JP2002211909A - Carbon manufacturing apparatus and manufacturing method using the same - Google Patents

Carbon manufacturing apparatus and manufacturing method using the same

Info

Publication number
JP2002211909A
JP2002211909A JP2001004392A JP2001004392A JP2002211909A JP 2002211909 A JP2002211909 A JP 2002211909A JP 2001004392 A JP2001004392 A JP 2001004392A JP 2001004392 A JP2001004392 A JP 2001004392A JP 2002211909 A JP2002211909 A JP 2002211909A
Authority
JP
Japan
Prior art keywords
carbon
reactor
gas
catalyst
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001004392A
Other languages
Japanese (ja)
Other versions
JP4852787B2 (en
Inventor
Shiyuushichi Yoshimura
修七 吉村
Junichi Munesawa
潤一 宗澤
Saburo Kato
三郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Original Assignee
Shimadzu Corp
Mitsubishi Chemical Corp
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Mitsubishi Chemical Corp, Mitsubishi Chemical Engineering Corp filed Critical Shimadzu Corp
Priority to JP2001004392A priority Critical patent/JP4852787B2/en
Publication of JP2002211909A publication Critical patent/JP2002211909A/en
Application granted granted Critical
Publication of JP4852787B2 publication Critical patent/JP4852787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for stably producing carbon in a purity equal to or above a required purity and taking out as a merchandize and a method and apparatus for selectively separating produced hydrogen and taking out to utilize for a fuel cell or the like. SOLUTION: This carbon manufacturing apparatus is provided with a pre- reactor 6 for granulating and growing and main reactors 7 and 8 for further growing the carbon grown in the pre-reactor and in the pre-reactor 6. A reaction to take out the produced carbon in a granular state is performed without solidifying. In the main reactors 7 and 8, a reaction to further grow the carbon grown into the granular state in the pre-reactor is performed without solidifying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば二酸化炭
素、排水素、バイオガス(二酸化炭素とメタンの混合ガ
ス)などの排出ガスを有効利用して、炭素、水素を生成
活用する化学工場、食品工場、排水処理施設、環境・エ
ネルギー分野に適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical factory and a foodstuff for producing and utilizing carbon and hydrogen by effectively utilizing exhaust gas such as carbon dioxide, exhaust gas and biogas (mixed gas of carbon dioxide and methane). Applies to factories, wastewater treatment facilities, environment and energy fields.

【0002】[0002]

【従来の技術】1997年12月 地球温暖化防止京都
会議でCO2をはじめとした温室効果ガスの排出量を我
国が2010年頃までに1990年ベースで6%削減す
るという京都議定書が策定された。2000年11月オ
ランダ/ハーグでの地球温暖化防止条約締約国会議で、
排出権取引や森林、草地の吸収量などについて協議され
たが、妥結には至らず2001年の次回に持ち越しと成
った。いずれにせよ、我が国に課せられるCO2排出削
減量が決まり、今後、企業にかかる負担が増すことは確
かである。各企業のCO2排出削減は急務であり、CO2
排出抑制、回収方法が検討されている。
2. Description of the Related Art In December 1997, the Kyoto Protocol was formulated at the Kyoto Conference on Global Warming Prevention to reduce Japan's greenhouse gas emissions, including CO 2 , by 6% by around 2010 on a 1990 basis. . At the Conference of the Parties to the Convention on Climate Change in the Netherlands / The Hague in November 2000,
Discussions on emissions trading and the amount of forest and grassland removals were not reached, but they were carried over to the next 2001 in 2001. In any case, the amount of CO 2 emission reduction imposed on Japan is determined, and it is certain that the burden on companies will increase in the future. CO 2 emission reduction for each company is urgent, CO 2
Emission control and recovery methods are being studied.

【0003】CO2排出抑制はCO2を生み出す石化原料
を使わないでCO2排出量の少ない天然ガスの利用す
る。太陽電池、風力発電、有機廃棄物からバイオガスを
発生させ燃料としての利用など化石燃料のでないエネル
ギーの利用拡大などの対策が行われている。また、一方
排出したCO2回収方法としては、植林や砂漠緑化など
の自然のメカニズムを利用する物と、化学反応などを用
いて有効資源に再利用するものとが存在し、二酸化炭素
と水素を用いてメタノールなどの有効化学物質を取り出
す技術が検討されているが、水素生成コストがかかりす
ぎるなどの課題が有り、実用化には至っていない。
[0003] CO 2 emissions is to use less natural gas CO 2 emissions without petrochemical feedstock produce CO 2. Measures are being taken to expand the use of non-fossil fuels, such as solar cells, wind power generation, biogas generation from organic waste, and use as fuel. On the other hand, there are two methods of recovering the emitted CO 2 : those that use natural mechanisms such as tree planting and desert greening, and those that re-use them as effective resources using chemical reactions. A technology for extracting an effective chemical substance such as methanol by using the same has been studied, but there are problems such as an excessive cost of hydrogen generation, and it has not been put to practical use.

【0004】CO2の低減としては水素を利用した燃料
電池が有効であるが、この方法では水素の取り出し方法
としてメタノールの水蒸気改質等が利用されているの
で、CO 2も生成するためCO2削減の抜本的解決策には
ならない。CO2の発生しない方法が待ち望まれてい
る。
[0004] COTwoTo reduce fuel consumption using hydrogen
Batteries are effective, but this method uses hydrogen
Is used for steam reforming of methanol, etc.
And CO TwoAlso produces COTwoFundamental solutions for reduction
No. COTwoLong-awaited
You.

