WO2020255871A1 - 金属張積層体の製造方法 - Google Patents

金属張積層体の製造方法 Download PDF

Info

Publication number
WO2020255871A1
WO2020255871A1 PCT/JP2020/023194 JP2020023194W WO2020255871A1 WO 2020255871 A1 WO2020255871 A1 WO 2020255871A1 JP 2020023194 W JP2020023194 W JP 2020023194W WO 2020255871 A1 WO2020255871 A1 WO 2020255871A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
clad laminate
manufacturing
liquid crystal
sided
Prior art date
Application number
PCT/JP2020/023194
Other languages
English (en)
French (fr)
Inventor
健 ▲高▼橋
崇裕 中島
翔真 佐々木
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020217040426A priority Critical patent/KR20220020270A/ko
Priority to CN202080043587.8A priority patent/CN114007832B/zh
Priority to JP2021528172A priority patent/JP7458396B2/ja
Publication of WO2020255871A1 publication Critical patent/WO2020255871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D17/00Forming single grooves in sheet metal or tubular or hollow articles
    • B21D17/04Forming single grooves in sheet metal or tubular or hollow articles by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/0004Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/003Layered products comprising a metal layer

Definitions

  • thermoplastic liquid crystal polymer film a film made of a thermoplastic polymer capable of forming an optically anisotropic molten phase (hereinafter, this may be referred to as a thermoplastic liquid crystal polymer) (hereinafter, this is referred to as a thermoplastic liquid crystal polymer film).
  • a metal-clad laminate or a metal-clad laminate in which a metal layer is laminated on one surface (which may be), and a metal shaping sheet is laminated on the other surface, the surface of the thermoplastic liquid crystal polymer film side being a shaping surface.
  • the present invention relates to a method for producing a metal-clad laminate) from which the metal shaping sheet on the other surface is peeled off.
  • Thermoplastic liquid crystal polymer film is known as a material having excellent heat resistance, low hygroscopicity, high frequency characteristics, etc., and has been attracting attention as an electronic circuit material for high-speed transmission in recent years.
  • a metal-clad laminate of a thermoplastic liquid crystal polymer film and a metal foil is used, but in the bonding process in the circuit processing process, the thermoplastic liquid crystal polymer film provided in the metal-clad laminate is provided.
  • the interlayer adhesiveness between the metal and the bonding sheet may not be sufficient.
  • thermoplastic liquid crystal polymer film Conventionally, in a single-sided metal-clad laminate having a metal layer on one surface of a thermoplastic liquid crystal polymer film in order to improve the interlayer adhesiveness with a bonding sheet, an uneven shape is formed on the surface of the thermoplastic liquid crystal polymer film on the other side.
  • the shaping process to be given was being performed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2016-10967 includes a step of stacking a first metal foil, a liquid crystal polymer film, and a second metal foil in this order and heating and pressurizing the second metal foil.
  • the surface to be laminated on the liquid crystal polymer film is a matte surface, and a method for producing a liquid crystal polymer film with a metal foil in which the matte surface is subjected to a mold release treatment is disclosed.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-179609
  • a method for producing a laminated wiring board which comprises superimposing a laminate on the surface of another unit substrate to form a laminated plate having two or more layers, and heating and pressurizing the laminated plate. Is disclosed as a liquid crystal polymer.
  • the metal layer serving as a transmission line has a skin effect, so that the high-frequency characteristics of the metal layer, that is, the transmission loss depends on its surface roughness. Therefore, it is desirable to use a low-roughness metal layer having a small surface roughness because the transmission loss is small, that is, the high-frequency characteristics are improved.
  • Patent Document 1 when the first metal foil, the liquid crystal polymer film, and the second metal foil to be peeled off later for the shaping treatment are laminated and heated and pressed to be laminated and integrated at once. If a low-roughness material is used for the first metal foil, it is necessary to heat the first metal foil to near the melting point (or above the melting point) in order to improve the interlayer adhesiveness between the first metal foil and the liquid crystal polymer film. .. In that case, high-temperature heat is applied even at the interface between the second metal leaf and the liquid crystal polymer film, which will be peeled off later, and even if the second metal leaf is subjected to the mold release treatment, the interlayer adhesion is caused by the anchor effect due to the unevenness of the surface. Since the property is high, it becomes difficult to peel off the second metal foil.
  • liquid crystal polymer molecules of the thermoplastic liquid crystal polymer film are easily oriented by heating and pressurizing, the orientation changes significantly when heated and pressed at a high temperature as described above, and the resulting metal-clad laminate warps. Is large, and the dimensional change is large, which makes it difficult to form a circuit board.
  • an object of the present invention is to provide a method for producing a metal-clad laminate having a small dimensional change and being efficiently shaped.
  • the inventors of the present invention have independently performed the production of the single-sided metal-clad laminate and the shaping treatment of the single-sided metal-clad laminate, thereby performing the shaping treatment. It has been found that the dimensional change of the metal-clad laminate can be suppressed because the heating and pressurizing at a high temperature can be avoided. Then, a single-sided metal-clad laminate in which a metal layer is adhered to one surface of the thermoplastic liquid crystal polymer film is prepared, and the single-sided metal-clad laminate and the metal shaping sheet are continuously thermocompression bonded to be efficiently applied. It was found that the shape processing can be performed, and the present invention has been completed.
  • a longer release cushion material (C) is prepared, In the thermocompression bonding step, the release cushion material (C) is arranged on at least one of the non-contact side of the single-sided metal-clad laminate (A) and the metal shaping sheet (B), and a pair of pressure rolls (r). 1, is introduced into the r 2), method for producing a metal clad laminate.
  • the peel strength between the release cushion material (C) and the single-sided metal-clad laminate (A) or the metal shaping sheet (B) is 0.
  • a method for producing a metal-clad laminate which is 1 N / mm or less (preferably 0.05 N / mm or less, more preferably 0.03 N / mm or less).
  • the release cushioning material (C) is a heat-resistant resin film, a heat-resistant composite film, a heat-resistant non-woven fabric, and a mold release material on at least one surface.
  • the single-sided metal-clad laminate (A), the metal shaping sheet (B), and the release cushion material (C) are stacked in the order of (C) / (A) / (B) / (r 2 ).
  • a method for manufacturing a metal-clad laminate to be introduced [Aspect 11] The method for producing a metal-clad laminate according to the tenth aspect, wherein in the thermocompression bonding step, the pressure roll (r 2 ) has a higher heating temperature than the pressure roll (r 1 ). Method.
  • Aspect 12 The method for producing a metal-clad laminate according to any one of aspects 1 to 11, wherein a plurality of long single-sided metal-clad laminates (A) and elongated metal shaping sheets (B) are provided.
  • a method for manufacturing a metal-clad laminate which prepares and manufactures a plurality of metal-clad laminates.
  • Aspect 13 The method for manufacturing a metal-clad laminate according to aspect 11, which is subordinate to any one of aspects 6 to 9, wherein a plurality of sets of single-sided metal-clad laminate (A) and metal addition are formed in the thermocompression bonding step.
  • the single-sided metal-clad laminate (A), the metal shaping sheet (B), and the release cushion material (C) are stacked in the order of / (C) / (A) / (B) / (r 2 ).
  • a method for manufacturing a metal-clad laminate in which a single-sided metal-clad laminate (A), a metal shaping sheet (B), and a release cushioning material (C) are stacked and introduced. ..
  • a single-sided metal-clad laminate and a metal shaping sheet are prepared and arranged so that the thermoplastic liquid crystal polymer film surface of the single-sided metal-clad laminate and the shaping surface of the metal shaping sheet are in contact with each other.
  • a metal-clad laminate in which a metal shaping sheet is laminated on a thermoplastic liquid crystal polymer film surface of a single-sided metal-clad laminate, or a metal-clad laminate that has been shaped-treated is continuously connected.
  • the metal-clad laminate is a metal-clad laminate having a metal layer on one surface of a thermoplastic liquid crystal polymer film and a metal shaping sheet on the other surface, or a thermoplastic liquid crystal polymer film. It may be a metal-clad laminate having a metal layer on one surface and the other surface being shaped, and may be appropriately provided with other accessories (for example, a release cushioning material).
  • thermoplastic liquid crystal polymer film used in the production method of the present invention is formed from a liquid crystal polymer that can be melt-molded.
  • the thermoplastic liquid crystal polymer is a polymer capable of forming an optically anisotropic molten phase, and the chemical composition thereof is not particularly limited as long as it is a liquid crystal polymer that can be melt-molded. , Thermoplastic liquid crystal polyester, or thermoplastic liquid crystal polyester amide in which an amide bond is introduced therein.
  • thermoplastic liquid crystal polymer may be a polymer in which an imide bond, a carbonate bond, an isocyanate-derived bond such as a carbodiimide bond or an isocyanurate bond is further introduced into an aromatic polyester or an aromatic polyester amide.
  • thermoplastic liquid crystal polymer used in the present invention include known thermoplastic liquid crystal polyesters and thermoplastic liquid crystal polyesteramides derived from the compounds classified into (1) to (4) and derivatives thereof exemplified below. Can be mentioned. However, it goes without saying that the combination of various raw material compounds has an appropriate range in order to form a polymer capable of forming an optically anisotropic molten phase.
  • Aromatic or aliphatic diols (see Table 1 for typical examples)
  • Aromatic diamine, aromatic hydroxyamine or aromatic aminocarboxylic acid (see Table 4 for typical examples)
  • thermoplastic liquid crystal polymers obtained from these raw material compounds include copolymers having structural units shown in Tables 5 and 6.
  • a copolymer containing p-hydroxybenzoic acid and / or 6-hydroxy-2-naphthoic acid as at least a repeating unit is preferable, and (i) p-hydroxybenzoic acid and 6-hydroxy- A copolymer containing a repeating unit with 2-naphthoic acid, or at least one aromatic hydroxycarboxylic acid selected from the group consisting of (ii) p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, and at least one.
  • a copolymer containing a repeating unit of the aromatic diol of the above and at least one aromatic dicarboxylic acid is preferable.
  • the p-hydroxybenzoic acid of the repeating unit (A) if the thermoplastic liquid crystal polymer contains at least a repeating unit of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, the p-hydroxybenzoic acid of the repeating unit (A).
  • At least one aromatic hydroxycarboxylic acid (C) selected from the group consisting of p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and 4,4'-.
  • aromatic diol (D) selected from the group consisting of dihydroxybiphenyl, hydroquinone, phenylhydroquinone, and 4,4'-dihydroxydiphenyl ether, and the group consisting of terephthalic acid, isophthalic acid and 2,6-naphthalenedicarboxylic acid.
  • the molar ratio of the repeating unit derived from 6-hydroshiki-2-naphthoic acid in the aromatic hydroxycarboxylic acid (C) may be, for example, 85 mol% or more, preferably 90 mol% or more. It may be preferably 95 mol% or more.
  • the molar ratio of the repeating unit derived from 2,6-naphthalenedicarboxylic acid in the aromatic dicarboxylic acid (E) may be, for example, 85 mol% or more, preferably 90 mol% or more, and more preferably 95 mol%. It may be% or more.
  • optically anisotropic molten phase referred to in the present invention can be formed can be determined by, for example, placing the sample on a hot stage, heating the sample in a nitrogen atmosphere, and observing the transmitted light of the sample. ..
  • a preferred thermoplastic liquid crystal polymer has a melting point (hereinafter referred to as Tm 0 ) having, for example, a melting point in the range of 200 to 360 ° C., preferably in the range of 240 to 350 ° C., and more preferably Tm 0.
  • the temperature is 260 to 330 ° C.
  • the melting point can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer sample using a differential scanning calorimeter. That is, after the thermoplastic liquid crystal polymer sample was heated at a rate of 10 ° C./min to completely melt it, the melt was cooled to 50 ° C. at a rate of 10 ° C./min and again at a rate of 10 ° C./min. The position of the endothermic peak that appears after the temperature is raised is determined as the melting point of the thermoplastic liquid crystal polymer sample.
  • the thermoplastic liquid crystal polymer may have a melt viscosity of 30 to 120 Pa ⁇ s at a shear rate of 1000 / s at (Tm 0 + 20) ° C., preferably a melt viscosity of 50. It may have ⁇ 100 Pa ⁇ s.
  • thermoplastic liquid crystal polymer includes thermoplastic polymers such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyarylate, polyamide, polyphenylene sulfide, polyetheretherketone, and fluororesin, as long as the effects of the present invention are not impaired. , Various additives, fillers and the like may be added.
  • thermoplastic liquid crystal polymer film used in the production method of the present invention is obtained, for example, by extrusion molding the melt-kneaded product of the thermoplastic liquid crystal polymer.
  • Any method is used as the extrusion molding method, but the well-known T-die method, inflation method and the like are industrially advantageous.
  • the inflation method stress is applied not only in the mechanical axis direction (hereinafter abbreviated as MD direction) of the thermoplastic liquid crystal polymer film but also in the direction orthogonal to this (hereinafter abbreviated as TD direction), and the MD direction and TD direction are applied. Since it can be uniformly stretched in the direction, a thermoplastic liquid crystal polymer film having controlled molecular orientation, dielectric properties, etc. in the MD direction and the TD direction can be obtained.
  • MD direction mechanical axis direction
  • TD direction direction orthogonal to this
  • the melt sheet extruded from the T-die may be stretched not only in the MD direction of the thermoplastic liquid crystal polymer film but also in both the MD direction and the TD direction at the same time to form a film.
  • the melt sheet extruded from the T die may be once stretched in the MD direction and then stretched in the TD direction to form a film.
  • a predetermined draw ratio corresponding to the stretching ratio in the MD direction
  • a blow ratio corresponding to the stretching ratio in the TD direction
  • the draw ratio of such extrusion molding may be, for example, about 1.0 to 10 as the draw ratio (or draw ratio) in the MD direction, preferably about 1.2 to 7, and more preferably 1. It may be about 3 to 7. Further, the stretching ratio (or blow ratio) in the TD direction may be, for example, about 1.5 to 20, preferably about 2 to 15, and more preferably about 2.5 to 14.
  • thermoplastic liquid crystal polymer film may be adjusted by heating at about ° C., preferably (Tm 0 ) to (Tm 0 +20) ° C.) for several hours.
  • the melting point (Tm) of the thermoplastic liquid crystal polymer film can be obtained by observing the thermal behavior of the thermoplastic liquid crystal polymer film sample using a differential scanning calorimeter. That is, the position of the endothermic peak that appears when the temperature of the thermoplastic liquid crystal polymer film sample is raised at a rate of 10 ° C./min can be determined as the melting point (Tm) of the thermoplastic liquid crystal polymer film.
  • the single-sided metal-clad laminate used in the production method of the present invention is one in which a metal layer is arranged on one surface of the thermoplastic liquid crystal polymer film.
  • a commercially available product may be used as the single-sided metal-clad laminate.
  • a metal foil is bonded to a thermoplastic liquid crystal polymer film by thermocompression bonding as a metal layer.
  • the metal layer may be formed by sputtering, vapor deposition, electroless plating or the like. From the viewpoint of production efficiency and convenience, a method of adhering a metal foil to a thermoplastic liquid crystal polymer film by thermocompression bonding is preferable.
  • a long one-sided metal-clad laminate is used.
  • the long object may have a roll shape wound on a roll, or may have a non-roll shape not wound on a roll.
  • the length of the long object is not particularly limited as long as it can be continuously conveyed, but it may be 100 m or more (for example, 100 to 500 m).
  • a method of adhering the metal foil to the thermoplastic liquid crystal polymer film a method of superimposing the thermoplastic liquid crystal polymer film and the metal leaf and continuously thermocompression bonding by a roll press or a double belt press by a roll-to-roll method is preferable. ..
