JPS62282020A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS62282020A
JPS62282020A JP12078986A JP12078986A JPS62282020A JP S62282020 A JPS62282020 A JP S62282020A JP 12078986 A JP12078986 A JP 12078986A JP 12078986 A JP12078986 A JP 12078986A JP S62282020 A JPS62282020 A JP S62282020A
Authority
JP
Japan
Prior art keywords
source compound
heating zone
compound
carrier gas
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12078986A
Other languages
Japanese (ja)
Inventor
Masayuki Nakatani
雅行 中谷
Yukinari Komatsu
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP12078986A priority Critical patent/JPS62282020A/en
Publication of JPS62282020A publication Critical patent/JPS62282020A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1271Alkanes or cycloalkanes
    • D01F9/1272Methane
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor

Abstract

PURPOSE:To efficiently obtain carbon fibers hardly contaminated by soot, by feeding a carbon source compound, catalyst source compound, sulfur compound and carrier gas to a heating zone at a specific temperature or above at specific feed rates. CONSTITUTION:A carbon source compound, e.g. methane, ethane, ethylene, etc., catalyst source compound, e.g. FeCl3, etc., carrier gas, e.g. H2, He, N2, Ar, etc., and sulfur compound, e.g. methyl thiol, etc., are fed to a heating zone to produce carbon fibers. In the process, the temperature of the heating zone is set at >=1,300 deg.C and the ratio of the feed rate (g) per unit time of the carbon source compound to the feed rate (mol) per unit time of the carrier gas fed to the heating zone is set at >=0.04mol/g.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、炭素繊維の製造方法に関し、′さらに詳しく
は遷移金属化合物等を触媒源として炭素源化合物等を反
応させ、加熱帯空間で繊維を生成させる炭素繊維の製造
方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing carbon fibers, and more specifically, the present invention relates to a method for producing carbon fibers, and more specifically, the present invention relates to a method for producing carbon fibers, and more specifically, the present invention relates to a method for producing carbon fibers. The present invention relates to a method for producing carbon fibers in which fibers are produced in a heated zone space.

(従来の技術) 炭素繊維は高強度、高弾性率などの優れた性質を有し、
各種複合材料として゛近年脚光を浴びている材料である
。従来、炭素繊維は有機繊維を炭化することによって主
に製造されているが、炭化水素類の熱分解および触媒反
応によって生成する炭素繊維も知られている。後者の気
相法炭素繊維は前者の炭素繊維に比べ、優れた結晶性、
配向性を有しているため、高強度、高弾性率を兼備する
複合材料として、多方面の用途が期待されている。
(Prior art) Carbon fiber has excellent properties such as high strength and high modulus of elasticity.
It is a material that has been in the spotlight in recent years as a variety of composite materials. Conventionally, carbon fibers have been mainly produced by carbonizing organic fibers, but carbon fibers produced by thermal decomposition and catalytic reactions of hydrocarbons are also known. The latter vapor-grown carbon fiber has superior crystallinity and superior crystallinity compared to the former carbon fiber.
Because it has orientation, it is expected to be used in a wide variety of fields as a composite material that has both high strength and high elastic modulus.

気相法による炭素繊維の一般的製造法は、例えば「工業
材料、昭和57年7月号、109頁(遠藤、小山)」に
示されているように、遷移金属か・らなる微粒子を散布
した繊維生成用基材を電気炉の反応管内に設置し、炉温
を所定温度にした後、反応管内に炭化水素と水素の混合
ガスを通して炭化させ、基材上に炭素繊維を生成せしめ
るものである。
A general method for manufacturing carbon fibers using the vapor phase method involves spraying fine particles made of transition metals, as shown in, for example, "Kogyo Materials, July 1980 Issue, p. 109 (Endo, Koyama)". The fiber-generating base material is placed in a reaction tube of an electric furnace, and after the furnace temperature is brought to a predetermined temperature, a mixed gas of hydrocarbon and hydrogen is passed through the reaction tube to carbonize it, producing carbon fibers on the base material. be.