【0005】CO2の発生しない方法として、本件出願
人の一人はCO2をメタン、バイオガス(CO2とCH4
の混合ガス)等と反応させ、炭素として固定化し、生成
する炭素、水素を商品として取り出すことを提案してい
る(特開平−11−322315号)。本発明は、さら
に改良を加え、実用化装置として展開させるために、炭
素を要求される純度以上で安定的に生成し、商品として
取り出す方法および装置、生成水素を選択分離し、燃料
電池等に活用出来る様取り出す方法および装置を提供す
ることを目的とする。
As a method of generating no CO 2 , one of the present applicants has proposed that CO 2 be converted into methane, biogas (CO 2 and CH 4).
(Japanese Unexamined Patent Publication (Kokai) No. 11-322315). The present invention is a method and an apparatus for stably generating carbon with a purity higher than a required purity and extracting it as a commercial product in order to further improve and develop it as a practical application device, selectively separating generated hydrogen, and producing a fuel cell or the like. It is an object of the present invention to provide a method and a device for taking out the product so that it can be utilized.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するため、少なくともメタンを含むガスより炭素を製
造する装置であって、炭素を造粒成長させるプレ反応器
と、該プレ反応器にて成長させた炭素を更に成長させる
主反応器とを備えたことを特徴とする炭素製造装置を提
供する。ここで、プレ反応器は、例えば逆円錐形、逆角
錐形、円筒形のいずれかの形状からなり、下部からガス
と触媒を入れ、炭素/触媒を噴流層、流動層を形成させ
ながら造粒成長させるものが好ましいが、特に限定され
ない。なお、「プレ反応」とは、生成炭素を固化させ
ず、粒状で取り出す反応で、反応温度は400〜700
℃、好ましくは550〜650℃である。また、反応器
に入れる触媒は、ニッケル、コバルト、鉄などの金属触
媒が好ましい。このプレ反応では、炭素を例えば3〜3
0g炭素/g触媒、好ましくは15〜25g炭素/g触
媒まで成長させる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention is an apparatus for producing carbon from a gas containing at least methane, comprising: a prereactor for granulating and growing carbon; And a main reactor for further growing the carbon grown in the step (a). Here, the pre-reactor has, for example, an inverted conical shape, an inverted pyramid shape, or a cylindrical shape, in which a gas and a catalyst are charged from below, and the carbon / catalyst is granulated while forming a spouted bed and a fluidized bed. It is preferable to grow the material, but there is no particular limitation. The "pre-reaction" is a reaction in which the produced carbon is not solidified but is taken out in a granular form, and the reaction temperature is 400 to 700.
° C, preferably 550-650 ° C. Further, the catalyst to be put into the reactor is preferably a metal catalyst such as nickel, cobalt and iron. In this pre-reaction, for example, 3 to 3 carbon atoms are used.
Grow to 0 g carbon / g catalyst, preferably 15-25 g carbon / g catalyst.

【0007】また、主反応器は、例えば逆円錐形、逆角
錐形、円筒形のいずれかの形状からなり、ガスを下部よ
りフイードし、成長した炭素を下部スクリュウコンベア
ーにて定期的に排出し、反応器内にマスフロー移動床を
形成してなるものが好ましいが、特に限定されない。な
お、「主反応」とは、プレ反応で粒状に成長させた炭素
を固化させずにさらに成長させる反応で、反応温度は4
00〜700℃、好ましくは550〜650℃である。
また、反応器に入れる触媒は、ニッケル、コバルト、鉄
などの金属触媒が好ましい。この主反応では、炭素を例
えば100g炭素/g触媒以上、もしくは要求g炭素/
g触媒 濃度まで成長させる。また、主反応器は、炭素
生産量に応じて器数を増減できる。
The main reactor has, for example, an inverted conical shape, an inverted pyramid shape, or a cylindrical shape, feeds gas from the lower part, and periodically discharges the grown carbon by a lower screw conveyor. A reactor in which a mass flow moving bed is formed in a reactor is preferable, but is not particularly limited. The “main reaction” is a reaction in which carbon that has been grown in a granular form in the pre-reaction is further grown without solidifying, and the reaction temperature is 4 ° C.
It is 00-700 ° C, preferably 550-650 ° C.
Further, the catalyst to be put into the reactor is preferably a metal catalyst such as nickel, cobalt and iron. In this main reaction, carbon is reduced to, for example, 100 g carbon / g catalyst or more, or required g carbon / g
g Grow to catalyst concentration. Also, the number of main reactors can be increased or decreased according to the amount of carbon production.

【0008】また、本発明では、プレ反応器及び/又は
主反応器を出たガスの微粉捕獲手段を設け、微粉捕獲
後、微粉を前記反応器に戻してもよい。ここで、微紛捕
獲手段としては、例えば、サイクロン、高温セラミック
バグを用いることができるが、これらには限定されな
い。さらに、ガスをサーモコンプレッサを用いてプレ反
応器及び/又は主反応器に循環させてもよい。サーモコ
ンプレッサを用いるのは、循環ガス系を降温熱ロスする
こと無く昇圧するためで、駆動圧力は、0.15〜0.
8MPa、好ましくは0.2〜0.3MPaである。
In the present invention, a means for capturing fine powder of gas exiting the pre-reactor and / or the main reactor may be provided, and after capturing the fine powder, the fine powder may be returned to the reactor. Here, as the fine powder capturing means, for example, a cyclone and a high-temperature ceramic bug can be used, but the present invention is not limited to these. Further, the gas may be circulated to the pre-reactor and / or main reactor using a thermocompressor. The reason for using a thermocompressor is to increase the pressure of the circulating gas system without losing temperature and heat.
It is 8 MPa, preferably 0.2 to 0.3 MPa.

【0009】なお、少なくともメタンを含むガスとは、
例えば、二酸化炭素にメタンまたはバイオガス(CO2
とCH4の混合ガス)を混合したガスを挙げることがで
きるが、これに限定されない。二酸化炭素とメタンを含
む混合ガスの場合、二酸化炭素とメタンが等モルでない
場合、等モル調節手段を設けてもよい。ここで、等モル
調節手段は、例えば、混合ガスに二酸化炭素又はメタン
を導入する手段である。また、少なくともメタンを含む
ガスが、二酸化炭素がほとんど含まれていない場合、本
発明の装置はメタン分解装置として用いることができ
る。
The gas containing at least methane is
For example, methane or biogas (CO 2
And it can be exemplified mixed gas) mixed gas of CH 4, but is not limited thereto. In the case of a mixed gas containing carbon dioxide and methane, if the carbon dioxide and methane are not equimolar, an equimolar adjusting means may be provided. Here, the equimolar adjusting means is, for example, means for introducing carbon dioxide or methane into the mixed gas. When the gas containing at least methane contains little carbon dioxide, the apparatus of the present invention can be used as a methane decomposition apparatus.