  • the peel strength between the thermoplastic liquid crystal polymer film and the metal layer of the single-sided metal-clad laminate may be 0.6 N / mm or more, preferably 0.8 N / mm or more, and more preferably 1.0 N / mm or more. It may be. Further, the upper limit of the peel strength between the thermoplastic liquid crystal polymer film of the single-sided metal-clad laminate and the metal layer is not particularly limited, but may be, for example, 2.0 N / mm or less.
  • the peel strength is the peel strength (peeling strength) measured with reference to JIS C 5016-1994 (peeling in the 90 ° direction).
  • preparation of a single-sided metal-clad laminate for example, production of a single-sided metal-clad laminate by thermocompression bonding of a thermoplastic liquid crystal polymer film and metal leaf
  • shaping treatment of the single-sided metal-clad laminate that is, Thermocompression bonding with the metal shaping sheet
  • the metal forming the metal layer is not particularly limited, and may be, for example, gold, silver, copper, iron, tin, nickel, aluminum, chromium, or an alloy metal thereof.
  • the metal foil formed of the metal may be used, and a copper foil or a stainless steel foil is preferable from the viewpoint of conductivity, handleability, cost and the like.
  • the copper foil those produced by a rolling method or an electrolytic method can be used.
  • the metal foil may be subjected to surface treatment such as roughening treatment, which is usually performed, as long as the high frequency characteristics of the metal-clad laminate of the present invention are not impaired.
  • the thickness of the metal layer can be appropriately set as needed, and may be, for example, about 1 to 50 ⁇ m, more preferably in the range of 9 to 35 ⁇ m.
  • the metal shaping sheet used in the production method of the present invention is a sheet made of metal, and at least one surface is a shaping surface.
  • a long metal shaping sheet is used.
  • the elongated object may have a roll shape wound on a roll, or may have a non-roll shape not wound on a roll.
  • the length of the long object is not particularly limited as long as it can be continuously conveyed, but it may be 100 m or more (for example, 100 to 500 m).
  • the metal shaping sheet is preferably a metal foil having at least one surface having a shaping surface.
  • the metal forming the metal shaping sheet is not particularly limited, and may be, for example, gold, silver, copper, iron, tin, nickel, aluminum, chromium or an alloy metal thereof, and when a metal foil is used.
  • a metal foil formed of the metal may be used, and a copper foil or a stainless steel foil is preferable from the viewpoint of handleability, cost, and the like.
  • these metal foils those produced by a rolling method or an electrolytic method can be used, and surface treatment such as roughening treatment may be performed in order to obtain a desired shaped surface.
  • the metal forming the metal shaping sheet is a material having a coefficient of thermal expansion similar to that of the metal forming the metal layer of the single-sided metal-clad laminate (for example). , The same type of metal). In particular, it is preferable that both the metal layer and the metal shaping sheet are copper foils.
  • the shaped surface of the metal shaped sheet may have, for example, a surface roughness (Rz) of 1.0 to 7.0 ⁇ m from the viewpoint of improving the interlayer adhesiveness with the bonding sheet in circuit processing.
  • the surface roughness (Rz) of the shaped surface of the metal shaping sheet is transferred, and the surface roughness (Rz) of the surface roughness (Rz) similar to that of the metal shaping sheet is transferred to the surface of the thermoplastic liquid crystal polymer film.
  • the surface roughness (Rz) of the shaping surface of the metal shaping sheet may be preferably 1.5 to 5.5 ⁇ m, more preferably 2.0 to 4.5 ⁇ m.
  • the surface roughness (Rz) indicates the ten-point average roughness measured with reference to JIS B 0601-1994 using a contact-type surface roughness meter, and is the roughness of the reference length. In the curve, it represents the sum of the average of the mountain heights from the highest peak to the fifth in the highest order and the average of the valley depths from the deepest valley bottom to the fifth.
  • the shaping surface of the metal shaping sheet may be subjected to a mold release treatment from the viewpoint of facilitating peeling of the metal shaping sheet after thermocompression bonding.
  • a method of the mold release treatment for example, a method of applying a mold release agent to the shape surface of the metal shape sheet to provide a mold release layer may be used.
  • the release agent include silicone-based resins and fluororesins.
  • the thickness of the metal shaping sheet can be appropriately set as needed, and may be, for example, about 5 to 50 ⁇ m, more preferably in the range of 9 to 35 ⁇ m.
  • a release cushion material may be used in the production method of the present invention, if necessary.
  • a long material may be used as the release cushion material.
  • the elongated object may have a roll shape wound on a roll, or may have a non-roll shape not wound on a roll.
  • the length of the long object is not particularly limited as long as it can be continuously conveyed, but it may be 100 m or more (for example, 100 to 500 m).
  • the release cushioning material is not particularly limited as long as it can be peeled off from the adjacent adherend after thermal pressure bonding, has heat resistance, and has cushioning properties, and is a non-thermoplastic polyimide film, aramid film, or Teflon ( Heat-resistant resin film such as a film (registered trademark); heat-resistant composite film (for example, composite film composed of a plurality of heat-resistant resin films, composite film composed of metal foil and heat-resistant resin film); heat-resistant fiber (for example, heat resistance) A heat-resistant non-woven film composed of resin fibers (resin fibers, metal fibers); and a metal foil (for example, a coating layer of a release agent such as a silicone-based resin or a fluorine-based resin) on at least one surface.
  • Heat-resistant resin film such as a film (registered trademark)
  • heat-resistant composite film for example, composite film composed of a plurality of heat-resistant resin films, composite film composed of metal foil and heat-resistant resin film
  • release cushioning materials may be used alone or in combination of two or more.
  • the release cushion material (for example, a heat-resistant resin film, a heat-resistant composite film, or a heat-resistant non-woven fabric) is subjected to a mold release treatment from the viewpoint of facilitating peeling from the adherend after thermocompression bonding. May be.
  • the mold release processing method include the above-mentioned methods.
  • a heat-resistant resin film, a heat-resistant composite film, and a heat-resistant non-woven fabric are preferable from the viewpoint of excellent heat resistance and cushioning property (repulsive elasticity).
  • the thickness of the release cushion material can be appropriately set as needed, and may be, for example, about 5 to 300 ⁇ m, preferably 10 to 150 ⁇ m, and more preferably 25 to 75 ⁇ m. ..
  • the surface roughness (Rz) of at least one surface of the release cushion material is 2.0 ⁇ m from the viewpoint of facilitating peeling from the adherend (single-sided metal-clad laminate or metal shaping sheet) after thermocompression bonding. It may be less than or equal to, preferably 1.8 ⁇ m or less, and more preferably 1.5 ⁇ m or less. Further, the lower limit of the surface roughness (Rz) of at least one surface of the release cushion material is not particularly limited, but may be, for example, 0.05 ⁇ m or more, preferably 0.10 ⁇ m or more, and more preferably 0. It may be 15 ⁇ m or more.
  • the method for producing a metal-clad laminate of the present invention is: A long single-sided metal-clad laminate (A) in which a metal layer is adhered to one surface of a thermoplastic liquid crystal polymer film, and a long metal shaping sheet (B) in which at least one surface is a shaping surface. ) And the process of preparing A pair of pressure rolls (r 1 , r 2 ) are arranged so that the thermoplastic liquid crystal polymer film surface of the single-sided metal-clad laminate (A) and the shaping surface of the metal shaping sheet (B) are in contact with each other. The thermocompression bonding process to be introduced into At least prepare.
  • the single-sided metal-clad laminate (A) and the metal shaping sheet (B) are not particularly limited as long as they can be introduced into the pressure roll as a long product, and for example, a long product manufactured upstream of the thermocompression bonding step can be used. It may be transported as it is and used, or an unwinding roll may be prepared.
  • a long product manufactured upstream is used as it is, for example, a single-sided metal-clad laminate (A) is manufactured by superimposing a thermoplastic liquid crystal polymer film and a metal foil and continuously thermocompression bonding, and winding the product. Instead, it may be overlapped with the separately prepared metal shaping sheet (B) downstream of the transport direction as it is.
  • thermoplastic liquid crystal polymer film surface of the single-sided metal-clad laminate (A) and the shaping surface of the metal shaping sheet (B) are arranged and overlapped so as to be in contact with each other.
  • each unwinding roll is a thermoplastic liquid crystal polymer film in which the single-sided metal-clad laminate (A) and the metal shaping sheet (B) are adjacent to each other and the single-sided metal-clad laminate (A) is adjacent to each other. It is arranged so that the surface and the shaping surface of the metal shaping sheet (B) are in contact with each other.
  • the method for producing a metal-clad laminate of the present invention is: In the preparatory process, a longer release cushion material (C) is prepared, In the thermocompression bonding step, the release cushion material (C) is arranged on at least one of the non-contact side of the single-sided metal-clad laminate (A) and the metal shaping sheet (B), and a pair of pressure rolls (r). 1, it may be introduced to r 2).
  • the release cushion material (C) acts as a cushion, so that pressure is applied in thermocompression bonding between the single-sided metal-clad laminate (A) and the metal shaping sheet (B).
  • the pressure from the roll can be dispersed, and the transferability of the shaped surface of the metal shaping sheet (B) to the surface of the thermoplastic liquid crystal polymer film can be improved.
  • the heating temperature in the pressure roll (r 1, r 2) is high, pressure if pressure pressure is low, when the short pressing time is uniform pressure due to the presence of the releasing cushion material (C) Highly effective in improving sex.
  • the release cushion material (C) is a single-sided metal-clad laminate (A) on the non-contact surfaces of the single-sided metal-clad laminate (A) and the metal shaping sheet (B). ) And / or may be arranged adjacent to the metal shaping sheet (B).
  • the release cushion material (C) is arranged adjacent to the metal layer of the single-sided metal-clad laminate (A), and the metal-clad laminate is formed in the order of at least (C) / (A) / (B). It may be thermocompression bonded as described above.
  • the release cushion material (C) By adjoining the release cushion material (C) to the metal layer side of the single-sided metal-clad laminate (A), heat is suppressed from the release cushion material (C) being transferred from the single-sided metal-clad laminate (A) side. Since it acts as a heat insulating material, it is possible to prevent the thermoplastic liquid crystal polymer film from being heated more than necessary from the metal layer side, and to prevent the liquid crystal polymer molecules from being easily oriented.
  • At least one of the pressure rolls (r 1 , r 2 ) is a heated pressure roll (hr), and the heated pressure roll (hr) is changed to (hr) / (B). ) / (A), or when the release cushion material (C) is used, (hr) / (B) / (A) / (C) or (hr) / (C) / (B) It may be introduced in the order of / (A).
  • the heating and pressurizing conditions can be adjusted so as to prevent the thermoplastic liquid crystal polymer film from being heated more than necessary, and the shaping process can be performed efficiently.
  • a plurality of long single-sided metal-clad laminates (A) and a plurality of elongated metal shaping sheets (B) are prepared, and a plurality of metal-clad laminates are prepared. It may be manufactured.
  • a release cushion material is provided between a plurality of sets of single-sided metal-clad laminates (A) and laminates including a metal shaping sheet (B) in a thermocompression bonding step. It may be introduced in layers.
  • thermocompression bonding step a pair of pressure rolls (r 1, r 2) at least one release cushion material in contact with the pressure roll of the (C) May be introduced.
  • the plurality of single-sided metal-clad laminates (A) may be the same or different.
  • the plurality of metal shaping sheets (B) may be the same or different.
  • the obtained plurality of metal-clad laminates may be the same or different.
  • the obtained metal-clad laminate (a metal-clad laminate in which a metal layer is laminated on one surface of a thermoplastic liquid crystal polymer film and a metal shaping sheet is provided on the other surface) is a thermoplastic liquid crystal polymer film and metal shaping.
  • the peel strength (P1) between the sheet and the sheet may be 0.5 N / mm or less, preferably 0.2 N / mm or less, and more preferably 0.1 N / mm or less.
  • the peel strength (P2) between the thermoplastic liquid crystal polymer film and the metal layer may be, for example, 0.6 N / mm or more, preferably 0.8 N / mm. It may be mm or more, more preferably 1.0 N / mm or more.
  • the upper limit of the peel strength between the thermoplastic liquid crystal polymer film and the metal layer is not particularly limited, but may be 2.0 N / mm or less.
  • the obtained metal-clad laminate has a peel strength (P1) between the thermoplastic liquid crystal polymer film and the metal shaping sheet, and a peel strength (P2) between the thermoplastic liquid crystal polymer film and the metal layer.
  • the divided value (P1 / P2) may be 0.6 or less, preferably 0.4 or less, and more preferably 0.2 or less.
  • the orientation degree f (f1) on the metal layer side in the thickness direction of the thermoplastic liquid crystal polymer film is set to the orientation degree f (or the shaping treatment surface side) on the metal shaping sheet side (or shaping treatment surface side).
  • the value (f1 / f2) divided by f2) may be 1.05 to 1.40, preferably 1.10 to 1.35, and more preferably 1.15 to 1.30.
  • the degree of orientation on the metal layer side in the thickness direction of the thermoplastic liquid crystal polymer film is the degree of orientation on the side in contact with the metal layer when the thermoplastic liquid crystal polymer film is divided into two equal parts in the thickness direction.
  • the degree of orientation on the metal shaping sheet side (shape processing surface side) in the thickness direction of the thermoplastic liquid crystal polymer film is the same as the metal shaping sheet when the thermoplastic liquid crystal polymer film is divided into two equal parts in the thickness direction.
  • the degree of orientation of the part on the contact side (the surface side that has been shaped).
  • the degree of orientation f is an index that gives the degree of orientation of the crystal region of the polymer, and is calculated as follows.
  • the change in crystal orientation can be obtained from a wide-angle X-ray photograph.
  • the metal shaping sheet of the metal-clad laminate is peeled off, the metal layer is etched and removed, and the obtained film is cut out in the MD direction, attached to the sample holder, and X-rays are incident from the Edge direction for imaging.
  • the diffraction image is exposed on the plate.
  • H is the half price range.
  • the degree of orientation f is measured on both the metal layer side and the metal shaping sheet side (shape processing surface side) of the thermoplastic liquid crystal polymer film.
  • FIG. 1 is a schematic side view for explaining a method for manufacturing a metal-clad laminate according to the first embodiment.
  • a method for manufacturing a metal-clad laminate according to the first embodiment As shown in FIG. 1, in the first embodiment, on the upstream side of the pair of pressure rolls (r 1, r 2), unwinding sided metal-clad laminate unwound sided metal-clad laminate (A) roll 11 and the metal shaping sheet unwinding roll 12 for unwinding the metal shaping sheet (B) are prepared.
  • the single-sided metal-clad laminate (A) and the metal shaping sheet (B) are placed between the pair of pressure rolls (r 1 , r 2 ) (r 1 ) / (A). ) / (B) / (r 2 ), each unwinding roll is arranged in this order.
  • the single-sided metal-clad laminate unwinding roll 11 and the metal shaping sheet unwinding roll 12 are arranged so as to be in contact with each other.
  • thermoplastic liquid crystal polymer film of the single-sided metal-clad laminate (A) As a result, it is possible to suppress the dimensional change of the metal-clad laminate, the occurrence of wrinkles due to the difference in thermal expansion of each material, and further, the thermoplastic liquid crystal polymer film of the single-sided metal-clad laminate (A). The peelability between the surface and the shaped surface of the metal shaping sheet (B) can be improved.
  • the pressurizing roll a known heating and pressurizing device can be used, and examples thereof include a metal roll, a rubber roll, and a resin-coated metal roll.
  • the pressure roll (r 1 ) may be a metal roll from the viewpoint of increasing the heating efficiency
  • the pressure roll (r 2 ) is a metal roll like the pressure roll (r 1 ). It may be a rubber roll or a resin-coated metal roll.
  • the pair of pressure rolls (r 1, r 2) is to be heated only one may be heated both.
  • the heating temperature of the pressure roll (r 1, r 2) may be identical to one another or may be different.
  • the pressure roll disposed on the metal shaping sheet (B) side has a higher temperature, and in the case of the first embodiment as shown in FIG. 1, the metal shaping sheet (B) side.
