JP3071571B2 - Method for producing vapor grown carbon fiber - Google Patents

Method for producing vapor grown carbon fiber

Info

Publication number
JP3071571B2
JP3071571B2 JP4197911A JP19791192A JP3071571B2 JP 3071571 B2 JP3071571 B2 JP 3071571B2 JP 4197911 A JP4197911 A JP 4197911A JP 19791192 A JP19791192 A JP 19791192A JP 3071571 B2 JP3071571 B2 JP 3071571B2
Authority
JP
Japan
Prior art keywords
carbon fiber
catalyst
carbon
reaction
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4197911A
Other languages
Japanese (ja)
Other versions
JPH06146116A (en
Inventor
健治 橋本
隆夫 増田
紳 向井
行成 柴垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP4197911A priority Critical patent/JP3071571B2/en
Publication of JPH06146116A publication Critical patent/JPH06146116A/en
Application granted granted Critical
Publication of JP3071571B2 publication Critical patent/JP3071571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気相法炭素繊維の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing vapor grown carbon fiber.

【0002】[0002]

【従来の技術】炭素繊維は、ガラス繊維などに比べ、高
強度、高弾性等の優れた特性を有するために、プラスチ
ックなどの有機材料、セラミック、セメントなどの無機
材料、或いは金属材料などをマトリックスとして組合せ
た複合材料として、電子、電機、宇宙、航空、車両、建
築、レジャー用品などの広い分野で注目され、使用され
ている。
2. Description of the Related Art Carbon fibers have excellent properties such as high strength and high elasticity as compared with glass fibers and the like. Therefore, organic materials such as plastics, inorganic materials such as ceramics and cement, or metal materials are used as a matrix. As a composite material combined with, it has been attracting attention and used in a wide range of fields such as electronics, electric machinery, space, aviation, vehicles, architecture, and leisure goods.

【0003】従来、炭素繊維の製造にあたっては、合成
繊維や石油ピッチ繊維等の有機繊維を炭化する方法と、
ベンゼン、メタンといった炭化水素を炭素供給源とし
て、これを触媒下で熱分解して炭素繊維を生成させる気
相法による製造法が良く知られている。気相法による炭
素繊維の製造法については、旧くは特公昭41-12091号公
報に記載されている他に、これまでに数多く報告されて
いる。しかしながら、これまでの方法では、炭素繊維の
成長速度が遅く、長い反応時間を必要とする難点があ
り、特に触媒粒子と接触し、炭素の繊維成長種微粒子の
生成と繊維成長とが同時に並行して進むために、最適な
種微粒子を得ることが非常に難しかった。また得られる
炭素繊維も表面が滑らかであり、樹枝状或いは凹凸状に
なったものや(特開昭48-41038号、特開昭57-117623号公
報)、微小絨毛を密生させたもの(特開昭58-156512号
公報)もあるが、複合材料として用いた場合にマトリッ
クスとの密着性が充分でなく、補強効果が充分に得られ
ないという欠点があった。本発明者等は先に触媒の導入
方法を種々検討した結果、触媒をパルス形式で導入する
ことにより、成長速度が大きく、短時間で、しかもマト
リックスとの密着性に優れた炭素繊維を製造する方法を
見出した(特願平4-2022号)。
[0003] Conventionally, in the production of carbon fibers, a method of carbonizing organic fibers such as synthetic fibers and petroleum pitch fibers,
A well-known gas-phase production method in which a hydrocarbon such as benzene or methane is used as a carbon source and pyrolyzed in the presence of a catalyst to produce carbon fibers. A large number of methods for producing carbon fibers by the gas phase method have been reported so far, in addition to those described in Japanese Patent Publication No. 41-12091. However, the conventional methods have the disadvantage that the carbon fiber growth rate is slow and a long reaction time is required.In particular, the method is in contact with the catalyst particles, and the generation of carbon fiber growth seed fine particles and the fiber growth are simultaneously performed in parallel. Therefore, it was very difficult to obtain the optimal seed fine particles. The carbon fibers obtained also have a smooth surface and have a dendritic or irregular shape (JP-A-48-41038 and JP-A-57-117623), and those obtained by densely growing microvilli (see Japanese Patent Application Laid-Open No. 58-156512), however, has the drawback that when used as a composite material, the adhesion to the matrix is not sufficient and the reinforcing effect cannot be sufficiently obtained. The present inventors have conducted various studies on the method of introducing the catalyst, and as a result, by introducing the catalyst in a pulse form, a carbon fiber having a high growth rate, a short time, and excellent adhesion to the matrix is produced. We found a method (Japanese Patent Application No. 4-2022).

