WO2022143476A1 - 电磁加热设备及噪音抑制方法、加热控制***、存储介质 - Google Patents

电磁加热设备及噪音抑制方法、加热控制***、存储介质 Download PDF

Info

Publication number
WO2022143476A1
WO2022143476A1 PCT/CN2021/141332 CN2021141332W WO2022143476A1 WO 2022143476 A1 WO2022143476 A1 WO 2022143476A1 CN 2021141332 W CN2021141332 W CN 2021141332W WO 2022143476 A1 WO2022143476 A1 WO 2022143476A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
module
heating module
electromagnetic
starting
Prior art date
Application number
PCT/CN2021/141332
Other languages
English (en)
French (fr)
Inventor
雷俊
曾露添
朱成彬
王云峰
江德勇
刘文华
郑量
Original Assignee
佛山市顺德区美的电热电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的电热电器制造有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Priority to KR1020237023921A priority Critical patent/KR20230121121A/ko
Priority to EP21914213.0A priority patent/EP4255111A4/en
Priority to CA3203415A priority patent/CA3203415A1/en
Priority to US18/259,586 priority patent/US20240074007A1/en
Priority to JP2023540116A priority patent/JP2024501699A/ja
Publication of WO2022143476A1 publication Critical patent/WO2022143476A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment

Definitions

  • the present application relates to the technical field of electromagnetic heating, and in particular, to an electromagnetic heating device, a noise suppression method, a heating control system, and a storage medium.
  • electromagnetic heating equipment with multiple heating zones and combined heating corresponding to multiple coils generally adopts a control method of gradually increasing the power of the heating module to the target power during the startup process of electromagnetic heating, that is, this control method The rate of change of the driving power is gradually reduced.
  • this control method will cause the magnetic fields of adjacent coils to be out of sync in the process of successively starting the heating in two adjacent regions, which in turn causes the magnetic fields of adjacent coils to overlap or cancel each other, thereby generating electromagnetic noise.
  • the present application proposes an electromagnetic heating device, a noise suppression method, a heating control system, and a storage medium, so that when a later-started heating module starts to work, the operating frequency of the first-started adjacent heating module is adjusted to the same as that of the later-started heating module.
  • the operating frequencies of the modules are the same, so that the coil magnetic field direction of the heating module started first and the heating module started later are the same, so as to eliminate electromagnetic noise.
  • the present application proposes a method for suppressing electromagnetic noise of an electromagnetic heating device.
  • the method includes the following steps: when it is determined that two adjacent heating modules of the electromagnetic heating device are working successively, the heating modules are activated after acquisition.
  • the working frequency of the first-start heating module is adjusted according to the starting working frequency of the latter-start heating module, so that when the latter-start heating module starts to work, two adjacent heating modules use the same working frequency to perform synchronously. Work.
  • the starting frequency of the heating module to be started after the start of the heating module is obtained, so that the starting frequency of the heating module to be started after the start of the heating module is obtained.
  • the starting working frequency adjusts the working frequency of the first-starting heating module, so that when the later-starting heating module starts to work, two adjacent heating modules use the same working frequency to work synchronously. Therefore, when the heating module started later starts to work, the operating frequency of the adjacent heating module started first can be adjusted to be the same as the operating frequency of the heating module started later, so that the heating module started first is the same as the heating module started later.
  • the coil magnetic field direction of the heating module is the same to eliminate electromagnetic noise.
  • the present application provides a computer-readable storage medium on which an electromagnetic noise suppression program of an electromagnetic heating device is stored.
  • the electromagnetic noise suppression program of the electromagnetic heating device is executed by a processor, the above-mentioned electromagnetic heating device can Electromagnetic noise suppression method.
  • the adjacent heating module started first can be The working frequency of the module is adjusted to be the same as the working frequency of the later-started heating module, so that the coil magnetic field directions of the first-started heating module and the later-started heating module are the same, thereby eliminating electromagnetic noise.
  • the present application proposes an electromagnetic heating device, which includes a memory, a processor, and an electromagnetic noise suppression program for the electromagnetic heating device that is stored in the memory and can be run on the processor, and the processor executes the electromagnetic noise.
  • the noise suppression program the electromagnetic noise suppression method of the electromagnetic heating apparatus described above is realized.
  • the electromagnetic heating device by implementing the electromagnetic noise suppression method for the magnetic heating device described above, it is possible to adjust the operating frequency of the adjacent heating module started first to be the same as that of the later-started heating module when the latter-started heating module starts to work.
  • the working frequencies of the activated heating modules are the same, so that the coil magnetic field directions of the first activated heating modules and the later activated heating modules are the same, thereby eliminating electromagnetic noise.
  • the present application proposes a heating control system for an electromagnetic heating device, the control system includes a first heating module and a second heating module disposed corresponding to adjacent heating zones; a first driving module and a second driving module, The first driving module is used for driving the first heating module to work, the second driving module is used for driving the second heating module to work; the rectifying module is used for the input AC power supply Perform rectification processing to output power supply, and supply the power supply to the first heating module and the second heating module; a zero-crossing detection module, the zero-crossing detection module is used to detect the zero-crossing of the AC power supply signal; a control module, the control module is used to obtain the starting working frequency of the second heating module when the first heating module is working and the second heating module needs to be started, and according to the zero-crossing signal and the The starting working frequency of the second heating module generates a first control signal and a second control signal respectively, and the working frequency of the first heating module is adjusted and adjusted by the first driving module according to the first control signal
  • the zero-crossing signal of the AC power source is detected by the zero-crossing detection module;
  • the control module is used to work in the first heating module and the second heating module needs
  • the starting working frequency of the second heating module is obtained, and the first control signal and the second control signal are respectively generated according to the zero-crossing signal and the starting working frequency of the second heating module, and the first control signal is passed through the first driving module according to the first control signal.
  • the working frequency of the first heating module is adjusted and the second heating module is driven to work by the second driving module according to the second control signal, so that the first heating module and the second heating module use the same working frequency to work synchronously. Therefore, when the heating module started later starts to work, the operating frequency of the adjacent heating module started first can be adjusted to be the same as the operating frequency of the heating module started later, so that the heating module started first is the same as the heating module started later.
  • the coil magnetic field direction of the heating module is the same to eliminate electromagnetic noise.
  • the present application proposes another electromagnetic heating device, which includes the above-mentioned heating control system for the electromagnetic heating device.
  • the operating frequency of the first-started adjacent heating module can be adjusted to the same as that of the later-started heating module.
  • the working frequencies of the heating modules are the same, so that the magnetic fields of the coils of the heating modules started first and the heating modules started later are in the same direction, thereby eliminating electromagnetic noise.