  • the heating temperature of the pressure roll (r 2 ) disposed in may be higher than that of the pressure roll (r 1 ).
  • the heating temperature is from the pressure roll (r 1) towards the pressure roll (r 2) is high, for example, the temperature difference between the heating temperature of the heating temperature and the pressure roller (r 1) of the pressure roll (r 2) May be 20 to 200 ° C., preferably 25 to 150 ° C., and more preferably 30 to 100 ° C.
  • thermocompression bonding temperature and the pressure condition of the pressure roll are not particularly limited, but from the viewpoint of improving the transferability of the unevenness of the shaping surface of the metal shaping sheet (B), for example, a thermoplastic liquid crystal polymer film.
  • the thermocompression bonding temperature may be, for example, (Tm-150) ° C. or higher, preferably (Tm-130) ° C. or higher (for example, (Tm-100) ° C. or higher) with respect to the melting point (Tm). It may be preferably (Tm-110) ° C. or higher (for example, (Tm-90) ° C. or higher).
  • the temperature may be lower than (Tm) ° C., preferably (Tm-5) ° C. or lower. It may be preferably (Tm-10) ° C. or lower.
  • the thermocompression bonding temperature may be the heating temperature of the pressurizing rolls (r 1 , r 2 ), and when the heating temperatures of the pair of pressurizing rolls (r 1 , r 2 ) are different from each other, pressurization is performed.
  • the thermocompression bonding temperature may be the higher of the heating temperatures of the rolls (r 1 , r 2 ).
  • the pressurizing pressure may be in the range of 16.0 t / m (156.8 kN / m) or less, preferably 8.0 t / m (78.4 kN / m) or less.
  • the lower limit of the pressurizing pressure is not particularly limited, but may be 0.5 t / m (4.9 kN / m) or more.
  • the pressurizing pressure is a value obtained by dividing the force applied to the pressurizing roll (crimping load) by the maximum width of the material passing between the pressurizing rolls.
  • a cooling roll may be provided on the downstream side of the pressure roll, if necessary.
  • the cooling roll is preferably provided between the pressure roll and the first release roll.
  • the cooling roll may be composed of a pair of rolls or one single roll.
  • the manufacturing method of the present invention may further include a peeling step of peeling the metal shaping sheet (B) from the thermoplastic liquid crystal polymer film surface of the single-sided metal-clad laminate (A) after the thermocompression bonding step.
  • the stripping step for example, after passing through the pair of pressure rolls (r 1, r 2), by using the pair of pressure rolls (r 1, r 2) as a release roll immediately sided metal-clad laminate (A).
  • the metal shaping sheet (B) may be peeled from (), or the metal shaping sheet (A) may be peeled from the single-sided metal-clad laminate (A) by using at least one peeling roll arranged separately from the pressure roll. B) may be peeled off.
  • the metal-clad laminates (D) ((A) / (B)) obtained by the thermocompression bonding step are passed through the release rolls 21 and 21.
  • the metal-clad laminate (E) is produced by being peeled off between (A) and (B), and is wound on the metal-clad laminate take-up roll 31.
  • the metal-clad laminate (E) obtained by peeling the metal shaping sheet (B) is laminated in the order of metal layer / thermoplastic liquid crystal polymer film, and the metal layer of the thermoplastic liquid crystal polymer film is not adhered. The unevenness of the shaping surface of the metal shaping sheet (B) is transferred to the surface on the side.
  • the surface roughness (Rz) of the metal-clad laminate (E) on the side where the metal layer of the thermoplastic liquid crystal polymer film is not adhered may be 1.0 to 7.0 ⁇ m, preferably 1.5. It may be ⁇ 5.5 ⁇ m, more preferably 2.0 ⁇ 4.5 ⁇ m.
  • the peel strength between the single-sided metal-clad laminate (A) and the metal shaping sheet (B) may be appropriately set as long as the peeling step can be performed.
  • the peel strength between the single-sided metal-clad laminate (A) and the metal shaping sheet (B) is preferably 0.5 N / mm or less, and more preferably 0.2 N / mm or less. , 0.1 N / mm or less, more preferably.
  • the lower limit is not particularly limited, but may be 0 N / mm.
  • thermocompression bonding step a shaping process is performed by heating and pressurizing at a lower temperature while maintaining a low interlayer adhesiveness between the single-sided metal-clad laminate (A) and the metal shaping sheet (B). Can be applied.
  • the peeled metal shaping sheet (B) is wound by the metal shaping sheet winding roll 32.
  • the peeled metal shaping sheet (B) may be reused if necessary.
  • FIG. 2 is a schematic side view for explaining a method for manufacturing the metal-clad laminate according to the second embodiment.
  • Members having the same role as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • A unwinding sided metal-clad laminate unwound sided metal-clad laminate
  • A unwinding sided metal-clad laminate unwound sided metal-clad laminate
  • A unwinding sided metal-clad laminate unwound sided metal-clad laminate
  • C release cushion material
  • single-sided metal-clad laminate (A), a metal shaped sheet (B) and release the cushion material (C) is a pair of pressure rolls (r 1, r 2) between at , (R 1 ) / (C) / (A) / (B) / (r 2 ), and each unwinding roll is arranged in this order.
  • the upstream side of the pair of pressure rolls (r 1, r 2), the thermoplastic liquid crystal polymer film surface and the vehicle surface of the metal shaped sheet (B) of the single-sided metal-clad laminate (A) The single-sided metal-clad laminate unwinding roll 11 and the metal shaping sheet unwinding roll 12 are arranged so as to be in contact with each other, and the metal layer surface of the single-sided metal-clad laminate (A) and the release cushion material (C) are further arranged.
  • the release cushion material unwinding roll 13 is arranged so as to come into contact with each other.
  • the use of release packing cushion (C), dispersing the pressure from the pair of pressure rolls (r 1, r 2) by the cushioning It is possible to improve the transferability of the metal shaping sheet (B) to the thermoplastic liquid crystal polymer film having the uneven shape of the shaping surface. Further, since the overlapping release cushion material and (C) the metal layer side of the single-sided metal-clad laminate (A), the role of releasing the cushion material (C) is to insulate the heat from the pressure roll (r 1) Further, it is possible to suppress heat transfer more than necessary to the surface of the thermoplastic liquid crystal polymer film on the metal layer side, and it is possible to suppress dimensional change.
  • a metal-clad laminate obtained by a thermal pressure bonding step using at least one peeling roll (a metal-clad laminate comprising a single-sided metal-clad laminate (A) and a metal shaping sheet (B)).
  • the single-sided metal-clad laminate (A) is a metal-clad laminate in which the surface of the thermoplastic liquid crystal polymer film is shaped, and the metal-clad laminate is provided with the release cushion material (C).
  • the cushion material (C) may be peeled off.
  • the pair of pressure rolls (r 1, r 2) is used as the peeling rolls, the release cushion material immediately from the metal-clad laminate (C ) May be peeled off, or the release cushion material (C) may be peeled off from the metal-clad laminate by using at least one peeling roll arranged separately from the pressure roll.
  • the order of peeling of the metal shaping sheet (B) and peeling of the release cushion material (C) can be appropriately set according to the mode of the metal-clad laminate.
  • the metal-clad laminate (F) ((C) / (A) / (B)) obtained by the thermocompression bonding step is the first peeling roll 21, By passing through 21, the metal-clad laminate (D) is produced by peeling between (C) / (A).
  • the metal-clad laminate (D) obtained by peeling the release cushion material (C) is the metal layer of the single-sided metal-clad laminate (A) / the thermoplastic liquid crystal polymer film / metal of the single-sided metal-clad laminate (A).
  • the shaping sheets (B) are laminated in this order.
  • the peel strength between the release cushion material (C) and the single-sided metal-clad laminate (A) or the metal shaping sheet (B) is appropriately set as long as the peeling step can be performed. May be done.
  • the peel strength between the release cushion material (C) and the single-sided metal-clad laminate (A) or the metal shaping sheet (B) is preferably 0.1 N / mm or less, preferably 0.05 N / mm. It is more preferably mm or less, and further preferably 0.03 N / mm or less.
  • the lower limit is not particularly limited, but may be 0 N / mm.
  • the release cushion material (C) that has been peeled off is wound by the release cushion material winding roll 33.
  • the peeled release cushion material (C) can be reused as needed.
  • the metal-clad laminate (D) from which the release cushion material (C) has been peeled off is peeled between (A) / (B) by passing through the second peeling rolls 22 and 22, and the metal-clad laminate (D) is peeled off.
  • (E) is manufactured and wound on a metal-clad laminate winding roll 31.
  • FIG. 3 is a schematic side view for explaining a method for manufacturing the metal-clad laminate according to the third embodiment.
  • the single-sided metal-clad laminate (A), the metal shaping sheet (B) and the release cushion material (C) are made of a pair of pressure rolls (r 1 , r). 2 ), each unwinding roll is arranged in the order of (r 1 ) / (C) / (A) / (B) / (C) / (r 2 ).
  • the members having the same role as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • metal tensioning is performed between the pair of pressure rolls (r 1 , r 2 ) so as to form (C) / (A) / (B) / (C).
  • the release cushion material (C) is peeled off between (C) / (A) and (B) / (C) to produce a metal-clad laminate (D), and then the laminated body (D) is manufactured.
  • the metal shaping sheet (B) is peeled off from the metal-clad laminate (D) to produce the metal-clad laminate (E).
  • the heating temperature of the pair of pressure rolls (r 1, r 2) which may be the same as each other or different, for example, the first
  • the heating temperature of the pressure roll (r 2 ) on the metal shaping sheet (B) side may be higher than that of the pressure roll (r 1 ).
  • the heating temperature of the metal shaped sheet (B) and the adjacent release cushion material (C) in contact with pressure roll (r 2) single-sided metal-clad laminate of metal shaped sheet (B) ( Heat can be efficiently transferred to the thermoplastic liquid crystal polymer film surface (surface to be subjected to the shaping treatment) side of A).
  • FIG. 4 is a schematic side view for explaining a method for manufacturing the metal-clad laminate according to the fourth embodiment.
  • the single-sided metal-clad laminate (A), the metal shaping sheet (B), and the release cushion material (C) are made of a pair of pressure rolls (r 1 , r). 2 ), each unwinding roll is arranged in the order of (r 1 ) / (B) / (A) / (C) / (A) / (B) / (r 2 ).
  • the members having the same role as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the pair of pressure rolls (r 1 , r 2 ) are overlapped so as to be (B) / (A) / (C) / (A) / (B).
  • the release cushion material (C) is peeled off from the metal-clad laminate (F) to produce two metal-clad laminates (D), and then a metal shaping sheet (a metal shaping sheet (D) is produced from the metal-clad laminate (D).
  • B) is peeled off to produce two metal-clad laminates (E).
  • a plurality of metal-clad laminates can be manufactured, and the production efficiency is high.
  • the two metal-clad laminates (D) may be the same or different from each other.
  • the two metal-clad laminates (E) may be the same as or different from each other.
  • the release cushion material (C) is overlapped with the single-sided metal-clad laminate (A) on both sides, so that the release layers are arranged on both sides. preferable.
  • a pair of pressure rolls (r 1 , 1 ,) are used from the viewpoint of suppressing the occurrence of wrinkles due to the difference in thermal expansion in the thermocompression bonding step.
  • r 2 may be the same, and the heating temperature may be the same.
  • FIG. 5 is a schematic side view for explaining a method for manufacturing the metal-clad laminate according to the fifth embodiment.
  • the single-sided metal-clad laminate (A), the metal shaping sheet (B) and the release cushion material (C) are made of a pair of pressure rolls (r 1 , r). Between 2 ), each unwinding roll is in the order of (r 1 ) / (C) / (B) / (A) / (A) / (B) / (C) / (r 2 ). Be placed.
  • the members having the same role as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • a plurality of metal-clad laminates can be manufactured, and the production efficiency is high.
  • the two metal-clad laminates (D) may be the same or different from each other.
  • the two metal-clad laminates (E) may be the same as or different from each other.
  • FIG. 6 is a schematic side view for explaining a method for manufacturing the metal-clad laminate according to the sixth embodiment.
  • the single-sided metal-clad laminate (A), the metal shaping sheet (B) and the release cushion material (C) are made of a pair of pressure rolls (r 1 , r). Between 2 ), each unwinding roll is in the order of (r 1 ) / (C) / (A) / (B) / (B) / (A) / (C) / (r 2 ). Be placed.
  • the members having the same role as those in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • a plurality of metal-clad laminates can be manufactured, and the production efficiency is high.
  • the two metal-clad laminates (D) may be the same or different from each other.
  • the two metal-clad laminates (E) may be the same as or different from each other.
  • a sample with a width of 250 mm and a length of 250 mm is taken from a single-sided metal-clad laminate, the sample is placed on a horizontal table, and the height of the part of the four corners of the sample that floats most from the table is measured on a scale. , This was a warp. Those with a warp of less than 5 mm were evaluated as A, and those with a warp of 5 mm or more were evaluated as B.
  • Example 1 Single-sided metal-clad laminate (A) obtained in Production Example 1, electrolytic copper foil as metal shaping sheet (B) ("JX-EFL-V2" manufactured by JX Nippon Mining & Metals Co., Ltd., thickness 12 ⁇ m, surface roughness of shaped surface is (Rz) 2.0 .mu.m), and the protective material (C) as a polyimide film (manufactured by Kaneka Corporation, "apical NPI", prepared as a roll unwinding thickness 75 [mu] m), respectively, a pair of pressure rolls (r 1, r Introduced in the order of r 1 / C / A / B / r 2 between 2 ).
  • the surface temperature of the metal rolls is set to 200 ° C.
  • the pressure pressure is set to 8 t / m
  • the speed is 3.0 m / min. by passing through a pair of pressure rolls (r 1, r 2) were thermocompression bonding.
  • thermocompression bonding as shown in FIG. 2, after passing through a pair of pressure rolls (r 1, r 2), using a pair of peeling rolls (21), separating the polyimide film (C), followed by a pair
  • the single-sided metal-clad laminate (E) and the metal shaping sheet (B) are separated by the peeling roll (22) of the above, and the surface shape of the metal shaping sheet (B) is transferred to the surface of the thermoplastic liquid crystal polymer film.
  • a metal-clad laminate (E) was obtained.
  • Table 7 shows the peelability of the metal shaping sheet (B) and the warp measurement results of the obtained single-sided metal-clad laminate (E).
  • the peel strength between the single-sided metal-clad laminate (E) and the metal shaping sheet (B) was 0.05 N / mm or less. Further, the peel strength between the single-sided metal-clad laminate (E) and the polyimide film (C) was not adhered at all and could not be measured.
  • Example 2 A single-sided metal-clad laminate (E) was produced in the same manner as in Example 1 except that the surface temperature of the metal roll was set to 240 ° C.
  • Table 7 shows the peelability of the metal shaping sheet (B) and the warp measurement results of the obtained single-sided metal-clad laminate (E).
  • the peel strength between the single-sided metal-clad laminate (E) and the metal shaping sheet (B) was 0.08 N / mm or less. Further, the peel strength between the single-sided metal-clad laminate (E) and the polyimide film (C) was not adhered at all and could not be measured.
  • thermoplastic liquid crystal polymer film (L) ("Vexter” (registered trademark) manufactured by Kuraray Co., Ltd., melting point 310 ° C., thickness 50 ⁇ m) and copper foil (M) (Fukuda metal foil)
  • L thermoplastic liquid crystal polymer film
  • M copper foil
  • C CF-H9A-DS-HD2
  • thermoplastic liquid crystal polymer film When the single-sided metal-clad laminate (E) is produced by introducing in the order of r 1 / C / M / L / B / r 2 between (r 1 , r 2 ), a thermoplastic liquid crystal polymer film ( The peeling strength between the L) and the copper foil (M) is low, and when the metal shaping sheet (B) is peeled off, the peeling occurs partially between the thermoplastic liquid crystal polymer film (L) and the copper foil (M). It is thought that.
  • the surface temperature of the metal roll can be set to a relatively low temperature, whereby the single-sided metal-clad laminate (A) can be set to a relatively low temperature.
  • the body and the metal shaping sheet did not adhere firmly to each other, and the molecular orientation of the thermoplastic liquid crystal polymer film did not change, resulting in good peelability and warpage.
  • the shape-treated metal-clad laminate can be efficiently produced, and the obtained metal-clad laminate has irregularities transferred to it, so that the metal-clad laminate is bonded to the bonding sheet. It has excellent properties and good circuit workability. Therefore, the obtained metal-clad laminate can be effectively used as a component used in the fields of electricity / electronics, office equipment / precision equipment, power semiconductors, etc., for example, a circuit board (particularly a substrate for millimeter-wave radar). Can be done.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