【0004】一方、従来工業的に炭素繊維を得るに当っ
ては、反応温度を1150〜1300℃といった高温にしないと
実用的な成長速度が得られず、装置を非常な高温に保た
ねばならないため、装置の材料、温度コントロール、運
転コストなどの設備面での不利な点が多かった。その為
に、特開昭61-239019号や特開昭62-85028号公報に記載
のように、特定の触媒を用いて反応温度を下げることも
試みられているが、繊維の成長速度が遅いという欠点が
あった。
On the other hand, in the conventional industrial production of carbon fibers, a practical growth rate cannot be obtained unless the reaction temperature is as high as 1150 to 1300 ° C., and the apparatus must be maintained at a very high temperature. Therefore, there are many disadvantages in equipment such as equipment materials, temperature control, and operating costs. For this reason, as described in JP-A-61-239019 and JP-A-62-85028, attempts have been made to lower the reaction temperature using a specific catalyst, but the growth rate of the fiber is slow. There was a disadvantage.

【0005】[0005]

【発明が解決しようとする課題】本発明は、触媒の導入
方法に加え、用いる触媒を種々検討の結果、低い反応温
度で炭素繊維の成長速度が大きく、短時間で生成する方
法を提供するものであり、しかもマトリックスとの密着
性に優れた炭素繊維を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a method for producing a carbon fiber at a high reaction rate at a low reaction temperature in a short time, as a result of various studies on the catalyst to be used, in addition to the method for introducing the catalyst. And a carbon fiber having excellent adhesion to the matrix.

【0006】[0006]

【課題を解決するための手段】本発明は、炭化水素を炭
素供給源とする気相法炭素繊維の製造方法において、炭
化水素の存在する炭素繊維析出帯域にパルス形式で導入
した鉄触媒とマンガン、ニッケル、銅又はクロム触媒と
から生成された合金核を触媒とすることを特徴とする気
相法炭素繊維の製造方法である。
SUMMARY OF THE INVENTION The present invention relates to a method for producing a vapor-grown carbon fiber using a hydrocarbon as a carbon source. And a nickel, copper or chromium catalyst as a catalyst.

【0007】本発明の最も特徴とするところは、合金核
触媒を導入するのに合金を用いて炭素供給源と共に定量
的に流すのではなく、合金を生成する個々の金属触媒成
分をパルスとして高温の反応域に導入し、微粒子状態で
合金核触媒を生成させるところにある。個々の金属触媒
成分がパルスとして反応域に導入されると高密度な状態
の触媒微粒子域を生ずるので、発生した触媒微粒子への
伝熱が良く、炭素供給源との接触も瞬時に起こり、触媒
の付着した炭素の種微粒子が生成されると共に合金化が
起こり、低温域で速い成長速度で炭素繊維を得ることが
できる。
The most characteristic feature of the present invention is that, instead of using an alloy to introduce an alloy core catalyst and flowing it quantitatively together with a carbon source, the individual metal catalyst components that form the alloy are pulsed at a high temperature. To produce an alloy core catalyst in the form of fine particles. When individual metal catalyst components are introduced into the reaction zone as a pulse, a high-density catalyst fine particle zone is generated, so that heat transfer to the generated catalyst fine particles is good, and contact with the carbon supply source occurs instantaneously, In addition to the generation of carbon seed fine particles to which carbon is attached, alloying occurs, and carbon fibers can be obtained at a high growth rate in a low temperature range.