  • FIG. 1 is a flowchart of an electromagnetic noise suppression method for an electromagnetic heating device according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an electromagnetic heating device according to an embodiment of the present application.
  • FIG. 3 is a waveform diagram of a method for suppressing electromagnetic noise of an electromagnetic heating device according to an embodiment of the present application
  • FIG. 4 is a waveform diagram of an electromagnetic noise suppression method for an electromagnetic heating device according to another embodiment of the present application.
  • FIG. 5 is a structural block diagram of a heating control system of an electromagnetic heating device according to an embodiment of the present application.
  • FIG. 6 is a structural block diagram of an electromagnetic heating device according to an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for suppressing electromagnetic noise of an electromagnetic heating device according to an embodiment of the present application.
  • the electromagnetic noise suppression method for electromagnetic heating equipment includes the following steps:
  • the operating frequency of the heating module of the electromagnetic heating device is generally high, the operating frequency of the heating module can be controlled by controlling the frequency of the driving signal output by the driving module.
  • the starting operating frequencies of all heating modules on the electromagnetic heating device can be obtained in advance, and then the frequencies of the driving signals corresponding to the starting operating frequencies can be obtained, and the frequencies of the driving signals can be stored in the memory of the electromagnetic heating device. Further, if it is determined that two adjacent heating modules work successively, the frequency of the driving signal required to start the heating module afterward can be obtained from the storage device.
  • the frequencies of the driving signals required by all the above heating modules can also be stored in the cloud server. If it is determined that two adjacent heating modules work successively, the frequencies of the driving signals required to activate the heating modules can be obtained from the cloud server.
  • the AC power source 10 outputs an AC signal.
  • the zero-crossing detection module 60 receives the AC signal output by the AC power source 10 , processes the AC signal to obtain a zero-volt detection signal, and then transmits the zero-volt detection signal to the control module 30 .
  • the control module 30 can control the harmonic voltage waveform required by the output coil of the power module through the driving module, so as to realize the control of the heating module by the control module.
  • the method for controlling the heating module by the control module 30 may be as follows: when the operating frequency of the first-starting heating module is reduced to the starting operating frequency of the latter-starting heating module, the controlled-starting heating module starts to work synchronously at the same operating frequency.
  • the control module 30 controls the driving module 40 to output a driving signal, and the frequency of the driving signal is the frequency required for the coil 90 to work normally.
  • the drive signal outputs an A resonance voltage waveform that enables the coil 90 to work normally.
  • the control module 30 controls the driving module 50 not to output the driving signal.
  • the control module 30 controls the drive module 50 to output a drive signal whose frequency is the frequency required for the coil 100 to start heating, and then the power module 80 can enable the coil 100 to start up according to the received drive signal output. Heated B resonant voltage waveform.
  • the control module 30 controls the driving module 40 to increase the frequency of the output driving signal to be the same as the frequency of the driving signal output by the driving module 50 .
  • the above-mentioned method for controlling the heating module by the control module 30 can also be as follows: controlling the first-start heating module to stop working, and after a preset time, according to the starting working frequency of the later-starting heating module, the first-starting heating module and the later-starting heating module are controlled to start working synchronously. .
  • the control module 30 controls the driving module 40 to output a driving signal, and the frequency of the driving signal is the frequency required for the normal operation of the coil 90 ,
  • the power module 70 outputs the A resonance voltage waveform that enables the coil 90 to work normally according to the driving signal.
  • the control module 30 controls the driving module 50 not to output the driving signal.
  • the above-mentioned first preset time may be set by the user, or may be the default preset time of the device.
  • the control module 30 controls the driving module 40 and the control module 50 to not output a driving signal. That is, within the first preset time before the post-start module starts to work, the coil 90 that is started first is controlled to stop heating.
  • the control module 30 controls the drive module 50 to output a drive signal whose frequency is the frequency required for the coil 100 to start heating, and then the power module 80 can enable the coil 100 to start up according to the received drive signal output. Heated B resonant voltage waveform.
  • the control module 30 controls the driving module 40 to output a driving signal, and the frequency of the driving signal is the same as the frequency of the driving signal output by the driving module 50 .
  • the frequency of the driving signal output by the driving module 40 can be adjusted to be the same as the frequency of the driving signal output by the driving module 50 .
  • the changing trend of the working frequencies of the two adjacent heating modules remains the same. That is, as the coil 100 starts the heating process, the frequency of the driving signal required by the coil 100 gradually decreases, the driving module 50 outputs a driving signal that can meet the requirements of the coil 100, and the power module 80 outputs the corresponding B according to the received driving signal.
  • the resonant voltage waveform causes the coil 100 to start the heating process; at the same time, the control module 30 controls the driving module 40 to output a driving signal whose frequency is the same as the frequency of the driving signal output by the driving module 50 .
  • the control module 30 and the control module 40 output driving signals of the same frequency until the coil 100 completes the heating process.
  • the duty cycle of the PWM signals of the two adjacent heating modules is independently adjustable between 0-50%. That is, although the frequencies of the driving signals output by the driving module 40 and the driving module 50 are consistent, the duty ratios of the driving signals output by the driving module 40 and the driving module 50 may be different.
  • the electromagnetic noise suppression method of the electromagnetic heating device can also control a plurality of adjacent heating modules. For example, if there are three adjacent heating modules A, B, and C, heating module A starts to work first, and heating module C starts to work last. Then, the heating module A can be controlled to keep synchronization with the heating module B when the heating module B starts heating.
  • the electromagnetic noise suppression method of the electromagnetic heating device can realize that when the later-started heating module starts to work, the operating frequency of the first-started adjacent heating module can be adjusted to the same as that of the later-started heating module.
  • the frequency is the same, so that the coil magnetic field direction of the heating module started first and the heating module started later are the same, so as to eliminate electromagnetic noise.