し′かしながら、このような基材を用いる方法では、反
応域が2次元であることや、プロセスが複雑であるとと
などから生産性が低いものであった。
However, methods using such substrates have low productivity because the reaction zone is two-dimensional and the process is complicated.

これに対して特開昭58−180615号公報には、高
融点金属または該金属の化合物の超微粉末を炭化水素の
熱分解帯域に浮遊させる方法が記されているが、超微粉
末が2次粒子を形成しやすく、触媒効果が発揮しにくい
こと等から生産性に優れた方法はいえなかった。
On the other hand, JP-A-58-180615 describes a method in which ultrafine powder of a high-melting point metal or a compound of the metal is suspended in a hydrocarbon thermal decomposition zone. It has not been possible to find a method with excellent productivity because secondary particles are easily formed and the catalytic effect is difficult to exhibit.

一方、特開昭60−54998号、特開昭60−181
311号、特開昭60−185818号、特開昭60−
224815号、特開昭60−224816号には、遷
移金属化合物のガスと炭素源化合物のガスとキャリヤガ
スとの混合ガスを高温反応させる方法が記載されている
。しかしながら、これらの方法は用いる遷移金属化合物
の量が炭素源化合物に対して非常に多く、また収率の低
いものであった。また本発明者の検討によれば、時間当
たりの生産量を向上すべく原料供給量を太き(したとこ
ろ、さらに収率が低下し、煤が混入するという問題が生
じた。
On the other hand, JP-A-60-54998, JP-A-60-181
No. 311, JP-A-60-185818, JP-A-60-
No. 224815 and Japanese Unexamined Patent Publication No. 60-224816 describe a method of subjecting a mixed gas of a transition metal compound gas, a carbon source compound gas, and a carrier gas to a high-temperature reaction. However, in these methods, the amount of the transition metal compound used is much larger than the carbon source compound, and the yield is low. Further, according to the studies of the present inventors, the amount of raw materials supplied was increased in order to improve the production amount per hour (this resulted in problems such as a further decrease in the yield and the contamination of soot).

(発明が解決しようとする問題点) 本発明の目的は、上述の問題点を解決し、生産性および
収率が高く、煤のほとんど混入しない炭素繊維の製造方
法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems and provide a method for producing carbon fibers that has high productivity and yield and is hardly contaminated with soot.

(問題点を解決するための手段) 本発明は、炭素源化合物、触媒源化合物、キャリヤガス
および硫黄化合物とを加熱帯に供給して炭素繊維を製造
する方法において、加熱帯の温度を1300°C以上お
よび単位時間当たりに加熱帯に供給するキャリヤガス量
(mon)を炭素源化合物の単位時間当たりの供給量(
g)に対してOoQ 4 m o (1/ g以上とし
たことを特徴とする炭素繊維の製造方法である。
(Means for Solving the Problems) The present invention provides a method for producing carbon fiber by supplying a carbon source compound, a catalyst source compound, a carrier gas, and a sulfur compound to a heating zone, in which the temperature of the heating zone is increased to 1300°. C or more and the amount of carrier gas (mon) supplied to the heating zone per unit time is calculated as the amount of carbon source compound supplied per unit time (mon).
This is a method for producing carbon fiber, characterized in that OoQ 4 m o (1/g or more) is set relative to g).

本発明における炭素源化合物とは、800°C以上に加
熱することによって炭素を析出し得る化合物であり、炭
素化合物全般を対象としている。例えば、CO、メタン
、エタン等のアルカン化合物、エチレン、ブタジェン等
のアルケン化合物、アセチレン等のアルキン化合物、ベ
ンゼン、トルエン、スチレン、ナフタレン、アントラセ
ン等の芳香族化合物、シクロヘキサン、シクロペンタジ
ェン、ジシクロペンタジェン等の脂環式炭化水素化合物
、またこれらの窒素、酸素、ハロゲン等の誘導体、ガソ
リン、灯油、重油等が挙げられ、これらの混合物も用い
ることができる。
The carbon source compound in the present invention is a compound that can precipitate carbon by heating to 800°C or higher, and covers carbon compounds in general. For example, CO, alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, aromatic compounds such as benzene, toluene, styrene, naphthalene and anthracene, cyclohexane, cyclopentadiene and dicyclopenta Examples include alicyclic hydrocarbon compounds such as Jen, derivatives thereof such as nitrogen, oxygen, halogen, etc., gasoline, kerosene, heavy oil, etc., and mixtures thereof may also be used.