【0010】また、本発明は、少なくともメタンを含む
ガスより炭素を製造する方法であって、炭素を触媒存在
下粒状に成長させることを特徴とする炭素製造法も提供
する。ここで、触媒は、ニッケル、コバルト、鉄などの
金属触媒が好ましく、反応温度は400〜700℃、好
ましくは550〜650℃、圧力は0.001〜0.2
MPa、好ましくは0.003〜0.02MPaであ
る。このような反応条件下で反応させると炭素を粒状に
成長させることが可能である。なお、本発明により製造
される炭素は、中空繊維状の炭素で(カーボンナノチュ
ーブ)直径10〜200nm、長さが50nm〜0.1μ
mのサイズを有する。
[0010] The present invention also provides a method for producing carbon from a gas containing at least methane, wherein the carbon is grown in the presence of a catalyst in the form of particles. Here, the catalyst is preferably a metal catalyst such as nickel, cobalt, and iron. The reaction temperature is 400 to 700 ° C, preferably 550 to 650 ° C, and the pressure is 0.001 to 0.2.
MPa, preferably 0.003 to 0.02 MPa. When reacted under such reaction conditions, carbon can be grown in a granular form. The carbon produced according to the present invention is hollow fiber carbon (carbon nanotube) having a diameter of 10 to 200 nm and a length of 50 nm to 0.1 μm.
m.

【発明の実施の形態】以下本発明のCO2固定化設備を
図1に示すプロセスフローに基づいて詳細に説明する。
原料のメタン、バイオガス(メタン、炭酸ガスの混合ガ
ス)等のガスは例えば3kpa以上(系内加圧、加熱炉内
加圧を保持する圧力)で図示の原料ガスポートより受け
入れ、一部(原料組成により異なるが5〜10%以下程
度)は循環ガス加熱用に消費され、残りは循環戻りガス
とミキサ−1にて混合して循環ガスブロワー2にて例え
ば0.2Mpa(サーモコンプレッサー駆動圧力以上)ま
で昇圧する。昇圧したガスは加圧ガスレシーバー3にて
蓄圧(触媒投入用駆動ガス、バグフイルター逆洗浄ガス
としてのアキュームレート)し、加熱されている循環戻
りガスと熱回収熱交換器4にて昇温熱交換され、更に循
環ガス加熱炉5にて反応温度400から700度(ただ
し原料ガスにより異なる)まで昇温する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the CO 2 fixing equipment of the present invention will be described in detail based on the process flow shown in FIG.
The raw material gas such as methane and biogas (mixed gas of methane and carbon dioxide) is received from the raw material gas port shown in the figure at a pressure of, for example, 3 kpa or more (pressurizing in the system and pressurizing in the heating furnace). About 5 to 10% or less, depending on the raw material composition, is consumed for heating the circulating gas, and the remainder is mixed with the circulating return gas in the mixer -1 and in the circulating gas blower 2, for example, 0.2 Mpa (thermo-compressor driving pressure) Above). The pressurized gas is stored in the pressurized gas receiver 3 (accumulation rate as a driving gas for catalyst input and an accumulation rate as a bag filter backwashing gas), and is heated and heat-exchanged with the heated circulation return gas and the heat recovery heat exchanger 4. The temperature is further raised in the circulating gas heating furnace 5 from the reaction temperature of 400 to 700 ° C. (however, it varies depending on the source gas).

【0011】昇温したガスは循環用サーモコンプレッサ
ー9の駆動ガスとして送られる。循環ガス量は原料ガス
組成にて決まる反応転化率と滞留触媒量にて決定される
が、反応器内での生成炭素、触媒の流動化ガス速度を考
慮して通常原料ガス供給量の3〜20倍にて設定する。
サーモコンプレッサー9の採用は熱ロスを生じる事無く
(循環ブロワーの場合はガス温度を下げる必要があ
る。)循環昇圧昇温ガス系を形成する事にある。
The heated gas is sent as a driving gas for the circulating thermocompressor 9. The amount of circulating gas is determined by the reaction conversion rate and the amount of retained catalyst determined by the raw material gas composition, and is usually 3 to 3 times the raw material gas supply amount in consideration of the generated carbon in the reactor and the fluidizing gas velocity of the catalyst. Set at 20 times.
The use of the thermo-compressor 9 is to form a circulating pressure-raising gas system without heat loss (in the case of a circulating blower, the gas temperature must be reduced).

【0012】反応器6、7、8をでた循環ガスはサーモ
コンプレッサー9にて吸引圧縮され再び反応器6、7、
8へ戻されるが、循環ガスの一部はサーモコンプレッサ
ー9を通さず、反応生成水を除去するために40度まで
降温して冷却分離させる。この冷却器行き循環ガスは熱
回収熱交換器4にて循環ガス加熱炉5行きガスと熱交換
により熱回収されるが、炭素微粉除去のため高温バグフ
イルター12(例えば800度耐熱用特殊セラミックフ
イルター)にて除塵し、集塵した炭素微粉、飛散触媒は
反応器6に戻す。熱回収熱交換器4を出たガスは冷却器
(生成水凝縮器)14にて生成水を冷却分離除去する。
分離された生成水は生成水分離受器15、生成水送りポ
ンプ16にて排出される。生成水分離後のガスは循環戻
りガスとして循環ガスブロワー2吸入側に戻る
The circulating gas flowing out of the reactors 6, 7, 8 is suction-compressed by a thermo-compressor 9 and is returned to the reactors 6, 7, 8 again.
8, a part of the circulating gas does not pass through the thermo-compressor 9 and is cooled to 40 ° C. in order to remove the reaction product water. The circulating gas going to the cooler is heat-recovered by heat exchange with the gas going to the circulating gas heating furnace 5 in the heat recovery heat exchanger 4. However, the high-temperature bag filter 12 (for example, a special ceramic filter for heat resistance of 800 degrees) is used to remove carbon fines. ), And the collected carbon fine powder and scattering catalyst are returned to the reactor 6. The gas that has exited the heat recovery heat exchanger 4 is cooled and separated and removed by a cooler (generated water condenser) 14.
The separated product water is discharged by a product water separation receiver 15 and a product water feed pump 16. The gas after generated water separation returns to the circulation gas blower 2 suction side as circulation return gas.