  • the adjacent heating modules started first are synchronized with the coil magnetic field direction, so as to realize that there is no electromagnetic noise during the starting process of the later-started heating module.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores an electromagnetic noise suppression program of the electromagnetic heating device, and the electromagnetic noise suppression program of the electromagnetic heating device implements the electromagnetic noise suppression method of the electromagnetic heating device described above when executed by the processor.
  • the electromagnetic noise suppression program of the electromagnetic heating device stored thereon when executed by the processor, it can realize that when the heating module started later starts to work, the adjacent heating module started first can be activated.
  • the working frequency of the heating module is adjusted to be the same as the working frequency of the later-started heating module, so that the coil magnetic field directions of the first-started heating module and the later-started heating module are the same, so as to eliminate electromagnetic noise.
  • the adjacent heating modules started first are synchronized with the coil magnetic field direction, so as to realize that there is no electromagnetic noise during the starting process of the later-started heating module.
  • the present application proposes an electromagnetic heating device.
  • the electromagnetic heating device includes a memory, a processor, and an electromagnetic noise suppression program of the electromagnetic heating device that is stored in the memory and can run on the processor.
  • the processor executes the electromagnetic noise suppression program, the above electromagnetic noise suppression program is implemented.
  • Electromagnetic noise suppression method for heating equipment is implemented.
  • the electromagnetic heating device of the embodiment of the present application by implementing the above-mentioned electromagnetic noise suppression method of the electromagnetic heating device, can realize that when the later-started heating module starts to work, the operating frequency of the first-started adjacent heating module can be adjusted to the same as that of the latter-started heating module.
  • the working frequency of the heating module is the same, so that the coil magnetic field direction of the heating module started first and the heating module started later are the same, so as to eliminate electromagnetic noise.
  • the adjacent heating modules started first are synchronized with the coil magnetic field direction, so as to realize that there is no electromagnetic noise during the starting process of the later-started heating module.
  • FIG. 5 is a structural block diagram of a heating control system of an electromagnetic heating device according to an embodiment of the present application.
  • the heating control system 100 of the electromagnetic heating device includes a first heating module 101, a second heating module 102, a first driving module 103, a second driving module 104, a rectification module 105, a zero-crossing detection module 106, Control module 107 , AC power supply 108 .
  • the first driving module 103 is used to drive the first heating module 101 to work
  • the second driving module 104 is used to drive the second heating module 102 to work
  • the rectifier module 105 is used to drive the input AC power supply 108
  • the rectification process is used to output the power supply and supply the power supply to the first heating module 101 and the second heating module 102
  • the zero-crossing detection module 106 is used to detect the zero-crossing signal of the AC power supply 108
  • the control module 107 is used for the first heating module.
  • the second heating module 102 needs to be started when the starting frequency of the second heating module 102 is obtained, and the first control signal and the second control signal are respectively generated according to the zero-crossing signal and the starting frequency of the second heating module 102, and adjust the operating frequency of the first heating module 101 through the first driving module 103 according to the first control signal and drive the second heating module 102 to work through the second driving module 104 according to the second control signal, so that the first heating module 101 It works synchronously with the second heating module 102 using the same working frequency.
  • the heating control system can adjust the working frequency of the adjacent heating module started first to be the same as the working frequency of the heating module started later when the heating module started later starts to work, so that the heating module started first is the same as the heating module started later.
  • the coil magnetic field direction of the activated heating module is the same to eliminate electromagnetic noise.
  • control module 107 is further configured to: control the working frequency of the first heating module to be reduced to the starting working frequency of the second heating module through the first driving module according to the first control signal, according to the second control signal
  • the second heating module is controlled by the second driving module to start working synchronously at the same working frequency.
  • control module 107 is further configured to: control the first heating module to stop working, and after a preset time, control the synchronization of the first heating module and the second heating module according to the starting frequency of the post-start heating module start working.
  • the duty ratio of the PWM signals of the two heating modules is independently adjustable between 0-50%.
  • the variation trend of the working frequency of the first heating module is consistent with the variation trend of the working frequency of the second heating module.
  • the heating control system of the electromagnetic heating device can adjust the operating frequency of the adjacent heating module started first to the operating frequency of the heating module started later when the heating module started later starts to work. Therefore, the coil magnetic field directions of the heating module started first and the heating module started later are the same, so as to eliminate electromagnetic noise. Furthermore, during the starting process of the later-started heating module, the adjacent heating modules started first are synchronized with the coil magnetic field direction, so as to realize that there is no electromagnetic noise during the starting process of the later-started heating module.
  • FIG. 6 is a structural block diagram of an electromagnetic heating device according to another embodiment of the present application.
  • the electromagnetic heating device 1000 includes the above-mentioned heating control system 100 of the electromagnetic heating device.
  • the operating frequency of the adjacent heating module started first can be adjusted to be the same as that of the heating module started later.
  • the operating frequencies of the modules are the same, so that the coil magnetic field direction of the heating module started first and the heating module started later are the same, so as to eliminate electromagnetic noise.
  • the adjacent heating module started first is synchronized with the coil magnetic field direction, so that there is no electromagnetic noise during the starting process of the later-started heating module.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transport the program for use by or in connection with an instruction execution system, apparatus, or apparatus.
  • computer readable media include the following: electrical connections with one or more wiring (electronic devices), portable computer disk cartridges (magnetic devices), random access memory (RAM), Read Only Memory (ROM), Erasable Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, followed by editing, interpretation, or other suitable medium as necessary process to obtain the program electronically and then store it in computer memory.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