加熱帯に供給する炭素源化合物の量(g)は、加熱帯の
体積11に対して1分間に0.5g/β・分以上が好ま
しく、特に1.0g#!・分以上、30、0 g / 
7!・分局下がより好ましい。供給量が少なすぎると煤
が混入する傾向があり、また多すぎると収率が低下して
煤も混入する傾向がある。
The amount (g) of the carbon source compound supplied to the heating zone is preferably 0.5 g/β·min or more per minute per volume 11 of the heating zone, particularly 1.0 g#!・Minutes or more, 30.0 g/
7!・It is more preferable to use a branch office. If the amount supplied is too small, soot tends to be mixed in, while if it is too large, the yield tends to decrease and soot also tends to be mixed.

本発明における触媒源化合物としては、FeCz、、、
、Fe (No)4、NiCl2、Co  (NO)2
CX等の無機遷移金属化合物、Fe (C5H5)2、
Ni  (C5Hj)2、Co (Cg Hg)2、F
e (Co) 5、Fe2  (CO) 1、Ni  
(C0)4等の有機遷移金属化合物、アセチルアセトン
鉄、カルボン酸鉄、鉄アルコキシド、鉄アリールオキシ
ド、ニッケルチオアルコキシド、コバルトアルコキシド
、チオ酢酸鉄等の遷移金属化合物等が挙げられる。これ
ら触媒源化合物は2種以上同時に用いてもよい。さらに
触媒源化合物として特開昭60−54998号、特開昭
60−54999号、特開昭60−181319号、特
開昭60−185818号、特開昭6(1−22481
5号、特開昭6(1−224816号、特開昭60−2
31822号、特願昭59−231967号、特願昭6
0−58813号、特願昭60−58819号、特願昭
60−113108号、特願昭60−123201号等
に記載されている化合物を用いてもよい。
Catalyst source compounds in the present invention include FeCz,...
, Fe (No)4, NiCl2, Co (NO)2
Inorganic transition metal compounds such as CX, Fe (C5H5)2,
Ni (C5Hj)2, Co (Cg Hg)2, F
e (Co) 5, Fe2 (CO) 1, Ni
Examples include organic transition metal compounds such as (C0)4, and transition metal compounds such as iron acetylacetonate, iron carboxylate, iron alkoxide, iron aryloxide, nickel thioalkoxide, cobalt alkoxide, and iron thioacetate. Two or more of these catalyst source compounds may be used simultaneously. Furthermore, as a catalyst source compound, JP-A-60-54998, JP-A-60-54999, JP-A-60-181319, JP-A-60-185818, JP-A-6 (1989-1-22481)
No. 5, Japanese Patent Application Publication No. 1-224816, Japanese Patent Application Publication No. 1986-2
No. 31822, Japanese Patent Application No. 59-231967, Japanese Patent Application No. 1983
Compounds described in Japanese Patent Application No. 0-58813, Japanese Patent Application No. 60-58819, Japanese Patent Application No. 113108-1982, Japanese Patent Application No. 123201-1982, etc. may be used.