【0013】なお、原料組成にメタンが多い場合は循環
ガス内に生成水素が余剰となるので、余剰水素を水素分
離装置30で分離する。分離した水素は燃料電池等に活
用される。
If the raw material composition contains a large amount of methane, the generated hydrogen becomes excessive in the circulating gas, so the excess hydrogen is separated by the hydrogen separator 30. The separated hydrogen is used for fuel cells and the like.

【0014】反応器6は触媒表面の生成炭素を粒状状態
で取り出すためのプレ反応を行わせる物で、噴流層、流
動層を形成させながら炭素量を例えば3〜30g−炭素
/g−触媒まで成長させる。これが上手く形成されないと
次工程の反応器7で炭素が固化し、排出が困難になる。
この反応器6は、例えば図2に示す様に逆円錐形状をし
ている。図2(a)は全体概略図、図2(b)はA−A
葬f面図である。図2中、61が触媒入口、62が循環
ガス入口、63が炭素/触媒出口、64が循環ガス出
口、65が炭素/触媒回転掻き取り翼、66は回転攪拌
棒である。原料循環ガスは循環ガス入口62からフイー
ドされ、触媒/炭素層へ噴流、流動層を形成し、更に反
応器6の中でインジェクター17にて触媒入口61に定
期定量フイードされる触媒と噴流混合される。注入され
る触媒は数回/hr定期的に生産量に応じてバッチ投入
する。触媒は反応器6下部から、炭素を生成させながら
反応器上部に移動していく。生成した炭素/触媒は上部
棚の開口部より回転掻き取り翼65にて数回/hr定期
的に掻き取り炭素/触媒出口63から反応器7へ排出さ
れる。
The reactor 6 is used to carry out a pre-reaction for removing carbon formed on the surface of the catalyst in a granular state, and to form a spouted bed and a fluidized bed while reducing the carbon amount to, for example, 3 to 30 g-carbon.
g / g-catalyst. If this is not formed well, the carbon will solidify in the reactor 7 in the next step, making it difficult to discharge.
This reactor 6 has, for example, an inverted conical shape as shown in FIG. FIG. 2A is an overall schematic diagram, and FIG.
It is a funeral f side view. In FIG. 2, 61 is a catalyst inlet, 62 is a circulating gas inlet, 63 is a carbon / catalyst outlet, 64 is a circulating gas outlet, 65 is a carbon / catalyst rotary scraping blade, and 66 is a rotary stirring rod. The raw material circulating gas is fed from the circulating gas inlet 62, spouts into the catalyst / carbon layer to form a fluidized bed, and is further jet-mixed with the catalyst periodically fed to the catalyst inlet 61 by the injector 17 in the reactor 6. You. The catalyst to be injected is charged several times / hr periodically according to the production amount. The catalyst moves from the lower part of the reactor 6 to the upper part of the reactor while generating carbon. The produced carbon / catalyst is scraped several times / hr by a rotary scraping blade 65 from the opening of the upper shelf, and is discharged to the reactor 7 from the carbon / catalyst outlet 63 at regular intervals.

【0015】反応器6へフィードされる循環ガス量は原
料組成、滞留触媒量により異なるが、例えば10〜50
L/g−触媒を目安とする。循環ガスは反応器6内で炭
素、一酸化炭素、水素、水に一部転化され、混合ガス組
成として循環ガス出口64から反応器6を出てサイクロ
ン13に送られ微粉/触媒を分離除去し、高温バグフイ
ルター12に送られる。このガスを高温バグフイルター
12に直接通さず、サイクロン13にて分離除去するの
は活性触媒がセラミックフイルターの濾材内に極力入ら
ない様にするためである。
The amount of circulating gas fed to the reactor 6 varies depending on the raw material composition and the amount of retained catalyst.
Use L / g-catalyst as a guide. The circulating gas is partially converted into carbon, carbon monoxide, hydrogen, and water in the reactor 6 and exits the reactor 6 from the circulating gas outlet 64 as a mixed gas composition and is sent to the cyclone 13 to separate and remove fine powder / catalyst. Is sent to the high temperature bag filter 12. This gas is not directly passed through the high-temperature bag filter 12 but is separated and removed by the cyclone 13 in order to prevent the active catalyst from entering the filter medium of the ceramic filter as much as possible.

【0016】反応器7は図3に示す様に例えば、逆円錐
形状をしており、内部にマスフローを形成させるための
円錐型内装物72と炭素粒子固化防止の為の回転撹拌棒
74、更に循環ガスを下部より吹き込むノズル71を保
有している。また、73は循環ガス入口、75は炭素抜
き出し口、76は循環ガス出口、77は炭素/触媒入口
である。反応器6から排出された炭素は、反応器7の炭
素/触媒入口77上部より投入され、循環ガス入口73
からの循環ガスと交流接触しながら、炭素量を例えば5
0〜70g−炭素/g−触媒まで成長させる。反応器7で
は、炭素は成長しながら凝集固化しないマスフロー移動
床を形成する必要があり、炭素は成長度、炭素滞留量、
幾何形状が重要な要素となる。従って炭素生産量に応じ
て反応器7の基数は増減する。
The reactor 7 has, for example, an inverted conical shape as shown in FIG. 3, and has a conical interior 72 for forming a mass flow therein, a rotary stirring rod 74 for preventing solidification of carbon particles, and It has a nozzle 71 for blowing circulating gas from below. Reference numeral 73 denotes a circulating gas inlet, 75 denotes a carbon outlet, 76 denotes a circulating gas outlet, and 77 denotes a carbon / catalyst inlet. The carbon discharged from the reactor 6 is introduced from the upper portion of the carbon / catalyst inlet 77 of the reactor 7 and the circulating gas inlet 73
Carbon contact with the circulating gas from
Grow to 0-70 g-carbon / g-catalyst. In the reactor 7, it is necessary to form a mass flow moving bed in which carbon does not coagulate and solidify while growing.
Geometry is an important factor. Therefore, the number of reactors 7 increases or decreases according to the amount of carbon production.