【0008】鉄触媒とマンガン触媒とを例にとって、よ
り詳細に説明する。パルスでそれぞれの触媒を導入する
と、反応域に鉄微粒子とマンガン微粒子が先ず生成し、
鉄微粒子とマンガン微粒子とが接触し付着して合金化が
起こってゆく。炭素繊維の成長は、最初は鉄やマンガン
微粒子の触媒効果で少しずつ成長するが、鉄−マンガン
合金が生成するとより低温で溶融状態となる合金核触媒
となり、その効果で低温域でも急速に繊維成長が始ま
る。次いで供給されてくる炭素供給源との接触により炭
素繊維が成長してゆくという過程を経るため、種微粒子
生成過程と繊維成長過程とを区別することができ、触媒
微粒子と炭素供給源を供給する量やこれらが接触するま
での時間、種微粒子が炭素供給源と接触して繊維が成長
する時間などを自由に制御することができ、繊維成長に
必要な最適の大きさの種微粒子の生成を容易に行なうこ
とができる。このようにして、800〜1050℃位の低温域
であるにも拘らず、従来の方法に比べ、数十〜数百倍の
大きな成長速度で短い時間で長い炭素繊維を得ることが
できる。
The present invention will be described in more detail by taking an iron catalyst and a manganese catalyst as examples. When each catalyst is introduced by pulse, iron fine particles and manganese fine particles are first generated in the reaction zone,
The iron and manganese particles come into contact with and adhere to each other, causing alloying. Initially, carbon fiber grows little by little due to the catalytic effect of iron and manganese fine particles, but when an iron-manganese alloy is formed, it becomes an alloy core catalyst that becomes molten at a lower temperature. Growth begins. Then, the carbon fiber grows by contact with the supplied carbon source, so that the seed fine particle generation process and the fiber growth process can be distinguished, and the catalyst fine particles and the carbon source are supplied. The amount, the time until they come into contact, and the time during which the seed particles come into contact with the carbon source and the fiber grows can be freely controlled, and the generation of seed particles of the optimal size necessary for fiber growth can be performed. It can be done easily. In this way, a long carbon fiber can be obtained in a short time at a growth rate several tens to several hundred times larger than that of the conventional method, even in a low temperature range of about 800 to 1,050 ° C.

【0009】また本発明によれば、触媒微粒子が高密度
に生成するため、触媒微粒子や繊維が成長するに至らな
かった種微粒子が、成長した繊維の表面に一面に密に付
着することになり、繊維の表面に炭素が半球状に析出
し、更にその隙間に熱CVDにより炭素が析出して表面
に微小な炭素粒状体が密集した炭素繊維を得ることがで
きる。この微小な粒状体は、マトリックスと複合体を作
るときに強固な投描効果を示し、繊維とマトリックスと
の密着性の高い優れた特性を発揮することが可能とな
る。
Further, according to the present invention, since the catalyst fine particles are generated at a high density, the seed fine particles, which have not led to the growth of the catalyst fine particles or the fibers, adhere to the surface of the grown fibers in a dense manner. Then, carbon is deposited in a hemispherical shape on the surface of the fiber, and carbon is further deposited in the gap by thermal CVD, so that a carbon fiber in which fine carbon particles are densely packed on the surface can be obtained. The fine particles exhibit a strong drawing effect when forming a composite with the matrix, and can exhibit excellent characteristics with high adhesion between the fiber and the matrix.

【0010】本発明において用いる触媒としては、鉄・
マンガン、鉄・ニッケル、鉄・銅、鉄・クロムの各合金
を生成し得る金属触媒を用いるが、鉄、マンガン、ニッ
ケル、銅、クロムの各金属はパルスで導入したときに金
属核、金属クラスターなどの微粒子を生成し得るもので
あればよい。通常は、それぞれの有機金属化合物が用い
られることが多いが、金属塩を用いたり、金属を蒸発さ
せたりして用いることもできる。
The catalyst used in the present invention includes iron
Metal catalysts that can produce manganese, iron / nickel, iron / copper, and iron / chromium alloys are used, but iron, manganese, nickel, copper, and chromium are used as metal nuclei and metal clusters when introduced in pulses. What is necessary is just to be able to generate fine particles such as. Usually, each organic metal compound is often used, but a metal salt can be used or a metal can be evaporated.

【0011】鉄と合金を作るマンガンなどの金属の添加
量は、金属に換算して、鉄に対して0.5〜4%、好ましく
は2〜3%である。この範囲において収率が最も良く、上
下いずれにはずれても収率は低下してしまう。
The amount of addition of a metal such as manganese which forms an alloy with iron is 0.5 to 4%, preferably 2 to 3%, based on the metal. In this range, the yield is the best, and the yield decreases if it shifts up or down.