加熱帯に供給する触媒源化合物の量(mob、)は、供
給する炭素源化合物の質量(g)に対して、lX10’
moJ/g以上、3 X 10−3mo It 7g以
下が好ましく、特にlXl0−’mol/g以上、I 
X 10−3mo 1.7g以下がより好ましく用いら
れる。供給量が少なすぎると煤が混入する傾向があり、
多すぎると収率が低下する傾向がある。
The amount (mob) of the catalyst source compound supplied to the heating zone is lX10' with respect to the mass (g) of the carbon source compound supplied.
moJ/g or more, 3 X 10-3mo It 7g or less is preferable, especially lXl0-'mol/g or more, I
1.7 g or less of X 10-3mo is more preferably used. If the supply is too low, it tends to be contaminated with soot;
If the amount is too large, the yield tends to decrease.

本発明におけるキャリヤガスとしては、H2ガス、He
ガス、N2ガス、Neガス、Arガス、Krガス、CO
。ガス、NH3ガスを主体とするガスが挙げられ、これ
らの混合物を用いてもよい。
As the carrier gas in the present invention, H2 gas, He
Gas, N2 gas, Ne gas, Ar gas, Kr gas, CO
. Examples include gases mainly composed of gas and NH3 gas, and mixtures thereof may also be used.

本発明において、単位時間当たりに加熱帯に供給するキ
ャリヤガス量(mo7りは、炭素源化合物の単位時間当
たりの供給量(g)に対してo、。
In the present invention, the amount of carrier gas supplied to the heating zone per unit time (mo7 is o, relative to the amount of carbon source compound supplied per unit time (g)).

4 m o 7!/ g以上である。キャリヤガス量が
0.04 m o j! / g未満では煤の得られる
割合が多くなる。キャリヤガス量は0.04 m o 
A / g以上、5゜9 m o 1 / g以下が好
ましく、特に0.08 m o 172以上、0.25
 m o n! / g以下がより好ましい。
4 m o 7! /g or more. Carrier gas amount is 0.04 m o j! /g, the proportion of soot obtained increases. Carrier gas amount is 0.04 m o
A/g or more and 5゜9 m o 1/g or less are preferable, particularly 0.08 m o 172 or more and 0.25 m o 1/g or less
m o n! /g or less is more preferable.

キャリヤガス量が多いと収率が低下する傾向がある。If the amount of carrier gas is large, the yield tends to decrease.

用いるキャリヤガスは、用いる炭素源化合物によっても
異なるが、30VoI!%以上を水素ガスとするのが好
ましく、特に50VoJ%以上とするのが好ましい。水
素ガス量が少ないと煤が混入する傾向がある。
The carrier gas used varies depending on the carbon source compound used, but is 30 VoI! % or more is preferably hydrogen gas, particularly preferably 50 VoJ% or more. If the amount of hydrogen gas is small, soot tends to get mixed in.

本発明における硫黄化合物としては、硫化水素、二硫化
炭素および有機硫黄化合物などが挙げられ、特に有機硫
黄化合物が好ましく用いられる。有機硫黄化合物として
は、メチルチオール、エチル千オール、ブチルチオール
、フェニルチオール等のチオール類、ジメチルスルフィ
ド、ジエチルジスルフィド、フェニルメチルスルフィド
等のスルフィド類、ジメチルスルホキシド、ジエチルス
ルホキシド、ジフェニルスルホキシド等のスルホキシド
類、ジメチルスルホン、ジエチルスルホン等のスルホン
類、チオフェン、イソベンゾチオフェン等の含硫黄複素
環化合物、その他、スルフェン酸類、スルフェン酸エス
テル類、スルホン酸類、スルホン酸エステルおよびその
無水物等、スルフィン酸類、スルフィン酸エステル類、
チオールスルフィナート類、チオカルボニル化合物、チ
オカルボン酸類、チオカルボン酸エステル類、ジチオカ
ルボン酸類、スルフィン類、チオカルボン酸誘導体S−
オキシド類、スルホニウムイリド類、スルフラン類等が
挙げられる。これらは1種または2種以上組合わせて用
いられる。
Examples of the sulfur compound in the present invention include hydrogen sulfide, carbon disulfide, and organic sulfur compounds, and organic sulfur compounds are particularly preferably used. Examples of organic sulfur compounds include thiols such as methylthiol, ethylthol, butylthiol, and phenylthiol; sulfides such as dimethyl sulfide, diethyl disulfide, and phenylmethyl sulfide; sulfoxides such as dimethyl sulfoxide, diethyl sulfoxide, and diphenyl sulfoxide; Sulfones such as dimethylsulfone and diethylsulfone, sulfur-containing heterocyclic compounds such as thiophene and isobenzothiophene, other sulfenic acids, sulfenic esters, sulfonic acids, sulfonic esters and their anhydrides, sulfinic acids, sulfinic acids esters,
Thiol sulfinates, thiocarbonyl compounds, thiocarboxylic acids, thiocarboxylic acid esters, dithiocarboxylic acids, sulfines, thiocarboxylic acid derivatives S-
Examples include oxides, sulfonium ylides, and sulfurans. These may be used alone or in combination of two or more.