【0017】また、排出口(炭素抜き出し口75)には
凝集破砕、マスフロー排出目的の粉砕排出スクリュウコ
ンベヤー10が設置される。スクリュウコンベヤー10
から生成炭素は定期定量排出され、反応器8にフィード
される。循環ガスは、循環ガス出口76から反応器7を
出て高温バグフイルター12を通って熱回収熱交換器4
及びサーモコンプレッサー9行ラインへ送られる。
Further, a pulverizing and discharging screw conveyor 10 for coagulation and crushing and mass flow discharging is provided at the discharging port (carbon extracting port 75). Screw conveyor 10
, And the generated carbon is periodically discharged and fed to the reactor 8. The circulating gas exits the reactor 7 through the circulating gas outlet 76 and passes through the high-temperature bag filter 12 through the heat recovery heat exchanger 4.
And sent to the thermocompressor 9 line.

【0018】反応器8は反応器7と同様の形状で炭素量
を例えば100〜120g−炭素/g−触媒まで成長させ
る。生成炭素は定期定量、抜き出しスクリュウコンベヤ
ー11にて排出され、気力輸送用ブロアー18にて一酸
化炭素除去槽19に送られる。この気力輸送ブロアー1
8は一酸化炭素をCO2にて置換する事、炭素温度を1
00℃以下(空気着火防止温度以下)にする事を目的と
する。炭素温度の冷却は炭素輸送集塵機20、循環冷却
器21を通した二酸化炭素循環系にておこなわれる。冷
却された炭素は貯槽22に送られる。なお、図1中、2
3〜27はシール用ロータリーバルブ、31は流量コン
トローラ、32は温度コントローラ、33は液面コント
ローラ、34は圧力コントローラである。
The reactor 8 has the same shape as that of the reactor 7 and has a carbon content of, for example, 100 to 120 g-carbon / g-catalyst. The generated carbon is discharged at a fixed amount and withdrawn from the screw conveyor 11 at regular intervals, and sent to a carbon monoxide removal tank 19 by a blower 18 for pneumatic transportation. This energy transport blower 1
8 is replacing carbon monoxide with CO 2, and setting carbon temperature to 1
The purpose is to reduce the temperature to 00 ° C or less (below the air ignition prevention temperature). Cooling of the carbon temperature is performed in a carbon dioxide circulation system through a carbon transport dust collector 20 and a circulation cooler 21. The cooled carbon is sent to the storage tank 22. In FIG. 1, 2
Reference numerals 3 to 27 denote rotary valves for sealing, 31 denotes a flow rate controller, 32 denotes a temperature controller, 33 denotes a liquid level controller, and 34 denotes a pressure controller.

【0019】以上の固定化装置において、原料ガスがC
4:CO2=1:1の等モルの場合には、 CH4→C+2H2 2H4+CO2→CO+H2+H2O CO+H2+H2O→C+2H20 となるが、実際の反応は複雑で、循環ガス系ではC
4、CO2、CO、H2、H2Oが各々組成の転化率での
ガス平衡組成となり、ある気相組成を形成する。また炭
素は分解され触媒に生成付着させる。原料ガス組成が等
モルでなくメタンが過剰の場合水素が蓄積される事にな
る。蓄積される余剰水素は選択的に分離し、系外で排出
利用する。水素分離は既存技術(吸着分離、水素分離
膜、水素吸蔵合金)にて実現可能であり水素組成要求純
度に依り選定される。例えば水素吸蔵合金を用いる場
合、ミッシュメタル−ニッケル系水素吸蔵合金(MmNi
4.5Al0.5)に0.8Mpaで水素を吸蔵させ、2塔サーマルス
イング方式で水素を分離放出させる方法では純度の高い
水素が得られる。
In the above fixing apparatus, the raw material gas is C
When H 4 : CO 2 = 1: 1 equimolar, CH 4 → C + 2H 2 2H 4 + CO 2 → CO + H 2 + H 2 O CO + H 2 + H 2 O → C + 2H 20 , but the actual reaction is complicated. In the circulating gas system, C
H 4 , CO 2 , CO, H 2 , and H 2 O each have a gas equilibrium composition at a conversion of the composition, and form a certain gas phase composition. Also, carbon is decomposed and formed and adhered to the catalyst. If the raw material gas composition is not equimolar and methane is excessive, hydrogen will be accumulated. The accumulated excess hydrogen is selectively separated and discharged and used outside the system. Hydrogen separation can be realized by existing technologies (adsorption separation, hydrogen separation membrane, hydrogen storage alloy) and is selected according to the required purity of the hydrogen composition. For example, when a hydrogen storage alloy is used, a misch metal-nickel-based hydrogen storage alloy (MmNi
4.5Al0.5) absorbs hydrogen at 0.8 Mpa and separates and releases hydrogen by a two-column thermal swing method to obtain high-purity hydrogen.

【0020】また、反応熱収支は等モルの場合、吸熱反
応、発熱反応がほぼバランスし、放熱見合いで熱供給を
行えば良いが、メタンが過剰の場合は分解反応が多く、
吸熱反応が支配するので加熱が必要である。
In addition, when the reaction heat balance is equimolar, the endothermic reaction and the exothermic reaction are almost balanced, and heat may be supplied in proportion to heat release.
Heating is necessary because the endothermic reaction is dominant.

