5% (especially 0
.. 1% to 1%) is particularly preferred. If the amount of oxidizing gas does not reach the above-mentioned lower limit, soot-like substances are likely to be produced, and the yield of carbonaceous fibers will be reduced.

上記炭化水素類、有機金属化合物および酸化性ガスはキ
ャリヤガスと共に供給することができる。
The hydrocarbons, organometallic compounds and oxidizing gases mentioned above can be supplied together with a carrier gas.

このようなキャリヤガスとしては、水素ガス、−酸化炭
素などの還元性ガス、窒素、アルゴン、ヘリウム、キセ
ノン等の不活性ガスが上げられ、特に還元性ガスを用い
ることが好ましい。
Examples of such carrier gas include hydrogen gas, reducing gases such as carbon oxide, and inert gases such as nitrogen, argon, helium, and xenon, and it is particularly preferable to use reducing gases.

本発明に用いる有機金属化合物としては、周期律表の第
rVa族(特にTi、Zr)、第Va族(特に■)、第
Via族(特にCr% MO% W) 、第■a族(特
にMn)、第■族(特にF’e、Go、Ni、 Ru、
 Rhs Pd、 Os、 I rSpt)に属する金
属の化合物、特にシクロペンタジェニル系金属化合物、
カルボニル系金属化合物、ベンゼン−金属化合物、アル
キル、アリルまたはアルキニル金属化合物、β−ジケト
ン金属錯体、ケト酸エステル金属錯体、金属カルボン酸
塩、これらの置換体、誘導体等が好ましく用いられる。
The organometallic compounds used in the present invention include those from group rVa (especially Ti, Zr), group Va (especially ■), group Via (especially Cr% MO% W), and group ■a (especially Mn), Group II (especially F'e, Go, Ni, Ru,
RhsPd, Os, IrSpt), especially cyclopentadienyl metal compounds,
Preferably used are carbonyl metal compounds, benzene-metal compounds, alkyl, allyl or alkynyl metal compounds, β-diketone metal complexes, keto acid ester metal complexes, metal carboxylates, substituted products and derivatives thereof, and the like.

これらノウチ、特にビス(シクロペンタジェニル)鉄ナ
ト鉄、ニッケルまたはコバルト等のシクロペンタジェニ
ル化合物、鉄カルボニル、ニッケルカルボニル、コバル
トカルボニル、シクロペンタジェニルカルボニル鉄など
の鉄、ニッケルまたはコバルト等のカルボニル化合物、
ジまたはトリアセチルアセトンの鉄錯体などの鉄、ニッ
ケルまたはコバルト等のβ−ジケトン金属錯体、ジまた
はトリアセト酢酸エステルの鉄錯一体などの鉄、ニッケ
ルまたはコバルト等のケト酸エステル錯体、フマル酸鉄
、ナフテン酸鉄などの鉄、ニッケルまたはコバルト等の
フマル酸塩、高級カルボン酸塩、もしくはこれらの誘導
体等が好結果を与える。
These compounds are particularly useful for cyclopentagenyl compounds such as bis(cyclopentagenyl)ferrous, nickel or cobalt; carbonyl compound,
β-diketone metal complexes such as iron, nickel or cobalt, such as iron complexes of di- or triacetylacetone, keto acid ester complexes such as iron, nickel or cobalt, such as iron complexes of di- or triacetoacetate, iron fumarates, naphthenes Iron such as acid iron, fumarates such as nickel or cobalt, higher carboxylates, or derivatives thereof give good results.

前記有機金属化合物の供給方法としては、これらを直接
加熱して反応系に気体状態で供給したり、または該有機
金属化合物を炭化水素の液体中に溶解または微分散させ
、それを加熱して反応系に供給または噴出させたりする
等の方法が用いられる。
The method for supplying the organometallic compound is to directly heat it and supply it in a gaseous state to the reaction system, or to dissolve or finely disperse the organometallic compound in a hydrocarbon liquid and then heat it to cause the reaction. Methods such as supplying it to the system or blowing it out are used.