【0012】本発明において使用する炭素供給源として
は、通常炭化水素が用いられ、例えば、メタン、エタ
ン、プロパン、アセチレン、エチレン、プロピレンなど
の脂肪族炭化水素、ベンゼン、トルエン、ナフタレン、
アンスラセンなどの芳香族炭化水素などが使用される。
As the carbon source used in the present invention, hydrocarbons are usually used, for example, aliphatic hydrocarbons such as methane, ethane, propane, acetylene, ethylene and propylene, benzene, toluene, naphthalene, and the like.
An aromatic hydrocarbon such as anthracene is used.

【0013】キャリアガスとしては、水素ガス、一酸化
炭素ガスといった還元性のガスを単独で、或いはこれに
窒素ガス、二酸化炭素ガスなどを混合して用いる。
As the carrier gas, a reducing gas such as a hydrogen gas or a carbon monoxide gas is used alone, or a mixture of a reducing gas such as a nitrogen gas and a carbon dioxide gas is used.

【0014】本発明の方法について、概略図を用いて以
下に詳述する。図1は、反応器部分における繊維製造手
順の一例を示すもので、反応器1中にキャリアガスとし
て水素を、反応器中間部にある原料導入口2より炭素供
給源としてベンゼン蒸気を定常的に流し()、次いで
この状態のところへ、触媒として例えば鉄の有機化合物
であるフェロセンとアセチルアセトンマンガンをベンゼ
ンに溶解した溶液を定量パルスポンプ3より液パルスで
打込み、反応器壁4に衝突させる。反応器壁4は、所定
の温度に加熱されており、ここに衝突した液パルスは瞬
時に熱せられた鉄とマンガンの触媒微粒子を生成して炭
素繊維析出帯域5全体に拡散すると共に両触媒微粒子が
互に付着して合金核触媒を形成してゆく()。生成し
た触媒微粒子は、ベンゼン蒸気と接触し、種微粒子とな
り、気相成長が始まり、合金核が形成されると気相成長
した炭素繊維(VGCF)が急速に短時間に成長を続
け、反応器の下流に設置された内管6にトラップされ、
更に繊維は成長を続ける()。また、この内管はなく
ても反応管下流に成長した繊維が運ばれる。その際に、
一部の繊維は反応管に付着して成長する。一定の反応時
間を経過後にキャリアガスを窒素ガスに切替えて反応を
停止し、VGCFを回収する()。
The method of the present invention will be described in detail below with reference to schematic diagrams. FIG. 1 shows an example of a fiber production procedure in a reactor portion, in which hydrogen is continuously supplied as a carrier gas in a reactor 1 and benzene vapor is supplied as a carbon supply source from a raw material inlet 2 in an intermediate portion of the reactor. Then, a solution obtained by dissolving ferrocene, which is an organic compound of iron, and acetylacetone manganese in benzene, as a catalyst, is injected by a constant pulse pump 3 with a liquid pulse into this state, and collided with the reactor wall 4. The reactor wall 4 is heated to a predetermined temperature, and the impinging liquid pulse instantaneously generates heated iron and manganese catalyst fine particles, which are diffused throughout the carbon fiber deposition zone 5 and both catalyst fine particles are diffused. Adhere to each other to form an alloy core catalyst (). The generated catalyst fine particles come into contact with benzene vapor to become seed fine particles, and vapor phase growth starts. When alloy nuclei are formed, the vapor grown carbon fiber (VGCF) continues to grow rapidly and in a short time. Trapped in the inner pipe 6 installed downstream of
Furthermore, the fiber continues to grow (). Further, the fibers grown downstream of the reaction tube are carried without the inner tube. At that time,
Some fibers attach to the reaction tubes and grow. After a certain reaction time has elapsed, the reaction is stopped by switching the carrier gas to nitrogen gas, and the VGCF is collected ().

【0015】概略図に示した方法以外にも、触媒の導入
については、例えば反応器中心に極微細管から超微粒子
でパルスを噴霧するといった方法をとることもできる。
また、ベンゼン蒸気をキャリアガスと共に最初から流す
とか、反応器に予熱部を設けておくといったことも可能
である。繊維の補捉は、自重で堆積させてもよいし、反
応器外へ排出するとか、縦型で自由落下させるとかの方
法をとることもできる。
In addition to the method shown in the schematic diagram, the introduction of the catalyst may be carried out by, for example, spraying a pulse with ultrafine particles from an ultrafine tube at the center of the reactor.
It is also possible to flow benzene vapor together with the carrier gas from the beginning, or to provide a preheating section in the reactor. The fiber may be captured by its own weight, may be discharged to the outside of the reactor, or may be freely dropped vertically.