【0021】[0021]

【発明の効果】本発明は上記の構成であるから下記の利
点を有する。 (1)CO2、排H2、バイオガス(CO2とCH4の混合
ガス)を固定化して炭素を連続的に生成する。 (2)要求される純度の炭素を安定的に生成する。 (3)CO2とCH4の混合ガスが等モルの場合加熱熱量
は初期加熱、冷却ガス再加熱、放熱補充のみとエネルギ
ーが非常に小さい。 (4)バイオガス(CO2とCH4の混合ガス)でのCH
4の余剰はメタン分解により水素を生成し、水素分離に
より水素の利用が可能。
The present invention has the following advantages since it has the above configuration. (1) CO 2 , waste H 2 , and biogas (mixed gas of CO 2 and CH 4 ) are immobilized to continuously generate carbon. (2) stably produce carbon of required purity. (3) When the mixed gas of CO 2 and CH 4 is equimolar, the energy of heating is very small as only the initial heating, cooling gas reheating, and replenishment of heat radiation. (4) CH in biogas (mixed gas of CO 2 and CH 4 )
The surplus of 4 generates hydrogen by decomposition of methane, and hydrogen can be used by hydrogen separation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明CO2固定化装置での炭素生成プロセス
フロー図
FIG. 1 is a flowchart of a carbon generation process in the CO 2 immobilization apparatus of the present invention.

【図2】プレ反応器の構造の概略を示す図FIG. 2 is a diagram schematically showing the structure of a pre-reactor.

【図3】主反応器の構造の概略を示す図FIG. 3 is a diagram schematically showing the structure of a main reactor.

【符号の説明】[Explanation of symbols]

1:原料/循環ガスミキサ 2:循環ガスブロア 3:加圧ガスレシーバ 4:熱回収熱交換器 5:循環ガス加熱炉 6:プレ反応器 7:反応器1 8:反応器2 9:循環用サーモコンプレッサー 10:破砕排出用スクリュウコンベアー 11:抜出しスクリュウコンベア- 12:高温バグフィルター 13:サイクロン 14:生成水凝縮器 15:生成水分離受器 16:生成水送りポンプ 17:触媒インジェクター 18:気力輸送用ブロアー 19:一酸化炭素除去槽 20:炭素輸送集塵機 21:循環冷却器 22:貯槽 23〜27:シール用ロータリーバルブ 30:水素分離装置 31:液量コントローラ 32:温度コントローラ 33:液面コントローラ 34:圧力コントローラ 1: Raw material / circulating gas mixer 2: circulating gas blower 3: pressurized gas receiver 4: heat recovery heat exchanger 5: circulating gas heating furnace 6: pre-reactor 7: reactor 18: reactor 2 9: thermo-compressor for circulation 10: Screw conveyor for crushing and discharging 11: Extraction screw conveyor-12: High temperature bag filter 13: Cyclone 14: Generated water condenser 15: Generated water separation receiver 16: Generated water feed pump 17: Catalyst injector 18: Blower for power transfer 19: Carbon monoxide removal tank 20: Carbon transport dust collector 21: Circulating cooler 22: Storage tank 23-27: Rotary valve for sealing 30: Hydrogen separator 31: Liquid volume controller 32: Temperature controller 33: Liquid level controller 34: Pressure controller

フロントページの続き (72)発明者 吉村 修七 三重県四日市市東邦町1番地 三菱化学株 式会社四日市事業所内 (72)発明者 宗澤 潤一 三重県四日市市大字塩浜191番地の1 三 菱化学エンジニアリング株式会社内 (72)発明者 加藤 三郎 京都市中京区西ノ京桑原町1番地 株式会 社島津製作所内 Fターム(参考) 4G004 KA01 KA06 4G046 CA01 CA02 CB02 CC03 CC06 CC08 4G075 AA04 AA23 AA27 AA45 AA61 AA63 BA01 BA05 BA06 BD14 CA02 CA03 CA05 CA54 CA65 CA66 EB01 ED03 FB04 Continued on the front page (72) Inventor Shuichi Yoshimura 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Corporation Yokkaichi Office (72) Inventor Junichi Munezawa 191-1, Shiojihama, Yokkaichi-shi, Mie 1 Mitsubishi Chemical Engineering Co., Ltd. In-company (72) Inventor Saburo Kato 1 Nishinokyo Kuwabaracho, Nakagyo-ku, Kyoto F-term in Shimadzu Corporation (Reference) 4G004 KA01 KA06 4G046 CA01 CA02 CB02 CC03 CC06 CC08 4G075 AA04 AA23 AA27 AA45 AA61 AA63 BA01 BA02 BA06 BD06 CA03 CA05 CA54 CA65 CA66 EB01 ED03 FB04