賦形処理された金属張積層体を効率よく製造する方法を提供する。前記製造方法では、熱可塑性液晶ポリマーフィルムの一方の面に金属層が接着された長尺状の片面金属張積層体(A)、および少なくとも一方の表面が賦形面である長尺状の金属賦形シート(B)を準備し、前記片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と前記金属賦形シート(B)の賦形面とが接触するように配し、一対の加圧ロール(r,r)へ導入して熱圧着して、金属張積層体を製造する。

Description

金属張積層体の製造方法 関連出願
 本願は2019年6月17日出願の特願2019-112341の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、光学的に異方性の溶融相を形成し得る熱可塑性ポリマー(以下、これを熱可塑性液晶ポリマーと称することがある)からなるフィルム(以下、これを熱可塑性液晶ポリマーフィルムと称することがある)の一方の面に金属層が積層され、他方の面に、前記熱可塑性液晶ポリマーフィルム側の表面が賦形面である、金属賦形シートが積層された金属張積層体(または他方の面の金属賦形シートを剥離した金属張積層体)の製造方法に関する。
 熱可塑性液晶ポリマーフィルムは、高耐熱性、低吸湿性、高周波特性等に優れた材料として知られており、近年は高速伝送用電子回路材料として注目されている。電子回路基板用途に用いる場合、熱可塑性液晶ポリマーフィルムと金属箔との金属張積層体が用いられるが、回路加工工程における貼り合わせ加工において、金属張積層体に備えられている熱可塑性液晶ポリマーフィルムとボンディングシートとの層間接着性が十分でない場合がある。従来、ボンディングシートとの層間接着性を高めるために、熱可塑性液晶ポリマーフィルムの一方の面に金属層を備える片面金属張積層体において、他方の面の熱可塑性液晶ポリマーフィルムの表面に凹凸形状を付与する賦形処理が行われていた。
 特許文献1(特開2016-10967号公報)には、第1金属箔と、液晶ポリマーフィルムと、第2金属箔とをこの順に重ねて加熱加圧する工程を有し、前記第2金属箔の前記液晶ポリマーフィルムに重ねられる面がマット面であり、前記マット面に離型処理が施されている金属箔付き液晶ポリマーフィルムの製造方法が開示されている。
 また、特許文献2(特開2006-179609号公報)には、熱可塑性樹脂層の各々における少なくとも一方の面を、アルカリ混合溶液を薬液として薬液粗化処理を施し、前記処理の施された面を他の単位基板の面に重ねて2以上の層を有する積層板を形成し、前記積層板を加熱、加圧処理することを特徴とする積層配線基板の製造法が開示され、熱可塑性樹脂が液晶ポリマーであることが開示されている。
特開2016-10967号公報 特開2006-179609号公報
 また、金属張積層体を高速伝送用電子回路に用いる場合、伝送線路となる金属層には表皮効果が生じるため、金属層の高周波特性、すなわち伝送損失はその表面粗さに依存する。そのため、表面粗さが小さい低粗度の金属層を用いる方が、伝送損失が小さくなり、つまりは高周波特性が良くなるため望ましい。
 しかしながら、特許文献1のように、第1金属箔と、液晶ポリマーフィルムと、賦形処理のために後で剥離する第2金属箔とを重ねて加熱加圧することにより一括で積層一体化させる場合、第1金属箔に低粗度のものを用いると、第1金属箔と液晶ポリマーフィルムとの層間接着性を高めるためには液晶ポリマーフィルムの融点付近(または融点以上)まで加熱する必要が生じる。その場合、後に剥離する第2金属箔と液晶ポリマーフィルムとの界面においても高温の熱がかかり、第2金属箔に離型処理が施されているとしても、表面の凹凸によるアンカー効果により層間接着性が高くなるため、第2金属箔を剥離しにくくなる。
 さらには、熱可塑性液晶ポリマーフィルムは加熱加圧により液晶ポリマー分子が容易に配向してしまうため、上記のような高温で加熱加圧すると、配向が大きく変化し、得られる金属張積層体の反りが大きくなり、また寸法変化が大きくなることから回路基板形成が困難になる。
 また、特許文献2のように薬液粗化処理を施す場合、熱可塑性樹脂層の表面に微細な凹凸を付与できるが、薬液処理を施すために処理工程が多くなり、生産効率が低下する。さらに、薬液処理を施した表面に付着した薬剤を完全に除去することが困難であるため、得られた回路基板において、不純物の存在により不具合が生じる場合がある。
 したがって、本発明の目的は、寸法変化が小さく、効率よく賦形処理された金属張積層体を製造する方法を提供することにある。
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、片面金属張積層体の製造と片面金属張積層体の賦形処理をそれぞれ独立して行うことで、賦形処理の際に高温での加熱加圧を避けることができるため、金属張積層体の寸法変化を抑制することができることを見出した。そして、熱可塑性液晶ポリマーフィルムの一方の面に金属層が接着された片面金属張積層体を準備し、片面金属張積層体と金属賦形シートとを連続的に熱圧着することにより効率よく賦形処理を行うことができることを見出し、本発明の完成に至った。
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 熱可塑性液晶ポリマーフィルムの一方の面に金属層が接着された長尺状の片面金属張積層体(A)、および少なくとも一方の表面が賦形面である長尺状の金属賦形シート(B)を準備する工程と、
 前記片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と前記金属賦形シート(B)の賦形面とが接触するように配し、一対の加圧ロール(r,r)へ導入する熱圧着工程と、
 を少なくとも備える、金属張積層体の製造方法。
〔態様2〕
 態様1に記載の金属張積層体の製造方法であって、
 熱圧着工程後、前記片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面から前記金属賦形シート(B)を剥離する剥離工程をさらに備える、金属張積層体の製造方法。
〔態様3〕
 態様1または2に記載の金属張積層体の製造方法であって、熱圧着温度が、前記熱可塑性液晶ポリマーフィルムの融点(Tm)とした場合に、(Tm-150)℃以上(Tm)℃未満(好ましくは(Tm-130)℃以上(Tm-5)℃以下、より好ましくは(Tm-110)℃以上(Tm-10)℃以下)である、金属張積層体の製造方法。
〔態様4〕
 態様1~3のいずれか一態様に記載の金属張積層体の製造方法であって、前記片面金属張積層体(A)と前記金属賦形シート(B)との剥離強度が0.5N/mm以下(好ましくは0.2N/mm以下、より好ましくは0.1N/mm以下)である、金属張積層体の製造方法。
〔態様5〕
 態様1~4のいずれか一態様に記載の金属張積層体の製造方法であって、前記金属賦形シート(B)の賦形面の表面粗さ(Rz)が1.0~7.0μm(好ましくは1.5~5.5μm、より好ましくは2.0~4.5μm)である、金属張積層体の製造方法。
〔態様6〕
 態様1~5のいずれか一態様に記載の金属張積層体の製造方法であって、
 準備工程で、さらに長尺状の離型クッション材(C)を準備し、
 熱圧着工程で、前記片面金属張積層体(A)および前記金属賦形シート(B)の接触しない側の少なくとも一方に前記離型クッション材(C)を配し、一対の加圧ロール(r,r)へ導入する、金属張積層体の製造方法。
〔態様7〕
 態様6に記載の金属張積層体の製造方法であって、前記離型クッション材(C)と前記片面金属張積層体(A)または前記金属賦形シート(B)との剥離強度が0.1N/mm以下(好ましくは0.05N/mm以下、より好ましくは0.03N/mm以下)である、金属張積層体の製造方法。
〔態様8〕
 態様6または7に記載の金属張積層体の製造方法であって、前記離型クッション材(C)が、耐熱性樹脂フィルム、耐熱性複合フィルム、耐熱性不織布、および少なくとも一方の面に離型層を備えた金属箔からなる群より選択される、金属張積層体の製造方法。
〔態様9〕
 態様6~8のいずれか一態様に記載の金属張積層体の製造方法であって、前記離型クッション材(C)の少なくとも一方の面の表面粗さ(Rz)が2.0μm以下(好ましくは1.8μm以下、より好ましくは1.5μm以下)である、金属張積層体の製造方法。
〔態様10〕
 態様6~9のいずれか一態様に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の間に、(r)/(C)/(A)/(B)/(r)の順となるように、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
〔態様11〕
 態様10に記載の金属張積層体の製造方法であって、前記熱圧着工程において、加圧ロール(r)のほうが加圧ロール(r)より加熱温度が高い、金属張積層体の製造方法。
〔態様12〕
 態様1~11のいずれか一態様に記載の金属張積層体の製造方法であって、長尺状の片面金属張積層体(A)および長尺状の金属賦形シート(B)をそれぞれ複数準備して、複数の金属張積層体を製造する、金属張積層体の製造方法。
〔態様13〕
 態様6~9のいずれか一態様に従属する場合の態様11に記載の金属張積層体の製造方法であって、前記熱圧着工程において、複数セットの片面金属張積層体(A)および金属賦形シート(B)を含む積層体の間に離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
〔態様14〕
 態様13に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の間に、(r)/(B)/(A)/(C)/(A)/(B)/(r)の順となるように、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
〔態様15〕
 態様6~9のいずれか一態様に従属する場合の態様11または態様12に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の少なくとも一方の加圧ロールに接するように離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
〔態様16〕
 態様15に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の間に、(r)/(C)/(B)/(A)/(A)/(B)/(C)/(r)、もしくは(r)/(C)/(A)/(B)/(B)/(A)/(C)/(r)の順となるように、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明によれば、片面金属張積層体および金属賦形シートを準備し、片面金属張積層体の熱可塑性液晶ポリマーフィルム面と金属賦形シートの賦形面とが接触するように配した状態で一対の加圧ロールへ導入して熱圧着することにより、連続的に賦形処理を行うことができるため、寸法変化が抑制された金属張積層体を、効率よく製造することができる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解される。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。図面は必ずしも一定の縮尺で示されておらず、本発明の原理を示す上で誇張したものになっている。
本発明の第1の実施形態による金属張積層体の製造方法を説明するための側面模式図である。 本発明の第2の実施形態による金属張積層体の製造方法を説明するための側面模式図である。 本発明の第3の実施形態による金属張積層体の製造方法を説明するための側面模式図である。 本発明の第4の実施形態による金属張積層体の製造方法を説明するための側面模式図である。 本発明の第5の実施形態による金属張積層体の製造方法を説明するための側面模式図である。 本発明の第6の実施形態による金属張積層体の製造方法を説明するための側面模式図である。
 本発明の金属張積層体の製造方法では、片面金属張積層体の熱可塑性液晶ポリマーフィルム面に金属賦形シートを積層させた金属張積層体、または賦形処理された金属張積層体を連続的に製造することができる。
 なお、本発明において、金属張積層体とは、熱可塑性液晶ポリマーフィルムの一方の面に金属層を備え、かつ他方の面に金属賦形シートを備える金属張積層体や、熱可塑性液晶ポリマーフィルムの一方の面に金属層を備え、かつ他方の面が賦形処理されている金属張積層体であればよく、他の付随物(例えば、離型クッション材)を適宜備えていてもよい。
 (熱可塑性液晶ポリマーフィルム)
 本発明の製造方法に用いられる熱可塑性液晶ポリマーフィルムは、溶融成形できる液晶性ポリマーから形成される。この熱可塑性液晶ポリマーは、光学的に異方性の溶融相を形成し得るポリマーであって、溶融成形できる液晶性ポリマーであれば特にその化学的構成については限定されるものではないが、例えば、熱可塑性液晶ポリエステル、またはこれにアミド結合が導入された熱可塑性液晶ポリエステルアミド等を挙げることができる。
 また、熱可塑性液晶ポリマーは、芳香族ポリエステルまたは芳香族ポリエステルアミドに、更にイミド結合、カーボネート結合、カルボジイミド結合やイソシアヌレート結合等のイソシアネート由来の結合等が導入されたポリマーであってもよい。
 本発明に用いられる熱可塑性液晶ポリマーの具体例としては、以下に例示する(1)から(4)に分類される化合物およびその誘導体から導かれる公知の熱可塑性液晶ポリエステルおよび熱可塑性液晶ポリエステルアミドを挙げることができる。ただし、光学的に異方性の溶融相を形成し得るポリマーを形成するためには、種々の原料化合物の組合せには適当な範囲があることは言うまでもない。
(1)芳香族または脂肪族ジオール(代表例は表1参照)
Figure JPOXMLDOC01-appb-T000001
(2)芳香族または脂肪族ジカルボン酸(代表例は表2参照)
Figure JPOXMLDOC01-appb-T000002
(3)芳香族ヒドロキシカルボン酸(代表例は表3参照)
Figure JPOXMLDOC01-appb-T000003
(4)芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸(代表例は表4参照)
Figure JPOXMLDOC01-appb-T000004
 これらの原料化合物から得られる熱可塑性液晶ポリマーの代表例として表5および6に示す構造単位を有する共重合体を挙げることができる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 これらの共重合体のうち、p-ヒドロキシ安息香酸および/または6-ヒドロキシ-2-ナフトエ酸を少なくとも繰り返し単位として含む重合体が好ましく、特に、(i)p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む共重合体、または(ii)p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸と、少なくとも一種の芳香族ジオールと、少なくとも一種の芳香族ジカルボン酸との繰り返し単位を含む共重合体が好ましい。
 例えば、(i)の共重合体では、熱可塑性液晶ポリマーが、少なくともp-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸との繰り返し単位を含む場合、繰り返し単位(A)のp-ヒドロキシ安息香酸と、繰り返し単位(B)の6-ヒドロキシ-2-ナフトエ酸とのモル比(A)/(B)は、熱可塑性液晶ポリマー中、(A)/(B)=10/90~90/10程度であるのが望ましく、より好ましくは、(A)/(B)=15/85~85/15程度であってもよく、さらに好ましくは、(A)/(B)=20/80~80/20程度であってもよい。