加熱帯に供給する硫黄化合物の量(mob)は、供給す
る炭素源化合物の質量(g)に対して1×10−’mo
 487g以上、l x 10−’mo 12/g以下
が好ましく、特にlXl0−’mo7!/gm上7!X
10−’moJ/g以下がより好ましい。硫黄化合物の
量が多すぎても少なすぎても煤の混入が多くなる傾向が
ある。
The amount (mob) of the sulfur compound supplied to the heating zone is 1 × 10-'mo with respect to the mass (g) of the carbon source compound supplied.
487g or more and l x 10-'mo 12/g or less are preferable, especially lXl0-'mo7! /gm upper 7! X
More preferably, it is 10-'moJ/g or less. If the amount of sulfur compounds is too large or too small, there is a tendency for more soot to be mixed in.

本発明における加熱帯の温度は1300℃以上であ9、
+0ため6.−は反応i器。内壁温度を1300℃以上
に加熱する必要がある。1300℃未満では加熱帯に供
給する原料(炭素源化合物、触媒源化合物、キャリヤガ
スおよび硫黄化合物)の量を多くすると収率が低下し、
また煤の混入も多くなってくる。内壁温度は1300〜
2100℃が好ましく、特に1330〜1900℃がよ
り好ましい。内壁温度が高すぎると、煤の混、入牢が大
きくなる傾向がある。加熱方法については特に限定され
ないが、例えば電気炉加熱、赤外線加熱、プラズマ加熱
、レーザー加熱、燃焼熱利用、反応熱利用等の方法が挙
げられ、この中では電気炉加熱が便利である。
The temperature of the heating zone in the present invention is 1300°C or higher9,
+0 for 6. - is reactor i. It is necessary to heat the inner wall temperature to 1300°C or higher. Below 1300°C, increasing the amount of raw materials (carbon source compound, catalyst source compound, carrier gas and sulfur compound) supplied to the heating zone will reduce the yield;
Also, more soot gets mixed in. Inner wall temperature is 1300~
The temperature is preferably 2100°C, and particularly preferably 1330 to 1900°C. If the inner wall temperature is too high, there is a tendency for soot to become mixed and trapped. The heating method is not particularly limited, but examples include methods such as electric furnace heating, infrared heating, plasma heating, laser heating, combustion heat utilization, and reaction heat utilization, among which electric furnace heating is convenient.

炭素源化合物、触媒源化合物、キャリヤガスおよび硫黄
化合物を加熱帯に供給する方法は、特に限定されず、例
えばそれぞれをガスで供給する方法、混合ガスで供給す
る方法、液状で供給する方法、混合液状で供給する方法
、粉末状で供給する方法、これらの組合わせ等いずれの
方法を用いてもよい。また、供給ノズル位置および温度
についても特に限定されない。
The method of supplying the carbon source compound, the catalyst source compound, the carrier gas, and the sulfur compound to the heating zone is not particularly limited. For example, each of them can be supplied as a gas, as a mixed gas, as a liquid, or as a mixture. Any method such as a method of supplying in liquid form, a method of supplying in powder form, or a combination thereof may be used. Further, the supply nozzle position and temperature are not particularly limited either.