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】少なくともメタンを含むガスより炭素を製
造する装置であって、炭素を造粒成長させるプレ反応器
と、該プレ反応器にて成長させた炭素を更に成長させる
主反応器とを備えたことを特徴とする炭素製造装置。
1. An apparatus for producing carbon from a gas containing at least methane, comprising: a pre-reactor for granulating and growing carbon; and a main reactor for further growing the carbon grown in the pre-reactor. An apparatus for producing carbon, comprising:
【請求項2】プレ反応器は、逆円錐形、逆角錐形、円筒
形のいずれかの形状からなり、下部からガスと触媒を入
れ、炭素/触媒を噴流層、流動層を形成させながら造粒
成長させる請求項1記載の炭素製造装置。
2. The pre-reactor has an inverted conical shape, an inverted pyramid shape, or a cylindrical shape. Gas and a catalyst are charged from the lower portion, and carbon / catalyst is formed while forming a spouted bed and a fluidized bed. The carbon production apparatus according to claim 1, wherein the carbon is grown.
【請求項3】主反応器は、逆円錐形、逆角錐形、円筒形
のいずれかの形状からなり、ガスを下部よりフイード
し、成長した炭素を下部スクリュウコンベアーにて定期
的に排出し、反応器内にマスフロー移動床を形成してな
る請求項1記載の炭素製造装置。
3. The main reactor has an inverted conical shape, an inverted pyramid shape, or a cylindrical shape, feeds gas from a lower portion, and periodically discharges grown carbon by a lower screw conveyor. The carbon production apparatus according to claim 1, wherein a mass flow moving bed is formed in the reactor.
【請求項4】請求項1乃至3記載の炭素製造装置にプレ
反応器及び/又は主反応器を出たガスの微粉捕獲手段を
設け、微粉捕獲後、微粉を前記反応器に戻すことを特徴
とする請求項1乃至3記載の炭素製造装置。
4. A carbon production apparatus according to claim 1, further comprising means for capturing fine powder of gas exiting the pre-reactor and / or the main reactor, and after capturing the fine powder, returning the fine powder to the reactor. 4. The carbon production apparatus according to claim 1, wherein:
【請求項5】ガスをサーモコンプレッサを用いてプレ反
応器及び/又は主反応器に循環させることを特徴とする
請求項1乃至4記載の炭素製造装置。
5. The carbon production apparatus according to claim 1, wherein the gas is circulated to a pre-reactor and / or a main reactor using a thermocompressor.
【請求項6】少なくともメタンを含むガスが二酸化炭素
とメタンを含む混合ガスであり、二酸化炭素とメタンが
等モルでない場合、等モル調節手段を設けてなる請求項
1乃至5記載の炭素製造装置。
6. The carbon production apparatus according to claim 1, wherein the gas containing at least methane is a mixed gas containing carbon dioxide and methane, and when carbon dioxide and methane are not equimolar, equimolar adjusting means is provided. .
【請求項7】等モル調節手段が、プレ反応器、及び主反
応器に二酸化炭素又はメタンを導入する手段である請求
項6記載の炭素製造装置。
7. The carbon production apparatus according to claim 6, wherein the equimolar adjusting means is means for introducing carbon dioxide or methane into the pre-reactor and the main reactor.
【請求項8】少なくともメタンを含むガスより炭素を製
造する方法であって、炭素を触媒存在下粒状に成長させ
ることを特徴とする炭素製造法。
8. A method for producing carbon from a gas containing at least methane, wherein the carbon is grown in the form of particles in the presence of a catalyst.
【請求項9】触媒が金属触媒である請求項8記載の炭素
製造法。
9. The method according to claim 8, wherein the catalyst is a metal catalyst.
【請求項10】反応温度が400から700℃である請
求項8乃至9記載の炭素製造法。
10. The method for producing carbon according to claim 8, wherein the reaction temperature is 400 to 700 ° C.
JP2001004392A 2001-01-12 2001-01-12 Carbon production equipment Expired - Lifetime JP4852787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004392A JP4852787B2 (en) 2001-01-12 2001-01-12 Carbon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004392A JP4852787B2 (en) 2001-01-12 2001-01-12 Carbon production equipment

Publications (2)

Publication Number Publication Date
JP2002211909A true JP2002211909A (en) 2002-07-31
JP4852787B2 JP4852787B2 (en) 2012-01-11

Family

ID=18872587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004392A Expired - Lifetime JP4852787B2 (en) 2001-01-12 2001-01-12 Carbon production equipment

Country Status (1)

Country Link
JP (1) JP4852787B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284513A (en) * 2001-03-28 2002-10-03 Shimadzu Corp Method for manufacturing carbon
JP2006290682A (en) * 2005-04-12 2006-10-26 Kitami Institute Of Technology Method and catalyst reactor for producing nano-carbon
JP2007290928A (en) * 2006-04-26 2007-11-08 Kyushu Institute Of Technology String-like carbon, method of utilizing the same and method of manufacturing the same
JP2009046387A (en) * 2007-08-21 2009-03-05 Semes Co Ltd Method and apparatus for synthesizing carbon nanotube
JP2009161426A (en) * 2007-12-31 2009-07-23 Semes Co Ltd Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
JP2010030887A (en) * 2008-06-30 2010-02-12 Showa Denko Kk Method of manufacturing carbon nanomaterial and manufacturing unit of carbon nanomaterial
JP2012106921A (en) * 2010-11-16 2012-06-07 Waseda Univ Method for producing carbon nanotube
JP2013049599A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Production apparatus of fibrous carbon material
JP2015518461A (en) * 2012-04-16 2015-07-02 シーアストーン リミテッド ライアビリティ カンパニー Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
JP2015519280A (en) * 2012-04-18 2015-07-09 エクソンモービル アップストリーム リサーチ カンパニー Removal of carbon nanotubes from aqueous systems
JP2015521146A (en) * 2012-04-18 2015-07-27 エクソンモービル アップストリーム リサーチ カンパニー Removal of carbon nanotubes from continuous reactor effluent
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
KR20210058516A (en) * 2019-11-14 2021-05-24 주식회사 포스코 Device for manufacturing cabon dust
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829862A (en) * 1981-08-14 1983-02-22 Mitsubishi Chem Ind Ltd Preparation of carbon black
JPS6351467A (en) * 1986-08-21 1988-03-04 Kawasaki Steel Corp Production of high-purity carbon black
JPS63319045A (en) * 1987-06-23 1988-12-27 Masaki Sadakata Production of fine particle by gaseous phase reaction
JPH01298214A (en) * 1988-05-24 1989-12-01 Asahi Chem Ind Co Ltd Production of carbon fiber
JPH11322315A (en) * 1998-03-13 1999-11-24 Shimadzu Corp Carbon production system utilizing biomass
JPH11350257A (en) * 1998-06-05 1999-12-21 Nikkiso Co Ltd Gas phase growing carbon fiber production unit
JP2000086217A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Production of carbon nanotube
JP2000181143A (en) * 1998-12-11 2000-06-30 Shimadzu Corp Production of carbon for electrophotographic toner
JP2000264616A (en) * 1999-03-15 2000-09-26 Kawasaki Heavy Ind Ltd Method and apparatus for producing activated carbonized material
JP2000271472A (en) * 1999-03-24 2000-10-03 Shimadzu Corp Carbon dioxide immobilizing device by anaerobic fermentation gas