 また、(ii)の共重合体の場合、p-ヒドロキシ安息香酸および6-ヒドロキシ-2-ナフトエ酸からなる群から選ばれる少なくとも一種の芳香族ヒドロキシカルボン酸(C)と、4,4’-ジヒドロキシビフェニル、ヒドロキノン、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる少なくとも一種の芳香族ジオール(D)と、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸からなる群から選ばれる少なくとも一種の芳香族ジカルボン酸(E)の、熱可塑性液晶ポリマーにおける各繰り返し単位のモル比は、芳香族ヒドロキシカルボン酸(C):前記芳香族ジオール(D):前記芳香族ジカルボン酸(E)=(30~80):(35~10):(35~10)程度であってもよく、より好ましくは、(C):(D):(E)=(35~75):(32.5~12.5):(32.5~12.5)程度であってもよく、さらに好ましくは、(C):(D):(E)=(40~70):(30~15):(30~15)程度であってもよい。
 また、芳香族ヒドロキシカルボン酸(C)のうち6-ヒドロシキ-2-ナフトエ酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。芳香族ジカルボン酸(E)のうち2,6-ナフタレンジカルボン酸に由来する繰り返し単位のモル比率は、例えば、85モル%以上であってもよく、好ましくは90モル%以上、より好ましくは95モル%以上であってもよい。
 また、芳香族ジオール(D)は、ヒドロキノン、4,4’-ジヒドロキシビフェニル、フェニルヒドロキノン、および4,4’-ジヒドロキシジフェニルエーテルからなる群から選ばれる互いに異なる二種の芳香族ジオールに由来する繰り返し単位(D1)と(D2)であってもよく、その場合、二種の芳香族ジオールのモル比は、(D1)/(D2)=23/77~77/23であってもよく、より好ましくは25/75~75/25、さらに好ましくは30/70~70/30であってもよい。
 また、芳香族ジオールに由来する繰り返し構造単位と芳香族ジカルボン酸に由来する繰り返し構造単位とのモル比は、(D)/(E)=95/100~100/95であることが好ましい。この範囲をはずれると、重合度が上がらず機械強度が低下する傾向がある。
 なお、本発明にいう光学的に異方性の溶融相を形成し得るとは、例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより認定できる。
 熱可塑性液晶ポリマーとして好ましいものは、融点(以下、Tmと称す)が、例えば、200~360℃の範囲のものであり、好ましくは240~350℃の範囲のもの、さらに好ましくはTmが260~330℃のものである。なお、融点は、示差走査熱量計を用いて、熱可塑性液晶ポリマーサンプルの熱挙動を観察して得ることができる。すなわち、熱可塑性液晶ポリマーサンプルを10℃/minの速度で昇温して完全に溶融させた後、溶融物を10℃/minの速度で50℃まで冷却し、再び10℃/minの速度で昇温した後に現れる吸熱ピークの位置を、熱可塑性液晶ポリマーサンプルの融点として求める。
 また、熱可塑性液晶ポリマーは、溶融成形性の観点から、例えば、(Tm+20)℃におけるせん断速度1000/sの溶融粘度30~120Pa・sを有していてもよく、好ましくは溶融粘度50~100Pa・sを有していてもよい。
 前記熱可塑性液晶ポリマーには、本発明の効果を損なわない範囲内で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂等の熱可塑性ポリマー、各種添加剤、充填剤等を添加してもよい。
 本発明の製造方法に用いられる熱可塑性液晶ポリマーフィルムは、例えば、前記熱可塑性液晶ポリマーの溶融混練物を押出成形して得られる。押出成形法としては任意の方法のものが使用されるが、周知のTダイ法、インフレーション法等が工業的に有利である。特にインフレーション法では、熱可塑性液晶ポリマーフィルムの機械軸方向(以下、MD方向と略す)だけでなく、これと直交する方向(以下、TD方向と略す)にも応力が加えられ、MD方向、TD方向に均一に延伸できることから、MD方向とTD方向における分子配向性、誘電特性等を制御した熱可塑性液晶ポリマーフィルムが得られる。
 例えば、Tダイ法による押出成形では、Tダイから押出した溶融体シートを、熱可塑性液晶ポリマーフィルムのMD方向だけでなく、これとTD方向の双方に対して同時に延伸して製膜してもよいし、またはTダイから押出した溶融体シートを一旦MD方向に延伸し、ついでTD方向に延伸して製膜してもよい。
 また、インフレーション法による押出成形では、リングダイから溶融押出された円筒状シートに対して、所定のドロー比(MD方向の延伸倍率に相当する)およびブロー比(TD方向の延伸倍率に相当する)で延伸して製膜してもよい。
 このような押出成形の延伸倍率は、MD方向の延伸倍率(またはドロー比)として、例えば、1.0~10程度であってもよく、好ましくは1.2~7程度、さらに好ましくは1.3~7程度であってもよい。また、TD方向の延伸倍率(またはブロー比)として、例えば、1.5~20程度であってもよく、好ましくは2~15程度、さらに好ましくは2.5~14程度であってもよい。
 また、必要に応じて、公知または慣用の熱処理を行い、熱可塑性液晶ポリマーフィルムの融点および/または熱膨張係数を調整してもよい。熱処理条件は目的に応じて適宜設定でき、例えば、熱可塑性液晶ポリマーの融点(Tm)に対して、(Tm-10)℃以上(例えば、(Tm-10)~(Tm+30)℃程度、好ましくは(Tm)~(Tm+20)℃程度)で数時間加熱することにより、熱可塑性液晶ポリマーフィルムの融点(Tm)を上昇させてもよい。なお、熱可塑性液晶ポリマーフィルムの融点(Tm)は、示差走査熱量計を用いて、熱可塑性液晶ポリマーフィルムサンプルの熱挙動を観察して得ることができる。すなわち、熱可塑性液晶ポリマーフィルムサンプルを10℃/minの速度で昇温した際に現れる吸熱ピークの位置を、熱可塑性液晶ポリマーフィルムの融点(Tm)として求めることができる。
 (片面金属張積層体)
 本発明の製造方法に用いられる片面金属張積層体は、前記熱可塑性液晶ポリマーフィルムの一方の面に金属層が配設されたものである。なお、片面金属張積層体は市販品を用いてもよいが、例えば、片面金属張積層体の製造方法は、熱可塑性液晶ポリマーフィルムに対して、熱圧着により金属層として金属箔を接着させてもよく、スパッタリング、蒸着、無電解メッキ等により金属層を形成させてもよい。生産効率および簡便性の観点から、熱可塑性液晶ポリマーフィルムに対して、熱圧着により金属箔を接着させる方法が好ましい。
 片面金属張積層体は長尺状物が用いられる。その場合、長尺状物はロールに巻き取られたロール形状であってもよく、ロールに巻き取られていない非ロール形状であってもよい。長尺状物の長さは連続的に搬送できる限り特に限定されないが、100m以上(例えば100~500m)であってもよい。熱可塑性液晶ポリマーフィルムに金属箔を接着させる方法としては、ロールトゥロール方式によるロールプレスまたはダブルベルトプレスにより、熱可塑性液晶ポリマーフィルムと金属箔とを重ね合わせて連続的に熱圧着する方法が好ましい。
 片面金属張積層体の熱可塑性液晶ポリマーフィルムと金属層との剥離強度は、0.6N/mm以上であってもよく、好ましくは0.8N/mm以上、より好ましくは1.0N/mm以上であってもよい。また、片面金属張積層体の熱可塑性液晶ポリマーフィルムと金属層との剥離強度の上限は特に制限されないが、例えば、2.0N/mm以下であってもよい。ここで、剥離強度は、JIS C 5016-1994(90°方向引きはがし)を参考にして測定される剥離強度(引きはがし強さ)である。
 本発明の製造方法では、片面金属張積層体の準備(例えば、熱可塑性液晶ポリマーフィルムおよび金属箔の熱圧着による片面金属張積層体の製造)と片面金属張積層体の賦形処理(すなわち、金属賦形シートとの熱圧着)とが独立して行われる。そのため、賦形処理の際に高温での加熱加圧を避けることができ、その結果、金属張積層体の寸法変化を抑制することができるとともに、各材料の熱膨張の差異によるシワの発生を抑制することができる。
 金属層を形成する金属としては、特に制限はなく、例えば、金、銀、銅、鉄、すず、ニッケル、アルミニウム、クロムまたはこれらの合金金属等であってもよい。金属層として金属箔を接着させる場合、例えば、前記金属で形成される金属箔であってもよく、導電性、取り扱い性、およびコスト等の観点から、銅箔やステンレス箔が好ましい。銅箔としては、圧延法や電解法によって製造されるものを使用することができる。また、金属箔には、本発明の金属張積層体の高周波特性を損なわない範囲で、通常施される粗化処理等の表面処理が行われていてもよい。
 金属層の厚みは、必要に応じて適宜設定することができ、例えば、1~50μm程度であってもよく、より好ましくは9~35μmの範囲であってもよい。
 (金属賦形シート)
 本発明の製造方法に用いられる金属賦形シートは、金属で形成されたシートであり、少なくとも一方の表面が賦形面である。金属賦形シートは長尺状物が用いられる。長尺状物はロールに巻き取られたロール形状であってもよく、ロールに巻き取られていない非ロール形状であってもよい。長尺状物の長さは連続的に搬送できる限り特に限定されないが、100m以上(例えば、100~500m)であってもよい。
 金属賦形シートは、少なくとも一方の表面が賦形面を有する金属箔であることが好ましい。金属賦形シートを形成する金属としては、特に制限はなく、例えば、金、銀、銅、鉄、すず、ニッケル、アルミニウム、クロムまたはこれらの合金金属等であってもよく、金属箔を用いる場合、例えば、前記金属で形成される金属箔であってもよく、取り扱い性、およびコスト等の観点から、銅箔やステンレス箔が好ましい。これらの金属箔としては、圧延法や電解法によって製造されるものを使用することができ、所望の賦形面を得るために粗化処理等の表面処理が行われていてもよい。
 また、熱圧着時における熱膨張による反りを抑制する観点から、金属賦形シートを形成する金属は、片面金属張積層体の金属層を形成する金属と同程度の熱膨張係数を有する材質(例えば、同じ種類の金属)であることが好ましい。特に、金属層および金属賦形シートはいずれも銅箔であることが好ましい。
 金属賦形シートの賦形面は、回路加工におけるボンディングシートとの層間接着性を向上させる観点から、例えば、表面粗さ(Rz)が1.0~7.0μmであってもよい。本発明の製造方法では、金属賦形シートの賦形面の表面粗さ(Rz)を転写して、熱可塑性液晶ポリマーフィルムの表面に金属賦形シートと同様の表面粗さ(Rz)の凹凸を形成することが可能となる。また、金属賦形シートの賦形面の表面粗さ(Rz)は、好ましくは1.5~5.5μm、より好ましくは2.0~4.5μmであってもよい。ここで、本発明において、表面粗さ(Rz)とは、接触式表面粗さ計を用いて、JIS B 0601-1994を参考に測定した十点平均粗さを示し、基準長さの粗さ曲線において、最高の山頂から高い順に5番目までの山高さの平均と、最深の谷底から深い順に5番目までの谷深さの平均との和を表す。
 金属賦形シートの賦形面には、熱圧着後に金属賦形シートの剥離を容易にする観点から、離型処理が施されていてもよい。離型処理の方法としては、例えば、金属賦形シートの賦形面に離型剤を塗布して離型層を設ける方法であってもよい。離型剤としては、例えば、シリコーン系樹脂、フッ素系樹脂等が挙げられる。
 金属賦形シートの厚みは、必要に応じて適宜設定することができ、例えば、5~50μm程度であってもよく、より好ましくは9~35μmの範囲であってもよい。
 (離型クッション材)
 本発明の製造方法には、必要に応じて離型クッション材を用いてもよい。離型クッション材は長尺状物が用いられてもよい。長尺状物はロールに巻き取られたロール形状であってもよく、ロールに巻き取られていない非ロール形状であってもよい。長尺状物の長さは連続的に搬送できる限り特に限定されないが、100m以上(例えば100~500m)であってもよい。
 離型クッション材としては、熱圧着後に隣接する被着体から剥離することができ、耐熱性を有し、クッション性を有する限り特に限定されず、非熱可塑性のポリイミドフィルムやアラミドフィルム、テフロン(登録商標)フィルム等の耐熱性樹脂フィルム;耐熱性複合フィルム(例えば、複数の耐熱性樹脂フィルムからなる複合フィルム、金属箔と耐熱性樹脂フィルムからなる複合フィルム);耐熱性繊維(例えば、耐熱性樹脂繊維、金属繊維)で構成された耐熱性不織布;および、少なくとも一方の面に離型層(例えば、シリコーン系樹脂、フッ素系樹脂等の離型剤の塗布層)が備えられた金属箔(例えば、アルミニウム箔、ステンレス箔等)等が挙げられる。これらの離型クッション材は、単独でまたは二種以上組み合わせて使用してもよい。なお、離型クッション材(例えば、耐熱性樹脂フィルム、耐熱性複合フィルム、または耐熱性不織布)には、熱圧着後の被着体との剥離を容易にする観点から、離型処理が施されていてもよい。離型処理の方法としては、上述の方法が挙げられる。
 これらの離型クッション材のうち、耐熱性およびクッション性(反発弾性)に優れる観点から、耐熱性樹脂フィルム、耐熱性複合フィルム、および耐熱性不織布が好ましい。
 離型クッション材の厚みは、必要に応じて適宜設定することができ、例えば、5~300μm程度であってもよく、好ましくは10~150μm、より好ましくは25~75μmの範囲であってもよい。
 離型クッション材の少なくとも一方の面の表面粗さ(Rz)は、熱圧着後の被着体(片面金属張積層体または金属賦形シート)との剥離を容易にする観点から、2.0μm以下であってもよく、好ましくは1.8μm以下、より好ましくは1.5μm以下であってもよい。また、離型クッション材の少なくとも一方の面の表面粗さ(Rz)の下限は特に限定されないが、例えば、0.05μm以上であってもよく、好ましくは0.10μm以上、より好ましくは0.15μm以上であってもよい。
 (金属張積層体の製造方法)
 本発明の金属張積層体の製造方法は、
 熱可塑性液晶ポリマーフィルムの一方の面に金属層が接着された長尺状の片面金属張積層体(A)、および少なくとも一方の表面が賦形面である長尺状の金属賦形シート(B)を準備する工程と、
 前記片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と前記金属賦形シート(B)の賦形面とが接触するように配し、一対の加圧ロール(r,r)へ導入する熱圧着工程と、
 を少なくとも備える。
 片面金属張積層体(A)および金属賦形シート(B)は、長尺状物として加圧ロールに導入できる限り特に限定されず、例えば、熱圧着工程の上流で製造した長尺状物をそのまま搬送して用いてもよいし、巻き出しロールを準備してもよい。
 上流で製造した長尺状物をそのまま用いる場合、例えば、片面金属張積層体(A)を、熱可塑性液晶ポリマーフィルムと金属箔とを重ね合わせて連続的に熱圧着して製造し、巻き取ることなく、そのまま搬送方向の下流で、別で準備した金属賦形シート(B)と重ね合わせてもよい。この場合、片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と金属賦形シート(B)の賦形面とが接触するよう配されて重ね合わせる。