【0016】液パルスの導入は、0.2秒以上、好ましく
は0.3〜0.6秒の範囲内のパルス間隔で行なうのが良い。
一定時間液パルスの導入をする際には、連続的に液パル
スを導入しても良いし、0.5〜数秒といった短時間の液
パルスを間歇的に必要な回数だけ繰返し導入しても良
い。通常、析出帯域の反応温度は、800〜1050℃、反応
時間は、バッチ式では10秒〜10分、連続式では成長域滞
留時間が10秒〜5分である。炭素源の供給量は、0.01〜
0.1ml/min、キャリアガスの流量は10〜100ml/minであ
る。反応温度については、得られる合金核によって異な
るが、実用上は装置上の点から1000℃以下の低温域で行
なうことが望まれる。パルス間隔、反応温度、反応時
間、炭素源の種類や供給量、溶媒の種類などを適宜選択
調節することにより、炭素繊維の成長速度、得られる炭
素繊維の太さ、長さ、表面状態などを制御することがで
きる。炭素繊維の成長は、100〜2500μm/secの速度で
制御することができ、繊維径1.0〜15μm、長さ3〜100mm
のものを得ることができる。炭素繊維表面に密集する微
小炭素粒状体の大きさは、0.10〜15.0μmである。以下
に実施例を示す。
The introduction of the liquid pulse is performed at a pulse interval of 0.2 seconds or more, preferably in the range of 0.3 to 0.6 seconds.
When the liquid pulse is introduced for a certain period of time, the liquid pulse may be introduced continuously or a short-time liquid pulse of 0.5 to several seconds may be intermittently repeated as many times as necessary. Usually, the reaction temperature in the precipitation zone is 800 to 1,050 ° C., and the reaction time is 10 seconds to 10 minutes in the batch system, and 10 seconds to 5 minutes in the continuous system in the growth zone. The supply amount of the carbon source is 0.01 to
0.1 ml / min, and the flow rate of the carrier gas is 10 to 100 ml / min. The reaction temperature varies depending on the obtained alloy nucleus, but practically, it is desired to perform the reaction at a low temperature of 1000 ° C. or less from the viewpoint of the apparatus. By appropriately selecting and adjusting the pulse interval, reaction temperature, reaction time, type and supply amount of the carbon source, type of the solvent, etc., the growth rate of the carbon fiber, the thickness, length, surface state, etc. of the obtained carbon fiber can be controlled. Can be controlled. The growth of carbon fiber can be controlled at a speed of 100 ~ 2500μm / sec, fiber diameter 1.0 ~ 15μm, length 3 ~ 100mm
Can be obtained. The size of the fine carbon particles densely packed on the carbon fiber surface is 0.10 to 15.0 μm. Examples will be described below.

【0017】[0017]

【実施例】【Example】

(実施例1)電気炉内に予熱部と反応部(炭素繊維析出
帯域)とを持つ、中間部に原料導入口のついた反応器を
設置し、30分間窒素ガスを流した後、水素ガスを60ml/
minの流量で流しておき、反応管を加熱する。予熱部の
温度800℃、反応部の温度950℃になったところで、ベン
ゼンを0.05ml/minの流量で原料導入口より流し、安定
したところで、フェロセンとアセチルアセトンマンガン
とを鉄に対するマンガンの割合((g-Mn)/(g-Fe)重量
%)が3.0%となるように調整したベンゼン溶液を0.025
ml単位で0.5秒間隔のパルスで1秒間原料導入口より対
壁へ打込み、打込開始後5分間反応経過したところでベ
ンゼン及び水素ガスの供給を停止し、窒素ガスに切替
え、反応を停止した。得られた炭素繊維は、表面に0.6
〜2.0μmの炭素粒状体が付着した、径5〜15μm、長さ50
〜80mmのものであった。
(Example 1) A reactor having a preheating section and a reaction section (carbon fiber deposition zone) in an electric furnace and having a raw material introduction port in an intermediate section was installed, and after flowing nitrogen gas for 30 minutes, hydrogen gas was supplied. 60ml /
Heat the reaction tube at a flow rate of min. When the temperature of the preheating section reached 800 ° C. and the temperature of the reaction section reached 950 ° C., benzene was flowed from the raw material inlet at a flow rate of 0.05 ml / min. g-Mn) / (g-Fe) weight%) was adjusted to 3.0% with a benzene solution of 0.025%.
The mixture was injected into the opposite wall from the raw material inlet at a pulse of 0.5 seconds in units of ml for 1 second, and after 5 minutes from the start of the injection, the supply of benzene and hydrogen gas was stopped, and the reaction was stopped by switching to nitrogen gas. The obtained carbon fiber has a surface of 0.6
~ 15μm in diameter, length 50 with carbon particles of ~ 2.0μm attached
~ 80mm.