上記有機金属化合物の供給量(毎分光たりの供給重量%
)は炭化水素との混合物に対して0.01重量%以上、
好ましくは0.05重量%以上(特に0、2%以上)で
ある。有機金属化合物の量が少なすぎると繊維状物がで
きに<<、粒状物が増加する傾向にある。
Supply amount of the above organometallic compound (supply weight % per light per minute)
) is 0.01% by weight or more based on the mixture with hydrocarbon,
Preferably it is 0.05% by weight or more (particularly 0.2% or more). If the amount of the organometallic compound is too small, fibrous materials tend to form and granular materials tend to increase.

炭化水素および有機金属化合物の導入温度帯域は150
0℃以下、好ましくは1300℃以下、特に好ましくは
100〜500℃の位置が適当である。該導入位置の温
度が低すぎると、原料が気相状態を維持しにくく、また
有機金属化合物の活性化のためにも好ましくない。また
1500℃を超えると炭化して粒状物の生成が多くなり
、詰まりを起こして繊維の収率が低下する傾向にある。
The temperature range for introducing hydrocarbons and organometallic compounds is 150
A temperature of 0°C or lower, preferably 1300°C or lower, particularly preferably 100 to 500°C is suitable. If the temperature at the introduction position is too low, it will be difficult to maintain the raw material in a gaseous state, and this is also undesirable for activating the organometallic compound. Furthermore, if the temperature exceeds 1500°C, carbonization occurs, which increases the production of particulate matter, which tends to cause clogging and reduce the fiber yield.

なお、酸化性ガスとしては酸素が最も効果的であり、こ
れを用いる場合、導入位置に限定はないものの、炭化水
素および有機金属化合物の導入帯域の直後にキャリヤガ
スとともに供給する方法などが工業的方法として効果的
である。また反応加熱温度帯域は500〜1800℃、
好ましくは800〜1500℃の範囲である。反応部の
温度が上記範囲外ではいずれも粒状物が生成し易くなる
Note that oxygen is the most effective oxidizing gas, and when using it, there are no restrictions on the introduction position, but it is industrially recommended to supply it together with a carrier gas immediately after the introduction zone of hydrocarbons and organometallic compounds. It is an effective method. In addition, the reaction heating temperature range is 500-1800℃,
Preferably it is in the range of 800 to 1500°C. If the temperature of the reaction part is outside the above range, particulate matter is likely to be generated.

(発明の効果) 本発明によれば、炭化水素類と特定の有機金属化合物を
反応させる際に、酸化性ガスを共存させることにより、
大規模生産時に反応条件を安定に制御し、煤状炭素の副
生を抑制するとともに炭素質繊維の収率を高めることが
できる。また本発明によって得られた炭素質繊維は、繊
維の直径が0゜0l−15p、特に0.05〜4μm、
繊維の長さ/mm径径20〜2000、特に50〜10
00で、枝分かれのほとんどない均一な太さを有し、か
つ黒鉛または黒鉛に容易に添加する炭素の層が長手軸に
年輪状に配列した特異な構造を有するので、無機または
有機材料、特に樹脂と混合し、熱伝導性および電気伝導
性に優れた複合材料用として好適である。
(Effects of the Invention) According to the present invention, when reacting hydrocarbons with a specific organometallic compound, by allowing an oxidizing gas to coexist,
It is possible to stably control reaction conditions during large-scale production, suppress the by-product of sooty carbon, and increase the yield of carbonaceous fibers. Further, the carbonaceous fiber obtained by the present invention has a fiber diameter of 0°0l-15p, particularly 0.05-4 μm,
Fiber length/mm diameter 20-2000, especially 50-10
00, has a uniform thickness with almost no branching, and has a unique structure in which graphite or carbon layers that are easily added to graphite are arranged in the shape of tree rings along the longitudinal axis, so it is suitable for inorganic or organic materials, especially resins. It is suitable for use in composite materials with excellent thermal conductivity and electrical conductivity.