 巻き出しロールを準備する場合、各巻き出しロールは、片面金属張積層体(A)と金属賦形シート(B)とが隣接し、かつ片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と金属賦形シート(B)の賦形面とが接触するような向きで配置される。
 本発明の金属張積層体の製造方法は、
 準備工程で、さらに長尺状の離型クッション材(C)を準備し、
 熱圧着工程で、前記片面金属張積層体(A)および前記金属賦形シート(B)の接触しない側の少なくとも一方に前記離型クッション材(C)を配し、一対の加圧ロール(r,r)へ導入してもよい。
 離型クッション材(C)を用いることにより、離型クッション材(C)がクッションの役割を果たすため、片面金属張積層体(A)と金属賦形シート(B)との熱圧着において加圧ロールからの圧力を分散することができ、熱可塑性液晶ポリマーフィルムの表面への金属賦形シート(B)の賦形面の転写性を向上することができる。例えば、加圧ロール(r,r)での加熱温度が高い場合や、加圧圧力が低い場合、加圧時間が短い場合には、離型クッション材(C)の存在により圧力の均一性を向上させる効果が高い。
 離型クッション材(C)を用いる場合、片面金属張積層体(A)および金属賦形シート(B)の接触していない面において、離型クッション材(C)が片面金属張積層体(A)および/または金属賦形シート(B)と隣接するよう配されてもよい。
 例えば、離型クッション材(C)を片面金属張積層体(A)の金属層と隣接するよう配し、金属張積層体が少なくとも(C)/(A)/(B)の順で形成するように熱圧着されてもよい。離型クッション材(C)を片面金属張積層体(A)の金属層側に隣接させることで、離型クッション材(C)が片面金属張積層体(A)側から熱が伝わるのを抑制する断熱材の役割を果たすため、熱可塑性液晶ポリマーフィルムが金属層側から必要以上に加熱されるのを防ぎ、液晶ポリマー分子が容易に配向してしまうのを抑制することができる。
 また、熱圧着工程において、加圧ロール(r,r)の少なくとも一方が加熱された加圧ロール(hr)であり、その加熱された加圧ロール(hr)から(hr)/(B)/(A)の順、または、離型クッション材(C)を用いる場合には、(hr)/(B)/(A)/(C)もしくは(hr)/(C)/(B)/(A)の順となるように導入されてもよい。金属賦形シート(B)側から片面金属張積層体(A)を加熱することで、片面金属張積層体(A)の賦形処理を施す熱可塑性液晶ポリマーフィルム面に効率よく熱を伝えることができるため、熱可塑性液晶ポリマーフィルムが必要以上に加熱されるのを防ぐような加熱加圧条件に調整でき、効率的に賦形処理を行うことができる。
 本発明の金属張積層体の製造方法は、長尺状の片面金属張積層体(A)および長尺状の金属賦形シート(B)をそれぞれ複数準備して、複数の金属張積層体を製造してもよい。
 複数の金属張積層体を製造する場合、熱圧着工程において、複数セットの片面金属張積層体(A)および金属賦形シート(B)を含む積層体の間に離型クッション材(C)を重ねて導入してもよい。
 また、複数の金属張積層体を製造する場合、熱圧着工程において、一対の加圧ロール(r,r)の少なくとも一方の加圧ロールに接するように離型クッション材(C)を重ねて導入してもよい。
 ここで、複数の片面金属張積層体(A)は、同一であっても、異なっていてもよい。また、複数の金属賦形シート(B)も、同一であっても、異なっていてもよい。
 さらにまた、得られる複数の金属張積層体も、同一であっても、異なっていてもよい。
 得られた金属張積層体(熱可塑性液晶ポリマーフィルムの一方の面に金属層が積層され、他方の面に金属賦形シートを備える金属張積層体)は、熱可塑性液晶ポリマーフィルムと金属賦形シートとの間の剥離強度(P1)は、0.5N/mm以下であってもよく、好ましくは0.2N/mm以下、より好ましくは0.1N/mm以下であってもよい。
 また、得られた金属張積層体は、熱可塑性液晶ポリマーフィルムと金属層との間の剥離強度(P2)は、例えば、0.6N/mm以上であってもよく、好ましくは0.8N/mm以上、より好ましくは1.0N/mm以上であってもよい。また、熱可塑性液晶ポリマーフィルムと金属層との剥離強度の上限は特に制限されないが、2.0N/mm以下であってもよい。
 また、得られた金属張積層体は、熱可塑性液晶ポリマーフィルムと金属賦形シートとの間の剥離強度(P1)を、熱可塑性液晶ポリマーフィルムと金属層との間の剥離強度(P2)で除した値(P1/P2)が0.6以下であってもよく、好ましくは0.4以下、より好ましくは0.2以下であってもよい。
 また、得られた金属張積層体は、熱可塑性液晶ポリマーフィルムの厚み方向のうち金属層側の配向度f(f1)を金属賦形シート側(または賦形処理面側)の配向度f(f2)で除した値(f1/f2)が1.05~1.40でもよく、好ましくは1.10~1.35、より好ましくは1.15~1.30であってもよい。本発明では、片面金属張積層体(A)と金属賦形シート(B)との熱圧着工程において、必要以上の高温(例えば、熱可塑性液晶ポリマーフィルムの融点以上)で加熱加圧することを避けることができることにより、金属賦形シート側の分子配向が変化することを抑制できるためか、熱可塑性液晶ポリマーフィルムの厚み方向の配向度を特定の関係とすることができる。ここで、熱可塑性液晶ポリマーフィルムの厚み方向のうち金属層側の配向度とは、熱可塑性液晶ポリマーフィルムを厚み方向に2等分した場合の金属層と接している側の部分の配向度をいい、熱可塑性液晶ポリマーフィルムの厚み方向のうち金属賦形シート側(賦形処理面側)の配向度とは、熱可塑性液晶ポリマーフィルムを厚み方向に2等分した場合の金属賦形シートと接している側(賦形処理がされた面側)の部分の配向度をいう。
 ここで配向度fとは、高分子の結晶領域の配向の度合いを与える指標をいい、以下のように算出される。配向度fは、理学電機製回転対陰極X線回折装置Ru-200を用い、X線出力は、電圧40kV、電流100mA、ターゲットCuKα(λ=1.5405A)を用いて以下のように測定することができる。結晶配向の変化は広角X線写真より求めることができる。まず、金属張積層体の金属賦形シートを剥離し、金属層をエッチング処理して除去して得られたフィルムをMD方向に切り出し、サンプルホルダーに取り付け、Edge方向からX線を入射させ、イメージングプレートに回折像を露光する。そして、得られた回折像を配向分布曲線に変換し、円周方向β角に対する回折強度の曲線のピークの半価幅Hから簡便な配向度fを以下の式(1)より算出することができる。
 f=(180-H)/180   (1)
 式中、Hは半価幅である。
 配向度fの測定を熱可塑性液晶ポリマーフィルムにおける金属層側と金属賦形シート側(賦形処理面側)の両方で測定する。
 また、半価幅Hは、広角X線回折測定による回折角2θ=15°~30°(例えば、約20°付近((110)面))を円環積分して得られる強度分布のピークの半価幅であってもよい。
 以下に、具体的な実施形態を、図面を参照しつつ、説明する。図1は、第1の実施形態による金属張積層体の製造方法を説明するための側面模式図である。
 図1に示すように、第1の実施形態では、一対の加圧ロール(r,r)の上流側に、片面金属張積層体(A)を巻き出す片面金属張積層体巻き出しロール11、および金属賦形シート(B)を巻き出す金属賦形シート巻き出しロール12を準備する。
 ここで、第1の実施形態では、片面金属張積層体(A)および金属賦形シート(B)が、一対の加圧ロール(r,r)間で、(r)/(A)/(B)/(r)の順となるように、各巻き出しロールが配置される。
 具体的には、一対の加圧ロール(r,r)の上流側に、片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と金属賦形シート(B)の賦形面とが接触するように片面金属張積層体巻き出しロール11および金属賦形シート巻き出しロール12が配置される。
 図1に示すように、一対の加圧ロール(r,r)に対して、各巻き出しロールを配置した後、各巻き出しロールから、矢印方向に示すように、片面金属張積層体(A)、および金属賦形シート(B)が巻き出され、一対の加圧ロール(r,r)に対して、矢印により示されるMD方向(またはラミネート方向)に導入され、一対の加圧ロール(r,r)において熱圧着され、金属張積層体(D)((A)/(B))が形成される。
 一対の加圧ロール(r,r)では、片面金属張積層体(A)、および金属賦形シート(B)がこの順で重ねて導入され、所定の加熱温度において、圧力を加える。本発明の製造方法では、準備された片面金属張積層体(A)を直接用いて製造しているため、金属賦形シート(B)との熱圧着工程においては、必要以上の高温(例えば、熱可塑性液晶ポリマーフィルムの融点以上)で加熱加圧することを避けることができる。その結果、金属張積層体の寸法変化を抑制することができるとともに、各材料の熱膨張の差異によるシワの発生を抑制でき、さらには、片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と金属賦形シート(B)の賦形面との剥離性を向上させることができる。
 加圧ロールとしては公知の加熱加圧装置を使用することができ、例えば、金属ロール、ゴムロール、樹脂被覆金属ロール等が挙げられる。一対の加圧ロール(r,r)は、互いに同一のものを用いても、異なるものを用いてもよい。例えば、加圧ロール(r)は加熱の効率を高める観点から金属ロールであってもよく、また、加圧ロール(r)は、加圧ロール(r)と同様に金属ロールであってもよく、ゴムロールまたは樹脂被覆金属ロールであってもよい。
 また、一対の加圧ロール(r,r)は一方のみ加熱してもよいし、双方とも加熱してもよい。双方とも加熱する場合、加圧ロール(r,r)の各加熱温度は、互いに同一であってもよく、異なっていてもよい。例えば、金属賦形シート(B)側に配設される加圧ロールの方が温度が高い方が好ましく、図1に示すような第1の実施形態の場合、金属賦形シート(B)側に配設される加圧ロール(r)の方が加圧ロール(r)より加熱温度が高くてもよい。その場合、例えば、金属賦形シート(B)が接する加圧ロール(r)の加熱温度の方が高いことにより、金属賦形シート(B)から片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面(賦形処理を施す面)側へ熱を伝えることができるため、効率的に賦形処理を施すことが可能となるとともに、金属張積層体の寸法変化を抑制することができる。加圧ロール(r)のほうが加圧ロール(r)より加熱温度が高い場合、例えば、加圧ロール(r)の加熱温度と加圧ロール(r)の加熱温度との温度差は20~200℃であってもよく、好ましくは25~150℃、より好ましくは30~100℃であってもよい。
 また、熱圧着温度や加圧ロールの圧力条件については特に制限はないが、金属賦形シート(B)の賦形面の凹凸の転写性を向上させる観点から、例えば、熱可塑性液晶ポリマーフィルムの融点(Tm)に対して、熱圧着温度は、例えば、(Tm-150)℃以上であってもよく、好ましくは(Tm-130)℃以上(例えば、(Tm-100)℃以上)、より好ましくは(Tm-110)℃以上(例えば、(Tm-90)℃以上)であってもよい。また、金属賦形シート(B)の剥離性の向上、および寸法変化およびシワの発生を抑制する観点から、(Tm)℃未満であってもよく、好ましくは(Tm-5)℃以下、より好ましくは(Tm-10)℃以下であってもよい。なお、熱圧着温度は、加圧ロール(r,r)の加熱温度であってもよく、一対の加圧ロール(r,r)の加熱温度が互いに異なる場合には、加圧ロール(r,r)の加熱温度のうちいずれか高い加熱温度が熱圧着温度であってもよい。
 また、加圧圧力は16.0t/m(156.8kN/m)以下、好ましくは8.0t/m(78.4kN/m)以下の範囲であってもよい。加圧圧力の下限は特に制限されないが、0.5t/m(4.9kN/m)以上であってもよい。なお、加圧圧力は、加圧ロールに付与した力(圧着荷重)を加圧ロール間を通過する材料の中の最大幅で除した値である。
 なお、本発明の製造方法では、必要に応じて、冷却ロールを加圧ロールの下流側に設けてもよい。冷却ロールは、加圧ロールと第1の剥離ロールの間に設けるのが好ましい。冷却ロールは一対のロールで構成されていてもよいし、1つの単独ロールで構成されていてもよい。
 本発明の製造方法では、熱圧着工程後、片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面から金属賦形シート(B)を剥離する剥離工程をさらに備えていてもよい。剥離工程では、例えば、一対の加圧ロール(r,r)を通過後、当該一対の加圧ロール(r,r)を剥離ロールとして用いて、直ちに片面金属張積層体(A)から金属賦形シート(B)を剥離してもよいし、加圧ロールとは別に配設される少なくとも1つの剥離ロールを用いて、片面金属張積層体(A)から金属賦形シート(B)を剥離してもよい。
 例えば、図1に示す第1の実施形態では、上記熱圧着工程により得られた金属張積層体(D)((A)/(B))は、剥離ロール21,21を通過することにより、(A)/(B)間で剥離されて、金属張積層体(E)が製造され、金属張積層体巻き取りロール31に巻き取られる。金属賦形シート(B)の剥離により得られた金属張積層体(E)は、金属層/熱可塑性液晶ポリマーフィルムの順に積層されており、熱可塑性液晶ポリマーフィルムの金属層が接着されていない側の表面には金属賦形シート(B)の賦形面の凹凸が転写されている。すなわち、金属張積層体(E)の熱可塑性液晶ポリマーフィルムの金属層が接着されていない側の表面粗さ(Rz)は1.0~7.0μmであってもよく、好ましくは1.5~5.5μm、より好ましくは2.0~4.5μmであってもよい。
 本発明の製造方法では、剥離工程を行うことができる限り、片面金属張積層体(A)と金属賦形シート(B)との間の剥離強度は、適宜設定されてもよい。例えば、片面金属張積層体(A)と金属賦形シート(B)との間の剥離強度は、0.5N/mm以下であることが好ましく、0.2N/mm以下であることがより好ましく、0.1N/mm以下であることがさらに好ましい。下限は特に制限されないが、0N/mmであってもよい。本発明の製造方法では、熱圧着工程において、より低温での加熱加圧により、片面金属張積層体(A)と金属賦形シート(B)との層間接着性を低い状態のまま賦形処理を施すことができる。
 剥離された金属賦形シート(B)は、金属賦形シート巻き取りロール32により巻き取られる。本発明の製造方法では、剥離された金属賦形シート(B)は、必要に応じて、再利用してもよい。
 また、図2は、第2の実施形態による金属張積層体の製造方法を説明するための側面模式図である。図1と同じ役割を有する部材には、同じ符号をつけて、説明を省略する。図2に示すように、第2の実施形態では、一対の加圧ロール(r,r)の上流側に、片面金属張積層体(A)を巻き出す片面金属張積層体巻き出しロール11、金属賦形シート(B)を巻き出す金属賦形シート巻き出しロール12、および離型クッション材(C)を巻き出す離型クッション材巻き出しロール13を準備する。
 ここで、第2の実施形態では、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)が、一対の加圧ロール(r,r)間で、(r)/(C)/(A)/(B)/(r)の順となるように、各巻き出しロールが配置される。
 具体的には、一対の加圧ロール(r,r)の上流側に、片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と金属賦形シート(B)の賦形面とが接触するように片面金属張積層体巻き出しロール11および金属賦形シート巻き出しロール12が配置され、さらに、片面金属張積層体(A)の金属層面と離型クッション材(C)とが接触するように離型クッション材巻き出しロール13が配置される。