一种电磁加热设备及噪音抑制方法、加热控制***、存储介质,涉及电磁加热技术领域。其中,噪声抑制方法包括:在确定电磁加热设备的相邻两个加热模块先后进行工作时,获取后启动加热模块的开始工作频率;根据后启动加热模块的开始工作频率对先启动加热模块的工作频率进行调节,以便在后启动加热模块开始工作时相邻两个加热模块采用相同工作频率同步进行工作。

Description

电磁加热设备及噪音抑制方法、加热控制***、存储介质
相关申请的交叉引用
本申请要求于2020年12月29日提交的申请号为202011587915.9,名称为“电磁加热设备及噪音抑制方法、加热控制***、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电磁加热技术领域,特别涉及一种电磁加热设备及噪音抑制方法、加热控制***、存储介质。
背景技术
目前,具有多个加热区、对应多个线盘组合加热的电磁加热设备,在电磁加热的启动过程中,一般是采用将加热模块的功率逐步增大到目标功率的控制方式,即该控制方式中驱动功率的变化率是逐步减小的。然而,该控制方式在相邻的两个区域先后启动加热的过程中,会导致相邻线圈的磁场方向不同步,进而导致相邻的线圈的磁场相互叠加或抵消,从而产生电磁噪音。
申请内容
本申请提出了一种电磁加热设备及噪音抑制方法、加热控制***、存储介质,以在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。
第一方面,本申请提出了一种电磁加热设备的电磁噪音抑制方法,所述方法包括以下步骤:在确定所述电磁加热设备的相邻两个加热模块先后进行工作时,获取后启动加热模块的开始工作频率;根据所述后启动加热模块的开始工作频率对先启动加热模块的工作频率进行调节,以便在所述后启动加热模块开始工作时相邻两个加热模块采用相同工作频率同步进行工作。
根据本申请实施例的电磁加热设备的电磁噪音抑制方法,通过在确定电磁加热设备的相邻两个加热模块先后进行工作时,获取后启动加热模块的开始工作频率,从而根据后启动加热模块的开始工作频率对先启动加热模块的工作频率进行调节,以便在后启动加热模块开始工作时相邻两个加热模块采用相同工作频率同步进行工作。由此,可以实现在后启动 的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。
第二方面,本申请提出了一种计算机可读存储介质,其上存储有电磁加热设备的电磁噪音抑制程序,该电磁加热设备的电磁噪音抑制程序被处理器执行时实现上述的电磁加热设备的电磁噪音抑制方法。
根据本申请实施例的计算机可读存储介质,在其上存储的电磁加热设备的电磁噪音抑制程序被处理器执行时,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。
第三方面,本申请提出了一种电磁加热设备,其包括存储器、处理器及存储在存储器上并可在处理器上运行的电磁加热设备的电磁噪音抑制程序,所述处理器执行所述电磁噪音抑制程序时,实现上述的电磁加热设备的电磁噪音抑制方法。
根据本申请实施例的电磁加热设备,通过实现上述的磁加热设备的电磁噪音抑制方法,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。
第四方面,本申请提出了一种电磁加热设备的加热控制***,所述控制***包括对应相邻加热区设置的第一加热模块和第二加热模块;第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一加热模块进行工作,所述第二驱动模块用于驱动所述第二加热模块进行工作;整流模块,所述整流模块用于对输入的交流电源进行整流处理以输出供电电源,并将所述供电电源供给所述第一加热模块和所述第二加热模块;过零检测模块,所述过零检测模块用于检测所述交流电源的过零信号;控制模块,所述控制模块用于在所述第一加热模块进行工作且所述第二加热模块需要启动时获取所述第二加热模块的开始工作频率,并根据所述过零信号和所述第二加热模块的开始工作频率分别生成第一控制信号和第二控制信号,以及根据所述第一控制信号通过所述第一驱动模块对所述第一加热模块的工作频率进行调节和根据所述第二控制信号通过所述第二驱动模块驱动所述第二加热模块进行工作,以便所述第一加热模块和所述第二加热模块采用相同工作频率同步进行工作。
根据本申请实施例的电磁加热设备的加热控制***,通过过零检测模块检测交流电源的过零信号;通过整流模块对输入的交流电源进行整流处理以输出供电电源,并将供电电源供给第一加热模块和第二加热模块;通过第一驱动模块驱动第一加热模块进行工作,通过第二驱动模块驱动第二加热模块进行工作;通过控制模块在第一加热模块进行工作且第二 加热模块需要启动时获取第二加热模块的开始工作频率,并根据过零信号和第二加热模块的开始工作频率分别生成第一控制信号和第二控制信号,以及根据第一控制信号通过第一驱动模块对第一加热模块的工作频率进行调节和根据第二控制信号通过第二驱动模块驱动第二加热模块进行工作,以便第一加热模块和第二加热模块采用相同工作频率同步进行工作。由此,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。
第五方面,本申请提出了另一种电磁加热设备,其包括上述的电磁加热设备的加热控制***。
根据本申请实施例的电磁加热设备,通过上述的电磁加热设备的加热控制***,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例的电磁加热设备的电磁噪音抑制方法的流程图;
图2是本申请一个实施例的电磁加热设备的结构示意图;
图3是本申请一个实施例的电磁加热设备的电磁噪音抑制方法的波形图;
图4是本申请另一个实施例的电磁加热设备的电磁噪音抑制方法的波形图;
图5是本申请实施例的电磁加热设备的加热控制***的结构框图;
图6是本申请一个实施例的电磁加热设备的结构框图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的电磁加热设备及噪音抑制方法、加热控制***、存储介质。
图1是本申请一个实施例的电磁加热设备的电磁噪音抑制方法的流程图。
如图1所示,电磁加热设备的电磁噪音抑制方法包括以下步骤:
S11,在确定电磁加热设备的相邻两个加热模块先后进行工作时,获取后启动加热模块的开始工作频率。
需要说明的是,由于电磁加热设备的加热模块的工作频率普遍较高,因此可以通过控制驱动模块输出的驱动信号的频率来控制加热模块的工作频率。
作为一个示例,可事先获取电磁加热设备上所有加热模块的开始工作频率,进而获取与该开始工作频率对应的驱动信号的频率,并可将该驱动信号的频率存储在电磁加热设备的存储器内。进一步地,若确定相邻两个加热模块先后进行工作,则可从存储设备内获取后启动加热模块所需要的驱动信号的频率。
上述的所有加热模块所需要的驱动信号的频率也可存储在云端服务器内,若确定相邻两个加热模块先后进行工作,则可从云端服务器获取后启动加热模块所需要的驱动信号的频率。
S12,根据后启动加热模块的开始工作频率对先启动加热模块的工作频率进行调节,以便在后启动加热模块开始工作时相邻两个加热模块采用相同工作频率同步进行工作。
作为一个示例,如图2所示,交流电源10输出交流信号。过零检测模块60接收交流电源10输出的交流信号,并对该交流信号进行处理得到零伏检测信号,进而将该零伏检测信号传输给控制模块30。控制模块30可通过驱动模块控制功率模块输出线圈所需要的谐波电压波形,从而实现控制模块对加热模块的控制。