以下、本発明を実施例によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例1) ベンゼンに鉄カルボニルFe (Go)sを2wt%溶
解させて原料液とした。シリコニットヒーターを有する
管状炉に内径90mmのアルミナ質炉芯管12を第1図
の如く横型に設置し、上方には原料液を導入するアルミ
ナ質パイプ9を貫通せしめ、パイプ先端の導入温度を2
00℃、炉中心温度を1300℃に設定した。該パイプ
の他端は炉外に出され、定量ポンプに接続した。原料液
5は不活性ガスlで加圧して大量ポンプ8へ送るものと
した。また、原料導入側にはさらにパイプ10を貫通せ
しめて、炉内置換用の不活性ガス18および搬送用ガス
(水素と二酸化炭素の混合ガス)11を導入できるよう
にした。これらのガスはバルブ17によって、任意に切
り換えるようになっている。一方、他端にはアルミナ質
パイプ15を設け、排出ガス16を排出できるようにし
た。
(Example 1) 2 wt % of iron carbonyl Fe (Go)s was dissolved in benzene to prepare a raw material liquid. An alumina furnace core tube 12 with an inner diameter of 90 mm is installed horizontally in a tubular furnace equipped with a siliconite heater as shown in Fig. 1, and an alumina pipe 9 through which raw material liquid is introduced is passed through the upper part, so that the introduction temperature at the tip of the pipe is set to 2.
The furnace center temperature was set at 1300°C. The other end of the pipe was taken out of the furnace and connected to a metering pump. The raw material liquid 5 was pressurized with an inert gas 1 and sent to the mass pump 8. Moreover, a pipe 10 was further passed through the raw material introduction side so that an inert gas 18 for replacing the inside of the furnace and a transport gas (mixed gas of hydrogen and carbon dioxide) 11 could be introduced. These gases can be switched arbitrarily by a valve 17. On the other hand, an alumina pipe 15 was provided at the other end so that exhaust gas 16 could be discharged.

まず、炉内を不活性ガス18で置換した後、バルブ17
により水素ガス11に切換え、パイプ9出口の導入温度
および炉中心の温度が1300℃になるように昇温した
。次いで二酸化炭素/水素(lvo1%/ 99 v 
o 1%)に切換え、ガス流速50c1m/minで供
給しつつ、原料液を2CC/ m i nの流量で約2
0分間炉内に供給し反応させた。煤状炭素の発生は全く
見られず得られた炭素繊維の収量は25gであった。
First, after replacing the inside of the furnace with inert gas 18, the valve 17
The hydrogen gas 11 was switched to the hydrogen gas 11, and the temperature was raised so that the introduction temperature at the outlet of the pipe 9 and the temperature at the center of the furnace became 1300°C. Then carbon dioxide/hydrogen (lvo1%/99 v
o 1%), and while supplying the gas at a gas flow rate of 50 c1 m/min, the raw material liquid was supplied at a flow rate of 2 CC/min.
The mixture was fed into the furnace for 0 minutes to react. No generation of sooty carbon was observed, and the yield of carbon fibers was 25 g.

なお、炉を縦型とし、搬送用ガス11を炉内のリング状
ノズルから吹き出すようにし、かつ炉入口部に予熱用ヒ
ータを設けてもよい。
Note that the furnace may be of a vertical type, the transport gas 11 may be blown out from a ring-shaped nozzle in the furnace, and a preheating heater may be provided at the furnace inlet.

(実施例2) 実施例1において、ガスを水蒸気/窒素/水素(Q、1
vo1%/ 49.9 v o 1%/ 5 Q v 
o 1%)としてガス流速5 Qcm/m i nで供
給した以外は全て実施例1と同一の条件で行った。煤状
炭素の発生は見られず、得られた炭素繊維の収量は23
gであった。
(Example 2) In Example 1, the gas was converted into water vapor/nitrogen/hydrogen (Q, 1
vo1%/ 49.9 vo 1%/ 5 Q v
All conditions were the same as in Example 1 except that the gas was supplied at a gas flow rate of 5 Qcm/min. No generation of sooty carbon was observed, and the yield of carbon fiber obtained was 23.
It was g.