 図2に示すように、一対の加圧ロール(r,r)に対して、各巻き出しロールを配置した後、各巻き出しロールから、矢印方向に示すように、片面金属張積層体(A)、金属賦形シート(B)、および離型クッション材(C)が巻き出され、一対の加圧ロール(r,r)に対して、矢印により示されるMD方向(またはラミネート方向)に導入され、一対の加圧ロール(r,r)において熱圧着され、金属張積層体(F)((C)/(A)/(B))が形成される。
 図2に示すように、第2の実施形態では、離型クッション材(C)を用いているため、そのクッション性により一対の加圧ロール(r,r)からの圧力を分散させることができ、金属賦形シート(B)の賦形面の凹凸形状の熱可塑性液晶ポリマーフィルムへの転写性を向上させることができる。さらに、離型クッション材(C)を片面金属張積層体(A)の金属層側に重ねているため、離型クッション材(C)が加圧ロール(r)からの熱を断熱する役割も果たし、熱可塑性液晶ポリマーフィルムの金属層側の表面に必要以上に熱が伝わるのを抑制することができ、寸法変化を抑制することができる。特に、加圧ロール(r,r)での加熱温度が高い場合や、加圧圧力が低い場合、加圧時間が短い場合には、かかる圧力にムラが生じやすいため、離型クッション材(C)を用いることによって圧力の均一性を向上させる効果が高い。
 本発明の製造方法では、少なくとも1つの剥離ロールにより、熱圧着工程により得られた金属張積層体(片面金属張積層体(A)と金属賦形シート(B)とを備える金属張積層体、または片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面が賦形処理されている金属張積層体であって、離型クッション材(C)を備えている金属張積層体)から離型クッション材(C)が剥離されてもよい。例えば、一対の加圧ロール(r,r)を通過後、当該一対の加圧ロール(r,r)を剥離ロールとして用いて、直ちに金属張積層体から離型クッション材(C)を剥離してもよいし、加圧ロールとは別に配設される少なくとも1つの剥離ロールを用いて、金属張積層体から離型クッション材(C)を剥離してもよい。
 本発明の製造方法では、金属賦形シート(B)の剥離、および離型クッション材(C)の剥離の順序は、金属張積層体の態様に応じて適宜設定することができる。
 例えば、図2に示す第2の実施形態では、上記熱圧着工程により得られた金属張積層体(F)((C)/(A)/(B))は、第1の剥離ロール21,21を通過することにより、(C)/(A)間で剥離されて、金属張積層体(D)が製造される。離型クッション材(C)の剥離により得られた金属張積層体(D)は、片面金属張積層体(A)の金属層/片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム/金属賦形シート(B)の順に積層されている。
 本発明の製造方法では、剥離工程を行うことができる限り、離型クッション材(C)と片面金属張積層体(A)または金属賦形シート(B)との間の剥離強度は、適宜設定されてもよい。
 例えば、離型クッション材(C)と片面金属張積層体(A)または金属賦形シート(B)との間の剥離強度は、0.1N/mm以下であることが好ましく、0.05N/mm以下であることがより好ましく、0.03N/mm以下であることがさらに好ましい。下限は特に制限されないが、0N/mmであってもよい。
 剥離された離型クッション材(C)は、離型クッション材巻き取りロール33により巻き取られる。本発明の製造方法では、剥離された離型クッション材(C)は、必要に応じて、再利用することができる。
 離型クッション材(C)を剥離した金属張積層体(D)は、第2の剥離ロール22,22を通過することにより、(A)/(B)間で剥離されて、金属張積層体(E)が製造され、金属張積層体巻き取りロール31に巻き取られる。
 また、図3は、第3の実施形態による金属張積層体の製造方法を説明するための側面模式図である。図3に示すように、第3の実施形態では、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)が、一対の加圧ロール(r,r)間で、(r)/(C)/(A)/(B)/(C)/(r)の順となるように、各巻き出しロールが配置される。ここで、図2と同じ役割を有する部材には、同じ符号をつけて、説明を省略する。
 図3に示す第3の実施形態では、一対の加圧ロール(r,r)間で、(C)/(A)/(B)/(C)となるように重ねられた金属張積層体(F)は、(C)/(A)間および(B)/(C)間で離型クッション材(C)が剥離されて、金属張積層体(D)が製造され、その後、金属張積層体(D)から金属賦形シート(B)が剥離されて、金属張積層体(E)が製造される。
 また、図3に示す第3の実施形態では、一対の加圧ロール(r,r)の各加熱温度は、互いに同一であってもよく、異なっていてもよく、例えば、第1の実施形態と同様に、金属賦形シート(B)側の加圧ロール(r)のほうが加圧ロール(r)より加熱温度が高くてもよい。金属賦形シート(B)と隣接する離型クッション材(C)と接する加圧ロール(r)の加熱温度の方が高いことにより、金属賦形シート(B)から片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面(賦形処理を施す面)側へ効率的に熱を伝えることができる。
 また、図4は、第4の実施形態による金属張積層体の製造方法を説明するための側面模式図である。図4に示すように、第4の実施形態では、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)が、一対の加圧ロール(r,r)間で、(r)/(B)/(A)/(C)/(A)/(B)/(r)の順となるように、各巻き出しロールが配置される。ここで、図2と同じ役割を有する部材には、同じ符号をつけて、説明を省略する。
 図4に示す第4の実施形態では、一対の加圧ロール(r,r)間で、(B)/(A)/(C)/(A)/(B)となるように重ねられた金属張積層体(F)は、離型クッション材(C)が剥離され、2つの金属張積層体(D)が製造され、その後、金属張積層体(D)から金属賦形シート(B)が剥離されて、2つの金属張積層体(E)が製造される。
 図4に示す第4の実施形態では、複数の金属張積層体を製造することができ、生産効率がよい。2つの金属張積層体(D)は互いに同一であってもよく、異なっていてもよい。同様に、2つの金属張積層体(E)も互いに同一であってもよく、異なっていてもよい。
 図4に示す第4の実施形態では、離型クッション材(C)は両面において、片面金属張積層体(A)と重ねられているため、両面に離型層が配設されていることが好ましい。
 また、図4に示す第4の実施形態では、同一の金属張積層体を得る場合、熱圧着工程で熱膨張の差異によるシワの発生を抑制する観点から、一対の加圧ロール(r,r)は同一であってもよく、加熱温度は同一であってもよい。
 さらに、図5は、第5の実施形態による金属張積層体の製造方法を説明するための側面模式図である。図5に示すように、第5の実施形態では、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)が、一対の加圧ロール(r,r)間で、(r)/(C)/(B)/(A)/(A)/(B)/(C)/(r)の順となるように、各巻き出しロールが配置される。ここで、図2と同じ役割を有する部材には、同じ符号をつけて、説明を省略する。
 図5に示す第5の実施形態では、一対の加圧ロール(r,r)間で、(C)/(B)/(A)/(A)/(B)/(C)となるように重ねられた金属張積層体(F)は、離型クッション材(C)が剥離され、2つの金属張積層体(D)が製造され、その後、金属張積層体(D)から金属賦形シート(B)が剥離されて、2つの金属張積層体(E)が製造される。
 図5に示す第5の実施形態では、複数の金属張積層体を製造することができ、生産効率がよい。2つの金属張積層体(D)は互いに同一であってもよく、異なっていてもよい。同様に、2つの金属張積層体(E)も互いに同一であってもよく、異なっていてもよい。
 さらに、図6は、第6の実施形態による金属張積層体の製造方法を説明するための側面模式図である。図6に示すように、第6の実施形態では、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)が、一対の加圧ロール(r,r)間で、(r)/(C)/(A)/(B)/(B)/(A)/(C)/(r)の順となるように、各巻き出しロールが配置される。ここで、図2と同じ役割を有する部材には、同じ符号をつけて、説明を省略する。
 図6に示す第6の実施形態では、一対の加圧ロール(r,r)間で、(C)/(A)/(B)/(B)/(A)/(C)となるように重ねられた金属張積層体(F)は、離型クッション材(C)が剥離され、2つの金属張積層体(D)が製造され、その後、金属張積層体(D)から金属賦形シート(B)が剥離されて、2つの金属張積層体(E)が製造される。
 図6に示す第6の実施形態では、複数の金属張積層体を製造することができ、生産効率がよい。2つの金属張積層体(D)は互いに同一であってもよく、異なっていてもよい。同様に、2つの金属張積層体(E)も互いに同一であってもよく、異なっていてもよい。
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例および比較例においては、下記の方法により剥離性、および反りを評価した。
[剥離強度]
 実施例1および2において、熱圧着後でポリイミドフィルム(C)および金属賦形シート(B)を剥離する前の金属張積層体を別に得て、その金属張積層体から3mm幅の剥離試験片を作製し、JIS C 6471に準じて、90°法により、50mm/minの速度で、片面金属張積層体(E)と金属賦形シート(B)との界面、および片面金属張積層体(E)とポリイミドフィルム(C)との界面でそれぞれ剥離したときの強度(N/mm)を測定した。
[剥離性評価]
 片面金属張積層体と金属賦形シート間を連続的に剥離し、長さ20m以上において、しわ、変形、剥離不良、材料破壊が観察されないものをA、観察されたものをBとして評価した。
[反り測定]
 片面金属張積層体より幅250mm、長さ250mmのサンプルを採取し、サンプルを水平な台の上に置き、サンプル4隅の中で、最も台から浮いている部分の高さをスケールで測定し、これを反りとした。反りが5mm未満であったものをA、5mm以上の反りが確認されたものはBとして評価した。
(製造例1)
 熱可塑性液晶ポリマーフィルム(株式会社クラレ製「ベクスター」(登録商標)、融点310℃、厚み50μm)の片面に、銅箔(福田金属箔粉工業株式会社製、「CF-H9A-DS-HD2」、厚み12μm)を重ね合わせ、直径が300mmの金属ロールを用い、金属ロールの表面温度を260℃、加圧圧力を8t/mに設定し、速度3.0m/minで通過させて熱圧着し、熱可塑性液晶ポリマーフィルム/銅箔の構成の片面金属張積層体(A)を作製した。
(実施例1)
 製造例1で得られた片面金属張積層体(A)、金属賦形シート(B)として電解銅箔(JX金属株式会社製「JX-EFL-V2」、厚み12μm、賦形面の表面粗さ(Rz)2.0μm)、および保護材(C)としてポリイミドフィルム(株式会社カネカ製「アピカルNPI」、厚み75μm)をそれぞれ巻き出しロールとして準備し、一対の加圧ロール(r,r)間で、r/C/A/B/rの順となるように導入した。一対の加圧ロール(r,r)としてそれぞれ直径が300mmの金属ロールを用い、金属ロールの表面温度を200℃、加圧圧力を8t/mに設定し、速度3.0m/minで一対の加圧ロール(r,r)を通過させて熱圧着させた。
 熱圧着後、図2に示すように、一対の加圧ロール(r,r)を通過後、一対の剥離ロール(21)を用いて、ポリイミドフィルム(C)を分離し、続いて一対の剥離ロール(22)により、片面金属張積層体(E)と金属賦形シート(B)を分離し、金属賦形シート(B)の表面形状が熱可塑性液晶ポリマーフィルム面に転写された片面金属張積層体(E)を得た。金属賦形シート(B)の剥離性、および得られた片面金属張積層体(E)の反り測定結果を表7に示す。片面金属張積層体(E)と金属賦形シート(B)との間の剥離強度は0.05N/mm以下であった。また、片面金属張積層体(E)とポリイミドフィルム(C)との間の剥離強度は、全く接着しておらず、測定不可であった。
(実施例2)
 金属ロールの表面温度を240℃とした以外は、実施例1と同様に片面金属張積層体(E)を作製した。金属賦形シート(B)の剥離性、および得られた片面金属張積層体(E)の反り測定結果を表7に示す。片面金属張積層体(E)と金属賦形シート(B)との間の剥離強度は0.08N/mm以下であった。また、片面金属張積層体(E)とポリイミドフィルム(C)との間の剥離強度は、全く接着しておらず、測定不可であった。
(比較例1)
 片面金属張積層体(A)の代わりに、熱可塑性液晶ポリマーフィルム(L)(株式会社クラレ製「ベクスター」(登録商標)、融点310℃、厚み50μm)と銅箔(M)(福田金属箔粉工業株式会社製「CF-H9A-DS-HD2」、厚み12μm)を用いる以外は実施例1と同様に、金属賦形シート(B)、および保護材(C)と共に、一対の加圧ロール(r,r)間で、r/C/M/L/B/rの順となるように導入し、片面金属張積層体(E)を作製すると、熱可塑性液晶ポリマーフィルム(L)と銅箔(M)間の剥離強度が低く、金属賦形シート(B)を剥離する際に、熱可塑性液晶ポリマーフィルム(L)と銅箔(M)間でも部分的に剥離が発生すると考えられる。
(比較例2)
 金属ロールの表面温度を320℃とする以外は比較例1と同様に片面金属張積層体(E)を作製すると、熱可塑性液晶ポリマーフィルム(L)と銅箔(M)間の剥離強度は十分高くなるが、熱可塑性液晶ポリマーフィルム(L)と金属賦形シート(B)との間の剥離強度も高くなるため、熱可塑性液晶ポリマーフィルム(L)と金属賦形シート(B)とを剥離する際に、連続的にしわ、変形、剥離不良、およびフィルムの材料破壊のいずれかが発生すると考えられ、また、反りも大きくなる傾向にあると考えられる。
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、実施例1および2では、あらかじめ片面金属張積層体(A)を製造していたため、金属ロール表面温度を比較的低温に設定することができ、それにより片面金属張積層体と金属賦形シート間が強固に密着せず、また熱可塑性液晶ポリマーフィルムの分子配向が変化することもなく、剥離性、反り共に良好な結果であった。
 本発明の製造方法によれば、賦形処理された金属張積層体を効率よく製造することができ、得られた金属張積層体は、凹凸が転写されているため、ボンディングシートとの層間接着性に優れ、回路加工性が良好である。そのため、得られた金属張積層体は、電気・電子分野や、事務機器・精密機器分野、パワー半導体分野等において用いられる部品、例えば、回路基板(特にミリ波レーダ用基板)として有効に用いることができる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
11・・・片面金属張積層体巻き出しロール
12・・・金属賦形シート巻き出しロール
13・・・離型クッション材巻き出しロール
21,22・・・剥離ロール
31・・・金属張積層体巻き取りロール
32・・・金属賦形シート巻き取りロール
33・・・離型クッション材巻き取りロール
,r・・・加圧ロール
A・・・片面金属張積層体
B・・・金属賦形シート
C・・・離型クッション材
D,E,F・・・金属張積層体