【0018】(実施例2)実施例1において、液パルス
0.3秒間隔で1秒間とした以外は実施例1と同様にして
反応を行なった。得られた炭素繊維は、表面に0.5〜2.5
μmの炭素粒状体が付着した、径2.5〜10μm、長さ40〜9
0mmのものであった。
(Embodiment 2) In Embodiment 1, the liquid pulse
The reaction was carried out in the same manner as in Example 1 except that the interval was set to 1 second at intervals of 0.3 second. The obtained carbon fiber has a surface of 0.5-2.5
2.5 to 10 μm in diameter, 40 to 9 in length with carbon particles of μm attached
It was 0 mm.

【0019】(実施例3)実施例1において、アセチル
アセトンマンガンの代りにアセチルアセトンニッケルを
用いた以外は同様にして反応を行なった。得られた炭素
繊維は、径3.5〜6.5μm、長さ30〜50mmのものであっ
た。
Example 3 A reaction was carried out in the same manner as in Example 1 except that acetylacetone nickel was used instead of acetylacetone manganese. The obtained carbon fiber had a diameter of 3.5 to 6.5 μm and a length of 30 to 50 mm.

【0020】(実施例4)実施例1において、アセチル
アセトンマンガンの代りにアセチルアセトンクロムを用
いた以外は同様にして反応を行なった。得られた炭素繊
維は、径3.5〜10μm、長さ20〜50mmのものであっ
た。
Example 4 A reaction was carried out in the same manner as in Example 1, except that acetylacetone manganese was used instead of acetylacetone manganese. The obtained carbon fibers had a diameter of 3.5 to 10 μm and a length of 20 to 50 mm.

【0021】(実施例5)実施例1において、アセチル
アセトンマンガンの代りにビス(2,4-ペンタンジオナー
ト)銅を用いて、反応温度を1000℃にした以外は同様に
して反応を行なった。得られた炭素繊維は、径2.5〜12
μm、長さ20〜30mmのものであった。
Example 5 A reaction was carried out in the same manner as in Example 1, except that bis (2,4-pentanedionate) copper was used instead of acetylacetone manganese, and the reaction temperature was changed to 1000 ° C. The obtained carbon fiber has a diameter of 2.5 to 12
μm, 20-30 mm in length.

【0022】[0022]

【発明の効果】本発明によれば、低温度反応域で、炭素
繊維の成長速度が大きく、短時間で必要な長さの繊維を
得ることができ、しかも複合材料としたときにマトリッ
クスとの密着性に優れた炭素繊維を得ることができる。
According to the present invention, the growth rate of carbon fibers is high in a low-temperature reaction zone, and fibers of a required length can be obtained in a short time. A carbon fiber having excellent adhesion can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による炭素繊維の製法を示す一例の概略
図である。
FIG. 1 is a schematic view showing an example of a method for producing a carbon fiber according to the present invention.