(実施例3) 実施例1において、水素ガス10 cm/m i nを
10より導入するとともに、酸素/窒素/水素(5vo
 1%/ 45 v o 1%/ 5 Q v o 1
%)の混合ガスを、別途パイプを用いバイブ9の先端よ
り若干前方にガス流速I Qcm/m i nで供給し
た以外は全て実施例1と同一の条件で行った。煤状炭素
の発生は見られず、得られた炭素繊維の収量は29gで
あった。
(Example 3) In Example 1, 10 cm/min of hydrogen gas was introduced from 10 cm/min, and oxygen/nitrogen/hydrogen (5 vol.
1%/45 vo 1%/5 Q vo 1
%) was supplied using a separate pipe slightly ahead of the tip of the vibrator 9 at a gas flow rate of IQcm/min. All conditions were the same as in Example 1. No generation of sooty carbon was observed, and the yield of the obtained carbon fibers was 29 g.

(比較例1) 実施例1において、ガスを水素(100vo1%)とし
てガス流速60cs+/minで供給した以外は全て実
施例1と同一の条件で行った。得られた炭素繊維の収量
は17gであった。
(Comparative Example 1) Everything was carried out under the same conditions as in Example 1, except that hydrogen (100 vol %) was used as the gas and the gas was supplied at a gas flow rate of 60 cs+/min. The yield of the carbon fibers obtained was 17 g.

(比較例2) 実施例1において、ガスを二酸化炭素/水素(0,01
vo1%/99.9vo1%)とした以外は全て実施例
1と同一の条件で行った。得られた炭素繊維の収量は1
8gであった。
(Comparative Example 2) In Example 1, the gas was carbon dioxide/hydrogen (0,01
All experiments were carried out under the same conditions as in Example 1, except that the ratio was 1% (vol. 1%/99.9 vol. 1%). The yield of carbon fiber obtained is 1
It was 8g.

(比較例3) 実施例1において、ガスを水蒸気/水素(15vo1%
/ 85 v o 1%)とした以外は全て実施例1と
同一の条件で行った。得られた炭素繊維の収量は4gで
あった。これには煤状の粒状物が多く含有されていた。
(Comparative Example 3) In Example 1, the gas was changed to water vapor/hydrogen (15vo1%
/ 85 v o 1%) was carried out under all the same conditions as in Example 1. The yield of the carbon fibers obtained was 4 g. This contained many soot-like particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の炭素質繊維の製法を示す説明図であ
る。 工、11.18・・・不活性ガス、2.6.9.10.
15・・・導管、3.7.17・・・バルブ、4・・・
貯槽、5・・・原料液(有機金属化合物の混合液)、8
・・・定量ポンプ、18・・・水素ガス、12・・・炉
芯管(反応管)、13・・・電気炉、14・・・炭素繊
維、16・・・排出ガス。
FIG. 1 is an explanatory diagram showing the method for producing carbonaceous fibers of the present invention. Engineering, 11.18... Inert gas, 2.6.9.10.
15... Conduit, 3.7.17... Valve, 4...
Storage tank, 5... Raw material liquid (mixture of organometallic compounds), 8
...metering pump, 18...hydrogen gas, 12...furnace core tube (reaction tube), 13...electric furnace, 14...carbon fiber, 16...exhaust gas.