Claims (16)

  1.  熱可塑性液晶ポリマーフィルムの一方の面に金属層が接着された長尺状の片面金属張積層体(A)、および少なくとも一方の表面が賦形面である長尺状の金属賦形シート(B)を準備する工程と、
     前記片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面と前記金属賦形シート(B)の賦形面とが接触するように配し、一対の加圧ロール(r,r)へ導入する熱圧着工程と、
     を少なくとも備える、金属張積層体の製造方法。
  2.  請求項1に記載の金属張積層体の製造方法であって、
     熱圧着工程後、前記片面金属張積層体(A)の熱可塑性液晶ポリマーフィルム面から前記金属賦形シート(B)を剥離する剥離工程をさらに備える、金属張積層体の製造方法。
  3.  請求項1または2に記載の金属張積層体の製造方法であって、熱圧着温度が、前記熱可塑性液晶ポリマーフィルムの融点(Tm)とした場合に、(Tm-150)℃以上(Tm)℃未満である、金属張積層体の製造方法。
  4.  請求項1~3のいずれか一項に記載の金属張積層体の製造方法であって、前記片面金属張積層体(A)と前記金属賦形シート(B)との剥離強度が0.5N/mm以下である、金属張積層体の製造方法。
  5.  請求項1~4のいずれか一項に記載の金属張積層体の製造方法であって、前記金属賦形シート(B)の賦形面の表面粗さ(Rz)が1.0~7.0μmである、金属張積層体の製造方法。
  6.  請求項1~5のいずれか一項に記載の金属張積層体の製造方法であって、
     準備工程で、さらに長尺状の離型クッション材(C)を準備し、
     熱圧着工程で、前記片面金属張積層体(A)および前記金属賦形シート(B)の接触しない側の少なくとも一方に前記離型クッション材(C)を配し、一対の加圧ロール(r,r)へ導入する、金属張積層体の製造方法。
  7.  請求項6に記載の金属張積層体の製造方法であって、前記離型クッション材(C)と前記片面金属張積層体(A)または前記金属賦形シート(B)との剥離強度が0.1N/mm以下である、金属張積層体の製造方法。
  8.  請求項6または7に記載の金属張積層体の製造方法であって、前記離型クッション材(C)が、耐熱性樹脂フィルム、耐熱性複合フィルム、耐熱性不織布、および少なくとも一方の面に離型層を備えた金属箔からなる群より選択される、金属張積層体の製造方法。
  9.  請求項6~8のいずれか一項に記載の金属張積層体の製造方法であって、前記離型クッション材(C)の少なくとも一方の面の表面粗さ(Rz)が2.0μm以下である、金属張積層体の製造方法。
  10.  請求項6~9のいずれか一項に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の間に、(r)/(C)/(A)/(B)/(r)の順となるように、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
  11.  請求項10に記載の金属張積層体の製造方法であって、前記熱圧着工程において、加圧ロール(r)のほうが加圧ロール(r)より加熱温度が高い、金属張積層体の製造方法。
  12.  請求項1~11のいずれか一項に記載の金属張積層体の製造方法であって、長尺状の片面金属張積層体(A)および長尺状の金属賦形シート(B)をそれぞれ複数準備して、複数の金属張積層体を製造する、金属張積層体の製造方法。
  13.  請求項6~9のいずれか一項に従属する場合の請求項11に記載の金属張積層体の製造方法であって、前記熱圧着工程において、複数セットの片面金属張積層体(A)および金属賦形シート(B)を含む積層体の間に離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
  14.  請求項13に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の間に、(r)/(B)/(A)/(C)/(A)/(B)/(r)の順となるように、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
  15.  請求項6~9のいずれか一項に従属する場合の請求項11または請求項12に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の少なくとも一方の加圧ロールに接するように離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
  16.  請求項15に記載の金属張積層体の製造方法であって、前記熱圧着工程において、一対の加圧ロール(r,r)の間に、(r)/(C)/(B)/(A)/(A)/(B)/(C)/(r)、もしくは(r)/(C)/(A)/(B)/(B)/(A)/(C)/(r)の順となるように、片面金属張積層体(A)、金属賦形シート(B)および離型クッション材(C)を重ねて導入する、金属張積層体の製造方法。
PCT/JP2020/023194 2019-06-17 2020-06-12 金属張積層体の製造方法 WO2020255871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217040426A KR20220020270A (ko) 2019-06-17 2020-06-12 금속 피복 적층체의 제조 방법
CN202080043587.8A CN114007832B (zh) 2019-06-17 2020-06-12 覆金属层叠体的制造方法
JP2021528172A JP7458396B2 (ja) 2019-06-17 2020-06-12 金属張積層体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112341 2019-06-17
JP2019112341 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255871A1 true WO2020255871A1 (ja) 2020-12-24

Family

ID=74040481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023194 WO2020255871A1 (ja) 2019-06-17 2020-06-12 金属張積層体の製造方法

Country Status (5)

Country Link
JP (1) JP7458396B2 (ja)
KR (1) KR20220020270A (ja)
CN (1) CN114007832B (ja)
TW (1) TW202106519A (ja)
WO (1) WO2020255871A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280341A (ja) * 1999-03-30 2000-10-10 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムおよびその改質方法
JP2004020934A (ja) * 2002-06-17 2004-01-22 Nitto Denko Corp 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置
US6761834B2 (en) * 2000-09-20 2004-07-13 World Properties, Inc. Electrostatic deposition of high temperature, high performance liquid crystalline polymers

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239585A (ja) * 2000-02-28 2001-09-04 Kuraray Co Ltd 金属張積層体およびその製造方法。
JP4105415B2 (ja) * 2001-08-31 2008-06-25 本田技研工業株式会社 自動二輪車の吸気系部品取付構造
TWI320046B (en) * 2002-02-26 2010-02-01 Polyamide-imide resin, flexible metal-clad laminate and flexible print substrate
JP2004363553A (ja) * 2003-02-12 2004-12-24 Tdk Corp 基板と積層電子部品と基板の製造方法
US20060151106A1 (en) * 2003-06-02 2006-07-13 Katsufumi Hiraishi Method for producing laminate
CN101355186B (zh) * 2003-08-06 2010-06-02 株式会社藤仓 光电转换元件
JP3968068B2 (ja) * 2003-09-30 2007-08-29 株式会社クラレ 液晶ポリマーフィルムの製造方法
JP4689263B2 (ja) * 2004-12-21 2011-05-25 日本メクトロン株式会社 積層配線基板およびその製造法
JP2007109694A (ja) * 2005-10-11 2007-04-26 Toray Ind Inc 片面フレキシブル金属積層板の製造方法
CN101432134B (zh) * 2006-04-25 2014-01-22 日立化成工业株式会社 带粘接层的导体箔、贴有导体的层叠板、印制线路板及多层线路板
JP2010076423A (ja) * 2008-08-29 2010-04-08 Mitsubishi Rayon Co Ltd 樹脂積層体及び樹脂積層体の製造方法
JP5661051B2 (ja) * 2010-01-29 2015-01-28 新日鉄住金化学株式会社 片面金属張積層体の製造方法
JP2011215352A (ja) * 2010-03-31 2011-10-27 Sony Corp 光学シート積層体、照明装置および表示装置
JP5698585B2 (ja) * 2011-03-31 2015-04-08 新日鉄住金化学株式会社 金属張積層板
CN102275354A (zh) * 2011-06-10 2011-12-14 苏州生益科技有限公司 一种提高绝缘层厚度均匀性的覆金属箔层压板制造方法
JP5887561B2 (ja) * 2012-11-29 2016-03-16 パナソニックIpマネジメント株式会社 金属張積層板の製造方法
JP6653466B2 (ja) * 2014-06-05 2020-02-26 パナソニックIpマネジメント株式会社 金属箔付き液晶ポリマーフィルムの製造方法、金属箔付き液晶ポリマーフィルム、多層プリント配線板の製造方法
JP6582048B2 (ja) * 2015-06-26 2019-09-25 株式会社カネカ 片面金属張積層板の製造方法および製造装置
JP6825368B2 (ja) * 2016-01-05 2021-02-03 荒川化学工業株式会社 銅張積層体及びプリント配線板
EP3427926B1 (en) * 2016-03-08 2022-09-21 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate
JP7248394B2 (ja) * 2017-09-29 2023-03-29 日鉄ケミカル&マテリアル株式会社 ポリイミドフィルム及び金属張積層体
CN107839333A (zh) * 2017-10-27 2018-03-27 京东方科技集团股份有限公司 基板贴合方法及基板贴合设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000280341A (ja) * 1999-03-30 2000-10-10 Kuraray Co Ltd 熱可塑性液晶ポリマーフィルムおよびその改質方法
US6761834B2 (en) * 2000-09-20 2004-07-13 World Properties, Inc. Electrostatic deposition of high temperature, high performance liquid crystalline polymers
JP2004020934A (ja) * 2002-06-17 2004-01-22 Nitto Denko Corp 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置

Also Published As

Publication number Publication date
CN114007832A (zh) 2022-02-01
KR20220020270A (ko) 2022-02-18
TW202106519A (zh) 2021-02-16
CN114007832B (zh) 2024-04-19
JPWO2020255871A1 (ja) 2020-12-24
JP7458396B2 (ja) 2024-03-29

Similar Documents

Publication Publication Date Title
JP6632541B2 (ja) 回路基板およびその製造方法
TWI616328B (zh) 熱塑性液晶聚合物薄膜及使用其之積層體及電路基板、積層體之製造方法、以及熱塑性液晶聚合物薄膜之製造方法
JP5661051B2 (ja) 片面金属張積層体の製造方法
TWI760302B (zh) 電路基板
JP6316178B2 (ja) 片面金属張積層板およびその製造方法
JP6031352B2 (ja) 両面金属張積層体の製造方法
WO2018186223A1 (ja) 金属張積層板およびその製造方法
KR20190127762A (ko) 적층체의 제조 방법, 적층체의 제조 장치 및 적층체
JP2016107507A (ja) 金属張積層板およびその製造方法
JP7458329B2 (ja) 両面金属張積層体とその製造方法、絶縁フィルムおよび電子回路基板
WO2020255871A1 (ja) 金属張積層体の製造方法
KR102324897B1 (ko) 금속 피복 적층체의 제조 방법
JPWO2020080190A1 (ja) 熱可塑性液晶ポリマー構造体の製造方法
JP2011216598A (ja) 高周波回路基板
WO2021193195A1 (ja) 金属張積層体の製造方法
WO2021193194A1 (ja) 金属張積層体の製造方法
JP2023106957A (ja) 熱圧着積層フィルムの巻回ロール
JP2023106954A (ja) 熱可塑性高分子フィルムの製造方法、及び熱可塑性高分子フィルムの配向制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826157

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826157

Country of ref document: EP

Kind code of ref document: A1