其中,上述控制模块30控制加热模块的方法可以为:控制先启动加热模块的工作频率降低至后启动加热模块的开始工作频率时,控制后启动加热模块以同样的工作频率同步开始工作。
在本实施例中,如图3所示,在后启动模块开始工作之前,控制模块30控制驱动模块40输出驱动信号,该驱动信号的频率为线圈90正常工作需要的频率,功率模块70根据该驱动信号输出能使线圈90正常工作的A谐振电压波形。控制模块30控制驱动模块50不输出驱动信号。
在后启动模块开始工作时,控制模块30控制驱动模块50输出驱动信号,该驱动信号的频率为线圈100启动加热所需要的频率,进而功率模块80根据接收到的驱动信号输出能使线圈100启动加热的B谐振电压波形。控制模块30控制驱动模块40将输出的驱动信号的频率提升至与驱动模块50输出的驱动信号的频率相同。
上述控制模块30控制加热模块的方法还可为:控制先启动加热模块停止工作,并在预设时间后,根据后启动加热模块的开始工作频率控制先启动加热模块和后启动加热模块同 步开始工作。
在本实施例中,如图4所示,在后启动模块开始工作第一预设时间之前,控制模块30控制驱动模块40输出驱动信号,该驱动信号的频率为线圈90正常工作需要的频率,功率模块70根据该驱动信号输出能使线圈90正常工作的A谐振电压波形。控制模块30控制驱动模块50不输出驱动信号。其中,上述第一预设时间可以由用户自行设置,也可以为设备默认的预设时间。
在后启动模块开始工作前第一预设时间之内,控制模块30控制驱动模块40与控制模块50均不输出驱动信号。即,在后启动模块开始工作前第一预设时间内,控制先启动的线圈90停止加热。
在后启动模块开始工作时,控制模块30控制驱动模块50输出驱动信号,该驱动信号的频率为线圈100启动加热所需要的频率,进而功率模块80根据接收到的驱动信号输出能使线圈100启动加热的B谐振电压波形。控制模块30控制驱动模块40输出驱动信号,该驱动信号的频率与驱动模块50输出的驱动的信号频率相同。
由此,可以实现在后启动的线圈100开始启动时,将驱动模块40输出的驱动信号的频率调整至与驱动模块50输出的驱动信号的频率相同。
在相邻两个加热模块采用相同工作频率同步进行工作后,相邻两个加热模块的工作频率变化趋势保持一致。即,随着线圈100进行启动加热过程,线圈100所需要的驱动信号的频率逐渐降低,驱动模块50输出能满足线圈100的需求的驱动信号,功率模块80根据接收到的驱动信号输出对应的B谐振电压波形,使得线圈100进行启动加热过程;同时,控制模块30控制驱动模块40输出驱动信号,该驱动信号的频率与驱动模块50输出的驱动信号的频率相同。控制模块30与控制模块40输出相同频率的驱动信号直至线圈100完成启动加热过程。
由此,可以实现在后启动的线圈100启动的过程中,驱动信号40输出的驱动信号的频率变化与驱动模块50输出的驱动信号的频率变换保持同步。
在相邻两个加热模块同步进行工作的过程中,相邻两个加热模块的PWM信号的占空比在0-50%之间独自可调。即,虽然驱动模块40与驱动模块50输出的驱动信号的频率一致,但驱动模块40与驱动模块50输出的驱动信号的占空比可以不相同。
需要说明的是,本申请实施例的电磁加热设备的电磁噪音抑制方法,也可以对多个相邻的加热模块进行控制。例如,若有3个相邻的加热模块A、B、C,加热模块A最先开始工作,加热模块C最后开始工作。则可在加热模块B启动加热的过程中控制加热模块A保持与加热模块B同步;在加热模块C启动加热的过程中控制加热模块A、加热模块B保持与加热模块C同步。
综上,本申请实施例的电磁加热设备的电磁噪音抑制方法,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。进而在后启动的加热模块的启动过程中,先启动的相邻加热模块与其保持线圈磁场方向同步,从而实现在后启动的加热模块的启动过程中无电磁噪音。
进一步地,本申请提出一种计算机可读存储介质。
在本申请实施例中,计算机可读存储介质上存储有电磁加热设备的电磁噪音抑制程序,该电磁加热设备的电磁噪音抑制程序被处理器执行时实现上述的电磁加热设备的电磁噪音抑制方法。
本申请实施例的计算机可读存储介质,在其上存储的电磁加热设备的电磁噪音抑制程序被处理器执行时,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。进而在后启动的加热模块的启动过程中,先启动的相邻加热模块与其保持线圈磁场方向同步,从而实现在后启动的加热模块的启动过程中无电磁噪音。
进一步地,本申请提出一种电磁加热设备。
在本申请实施例中,电磁加热设备包括存储器、处理器及存储在存储器上并可在处理器上运行的电磁加热设备的电磁噪音抑制程序,处理器执行电磁噪音抑制程序时,实现上述的电磁加热设备的电磁噪音抑制方法。
本申请实施例的电磁加热设备,通过实现上述的电磁加热设备的电磁噪音抑制方法,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。进而在后启动的加热模块的启动过程中,先启动的相邻加热模块与其保持线圈磁场方向同步,从而实现在后启动的加热模块的启动过程中无电磁噪音。
图5是本申请实施例的电磁加热设备的加热控制***的结构框图。
如图5所示,该电磁加热设备的加热控制***100包括第一加热模块101、第二加热模块102、第一驱动模块103、第二驱动模块104、整流模块105、过零检测模块106、控制模块107、交流电源108。
在本实施例中,第一驱动模块103用于驱动第一加热模块101进行工作,第二驱动模块104用于驱动第二加热模块102进行工作;整流模块105用于对输入的交流电源108进行整流处理以输出供电电源,并将供电电源供给第一加热模块101和第二加热模块102;过零检 测模块106用于检测交流电源108的过零信号;控制模块107用于在第一加热模块101进行工作且第二加热模块102需要启动时获取第二加热模块102的开始工作频率,并根据过零信号和第二加热模块102的开始工作频率分别生成第一控制信号和第二控制信号,以及根据第一控制信号通过第一驱动模块103对第一加热模块101的工作频率进行调节和根据第二控制信号通过第二驱动模块104驱动第二加热模块102进行工作,以便第一加热模块101和第二加热模块102采用相同工作频率同步进行工作。
该加热控制***,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。
在本申请一个实施例中,控制模块107还用于:根据第一控制信号通过第一驱动模块控制第一加热模块的工作频率降低至第二加热模块的开始工作频率时,根据第二控制信号通过第二驱动模块控制第二加热模块以同样的工作频率同步开始工作。
在本申请一个实施例中,控制模块107还用于:控制第一加热模块停止工作,并在预设时间后,根据后启动加热模块的开始工作频率控制第一加热模块和第二加热模块同步开始工作。
其中,在第一加热模块和第二加热模块同步进行工作的过程中,两个加热模块的PWM信号的占空比在0-50%之间独自可调。
进一步地,在第一加热模块和第二加热模块采用相同工作频率同步进行工作后,第一加热模块的工作频率变化趋势和第二加热模块的工作频率变化趋势保持一致。
需要说明的是,本申请实施例的电磁加热设备的加热控制***的其他具体实施方式,可以参见上述的电磁加热设备的加热控制***。