(発明の効果) 本発明方法によれば、煤のほとんど混入しない炭素繊維
を収率よく得ることができる。また、単位時間当たりの
生産性を大きく向上させることができる。
(Effects of the Invention) According to the method of the present invention, carbon fibers containing almost no soot can be obtained in good yield. Furthermore, productivity per unit time can be greatly improved.

(実施例) 実施例1〜7、比較例1〜2 第1図に示すように、黒鉛ヒーターを有する電気炉1 
(均熱帯の長さ85c+n)にモリブデン管2(内径6
0m、長さ2fn)を設置し、モリブデン管2の一端に
ボックス3を接続した。そしてボックス3にフィルタ8
を設け、ボックス3から飛び出る繊維を収集できるよう
にした。またモリブデン管2の他の一端には原料を加熱
帯に供給するための導入バイブ4.5およびその先端に
導入ノズル6.7をそれぞれ設置した。
(Example) Examples 1 to 7, Comparative Examples 1 to 2 As shown in FIG. 1, an electric furnace 1 having a graphite heater
(length of soaking zone 85c+n) and molybdenum pipe 2 (inner diameter 6
0 m, length 2fn) was installed, and a box 3 was connected to one end of the molybdenum pipe 2. and filter 8 in box 3
was installed to collect the fibers coming out of box 3. Further, at the other end of the molybdenum tube 2, an introduction vibrator 4.5 for supplying the raw material to the heating zone and an introduction nozzle 6.7 were installed at the tip thereof.

電気炉1内およびモリブデン管2内を窒素置換した後、
モリブデン管2の内壁温度を第1表に示した温度に設定
した。その後管内を水素ガスで置換し、導入バイブ5か
ら水素ガスを導入した。次にベンゼンに第1表に示すよ
うな供給量(8度)で触媒源化合物および硫黄化合物を
熔解させた溶液を、導入パイプ4から管内に噴出させた
。このヘンゼン溶液を5分間導入させた後、管内に水素
ガスのみをさらに5分間導入させた。これらの結果を第
1表に要約した。
After replacing the inside of the electric furnace 1 and the molybdenum tube 2 with nitrogen,
The inner wall temperature of the molybdenum tube 2 was set to the temperature shown in Table 1. Thereafter, the inside of the tube was replaced with hydrogen gas, and hydrogen gas was introduced from the introduction vibrator 5. Next, a solution in which a catalyst source compound and a sulfur compound were dissolved in benzene at the feed rate (8 degrees) shown in Table 1 was jetted from the introduction pipe 4 into the pipe. After introducing this Hensen's solution for 5 minutes, only hydrogen gas was introduced into the tube for another 5 minutes. These results are summarized in Table 1.

以下余白 得られた炭素繊維は直径が0.2μ以下のものが多く、
また形態はストレートなものがほとんどであった。
Many of the carbon fibers obtained have a diameter of 0.2μ or less,
Also, most of the shapes were straight.

実施例8.9 電気炉1 (均熱帯70印)内に内径50mmのモリブ
デン管2を第2図に示したように設置した。
Example 8.9 A molybdenum tube 2 having an inner diameter of 50 mm was installed in an electric furnace 1 (soaking zone marked 70) as shown in FIG.

電気炉1は、ヒーター11の外側を断熱材10で保温し
、ケーシング9で外装したものからなる。
The electric furnace 1 consists of a heater 11 whose outside is insulated with a heat insulating material 10 and covered with a casing 9.

炭素源化合物としてトルエン、触媒源化合物としてフェ
ロセン、硫黄化合物としてチオフェンを用いた以外は実
施例1と同様に行なった。これらの結果を第2表に示し
た。
The same procedure as in Example 1 was conducted except that toluene was used as the carbon source compound, ferrocene was used as the catalyst source compound, and thiophene was used as the sulfur compound. These results are shown in Table 2.