【符号の説明】[Explanation of symbols]

1:反応器 2:原料導入口 3:定量パルスポンプ 4:反応器壁 5:炭素繊維析出帯域 6:内管 1: reactor 2: raw material inlet 3: metering pulse pump 4: reactor wall 5: carbon fiber deposition zone 6: inner tube

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D01F 9/127 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) D01F 9/127

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化水素を炭素供給源とする気相法炭素
繊維の製造方法において、炭化水素の存在する炭素繊維
析出帯域にパルス形式で導入した鉄触媒とマンガン、ニ
ッケル、銅又はクロム触媒とから生成された合金核を触
媒とすることを特徴とする気相法炭素繊維の製造方法。
1. A method for producing a vapor-grown carbon fiber using a hydrocarbon as a carbon source, wherein an iron catalyst and a manganese, nickel, copper or chromium catalyst introduced in a pulse form into a carbon fiber deposition zone where a hydrocarbon is present. A method for producing a vapor-grown carbon fiber, comprising using an alloy nucleus generated from a catalyst as a catalyst.
JP4197911A 1992-07-24 1992-07-24 Method for producing vapor grown carbon fiber Expired - Lifetime JP3071571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4197911A JP3071571B2 (en) 1992-07-24 1992-07-24 Method for producing vapor grown carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4197911A JP3071571B2 (en) 1992-07-24 1992-07-24 Method for producing vapor grown carbon fiber

Publications (2)

Publication Number Publication Date
JPH06146116A JPH06146116A (en) 1994-05-27
JP3071571B2 true JP3071571B2 (en) 2000-07-31

Family

ID=16382327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4197911A Expired - Lifetime JP3071571B2 (en) 1992-07-24 1992-07-24 Method for producing vapor grown carbon fiber

Country Status (1)

Country Link
JP (1) JP3071571B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469739B2 (en) 2011-02-08 2013-06-25 Belden Inc. Cable connector with biasing element
US8506325B2 (en) 2008-09-30 2013-08-13 Belden Inc. Cable connector having a biasing element

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497775B1 (en) * 2002-08-23 2005-06-23 나노미래 주식회사 Catalyst for Process of Graphite Nanofibers And Process Thereof, Graphite Nanofibers And Process of Graphite Nanofibers
KR100713609B1 (en) * 2003-07-18 2007-05-02 (주)넥센나노텍 Fibrous carbon composed of two carbon nano-fibils
KR100726368B1 (en) * 2003-07-18 2007-06-11 (주)넥센나노텍 Fibrous nano-carbon
JP5364904B2 (en) * 2006-11-02 2013-12-11 島根県 Method for producing carbon nanofiber aggregate
CN101899726B (en) * 2010-08-17 2012-05-23 西南交通大学 Method for preparing nano-carbon fibers
CN104246030B (en) 2012-03-08 2016-02-24 旭碳株式会社 Carbon fiber production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506325B2 (en) 2008-09-30 2013-08-13 Belden Inc. Cable connector having a biasing element
US8469739B2 (en) 2011-02-08 2013-06-25 Belden Inc. Cable connector with biasing element

Also Published As

Publication number Publication date
JPH06146116A (en) 1994-05-27

Similar Documents

Publication Publication Date Title
JP2778434B2 (en) Method for producing vapor grown carbon fiber
US4900483A (en) Method of producing isotropically reinforced net-shape microcomposites
JPS62242B2 (en)
JPS6249363B2 (en)
JP3071571B2 (en) Method for producing vapor grown carbon fiber
JPH0424320B2 (en)
US4970123A (en) Isotropically reinforced net-shape microcomposites
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JP3071536B2 (en) Carbon fiber
JP3117523B2 (en) Method for producing vapor grown carbon fiber
JPS60252720A (en) Production of carbon fiber by vapor phase method
Mukai et al. The production of vapor grown carbon fibers from a mixture of benzene, toluene and xylene using the liquid pulse injection technique
Masuda et al. Rapid vapor grown carbon fiber production using the intermittent liquid pulse injection technique
JPH026617A (en) Production of carbon fiber
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
JPS6262914A (en) Production of carbonaceous fiber
CN100467369C (en) Preparation method of carbon nanometer pipe
JPS6278217A (en) Vapor-phase production of carbon fiber
JPH09324325A (en) Apparatus for producing vapor-phase grown carbon fiber
JP4156978B2 (en) Carbon fiber manufacturing method
Liu et al. Low temperature growth of carbon nanotubes by thermal chemical vapor deposition using non-isothermal deposited Ni–P–Pd as co-catalyst
JPS59152298A (en) New production process for carbon fiber
JP2531739B2 (en) Method for producing vapor grown carbon fiber
JPH0319920A (en) Production of carbon fiber
JPH11124740A (en) Carbon micro-coil and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13