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829862A (en) * 1981-08-14 1983-02-22 Mitsubishi Chem Ind Ltd Preparation of carbon black
JPS6351467A (en) * 1986-08-21 1988-03-04 Kawasaki Steel Corp Production of high-purity carbon black
JPS63319045A (en) * 1987-06-23 1988-12-27 Masaki Sadakata Production of fine particle by gaseous phase reaction
JPH01298214A (en) * 1988-05-24 1989-12-01 Asahi Chem Ind Co Ltd Production of carbon fiber
JPH11322315A (en) * 1998-03-13 1999-11-24 Shimadzu Corp Carbon production system utilizing biomass
JPH11350257A (en) * 1998-06-05 1999-12-21 Nikkiso Co Ltd Gas phase growing carbon fiber production unit
JP2000086217A (en) * 1998-09-05 2000-03-28 Agency Of Ind Science & Technol Production of carbon nanotube
JP2000181143A (en) * 1998-12-11 2000-06-30 Shimadzu Corp Production of carbon for electrophotographic toner
JP2000264616A (en) * 1999-03-15 2000-09-26 Kawasaki Heavy Ind Ltd Method and apparatus for producing activated carbonized material
JP2000271472A (en) * 1999-03-24 2000-10-03 Shimadzu Corp Carbon dioxide immobilizing device by anaerobic fermentation gas

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284513A (en) * 2001-03-28 2002-10-03 Shimadzu Corp Method for manufacturing carbon
US7947245B2 (en) 2005-04-12 2011-05-24 National University Corporation Kitami Institute Of Technology Method for producing nanocarbon and catalytic reaction device for producing nanocarbon
JP2006290682A (en) * 2005-04-12 2006-10-26 Kitami Institute Of Technology Method and catalyst reactor for producing nano-carbon
US9403682B2 (en) 2005-04-12 2016-08-02 National University Corporation Kitami Institute Of Technology Method for producing nanocarbon and catalytic reaction device for producing nanocarbon
JP2007290928A (en) * 2006-04-26 2007-11-08 Kyushu Institute Of Technology String-like carbon, method of utilizing the same and method of manufacturing the same
JP2009046387A (en) * 2007-08-21 2009-03-05 Semes Co Ltd Method and apparatus for synthesizing carbon nanotube
JP2009161426A (en) * 2007-12-31 2009-07-23 Semes Co Ltd Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
JP2010030887A (en) * 2008-06-30 2010-02-12 Showa Denko Kk Method of manufacturing carbon nanomaterial and manufacturing unit of carbon nanomaterial
JP2012106921A (en) * 2010-11-16 2012-06-07 Waseda Univ Method for producing carbon nanotube
JP2013049599A (en) * 2011-08-31 2013-03-14 Hitachi Zosen Corp Production apparatus of fibrous carbon material
JP2015518461A (en) * 2012-04-16 2015-07-02 シーアストーン リミテッド ライアビリティ カンパニー Methods and reactors for producing solid carbon nanotubes, solid carbon clusters, and forests
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
JP2015519280A (en) * 2012-04-18 2015-07-09 エクソンモービル アップストリーム リサーチ カンパニー Removal of carbon nanotubes from aqueous systems
US9975793B2 (en) 2012-04-18 2018-05-22 Exxonmobil Upstream Research Company Removing carbon nanotubes from a water system
JP2015521146A (en) * 2012-04-18 2015-07-27 エクソンモービル アップストリーム リサーチ カンパニー Removal of carbon nanotubes from continuous reactor effluent
US10343104B2 (en) 2012-04-18 2019-07-09 Exxonmobil Upstream Research Company Removing carbon nanotubes from a continuous reactor effluent
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
KR20210058516A (en) * 2019-11-14 2021-05-24 주식회사 포스코 Device for manufacturing cabon dust
KR102308018B1 (en) 2019-11-14 2021-09-30 주식회사 포스코 Device for manufacturing cabon dust

Also Published As

Publication number Publication date
JP4852787B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP2002211909A (en) Carbon manufacturing apparatus and manufacturing method using the same
US6991769B2 (en) Biomass gasifycation furnace and system for methanol synthesis using gas produced by gasifying biomass
EP2708507B1 (en) Method for manufacturing nanocarbon and manufacturing device
CN108328573A (en) A kind of device and method of methane catalytic decomposition self-heating production high-purity hydrogen
CN102796561A (en) Anaerobic gasification method and device for biomass fuels by carbon dioxide circulation
US20190084833A1 (en) Production of liquid hydrocarbons, biofuels and uncontaminated co2 from gaseous feedstock
CN102139859A (en) Self-adjusting hydrogen generator
US20220081295A1 (en) System and method for adjusting pressure in a reservoir and system for producing at least one energy carrier
JP4666985B2 (en) Equipment for direct cracking of lower hydrocarbons
CN110283625A (en) Supercritical water coal gasification apparatus and method
CN103332650B (en) System and method for simultaneous dry-method hydrogen production from catalytic methane decomposition and carbon dioxide separation
CN107267218A (en) The method and system of solid fuel pyrolysis gasification
CN106398768A (en) Device and method of preparing synthesis gas through chemical looping combustion
CN101830434A (en) Method for producing synthetic gas by natural gas conversion
CN106946637B (en) A kind of device and technique of skid-mounted type lower carbon number hydrocarbons production methane
US20040068932A1 (en) Hydrogen generation apparatus and method
EP3470621A1 (en) System and method for adjusting pressure in a subsurface reservoir and system for producing at least one gas for adjusting pressure in a subsurface reservoir
JP2002285171A (en) Biomass gasifier and method for gasifying biomass
US20210260553A1 (en) Method and system for direct thermal decomposition of a hydrocarbon compound into carbon and hydrogen
CN107286991B (en) Method and system for preparing synthesis gas by semicoke gasification
KR102193200B1 (en) Thermochemical upgrading system of bio-gas
CN218755015U (en) System for preparing hydrogen by ammonia autothermal decomposition
CN207016736U (en) Solid fuel pyrolysis vaporizing system for synthesis gas and pyrolysis gas system
CN220432730U (en) Coupling CO 2 Circulating biomass gasification device
JP2954585B1 (en) Hydrogen production method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4852787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term