第   2   表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ本発明の好ましい実施
態様の一例を示す炭素繊維製造装置の断面図である。 1・・・電気炉、2・・・反応容器、3・・・生成物を
貯蔵するためのボックス、4.5・・・導入パイプ、6
.7・・・導入ノズル、8・・・フィルタ。
FIG. 1 and FIG. 2 are sectional views of a carbon fiber manufacturing apparatus, each showing an example of a preferred embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Electric furnace, 2...Reaction container, 3...Box for storing products, 4.5...Introduction pipe, 6
.. 7...Introduction nozzle, 8...Filter.

Claims (1)

【特許請求の範囲】[Claims] (1)炭素源化合物、触媒源化合物、キャリヤガスおよ
び硫黄化合物を加熱帯に供給して炭素繊維を製造する方
法において、加熱帯温度を1300℃以上、単位時間当
たりに加熱帯に供給するキャリヤガス量(mol)を炭
素源化合物の単位時間当たりの供給量(g)に対して0
.04mol/g以上とすることを特徴とする炭素繊維
の製造方法。
(1) In a method for producing carbon fiber by supplying a carbon source compound, a catalyst source compound, a carrier gas, and a sulfur compound to a heating zone, the carrier gas is supplied to the heating zone per unit time to maintain the temperature of the heating zone at 1300°C or higher. The amount (mol) is 0 relative to the supply amount (g) of the carbon source compound per unit time.
.. A method for producing carbon fiber, characterized in that the carbon fiber content is 0.4 mol/g or more.
JP12078986A 1986-05-26 1986-05-26 Production of carbon fiber Pending JPS62282020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12078986A JPS62282020A (en) 1986-05-26 1986-05-26 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12078986A JPS62282020A (en) 1986-05-26 1986-05-26 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS62282020A true JPS62282020A (en) 1987-12-07

Family

ID=14795038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12078986A Pending JPS62282020A (en) 1986-05-26 1986-05-26 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS62282020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690997A (en) * 1993-10-04 1997-11-25 Sioux Manufacturing Corporation Catalytic carbon--carbon deposition process
WO2005118473A1 (en) * 2004-06-04 2005-12-15 Japan Science And Technology Agency Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690997A (en) * 1993-10-04 1997-11-25 Sioux Manufacturing Corporation Catalytic carbon--carbon deposition process
WO2005118473A1 (en) * 2004-06-04 2005-12-15 Japan Science And Technology Agency Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor

Similar Documents

Publication Publication Date Title
US4876078A (en) Process for preparing carbon fibers in gas phase growth
WO2006064760A1 (en) Process for producing carbon nanotube
JPS6249363B2 (en)
JPS62282020A (en) Production of carbon fiber
JPS63282313A (en) Ultrafine carbon fiber produced by vapor method
JPH02167898A (en) Production of graphite whisker
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
JPH01298214A (en) Production of carbon fiber
JPS61225328A (en) Production of carbonaceous fiber
JPS61282427A (en) Production of carbonaceous fiber
JPS63219630A (en) Production of carbon fiber
JPS62238826A (en) Production of carbon fiber
JPH0314623A (en) Production of carbon fiber
JPH0665765B2 (en) Carbon fiber manufacturing method
JP2007169838A (en) Vapor grown carbon fiber and method for producing the same
JPH02127523A (en) Carbon fiber of vapor growth
KR101109046B1 (en) Cup-stacked Carbon Nanotubes and Method of Preparing Same
JPS61225329A (en) Production of carbonaceous short fiber
JPS6262914A (en) Production of carbonaceous fiber
JPS6253419A (en) Production of carbon fiber by vapor-phase method
JPS62162699A (en) Production of carbonaceous whisker
JPS60231822A (en) Production of carbonaceous fiber
KR102030215B1 (en) Apparatus and method for synthesizing carbon nanotube
JPS61282425A (en) Production of carbonaceous fiber
JPS63182415A (en) Production of carbonaceous fiber