综上,本申请实施例的电磁加热设备的加热控制***,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。进而在后启动的加热模块的启动过程中,先启动的相邻加热模块与其保持线圈磁场方向同步,从而实现在后启动的加热模块的启动过程中无电磁噪音。
图6是本申请另一个实施例的电磁加热设备的结构框图。
如图6所示,该电磁加热设备1000包括上述的电磁加热设备的加热控制***100。
本申请实施例的电磁加热设备,通过上述的电磁加热设备的加热控制***,可以实现在后启动的加热模块开始工作时,将先启动的相邻加热模块的工作频率调整至与后启动的加热模块的工作频率相同,从而令先启动的加热模块与后启动的加热模块的线圈磁场方向相同,实现消除电磁噪音。进而在后启动的加热模块的启动过程中,先启动的相邻加热模块 与其保持线圈磁场方向同步,从而实现在后启动的加热模块的启动过程中无电磁噪音。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或 者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种电磁加热设备的电磁噪音抑制方法,包括以下步骤:
    在确定所述电磁加热设备的相邻两个加热模块先后进行工作时,获取后启动加热模块的开始工作频率;
    根据所述后启动加热模块的开始工作频率对先启动加热模块的工作频率进行调节,以便在所述后启动加热模块开始工作时相邻两个加热模块采用相同工作频率同步进行工作。
  2. 如权利要求1所述的电磁加热设备的电磁噪音抑制方法,其中,根据所述后启动加热模块的开始工作频率对先启动加热模块的工作频率进行调节,包括:
    控制所述先启动加热模块的工作频率降低至所述后启动加热模块的开始工作频率时,控制所述后启动加热模块以同样的工作频率同步开始工作。
  3. 如权利要求1所述的电磁加热设备的电磁噪音抑制方法,其中,根据所述后启动加热模块的开始工作频率对先启动加热模块的工作频率进行调节,包括:
    控制所述先启动加热模块停止工作,并在预设时间后,根据所述后启动加热模块的开始工作频率控制所述先启动加热模块和所述后启动加热模块同步开始工作。
  4. 如权利要求1-3中任一项所述的电磁加热设备的电磁噪音抑制方法,其中,在相邻两个加热模块采用相同工作频率同步进行工作后,相邻两个加热模块的工作频率变化趋势保持一致。
  5. 如权利要求4所述的电磁加热设备的电磁噪音抑制方法,其中,在相邻两个加热模块同步进行工作的过程中,相邻两个加热模块的PWM信号的占空比在0-50%之间独自可调。
  6. 一种计算机可读存储介质,其上存储有电磁加热设备的电磁噪音抑制程序,该电磁加热设备的电磁噪音抑制程序被处理器执行时实现如权利要求1-5中任一项所述的电磁加热设备的电磁噪音抑制方法。
  7. 一种电磁加热设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的电磁加热设备的电磁噪音抑制程序,所述处理器执行所述电磁噪音抑制程序时,实现如权利要求1-5中任一项所述的电磁加热设备的电磁噪音抑制方法。
  8. 一种电磁加热设备的加热控制***,包括:
    对应相邻加热区设置的第一加热模块和第二加热模块;
    第一驱动模块和第二驱动模块,所述第一驱动模块用于驱动所述第一加热模块进行工作,所述第二驱动模块用于驱动所述第二加热模块进行工作;
    整流模块,所述整流模块用于对输入的交流电源进行整流处理以输出供电电源,并将所述供电电源供给所述第一加热模块和所述第二加热模块;
    过零检测模块,所述过零检测模块用于检测所述交流电源的过零信号;
    控制模块,所述控制模块用于在所述第一加热模块进行工作且所述第二加热模块需要启动时获取所述第二加热模块的开始工作频率,并根据所述过零信号和所述第二加热模块的开始工作频率分别生成第一控制信号和第二控制信号,以及根据所述第一控制信号通过所述第一驱动模块对所述第一加热模块的工作频率进行调节和根据所述第二控制信号通过所述第二驱动模块驱动所述第二加热模块进行工作,以便所述第一加热模块和所述第二加热模块采用相同工作频率同步进行工作。
  9. 如权利要求8所述的电磁加热设备的加热控制***,其中,所述控制模块还用于,根据所述第一控制信号通过所述第一驱动模块控制所述第一加热模块的工作频率降低至所述第二加热模块的开始工作频率时,根据所述第二控制信号通过所述第二驱动模块控制所述第二加热模块以同样的工作频率同步开始工作。
  10. 如权利要求8所述的电磁加热设备的加热控制***,其中,所述控制模块还用于,控制所述第一加热模块停止工作,并在预设时间后,根据所述后启动加热模块的开始工作频率控制所述第一加热模块和所述第二加热模块同步开始工作。
  11. 如权利要求8-10中任一项所述的电磁加热设备的加热控制***,其中,在所述第一加热模块和所述第二加热模块采用相同工作频率同步进行工作后,所述第一加热模块的工作频率变化趋势和所述第二加热模块的工作频率变化趋势保持一致。
  12. 如权利要求11所述的电磁加热设备的加热控制***,其中,在所述第一加热模块和所述第二加热模块同步进行工作的过程中,两个加热模块的PWM信号的占空比在0-50%之间独自可调。
  13. 一种电磁加热设备,包括如权利要求8-12中任一项所述的电磁加热设备的加热控制***。
PCT/CN2021/141332 2020-12-29 2021-12-24 电磁加热设备及噪音抑制方法、加热控制***、存储介质 WO2022143476A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237023921A KR20230121121A (ko) 2020-12-29 2021-12-24 전자기 가열 디바이스, 소음 억제 방법, 가열 제어시스템 및 저장 매체
EP21914213.0A EP4255111A4 (en) 2020-12-29 2021-12-24 ELECTROMAGNETIC HEATER, NOISE REDUCTION METHOD, HEATING CONTROL SYSTEM AND STORAGE MEDIUM
CA3203415A CA3203415A1 (en) 2020-12-29 2021-12-24 Electromagnetic heating device, noise suppression method, heating control system and storage medium
US18/259,586 US20240074007A1 (en) 2020-12-29 2021-12-24 Electromagnetic heating device, noise suppression method, heating control system, and storage medium
JP2023540116A JP2024501699A (ja) 2020-12-29 2021-12-24 電磁加熱装置、ノイズ抑制方法、加熱制御システム及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011587915.9 2020-12-29
CN202011587915.9A CN114698166B (zh) 2020-12-29 2020-12-29 电磁加热设备及噪音抑制方法、加热控制***、存储介质