Claims (2)

【特許請求の範囲】[Claims] (1)炭化水素類を有機金属化合物の存在下で加熱反応
させて炭素質繊維を製造するに際し、反応域の温度を5
00〜1800℃とし、かつ酸化性ガスを共存させるこ
とを特徴とする炭素質繊維の製造法。
(1) When producing carbonaceous fibers by heating and reacting hydrocarbons in the presence of organometallic compounds, the temperature of the reaction zone is set to 5.
1. A method for producing carbonaceous fibers, characterized in that the temperature is 00 to 1800°C and an oxidizing gas is present.
(2)酸化性ガスが、二酸化炭素、水蒸気および酸素か
ら選ばれた少なくとも一種のガスであり、キャリヤガス
を含む全ガス中の酸化性ガスの割合が0.05〜10重
量%であることを特徴とする炭素質繊維の製造法。
(2) The oxidizing gas is at least one type of gas selected from carbon dioxide, water vapor, and oxygen, and the proportion of the oxidizing gas in the total gas including the carrier gas is 0.05 to 10% by weight. Characteristic carbon fiber manufacturing method.
JP5882085A 1984-04-25 1985-03-23 Production of carbonaceous fiber Pending JPS61225328A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5882085A JPS61225328A (en) 1985-03-23 1985-03-23 Production of carbonaceous fiber
US06/807,355 US4816289A (en) 1984-04-25 1985-12-10 Process for production of a carbon filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5882085A JPS61225328A (en) 1985-03-23 1985-03-23 Production of carbonaceous fiber

Publications (1)

Publication Number Publication Date
JPS61225328A true JPS61225328A (en) 1986-10-07

Family

ID=13095261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5882085A Pending JPS61225328A (en) 1984-04-25 1985-03-23 Production of carbonaceous fiber

Country Status (1)

Country Link
JP (1) JPS61225328A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192423A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
JPH0192422A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
WO2022140273A1 (en) * 2020-12-21 2022-06-30 Merichem Company Catalytic carbon fiber preparation methods
US11517889B2 (en) 2020-12-21 2022-12-06 Merichem Company Catalytic carbon fiber contactor
US11524283B2 (en) 2020-12-21 2022-12-13 Merichem Company Catalytic carbon fiber preparation methods
US11826736B2 (en) 2021-11-29 2023-11-28 Merichem Company Catalytic carbon fiber preparation methods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192423A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
JPH0192422A (en) * 1987-09-30 1989-04-11 Nkk Corp Production of carbon fiber with vapor growth
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
WO2022140273A1 (en) * 2020-12-21 2022-06-30 Merichem Company Catalytic carbon fiber preparation methods
US11517889B2 (en) 2020-12-21 2022-12-06 Merichem Company Catalytic carbon fiber contactor
US11524283B2 (en) 2020-12-21 2022-12-13 Merichem Company Catalytic carbon fiber preparation methods
US11826741B2 (en) 2020-12-21 2023-11-28 Merichem Company Catalytic carbon fiber preparation methods
US11826736B2 (en) 2021-11-29 2023-11-28 Merichem Company Catalytic carbon fiber preparation methods

Similar Documents

Publication Publication Date Title
US5500200A (en) Fibrils
JP5156383B2 (en) Catalyst for the synthesis of single-walled carbon nanotubes
US6423288B2 (en) Fibrils
JP4914218B2 (en) System and method for manufacturing carbon nanostructures
CA2645330C (en) Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency plasma torch
EP0969127A2 (en) Process for producing carbon fibrils and reaction apparatus
JPH0413449B2 (en)
JPH0424320B2 (en)
KR100376202B1 (en) Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same
JPS61225328A (en) Production of carbonaceous fiber
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JPS61132600A (en) Whisker-shaped carbonaceous material
TWI306834B (en) A method for manufacturing carbonaceous nanofiber
JPS61225325A (en) Carbonaceous fiber
CN1960942B (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
JPH0314623A (en) Production of carbon fiber
JPS61225322A (en) Production of carbonaceous fiber
JPS62238826A (en) Production of carbon fiber
WO2023173357A1 (en) Method for synthesizing thin-walled carbon nanotube
JPS61225321A (en) Production of carbonaceous fiber
JPS61225320A (en) Metal-containing carbonaceous fiber and production thereof
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPS60231822A (en) Production of carbonaceous fiber
CN116002667A (en) Method for directly growing carbon nano tube on nano zero-valent iron
JPS61225329A (en) Production of carbonaceous short fiber