Publications (1)

Publication Number Publication Date
WO2022143476A1 true WO2022143476A1 (zh) 2022-07-07

Family

ID=82129723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141332 WO2022143476A1 (zh) 2020-12-29 2021-12-24 电磁加热设备及噪音抑制方法、加热控制***、存储介质

Country Status (7)

Country Link
US (1) US20240074007A1 (zh)
EP (1) EP4255111A4 (zh)
JP (1) JP2024501699A (zh)
KR (1) KR20230121121A (zh)
CN (1) CN114698166B (zh)
CA (1) CA3203415A1 (zh)
WO (1) WO2022143476A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931272A (zh) * 2011-10-28 2014-07-16 松下电器产业株式会社 感应加热装置
CN105050217A (zh) * 2015-07-28 2015-11-11 阳春丽 一种串联谐振式感应加热电源同步运行方法
CN105530719A (zh) * 2014-09-30 2016-04-27 深圳市鑫汇科股份有限公司 一种半桥多炉头切换电磁感应加热控制装置及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724857B2 (ja) * 1995-09-18 2005-12-07 株式会社瀬田技研 電磁誘導加熱装置の温度制御装置及び始動方法
JP2000341165A (ja) * 1999-05-25 2000-12-08 Matsushita Electric Ind Co Ltd 通信装置、通信方法および記録媒体
DE102005021888A1 (de) * 2005-05-04 2007-02-15 E.G.O. Elektro-Gerätebau GmbH Verfahren und Anordnung zur Leistungsversorgung mehrerer Induktionsspulen bei einem Induktionsgerät
EP2194758B1 (en) * 2005-12-26 2011-10-05 Panasonic Corporation State detector for detecting operating state of radio-frequency heating apparatus
JP5052329B2 (ja) * 2007-12-27 2012-10-17 和光電研株式会社 電磁誘導加熱装置
TWI394547B (zh) * 2009-03-18 2013-05-01 Delta Electronics Inc 加熱裝置
CN101848566B (zh) * 2009-03-23 2013-02-20 台达电子工业股份有限公司 加热装置
ES2392223B1 (es) * 2010-12-27 2013-10-09 BSH Electrodomésticos España S.A. Dispositivo de aparato de cocción y procedimiento para dicho dispositivo.
JP5665553B2 (ja) * 2011-01-07 2015-02-04 三菱電機株式会社 電磁加熱機器システム
EP2506666B1 (de) * 2011-03-28 2020-05-06 BSH Hausgeräte GmbH Gargerätevorrichtung
CN103574707B (zh) * 2012-08-07 2016-05-04 美的集团股份有限公司 用于多头电磁灶的功率控制方法及多头电磁灶
CN103574706B (zh) * 2012-08-07 2016-02-10 美的集团股份有限公司 多头电磁灶及其加热控制方法
CN106559928A (zh) * 2015-09-28 2017-04-05 比亚迪股份有限公司 电磁加热装置及其加热控制电路和控制方法
CN107027201B (zh) * 2016-02-02 2020-10-30 佛山市顺德区美的电热电器制造有限公司 电磁加热装置及其降噪控制方法
JP2017168236A (ja) * 2016-03-15 2017-09-21 日立アプライアンス株式会社 誘導加熱調理器
CN109945247B (zh) * 2017-12-21 2020-05-05 佛山市顺德区美的电热电器制造有限公司 电磁烹饪器具及其功率控制方法
KR102607284B1 (ko) * 2018-08-30 2023-11-27 엘지전자 주식회사 유도 가열 장치 및 유도 가열 장치의 제어 방법
CN109358537A (zh) * 2018-09-30 2019-02-19 珠海格力电器股份有限公司 降低电磁烹饪器具噪音的控制***、控制方法、烹饪器具
CN110250951B (zh) * 2019-06-27 2022-02-01 九阳股份有限公司 一种食品加工机控制方法
CN112113246A (zh) * 2020-08-27 2020-12-22 中山爱它电器科技有限公司 多头电磁炉的降噪方法及控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103931272A (zh) * 2011-10-28 2014-07-16 松下电器产业株式会社 感应加热装置
CN105530719A (zh) * 2014-09-30 2016-04-27 深圳市鑫汇科股份有限公司 一种半桥多炉头切换电磁感应加热控制装置及方法
CN105050217A (zh) * 2015-07-28 2015-11-11 阳春丽 一种串联谐振式感应加热电源同步运行方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4255111A4 *

Also Published As

Publication number Publication date
KR20230121121A (ko) 2023-08-17
EP4255111A4 (en) 2024-06-12
JP2024501699A (ja) 2024-01-15
CN114698166A (zh) 2022-07-01
CN114698166B (zh) 2023-06-16
US20240074007A1 (en) 2024-02-29
CA3203415A1 (en) 2022-07-07
EP4255111A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US9823609B2 (en) Image forming apparatus
US9740158B2 (en) Power supply unit and image forming apparatus
US20210337636A1 (en) Induction heating device and control method of induction heating device
WO2018209773A1 (zh) 压缩机驱动***及其的控制方法、装置
WO2022143476A1 (zh) 电磁加热设备及噪音抑制方法、加热控制***、存储介质
CN110801145A (zh) 烹饪装置的控制方法、***及烹饪装置
JP3725102B2 (ja) 単相インバータの低速リップル電流抑制装置及び方法
US9128449B2 (en) Fixing device and image forming apparatus
JP2018057163A (ja) ステッピングモーターの制御装置、及びステッピングモーターの制御方法
JP6949618B2 (ja) 電源装置及び画像形成装置
WO2022143351A1 (zh) 电磁加热设备及其功率控制方法、功率控制装置
JP3053920B2 (ja) 高電圧発生装置
JP2006294431A (ja) 誘導加熱装置
JP4605545B2 (ja) 電磁誘導加熱制御装置
JP4196069B2 (ja) 誘導加熱調理器
JPH04308459A (ja) 電源装置
JP2003257613A (ja) 電子レンジのインバータ装置
JP2012205423A (ja) モータの制御装置
JP2022089233A (ja) 誘導加熱調理器
JP3833159B2 (ja) 誘導加熱装置
CN112714514A (zh) 电磁加热设备及其加热控制***、方法
JPH0356074A (ja) パルス幅変調インバータ装置
JPH07177785A (ja) ターボ分子ポンプ駆動電源装置
JPH03145995A (ja) インバータ装置制御方法
JP5380450B2 (ja) 圧電トランスの駆動回路及び駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3203415

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18259586

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023540116

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021914213

Country of ref document: EP

Effective date: 20230627

ENP Entry into the national phase

Ref document number: 20237023921

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE