WO2017110646A1 - 液晶性樹脂組成物及びインサート成形品 - Google Patents

液晶性樹脂組成物及びインサート成形品 Download PDF

Info

Publication number
WO2017110646A1
WO2017110646A1 PCT/JP2016/087373 JP2016087373W WO2017110646A1 WO 2017110646 A1 WO2017110646 A1 WO 2017110646A1 JP 2016087373 W JP2016087373 W JP 2016087373W WO 2017110646 A1 WO2017110646 A1 WO 2017110646A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
liquid crystalline
mass
crystalline resin
Prior art date
Application number
PCT/JP2016/087373
Other languages
English (en)
French (fr)
Inventor
大輔 依藤
愛 石附
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to KR1020187018627A priority Critical patent/KR101915731B1/ko
Priority to CN201680075983.2A priority patent/CN108431138B/zh
Priority to JP2017531640A priority patent/JP6225297B1/ja
Publication of WO2017110646A1 publication Critical patent/WO2017110646A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a liquid crystalline resin composition and an insert molded product.
  • Liquid crystalline resins represented by liquid crystalline polyester resins are widely used in the field of small connectors because they are excellent in high fluidity, low burr properties, reflow resistance, and the like.
  • the liquid crystalline resin is excellent in water vapor permeability, it is expected to be applied to the semiconductor package field.
  • liquid crystalline resin does not provide sufficient adhesion to metal, in the case of insert molded products molded integrally with metal by injection molding, the airtightness at the interface between the resin and metal is low. There is. Therefore, the liquid crystalline resin is in a situation where it is difficult to apply it to an insert molded product that requires waterproofness. Also, if the air tightness at the interface between the resin and the metal is low, the flux in the solder tends to rise to the terminal part when the insert molded product is reflowed. It is also difficult to apply it to insert molded products that require climbability.
  • Patent Document 1 contains 0.5 to 30 parts by mass of a non-liquid crystalline resin with respect to 100 parts by mass of the liquid crystalline resin.
  • a liquid crystalline resin composition for molded articles has been proposed.
  • Patent Document 2 proposes a waterproof connector formed of an electrically insulating synthetic resin in which a liquid crystal polyester resin and a polyphenylene sulfide resin are mixed.
  • Patent Document 3 proposes a thermoplastic resin composition comprising 40 to 90% by weight of polyphenylene sulfide, 5 to 50% by weight of liquid crystalline polyester, and 1 to 20% by weight of elastomer. JP 2003-268241 A JP 2013-118174 A JP 2013-227366 A
  • An object of the present invention is to provide a liquid crystalline resin composition capable of obtaining an insert molded article having excellent airtightness, and an insert molded article having a resin member made of the liquid crystalline resin composition.
  • the inventor In the course of researching a resin composition that can improve the adhesion with an insert member formed of metal or the like and obtain an insert molded product having excellent airtightness, the inventor Increase the affinity of the interface, reduce the difference between the linear thermal expansion coefficient of the resin composition and the linear thermal expansion coefficient of the insert member, and enter the fine irregularities on the surface of the insert member during injection molding. It has been found that the three elements of improving the uneven transferability (hereinafter also simply referred to as “uneven transfer”), which is the performance of reproducing the above, are important. However, when the main component of the resin composition is a liquid crystalline resin, it has been difficult to improve the uneven transferability.
  • the liquid crystalline resin composition has anisotropy, the difference between the shrinkage rate in the direction perpendicular to the flow direction of the resin and the shrinkage rate in the flow direction of the resin (hereinafter simply referred to as “shrinkage”) when injection molded. Also called “rate anisotropy”), and as a result, the hermeticity of the insert molded product tended to be low.
  • the present inventor has further advanced research, and the thermoplastic resin having a specific glass transition temperature and a plate having a specific particle size and aspect ratio are included in the liquid crystalline resin. As a result of adding the filler, it is possible to improve the uneven transferability of the resin composition and reduce the anisotropy of the shrinkage rate, thereby completing the present invention. It was.
  • the liquid crystalline resin composition according to the present invention is a plate having a liquid crystalline resin, a thermoplastic resin having a glass transition temperature Tg of less than 230 ° C., an average particle size of 15 ⁇ m to 100 ⁇ m, and an aspect ratio of 10 or more.
  • a filler, and the content of the liquid crystalline resin is 40% by mass or more and 65% by mass or less in the total resin composition, and the content of the thermoplastic resin is 12% by mass or more and 35% by mass in the total resin composition.
  • the content of the plate-like filler is 10% by mass or more and 35% by mass or less in the total resin composition.
  • thermoplastic resin is preferably one or more selected from polyarylene sulfide resins, polyphenylene ether resins, and cyclic olefin resins.
  • the difference between the shrinkage rate in the direction perpendicular to the flow direction and the shrinkage rate in the flow direction of the resin may be 0.51% or less.
  • an epoxy group-containing copolymer is further contained in an amount of 6% by mass or less in the entire resin composition. Furthermore, it is preferable to contain 12% by mass or less of a fibrous filler in the total resin composition.
  • the insert molded product according to the present invention is characterized by having a resin member made of the liquid crystalline resin composition described above and an insert member made of a metal, an alloy, or an inorganic solid material.
  • liquid crystalline resin composition capable of obtaining an insert molded article having excellent airtightness, and an insert molded article having a resin member made of the liquid crystalline resin composition.
  • a liquid crystalline resin composition (hereinafter simply referred to as “resin composition”) includes a liquid crystalline resin, a thermoplastic resin having a glass transition temperature Tg of less than 230 ° C., an average particle size of 15 ⁇ m to 100 ⁇ m, and an aspect ratio. And a plate-like filler having a ratio of 10 or more. Since the resin composition contains a liquid crystalline resin, a resin composition excellent in fluidity, low burr property, reflow resistance and water vapor permeability can be obtained.
  • the resin composition contains the thermoplastic resin and the plate-like filler that satisfy the above-mentioned predetermined conditions, the uneven transferability of the resin composition can be improved and the anisotropy of the shrinkage rate is reduced. be able to. As a result, it can be set as the resin composition which can obtain the insert molding goods which are equipped with the outstanding performance of liquid crystalline resin, and have high airtightness. Moreover, as shown in the Example mentioned later, the insert molded product using this resin composition can prevent that airtightness falls after a reflow process.
  • the liquid crystalline resin refers to a melt processable polymer having a property capable of forming an optically anisotropic molten phase.
  • the property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times.
  • the liquid crystalline resin is inspected between crossed polarizers, the polarized light is normally transmitted even in a molten stationary state, and optically anisotropic.
  • the liquid crystalline resin is not particularly limited, but is preferably an aromatic polyester or an aromatic polyester amide. Further, it is also possible to use a polyester partially containing an aromatic polyester or an aromatic polyester amide in the same molecular chain.
  • the aromatic polyester or aromatic polyester amide is particularly preferably an aromatic polyester having at least one compound selected from the group of aromatic hydroxycarboxylic acids, aromatic hydroxyamines, and aromatic diamines as a constituent component, or Aromatic polyester amide.
  • the liquid crystalline resin may be a mixture of two or more liquid crystalline resins selected from the above.
  • specific compounds (monomers) constituting the liquid crystalline resin include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6-dihydroxynaphthalene, 1, Aromatic diols such as 4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcin, a compound represented by the following general formula (I), and a compound represented by the following general formula (II); terephthalic acid, Aromatic dicarboxylic acids such as isophthalic acid, 4,4′-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p-phenylenediamine, etc.
  • aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6-dihydroxyna
  • Aromatic amines can be mentioned.
  • X is a group selected from alkylene (C 1 -C 4 ), alkylidene, —O—, —SO—, —SO 2 —, —S—, and —CO—.
  • the method for preparing the liquid crystalline resin is not particularly limited, and can be adjusted by a known method using a direct polymerization method or a transesterification method using the above-described monomer compound (or a mixture of monomers). For example, a melt polymerization method or a slurry polymerization method is used. In the case of a compound having an ester forming ability, it may be used for polymerization as it is, or a compound modified from a precursor to a derivative having an ester forming ability may be used in the previous stage of polymerization. In the polymerization, various catalysts can be used.
  • catalysts that can be used include dialkyl tin oxides, diaryl tin oxides, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali and alkaline earth metal salts of carboxylic acids, Lewis such as BF 3 .
  • An acid salt etc. can be mentioned.
  • the amount of the catalyst used is generally about 0.001 to 1% by mass, particularly about 0.01 to 0.2% by mass, based on the total weight of the monomers. If necessary, the polymer produced by these polymerization methods can be increased in molecular weight by solid-phase polymerization by heating in reduced pressure or in an inert gas.
  • the content of the liquid crystalline resin is 40% by mass or more and 65% by mass or less in the total resin composition.
  • the content of the liquid crystalline resin is more preferably 42% by mass or more and 62% by mass or less.
  • the lower limit value of the content of the liquid crystalline resin can be 45% by mass or more, and the upper limit value can be 60% by mass or less.
  • the melt viscosity of the liquid crystalline resin is not particularly limited, and the melt viscosity measured at a cylinder temperature 10 to 30 ° C. higher than the melting point of the liquid crystalline resin and a shear rate of 1000 sec ⁇ 1 is 5 Pa ⁇ s to 100 Pa ⁇ s. More preferably, it is 10 Pa ⁇ s or more and 50 Pa ⁇ s or less.
  • “Cylinder temperature 10-30 ° C. higher than the melting point of the liquid crystalline resin” means the cylinder temperature at which the liquid crystalline resin can be melted to such an extent that the melt viscosity can be measured. Whether the cylinder temperature is high depends on the type of liquid crystalline resin in the range of 10 to 30 ° C.
  • Japanese Patent Application Laid-Open No. 2010-3661 discloses as liquid crystal polymer 1 2 mol% of a structural unit introduced from 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid.
  • a liquid crystalline resin having 48 mol% of structural units introduced from an acid, 25 mol% of structural units introduced from terephthalic acid, and 25 mol% of a structural unit introduced from 4,4′-dihydroxybiphenyl is disclosed.
  • the melting point is 352 ° C., and the melt viscosity is measured at a cylinder temperature of 380 ° C.
  • liquid crystalline polymer 2 a constitutional unit introduced from 4-hydroxybenzoic acid, 50 mol%, a constitutional unit introduced from 6-hydroxy-2-naphthoic acid, 2.5 mol%, a constitution introduced from terephthalic acid.
  • a liquid crystalline resin having 23.9 mol% of units, 18.6 mol% of structural units introduced from 4,4′-dihydroxybiphenyl, and 5 mol% of structural units introduced from 4-acetamidophenol is disclosed.
  • the melting point is 367 ° C., and the melt viscosity is measured at a cylinder temperature of 380 ° C.
  • liquid crystalline polymer 3 a structural unit introduced from 4-hydroxybenzoic acid is 60 mol%, a structural unit introduced from 6-hydroxy-2-naphthoic acid is 5 mol%, and a structural unit 17 introduced from terephthalic acid.
  • a liquid crystalline resin having 0.7 mol%, 112.3 mol% of structural units introduced from 4,4′-dihydroxybiphenyl, and 5 mol% of structural units introduced from 4-acetamidophenol.
  • the melting point is 335 ° C., and the melt viscosity is measured at a cylinder temperature of 350 ° C.
  • thermoplastic resin The resin composition contains a thermoplastic resin having a glass transition temperature Tg of less than 230 ° C. (hereinafter also simply referred to as “thermoplastic resin”). According to the research of the present inventors, it has been found that the uneven transferability of the resin composition can be improved when a thermoplastic resin having a glass transition temperature Tg of less than 230 ° C. is added to the liquid crystalline resin. As a result, as shown in the examples described later, the hermeticity of the insert-molded product can be increased, and it is possible to prevent the hermeticity from being lowered after the reflow treatment of the molded product.
  • the glass transition temperature Tg refers to a value measured under a temperature rising rate of 10 ° C./min by the DSC method (method described in JIS K7121).
  • the lower limit value of the glass transition temperature Tg is not particularly limited, and can be 60 ° C. or higher or 80 ° C. or higher.
  • the upper limit value of the glass transition temperature Tg may be 220 ° C. or lower.
  • thermoplastic resin having a glass transition temperature Tg of less than 230 ° C. examples include polyarylene sulfide resin (PAS); polyphenylene ether resin (PPE); cyclic olefin resin; polycarbonate resin (PC); polyethylene resin (PE); (PP); Polyacetal resin (POM); Polyamide resin such as polyamide 6, polyamide 66 or polyamide 46 (PA); Polyester resin such as polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), modified polyethylene terephthalate (PET) Polyether ether ketone resin (PEEK); polystyrene resin (PS); polyvinyl chloride resin (PVC); acrylonitrile-styrene copolymer resin (AS); polymethyl methacrylate resin (P) MA); acrylonitrile - butadiene - styrene copolymer resin (ABS); polyarylate resin (PAR); can be exemplified and polyether sulf
  • the polyarylene sulfide resin is composed mainly of — (Ar—S) — (where “Ar” represents an arylene group) as a repeating unit, and is a generally known molecule.
  • a PAS resin of structure can be used.
  • the arylene group is not particularly limited.
  • arylene sulfide groups composed of such arylene groups in addition to a homopolymer using the same repeating unit, depending on the application, a copolymer containing a repetition of different arylene sulfide groups may be used.
  • the homopolymer is preferably a homopolymer having a p-phenylene sulfide group as a repeating unit as the arylene group, depending on the application.
  • a homopolymer having a p-phenylene sulfide group as a repeating unit has extremely high heat resistance, and exhibits high strength, high rigidity, and high dimensional stability in a wide temperature range. By using such a homopolymer, a molded product having very excellent physical properties can be obtained.
  • a combination of two or more types of arylene sulfide groups that are different from the above-mentioned arylene sulfide groups containing an arylene group can be used.
  • a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is preferable in that a molded product having high physical properties such as heat resistance, moldability, and mechanical properties can be obtained.
  • a polymer containing a p-phenylene sulfide group in a proportion of 70 mol% or more is more preferable, and a polymer containing a proportion of 80 mol% or more is more preferable.
  • the polyarylene sulfide resin having a phenylene sulfide group is a polyphenylene sulfide resin.
  • a polyarylene sulfide resin produced by a general polymerization method is usually washed several times with water or acetone and then washed with acetic acid, ammonium chloride or the like in order to remove by-product impurities and the like.
  • the end of the polyarylene sulfide resin contains a carboxyl end group in a predetermined amount.
  • polyphenylene ether resin examples include modified polyphenylene ether in addition to polyphenylene ether.
  • cyclic olefin resin examples include a cyclic olefin polymer (COP) and a cyclic olefin copolymer (COC).
  • the content of the thermoplastic resin is 12% by mass or more and 35% by mass or less in the total resin composition. In a state where the content of the thermoplastic resin is 12% by mass or more and 35% by mass or less in the total resin composition, while maintaining properties such as high fluidity and keeping the anisotropy of the shrinkage ratio small, The unevenness transferability can be improved.
  • the content of the thermoplastic resin is preferably 15% by mass or more and 30% by mass or less.
  • the weight average molecular weight (Mw) of the thermoplastic resin is not particularly limited, and is preferably 15000 or more and 40000 or less. By setting the thermoplastic weight average molecular weight within this range, a resin composition having a more excellent balance between mechanical properties and fluidity can be obtained.
  • the weight average molecular weight of the thermoplastic resin is more preferably 20000 or more and 38000 or less.
  • the resin composition contains a plate-like filler.
  • the plate-like filler has an average particle size of 15 ⁇ m or more and 100 ⁇ m or less and an aspect ratio of 10 or more.
  • the anisotropy of the shrinkage rate at the time of injection molding can be reduced.
  • the hermeticity of the insert-molded product can be increased, and it is possible to prevent the hermeticity from being lowered after the reflow treatment of the molded product.
  • the average particle diameter is preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the aspect ratio is preferably 35 or more, and more preferably 35 or more and 55 or less. This definition relates to the shape of the plate-like filler before the plate-like filler is blended into the resin composition.
  • the average particle diameter is a value measured by a laser diffraction / scattering particle size distribution measuring method, and is an integrated particle diameter of 50% in a volume-based particle size distribution.
  • the average aspect ratio is a value obtained by measuring the length and thickness of several tens of fillers by electron microscope (SEM) observation, calculating the aspect ratio, and calculating the average value.
  • the plate-like filler examples include mica, talc, glass flake, graphite, various metal foils (for example, aluminum foil, iron foil, copper foil) and the like. Two or more kinds can be used. Among these, mica is preferable from the viewpoint of easily reducing the difference between the shrinkage rate in the flow direction of the resin and the shrinkage rate in the direction perpendicular to the flow direction of the resin.
  • the content of the plate-like filler is 10% by mass or more and 35% by mass or less in the total resin composition.
  • the resin composition preferably further contains an epoxy group-containing copolymer.
  • an epoxy group-containing copolymer By containing the epoxy group-containing copolymer, the affinity of the interface with the insert member can be increased.
  • the epoxy group-containing copolymer is not particularly limited, and examples thereof include at least one selected from the group consisting of an epoxy group-containing olefin copolymer and an epoxy group-containing styrene copolymer.
  • the epoxy group-containing copolymer can be used alone or in combination of two or more selected from the above.
  • Examples of the epoxy group-containing olefin copolymer include a copolymer composed of a repeating unit derived from an ⁇ -olefin and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid.
  • the ⁇ -olefin is not particularly limited and includes, for example, ethylene, propylene, butene, etc. Among them, ethylene is preferably used.
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid is represented by the following general formula (IV).
  • R ′ represents hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid is, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ethacrylate, glycidyl itaconate, etc., and glycidyl methacrylate is particularly preferable.
  • the content of the repeating unit derived from ⁇ -olefin is 87 to 98% by mass, and the content of the repeating unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is 13 to 2% by mass is preferable.
  • the epoxy group-containing olefin-based copolymer is an olefin-based copolymer such as acrylonitrile, acrylic acid ester, methacrylic acid ester, ⁇ -methylstyrene, maleic anhydride, etc. as a third component in addition to the above two components within the scope of the present invention.
  • You may contain 0-48 mass parts of repeating units derived from 1 type, or 2 or more types chosen from unsaturated ester with respect to 100 mass parts of said 2 components.
  • the epoxy group-containing olefin copolymer can be easily prepared by a normal radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, the presence of a suitable solvent or chain transfer agent is usually obtained by mixing ⁇ -olefin and glycidyl ester of ⁇ , ⁇ -unsaturated acid in the presence of a radical generator at 500 to 4000 atm and 100 to 300 ° C. It can be produced by a method of copolymerization under or in the absence.
  • It can also be produced by a method in which an ⁇ -olefin, a glycidyl ester of ⁇ , ⁇ -unsaturated acid and a radical generator are mixed and melt graft copolymerized in an extruder.
  • Examples of the epoxy group-containing styrene-based copolymer include a copolymer composed of a repeating unit derived from styrene and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid. Since the glycidyl ester of ⁇ , ⁇ -unsaturated acid is the same as that described for the epoxy group-containing olefin copolymer, description thereof is omitted.
  • Examples of styrenes include styrene, ⁇ -methylstyrene, brominated styrene, divinylbenzene and the like, and styrene is preferably used.
  • the epoxy group-containing styrenic copolymer may be a multi-component copolymer containing a repeating unit derived from one or more of the other vinyl monomers as the third component in addition to the two components.
  • Suitable as the third component is a repeating unit derived from one or more olefinic unsaturated esters such as acrylonitrile, acrylic acid ester, methacrylic acid ester, and maleic anhydride.
  • An epoxy group-containing styrene copolymer containing 40% by mass or less of these repeating units in the copolymer is preferred.
  • the content of the repeating unit derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is 2 to 20% by mass, and the content of the repeating unit derived from styrene is from 80 to It is preferable that it is 98 mass%.
  • the epoxy group-containing styrenic copolymer can be prepared by a normal radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, styrenes and glycidyl esters of ⁇ , ⁇ -unsaturated acids are usually present in the presence of a radical generator at 500 to 4000 atm and 100 to 300 ° C. in the presence of a suitable solvent or chain transfer agent. Or it can manufacture by the method of copolymerizing in absence.
  • It can also be produced by a method in which styrenes, an ⁇ , ⁇ -unsaturated glycidyl ester and a radical generator are mixed and subjected to melt graft copolymerization in an extruder.
  • the epoxy group-containing copolymer is preferably an epoxy group-containing olefin copolymer from the viewpoint of heat resistance.
  • the epoxy group-containing olefin copolymer and the epoxy group-containing styrene copolymer are used in combination, the ratio of these components can be appropriately selected according to the required characteristics.
  • the content of the epoxy group-containing copolymer is 6% by mass or less in the total resin composition because the combustibility is deteriorated.
  • the lower limit of the content of the epoxy group-containing copolymer is not particularly limited, and can be, for example, 0.01% by mass, 0.1% by mass or more, or 1% by mass or more in the total resin composition.
  • the resin composition further contains a fibrous filler.
  • a fibrous filler By containing a fibrous filler, mechanical strength can be improved.
  • the fibrous filler means one having an average ratio of different diameter ratios of 1 or more and 4 or less and an aspect ratio of 2 or more and 1500 or less. This definition relates to the shape of the fibrous filler before the fibrous filler is incorporated into the resin composition.
  • the fibrous filler those conventionally used as fillers or reinforcing agents in various resin compositions can be used without particular limitation.
  • Specific examples of the fibrous filler include glass fiber, milled glass fiber, asbestos fiber, carbon fiber, silica fiber, silica / alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, boron fiber, potassium titanate fiber, wall
  • examples thereof include inorganic fiber materials such as silicate fibers such as lastite, magnesium sulfate fibers, aluminum borate fibers, and metal fibers such as stainless steel, aluminum, titanium, copper, and brass.
  • These fibrous fillers can be used in combination of two or more.
  • glass fiber is preferable.
  • the glass fiber one having a circular or substantially circular cross section is usually used, but a glass fiber having a so-called irregular cross section can also be used.
  • the shape of the irregular cross section is not limited to these, but includes polygons such as rectangles and rhombuses, ellipses, eyebrows, and the like.
  • the resin composition can contain other additives for imparting desired physical properties as long as the effects of the present invention are not impaired.
  • other additives include nucleating agents, carbon black, pigments, antioxidants, stabilizers, plasticizers, lubricants, mold release agents, and flame retardants.
  • the content of other additives can be appropriately adjusted according to desired physical properties.
  • the resin composition is obtained by injection molding of a molded product of 80 mm ⁇ 80 mm ⁇ 2 mm under the conditions of a cylinder temperature 10 to 30 ° C. higher than the melting point of the liquid crystalline resin, a mold temperature 150 ° C. and a holding pressure 50 MPa.
  • the difference between the shrinkage rate in the direction perpendicular to the flow direction of the resin and the shrinkage rate in the flow direction of the resin is preferably 0.51% or less.
  • Resin portion when insert molded product is manufactured by injection molding by reducing the difference between shrinkage in the direction perpendicular to the resin flow direction and shrinkage in the resin flow direction to 0.51% or less It is possible to reduce the solidification shrinkage.
  • the “cylinder temperature higher by 10 to 30 ° C. than the melting point of the liquid crystalline resin” here is as described above, and is not described here.
  • the actual molding is used.
  • the shrinkage that occurs between the insert member and the resin member varies depending on the shape, but is less affected by either the shrinkage rate in the resin flow direction or the shrinkage rate in the direction perpendicular to the flow, both This is because it is estimated that it is necessary to consider both of them because they are affected by the shrinkage rate.
  • the melt viscosity of the resin composition is preferably 5 Pa ⁇ s or more and 100 Pa ⁇ s or less at a shear rate of 1000 sec ⁇ 1 measured at a cylinder temperature 10 to 30 ° C. higher than the melting point of the liquid crystalline resin. More preferably, it is 10 Pa ⁇ s or more and 50 Pa ⁇ s or less.
  • the melt viscosity is 5 Pa ⁇ s or more and 100 Pa ⁇ s or less, the insert member and the resin member can obtain better adhesion.
  • the method for producing the resin composition is not particularly limited as long as the components in the resin composition can be uniformly mixed, and can be appropriately selected from conventionally known methods for producing resin compositions. For example, after melt-kneading and extruding each component using a melt-kneading apparatus such as a single-screw or twin-screw extruder, the resulting resin composition is processed into a desired form such as powder, flakes, pellets, etc. Is mentioned.
  • the insert molded article has a resin member made of the liquid crystalline resin composition described above and an insert member.
  • the insert molded product is obtained by integrally molding a resin member made of the liquid crystalline resin composition described above and an insert member by insert molding.
  • the insert member is not particularly limited, but is preferably used for the purpose of taking advantage of its characteristics and compensating for the defects of the resin, so that it does not change shape or melt when it comes into contact with the resin during molding.
  • metals such as aluminum, magnesium, copper, iron, brass, and alloys thereof, and those previously molded into rods, pins, screws, etc., using inorganic solids such as glass and ceramics.
  • the effects of the present invention are remarkably exhibited.
  • the shape or the like of the insert member is not limited.
  • the surface of the insert member may be roughened or untreated.
  • the roughening treatment may be performed by a physical method such as sandblasting or laser irradiation, or may be chemically processed.
  • a chemical bond effect such as a covalent bond, hydrogen bond, or intermolecular force is imparted between the insert member and the resin member, so that airtightness at the interface between the insert member and the resin member is provided. It becomes easy to improve.
  • the chemical treatment include dry treatment such as corona discharge, triazine treatment (see JP-A-2000-218935), chemical etching (JP-A-2001-225352), and the like.
  • a hot water treatment Japanese Patent Laid-Open No. 142142/1990
  • Examples of the hot water treatment include immersion in water at 100 ° C. for 3 to 5 minutes.
  • a plurality of chemical treatments may be combined.
  • the insert molding method can be a general method.
  • an insert member made of metal or the like is mounted in advance on a molding die, and a resin composition is filled on the outside thereof to perform composite molding.
  • a molding method for filling the resin composition into the mold there are an injection molding method, an extrusion compression molding method and the like, and an injection molding method is general.
  • excellent fluidity like the resin composition according to the present invention is required.
  • the insert molded article manufactured using the resin composition according to the present invention can be used for various applications.
  • the resin composition according to the present invention provides an insert-molded product having excellent airtightness, it is suitably used for applications requiring high airtightness.
  • an insert-molded product manufactured using the resin composition according to the present invention is suitable as an insert-molded product including an electrical / electronic component such as a connector or a semiconductor package that is easily affected by humidity and moisture. .
  • an electrical / electronic component such as a connector or a semiconductor package that is easily affected by humidity and moisture.
  • the insert-molded product is also useful as a sensor such as a tilt sensor or a fuel sensor. As an inclination sensor, what is used for vehicle-mounted uses, such as attitude control, and what is used for a game controller are illustrated.
  • the fuel sensor examples include those used for in-vehicle applications such as fuel amount measurement.
  • the insert-molded product is useful, for example, as a housing for an electric / electronic device including a resin boss, a holding member, and the like inside.
  • cases for electric / electronic devices in addition to mobile phones, cases for portable video electronic devices such as cameras, video integrated cameras, digital cameras, notebook computers, pocket computers, calculators, electronic notebooks , Portable information such as PDC, PHS, mobile phone, etc., housing of communication terminals, MD, cassette headphone stereo, housing of portable acoustic electronic equipment such as radio, LCD TV / monitor, telephone, facsimile, hand scanner, etc.
  • a housing of household appliances and the like can be given.
  • Examples 1 to 12 Comparative Examples 1 to 11
  • the compositions and content ratios shown in Tables 1 and 2 were melt-kneaded with a twin screw extruder having a cylinder temperature of 350 ° C. to produce pellets of resin compositions of Examples and Comparative Examples.
  • the plate-like filler and the fibrous filler were introduced into the extruder using a side feeder.
  • the content unit is “mass%”.
  • Examples 13 to 16 Except having used the material shown below by the composition and content rate which are shown in Table 3, it carried out similarly to Example 1, and produced the pellet of the resin composition. In Table 3, the unit of content is “mass%”.
  • Examples 17 and 18, Comparative Example 12 Resin composition pellets were prepared in the same manner as in Example 1 except that the materials shown below were used in the compositions and content ratios shown in Table 3 and melt-kneaded with a twin-screw extruder having a cylinder temperature of 380 ° C. .
  • Liquid crystal resin LCP
  • LCP liquid crystalline polyesteramide resin
  • the stirring torque reached a predetermined value, nitrogen was introduced and the pressure was changed from the reduced pressure state to the normal pressure state, the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets.
  • the obtained pellets were heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain the target polymer.
  • the obtained polymer had a melting point of 335 ° C. and a melt viscosity of 14.0 Pa ⁇ s.
  • the melt viscosity of the polymer was measured in the same manner as the melt viscosity measurement method described later.
  • LCP2 Liquid crystal resin
  • LCP2 Liquid crystal resin
  • the stirring torque reached a predetermined value
  • nitrogen was introduced and the pressure was changed from the reduced pressure state to the normal pressure state
  • the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets.
  • the obtained pellets were heat-treated at 300 ° C. for 8 hours under a nitrogen stream to obtain the target polymer.
  • the melting point of the obtained polymer was 352 ° C. and the melt viscosity at 380 ° C. was 27.0 Pa ⁇ s.
  • the melt viscosity of the polymer was measured in the same manner as the melt viscosity measurement method described later.
  • Polyphenylene sulfide resin PPS: “K203A” manufactured by Kureha Co., Ltd., glass transition temperature Tg 85 ° C.
  • Polyphenylene ether resin PPE: manufactured by Mitsubishi Engineering Plastics Co., Ltd., “PX100F”, glass transition temperature Tg 213 ° C.
  • Cyclic olefin copolymer COC: “TOPAS 6017S-04” manufactured by TOPAS Advanced Polymers, glass transition temperature Tg 178 ° C.
  • Polyetheretherketone resin (PEEK): manufactured by Daicel-Evonik Co., Ltd., “VESTAKEEP2000P”, glass transition temperature Tg 143 ° C.
  • Ethylene-glycidyl methacrylate-methyl acrylate copolymer (Epoxy group-containing olefin copolymer): manufactured by Sumitomo Chemical Co., Ltd., “Bond First 2C” (glycidyl methacrylate unit content 6 mass%)
  • FIG. 1 is a plan view of the test specimen 100 obtained.
  • the size of the test specimen 100 is 80 mm ⁇ 80 mm ⁇ thickness 2 mm.
  • the dimensions of the test piece that had been allowed to stand for one day were measured at a flow direction measurement point a and a perpendicular direction measurement point b shown in FIG.
  • c of FIG. 1 shows a gate. From the measured dimensions of the test piece and the dimensions of the mold at the location on the mold corresponding to the measurement location, the mold shrinkage was determined according to the equation (1). The mold dimensions were 80.021 mm in the flow direction and 79.991 mm in the right-angle direction. (Die size-Test piece size) / Die size x 100 (1)
  • the average value of the shrinkage rate in the flow direction and the shrinkage rate in the perpendicular direction obtained as described above is defined as “shrinkage rate (average)”, and the difference between the shrinkage rate in the flow direction and the shrinkage rate in the perpendicular direction is expressed as “shrinkage rate ( Anisotropy) ”.
  • the results of Examples 1 to 12 and Comparative Examples 1 to 11 are shown in Tables 1 and 2.
  • the results of Examples 13 to 18 and Comparative Example 12 are shown in Table 3. In Tables 1 to 3, the unit of shrinkage is “%”.
  • FIG. 2A is a plan view of the insert-molded article 10
  • FIG. 2B is a cross-sectional view taken along line MM of FIG. 2A
  • FIG. 2C is a bottom view.
  • the resin member 1 and the insert member 2 are integrally molded by using the resin member 1 and the insert member 2 made of the resin compositions of the examples and comparative examples in order to evaluate the unevenness transferability and the airtightness.
  • the insert molded article 10 of the Example and the comparative example was manufactured. Note that there are six recesses 3 as shown in FIG. 2 on the upper surface of the insert-molded product 10 for use in the evaluation described later.
  • FIGS. 3A and 3B are views showing the insert member 2, wherein FIG. 3A is a plan view, FIG. 3B is a front view, and the insert member 2 is a copper member.
  • the member 2 has a length in the long direction of 19 mm, a width in the short direction of 8.5 mm, and a thickness of 0.2 mm.
  • the insert member 2 used the thing by which the surface was not processed and the thing which performed the chemical process previously by the method shown below.
  • the surface of the copper insert member is immersed in an etching solution A (aqueous solution) having the following composition for 1 minute to remove the anticorrosive film, and then immersed in an etching solution B (aqueous solution) having the following composition for 5 minutes.
  • Etching solution A (temperature 20 ° C.): hydrogen peroxide 26 g / L, sulfuric acid 90 g / L
  • Etching solution B (temperature 25 ° C.): hydrogen peroxide 80 g / L, sulfuric acid 90 g / L, benzotriazole 5 g / L, sodium chloride 0.2 g / L
  • Insert molding was performed as follows. Insert member 2 is placed in a mold for injection molding, and pellets of resin compositions of Examples and Comparative Examples are used under the following conditions using a solid injection molding machine (TR-40VR, manufactured by Sodick Co., Ltd.). It was melted and injected into a mold to form a resin member 1 to produce an insert molded product 10. Cylinder temperature: 350 ° C. (Examples 1 to 12, Comparative Examples 1 to 11) 350 ° C. (Examples 13 to 16) 380 ° C. (Examples 17 and 18, Comparative Example 12) Mold temperature: 160 ° C Injection speed: 70mm / s Holding pressure: 50 MPa
  • FIG. 4 is an explanatory diagram for producing the airtightness test sample 20
  • FIG. 5 is a block diagram of the airtightness test evaluation apparatus 101.
  • an insert molded product 10 was arranged in a space inside the fixing jigs 4, 4 ′ divided into two upper and lower parts, thereby obtaining a sample 20.
  • this sample 20 was connected to an evaluation apparatus 101 whose schematic diagram is shown in FIG.
  • Sample 20 blank 30 and differential pressure gauge 40 were connected using a tube in the arrangement shown in FIG.
  • a tube is connected to the upper fixing jig 4. Air is fed into the fixing jig from the tube, and pressure is applied to the six recesses 3 formed on the upper surface of the insert molded product 10. And if the junction part of the resin member 1 and the insert member 2 peels from the boundary of the resin member 1 and the insert member 2 of the bottom of the recessed part 3, air will leak to the lower side of a fixing jig.
  • the blank 30 is for confirming the pressure concerning the said recessed part in the state with which joining with the resin member 1 and the insert member 2 is maintained. Since a pressure difference ⁇ P is generated between the pressure applied to the blank 30 and the pressure applied to the sample when a gap is generated at the joint between the resin member 1 and the insert member 2, the airtightness of the insert molded product should be evaluated in this evaluation. Can do.
  • the amount Q of air leakage was obtained from the following formula (2) and used as an index of airtightness.
  • the results of Examples 1 to 12 and Comparative Examples 1 to 11 are shown in Tables 1 and 2.
  • the results of Examples 13 to 18 and Comparative Example 12 are shown in Table 3.
  • Q Ve ⁇ ⁇ P / T (2)
  • Ve: Volume (m 3 ) ( 0.000005 m 3 )
  • ⁇ P differential pressure (Pa)
  • the leakage amount Q is 2.8 ⁇ 10 ⁇ 4 Pa ⁇ m 3 / s or less, it can be said that this is an insert-molded product with high airtightness.
  • the liquid crystalline resin compositions of the examples all have high unevenness transferability to the metal surface and low shrinkage anisotropy. Moreover, the insert molded article using this resin composition is excellent in the initial airtightness, and can prevent the airtightness from being lowered after the reflow treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】気密性に優れるインサート成形品を得ることができる液晶性樹脂組成物、及びその液晶性樹脂組成物からなる樹脂部材を有するインサート成形品を提供する。 【解決手段】液晶性樹脂と、ガラス転移温度Tgが230℃未満である熱可塑性樹脂と、平均粒径が15μm以上100μm以下でありアスペクト比が10以上である板状充填剤と、を含有し、液晶性樹脂の含有量が、全樹脂組成物中40質量%以上65質量%以下であり、熱可塑性樹脂の含有量が、全樹脂組成物中12質量%以上35質量%以下であり、及び、板状充填剤の含有量が、全樹脂組成物中10質量%以上35質量%以下である液晶性樹脂組成物により上記課題を解決する。

Description

液晶性樹脂組成物及びインサート成形品
 本発明は、液晶性樹脂組成物及びインサート成形品に関する。
 液晶性ポリエステル樹脂に代表される液晶性樹脂は、高流動性、低バリ性、耐リフロー性等に優れるため、小型コネクタ分野で広く用いられている。また、液晶性樹脂は、水蒸気透過性にも優れることから、半導体パッケージ分野への応用が期待されている。しかしながら、液晶性樹脂は、金属との密着性が十分には得られないため、射出成形により金属と一体的に成形されるインサート成形品では、樹脂と金属との界面の気密性が低くなる場合がある。そのため、液晶性樹脂は、防水性が求められるインサート成形品への適用が困難な状況にある。また、樹脂と金属との界面の気密性が低い場合、インサート成形品をリフロー処理する際に、はんだ中のフラックスが端子部分に上がってくる、いわゆるフラックス上がりの現象が生じやすくなるので、耐フラックス上がり性が求められるインサート成形品への適用も困難な状況にある。
 液晶性樹脂を含む樹脂組成物の金属への密着性を改良する技術として、特許文献1には、液晶性樹脂100質量部に対して非液晶性樹脂0.5~30質量部を含有してなる成形品用液晶性樹脂組成物が提案されている。特許文献2には、液晶ポリエステル樹脂及びポリフェニレンサルファイド樹脂が混合された電気絶縁性合成樹脂で形成された防水コネクタが提案されている。特許文献3には、ポリフェニレンスルフィドを40~90重量%、液晶性ポリエステルを5~50重量%、及びエラストマーを1~20重量%配合してなる熱可塑性樹脂組成物が提案されている。
特開2003-268241号公報 特開2013-118174号公報 特開2013-227366号公報
 本発明は、気密性に優れるインサート成形品を得ることができる液晶性樹脂組成物、及びその液晶性樹脂組成物からなる樹脂部材を有するインサート成形品を提供することを課題とする。
 本発明者は、金属等で形成されたインサート部材との密着性を高め、気密性に優れるインサート成形品を得ることができる樹脂組成物について研究する過程で、その樹脂組成物とインサート部材との界面の親和性を高めること、樹脂組成物の線熱膨張係数とインサート部材の線熱膨張係数との差を小さくすること、及び、射出成形時にインサート部材の表面の微細な凹凸へ入り込んでその凹凸を再現する性能である凹凸転写性(以下、単に「凹凸転写性」ともいう。)を高めること、の3要素が重要であることを突き止めた。しかし、樹脂組成物の主成分が液晶性樹脂である場合は、凹凸転写性を高めることが難しい状況にあった。しかも、液晶性樹脂組成物は異方性を有するために、射出成形した場合に樹脂の流動方向に対して直角方向の収縮率と樹脂の流動方向の収縮率との差(以下、単に「収縮率の異方性」ともいう。)が大きく、結果としてインサート成形品の気密性が低くなる傾向にあった。本発明者は、液晶性樹脂に特有の上記問題点を解決するために、さらに研究を進め、液晶性樹脂に特定のガラス転移温度を有する熱可塑性樹脂及び特定の粒径及びアスペクト比を有する板状充填剤を添加することで、樹脂組成物の凹凸転写性を向上させることができるとともに、収縮率の異方性を小さくすることができるとの知見を得て、本発明を完成させるに至った。
 本発明に係る液晶性樹脂組成物は、液晶性樹脂と、ガラス転移温度Tgが230℃未満である熱可塑性樹脂と、平均粒径が15μm以上100μm以下でありアスペクト比が10以上である板状充填剤と、を含有し、液晶性樹脂の含有量が、全樹脂組成物中40質量%以上65質量%以下であり、熱可塑性樹脂の含有量が、全樹脂組成物中12質量%以上35質量%以下であり、及び、板状充填剤の含有量が、全樹脂組成物中10質量%以上35質量%以下であることを特徴とする。
 本発明において、熱可塑性樹脂が、ポリアリーレンサルファイド樹脂、ポリフェニレンエーテル樹脂、及び環状オレフィン系樹脂から選ばれる1種又は2種以上であることが好ましい。
 本発明において、液晶性樹脂の融点よりも10~30℃高いシリンダー温度、金型温度150℃及び保持圧力50MPaの条件下で、80mm×80mm×2mmの成形品を射出成形した場合に、樹脂の流動方向に対して直角方向の収縮率と、樹脂の流動方向の収縮率との差が、0.51%以下であるように構成することができる。
 本発明において、さらに、エポキシ基含有共重合体を、全樹脂組成物中6質量%以下含有することが好ましい。さらに、繊維状充填剤を、全樹脂組成物中12質量%以下含有することが好ましい。
 本発明に係るインサート成形品は、上記いずれかに記載の液晶性樹脂組成物からなる樹脂部材と、金属、合金又は無機固体物からなるインサート部材とを有することを特徴とする。
 本発明によれば、気密性に優れたインサート成形品を得ることができる液晶性樹脂組成物、及びその液晶性樹脂組成物からなる樹脂部材を有するインサート成形品を提供することができる。
収縮率試験用試験片の平面図である。 インサート成形品の一例を示す図であって、(a)は平面図であり、(b)は(a)のM-M線の断面図であり、(c)は底面図である。 インサート部材の一例を示す図であって、(a)は平面図であり、(b)は正面図である。 気密性試験用サンプルを作製する際の説明図である。 気密性試験用評価装置のブロック図である。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
[液晶性樹脂組成物]
 液晶性樹脂組成物(以下、単に「樹脂組成物」という。)は、液晶性樹脂と、ガラス転移温度Tgが230℃未満である熱可塑性樹脂と、平均粒径が15μm以上100μm以下でありアスペクト比が10以上である板状充填剤とを含有する。樹脂組成物が、液晶性樹脂を含有するので、流動性、低バリ性、耐リフロー性及び水蒸気透過性に優れた樹脂組成物とすることができる。また、樹脂組成物が、上記所定の条件を満たす熱可塑性樹脂及び板状充填剤を含有するので、樹脂組成物の凹凸転写性を向上させることができるとともに、収縮率の異方性を小さくすることができる。その結果、液晶性樹脂の優れた性能を備えかつ気密性の高いインサート成形品を得ることができる樹脂組成物とすることができる。また、後述する実施例に示すように、この樹脂組成物を用いたインサート成形品は、リフロー処理後も気密性が低下することを防ぐことができる。
(液晶性樹脂)
 液晶性樹脂とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーのことをいう。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。液晶性樹脂は、直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
 液晶性樹脂としては、特に限定されないが、芳香族ポリエステル又は芳香族ポリエステルアミドであることが好ましい。また、芳香族ポリエステル又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルを用いることもできる。
 芳香族ポリエステル又は芳香族ポリエステルアミドとしては、特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた少なくとも1種以上の化合物を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドである。液晶性樹脂は、上記から選ばれる2種以上の液晶性樹脂の混合物であってもよい。
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上、とからなるポリエステルアミド等、を挙げることができる。さらに上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
 液晶性樹脂を構成する具体的化合物(モノマー)の好ましい具体例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)で表される化合物、及び下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン等の芳香族アミン類が挙げられる。
Figure JPOXMLDOC01-appb-C000001

(X:アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である。)
Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-C000003

(Y:-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
 液晶性樹脂の調製方法は、特に限定されず、上述したモノマー化合物(又はモノマーの混合物)を用いて、直接重合法やエステル交換法を用いて、公知の方法で調整することができるが、通常は、溶融重合法やスラリー重合法等が用いられる。エステル形成能を有する化合物である場合は、そのままの形で重合に用いてもよく、また、重合の前段階で前駆体から該エステル形成能を有する誘導体に変性されたものを用いてもよい。重合に際しては、種々の触媒の使用が可能である。使用可能な触媒の代表的なものとしては、ジアルキル錫酸化物、ジアリール錫酸化物、二酸化チタン、アルコキシチタン珪酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BFの如きルイス酸塩等を挙げることができる。触媒の使用量は、一般にはモノマーの全重量に対して、約0.001~1質量%であり、特に、約0.01~0.2質量%が好ましい。これらの重合方法により製造されたポリマーは、さらに必要があれば、減圧又は不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。
 液晶性樹脂の含有量は、全樹脂組成物中40質量%以上65質量%以下である。液晶性樹脂の含有量を40質量%以上65質量%以下とすることで、液晶性樹脂が有する高流動性、優れた低バリ性及び耐リフロー性並びに水蒸気透過性を維持した状態で、凹凸転写性を向上させることができるとともに、収縮率の異方性を小さくすることができる。その結果、液晶性樹脂の優れた性能を備え、かつ気密性の高い成形品を得ることができる樹脂組成物とすることができる。液晶性樹脂の含有量は、より好ましくは、42質量%以上62質量%以下である。液晶性樹脂の含有量の下限値は、45質量%以上とすることもでき、上限値は、60質量%以下とすることもできる。
 液晶性樹脂の溶融粘度は、特に限定されず、液晶性樹脂の融点よりも10~30℃高いシリンダー温度及びせん断速度1000sec-1で測定した溶融粘度が、5Pa・s以上100Pa・s以下であり、さらに好ましくは、10Pa・s以上50Pa・s以下である。「液晶性樹脂の融点よりも10~30℃高いシリンダー温度」とは、液晶性樹脂が溶融粘度の測定が可能な程度まで溶融することができるシリンダー温度を意味しており、融点よりも何℃高いシリンダー温度とするかは、10~30℃の範囲で液晶性樹脂の種類によって異なる。例えば、特開2010-3661号公報(特に第0048,0051段落を参照)には、液晶性ポリマー1として、4-ヒドロキシ安息香酸から導入される構成単位2モル%、6-ヒドロキシ-2-ナフトエ酸から導入される構成単位48モル%、テレフタル酸から導入される構成単位25モル%、4,4’-ジヒドロキシビフェニルから導入される構成単位25モル%の液晶性樹脂が開示されている。この融点は352℃であり、溶融粘度はシリンダー温度380℃で測定されている。また、液晶性ポリマー2として、4-ヒドロキシ安息香酸から導入される構成単位50モル%、6-ヒドロキシ-2-ナフトエ酸から導入される構成単位2.5モル%、テレフタル酸から導入される構成単位23.9モル%、4,4’-ジヒドロキシビフェニルから導入される構成単位18.6モル%、4-アセトアミドフェノールから導入される構成単位5モル%の液晶性樹脂が開示されている。この融点は367℃であり、溶融粘度はシリンダー温度380℃で測定されている。さらに、液晶性ポリマー3として、4-ヒドロキシ安息香酸から導入される構成単位60モル%、6-ヒドロキシ-2-ナフトエ酸から導入される構成単位5モル%、テレフタル酸から導入される構成単位17.7モル%、4,4’-ジヒドロキシビフェニルから導入される構成単位112.3モル%、4-アセトアミドフェノールから導入される構成単位5モル%の液晶性樹脂が開示されている。この融点は335℃であり、溶融粘度はシリンダー温度350℃で測定されている。
(熱可塑性樹脂)
 樹脂組成物は、ガラス転移温度Tgが230℃未満である熱可塑性樹脂(以下、単に「熱可塑性樹脂」ともいう。)を含有する。本発明者の研究により、液晶性樹脂にガラス転移温度Tgが230℃未満である熱可塑性樹脂を添加した場合に、樹脂組成物の凹凸転写性を向上させることができることが分かった。その結果、後述する実施例に示すように、インサート成形品の気密性を高めることができ、かつ該成形品をリフロー処理した後も気密性が低下することを防ぐことができる。
 なお、ガラス転移温度Tgは、DSC法(JIS K7121記載の方法)によって昇温速度10℃/分の条件で測定した値のことをいう。ガラス転移温度Tgの下限値は、特に限定されず、60℃以上、又は、80℃以上とすることができる。ガラス転移温度Tgの上限値は、220℃以下とすることもできる。
 ガラス転移温度Tgが230℃未満である熱可塑性樹脂としては、ポリアリーレンサルファイド樹脂(PAS);ポリフェニレンエーテル樹脂(PPE);環状オレフィン系樹脂;ポリカーボネート樹脂(PC);ポリエチレン樹脂(PE);ポリプロピレン樹脂(PP);ポリアセタール樹脂(POM);ポリアミド6、ポリアミド66又はポリアミド46等のポリアミド樹脂(PA);ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、変性ポリエチレンテレフタレート(PET)等のポリエステル樹脂;ポリエーテルエーテルケトン樹脂(PEEK);ポリスチレン樹脂(PS);ポリ塩化ビニル樹脂(PVC);アクリロニトリル-スチレン共重合体樹脂(AS);ポリメタクリル酸メチル樹脂(PMMA);アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS);ポリアリレート樹脂(PAR);ポリエーテルイミド樹脂(PEI);及びポリエーテルスルホン樹脂(PES)等を挙げることができる。
 中でも、ポリアリーレンサルファイド樹脂、ポリフェニレンエーテル樹脂、及び環状オレフィン系樹脂から選ばれる1種又は2種以上であることが好ましい。
 ポリアリーレンサルファイド樹脂(PAS樹脂)は、繰り返し単位として、-(Ar-S)-(なお、「Ar」はアリーレン基を示す)を主として構成されたものであり、一般的に知られている分子構造のPAS樹脂を使用することができる。
 アリーレン基としては、特に限定されないが、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等が挙げられる。このようなアリーレン基から構成されるアリーレンサルファイド基の中で、同一の繰り返し単位を用いたホモポリマーの他、用途によっては、異種のアリーレンサルファイド基の繰り返しを含んだコポリマーとすることもできる。
 ホモポリマーとしては、用途にもよるが、アリーレン基としてp-フェニレンサルファイド基を繰り返し単位とするものが好ましい。p-フェニレンサルファイド基を繰り返し単位とするホモポリマーは、極めて高い耐熱性を持ち、広範な温度領域で高強度、高剛性、さらには高い寸法安定性を示す。このようなホモポリマーを用いることで、非常に優れた物性を備える成形品を得ることができる。
 コポリマーとしては、上述したアリーレン基を含むアリーレンサルファイド基の中で相異なる2種以上のアリーレンサルファイド基の組み合わせを使用することができる。これらの中では、p-フェニレンサルファイド基とm-フェニレンサルファイド基とを含む組み合わせが、耐熱性、成形性、機械的特性等の高い物性を備える成形品が得られるという点から好ましい。また、p-フェニレンサルファイド基を70mol%以上の割合で含むポリマーがより好ましく、80mol%以上の割合で含むポリマーがさらに好ましい。なお、フェニレンサルファイド基を有するポリアリーレンサルファイド樹脂は、ポリフェニレンサルファイド樹脂である。
 ポリアリーレンサルファイド樹脂の調整方法は、従来公知の重合方法を用いることができる。一般的な重合方法により製造されたポリアリーレンサルファイド樹脂は、通常、副生不純物等を除去するために、水あるいはアセトンを用いて数回洗浄した後、酢酸、塩化アンモニウム等で洗浄する。その結果として、ポリアリーレンサルファイド樹脂末端には、カルボキシル末端基を所定量の割合で含む。
 ポリフェニレンエーテル樹脂としては、ポリフェニレンエーテルの他に、変性ポリフェニレンエーテルを挙げることができる。環状オレフィン系樹脂としては、環状オレフィンポリマー(COP)、環状オレフィンコポリマー(COC)等を挙げることができる。
 熱可塑性樹脂の含有量は、全樹脂組成物中12質量%以上35質量%以下である。熱可塑性樹脂の含有量を、全樹脂組成物中12質量%以上35質量%以下とすることで、高流動性等の性質を維持しつつかつ収縮率の異方性を小さく保った状態で、凹凸転写性を向上させることができる。熱可塑性樹脂の含有量は、好ましくは、15質量%以上30質量%以下である。
 熱可塑性樹脂の重量平均分子量(Mw)は、特に限定されず、15000以上40000以下であることが好ましい。熱可塑性の重量平均分子量をこの範囲とすることにより、機械的物性と流動性とをより優れたバランスで有する樹脂組成物とすることができる。熱可塑性樹脂の重量平均分子量は、より好ましくは、20000以上38000以下である。
(板状充填剤)
 樹脂組成物は、板状充填剤を含有する。板状充填剤は、平均粒径が15μm以上100μm以下でありアスペクト比が10以上である。こうした板状充填剤を含有することで、射出成形時の収縮率の異方性を小さくすることができる。その結果、後述する実施例に示すように、インサート成形品の気密性を高めることができ、かつ該成形品をリフロー処理した後も気密性が低下することを防ぐことができる。
 平均粒径は、好ましくは、20μm以上50μm以下である。アスペクト比は、好ましくは、35以上であり、より好ましくは、35以上55以下である。なお、この定義は、板状充填剤が樹脂組成物に配合される前の板状充填剤の形状に関するものである。平均粒径とは、レーザ回折/散乱式粒度分布測定法で測定した値であり、体積基準の粒度分布における積算値50%の粒子径である。平均アスペクト比とは、電子顕微鏡(SEM)観察により数十個のフィラーについて長さ及び厚さを測定してアスペクト比を算出し、その平均値を算出した値である。
 板状充填剤としては、例えば、例えば、マイカ、タルク、ガラスフレーク、黒鉛、各種の金属箔(例えば、アルミ箔、鉄箔、銅箔)等をあげることができ、これらから選ばれる1種又は2種以上を用いることができる。中でも、樹脂の流動方向の収縮率と、樹脂の流動方向に対して直角方向の収縮率との差をより小さくしやすい観点から、マイカが好ましい。
 板状充填剤の含有量は、全樹脂組成物中10質量%以上35質量%以下である。板状充填剤の含有量を全樹脂組成物中10質量%以上35質量%以下とすることで、高い凹凸転写性を有した状態で射出成形時の収縮率の異方性を小さくする効果を十分に得ることができる。
(エポキシ基含有共重合体)
 樹脂組成物は、さらに、エポキシ基含有共重合体を含有することが好ましい。エポキシ基含有共重合体を含有することで、インサート部材との界面の親和性を高めることができる。
 エポキシ基含有共重合体は、特に限定されないが、例えば、エポキシ基含有オレフィン系共重合体、及びエポキシ基含有スチレン系共重合体からなる群より選択される少なくとも1種が挙げられる。エポキシ基含有共重合体は、上記から選ばれる1種又は2種以上を組み合わせて用いることができる。
 エポキシ基含有オレフィン系共重合体としては、例えば、α-オレフィンに由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。
 α-オレフィンは、特に限定されず、例えば、エチレン、プロピレン、ブテン等が挙げられるが、中でもエチレンが好ましく用いられる。α,β-不飽和酸のグリシジルエステルは、下記一般式(IV)で示されるものである。なお、一般式(IV)において、R’は、水素又は炭素数1以上10以下のアルキル基を示す。α,β-不飽和酸のグリシジルエステルは、例えばアクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル、イタコン酸グリシジルエステル等であるが、特にメタクリル酸グリシジルエステルが好ましい。
Figure JPOXMLDOC01-appb-C000004
 エポキシ基含有オレフィン系共重合体において、α-オレフィンに由来する繰り返し単位の含有量は、87~98質量%であり、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は、13~2質量%であることが好ましい。
 エポキシ基含有オレフィン系共重合体は、本発明を損なわない範囲で、上記2成分以外に第3成分として、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、α-メチルスチレン、無水マレイン酸等のオレフィン系不飽和エステルから選ばれる1種又は2種以上に由来する繰り返し単位を、上記2成分100質量部に対し0~48質量部含有してもよい。
 エポキシ基含有オレフィン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により容易に調製することができる。より具体的には、通常、α-オレフィンとα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、α-オレフィンとα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。
 エポキシ基含有スチレン系共重合体としては、例えば、スチレン類に由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。α,β-不飽和酸のグリシジルエステルについては、エポキシ基含有オレフィン系共重合体で説明したものと同様であるため説明を省略する。スチレン類としては、スチレン、α-メチルスチレン、ブロム化スチレン、ジビニルベンゼン等が挙げられるが、スチレンが好ましく用いられる。
 エポキシ基含有スチレン系共重合体は、上記2成分以外に第3成分として他のビニルモノマーの1種又は2種以上に由来する繰り返し単位を含有する多元共重合体であってもよい。第3成分として好適なものは、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上に由来する繰り返し単位である。これらの繰り返し単位を共重合体中に40質量%以下含有するエポキシ基含有スチレン系共重合体が好ましい。
 エポキシ基含有スチレン系共重合体において、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は2~20質量%であり、スチレン類に由来する繰り返し単位の含有量は80~98質量%であることが好ましい。
 エポキシ基含有スチレン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により調製することができる。より具体的には、通常、スチレン類とα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、スチレン類とα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。
 なお、エポキシ基含有共重合体としては、エポキシ基含有オレフィン系共重合体が耐熱性の点で好ましい。エポキシ基含有オレフィン系共重合体とエポキシ基含有スチレン系共重合体とを併用する場合、これら成分同士の割合は、適宜、要求される特性に沿って選択することができる。
 エポキシ基含有共重合体の含有量は、燃焼性が悪化することから、全樹脂組成物中6質量%以下である。エポキシ基含有共重合体の含有量の下限値は、特に限定されず、例えば、全樹脂組成物中0.01質量%、0.1質量%以上、又は1質量%以上とすることができる。
(繊維状充填剤)
 樹脂組成物は、さらに、繊維状充填剤を含有する。繊維状充填剤を含有することで、機械強度を向上させることができる。なお、繊維状充填剤とは、異径比の平均値が1以上4以下であり、アスペクト比が2以上1500以下であるものをいう。この定義は、繊維状充填剤が樹脂組成物に配合される前の繊維状充填剤の形状に関する。
 繊維状充填剤としては、従来から種々の樹脂組成物において充填剤又は強化剤として使用されているものを特に制限なく使用することができる。繊維状充填剤の具体例としては、ガラス繊維、ミルドガラスファイバー、アスベスト繊維、カーボン繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、硼素繊維、チタン酸カリウム繊維、ウォラストナイトの如き珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、さらにステンレス、アルミニウム、チタン、銅、真鍮等金属の繊維状物等の無機質繊維状物質を挙げることができる。これらの繊維状充填剤は、2種以上を組み合わせて用いることができる。
 これらの中では、安価であり入手しやすいことや、所定の条件で成形して得た成形品の、樹脂の流動方向の収縮率と、樹脂の流動方向に対して直角方向との差を調整しやすいことから、ガラス繊維が好ましい。ガラス繊維としては、通常、断面形状が円形又は略円形であるものが使用されるが、所謂異形断面を有するガラス繊維を用いることもできる。異形断面の形状としては、これらに限定されないが、長方形やひし形等の多角形、楕円形、まゆ型等が挙げられる。
(その他の添加剤)
 樹脂組成物は、本発明の効果を阻害しない範囲で、所望の物性付与のために、他の添加剤を含有することができる。他の添加剤としては、核剤、カーボンブラック、顔料、酸化防止剤、安定剤、可塑剤、滑剤、離型剤又は難燃剤等を挙げることができる。他の添加剤の含有量は、所望の物性に応じて適宜調整できる。
(樹脂組成物)
 樹脂組成物は、液晶性樹脂の融点よりも10~30℃高いシリンダー温度、金型温度150℃及び保持圧力50MPaの条件下で、80mm×80mm×2mmの成形品を射出成形した場合に、樹脂の流動方向に対して直角方向の収縮率と、樹脂の流動方向の収縮率との差が、0.51%以下であることが好ましい。樹脂の流動方向に対して直角方向の収縮率と、樹脂の流動方向の収縮率との差を0.51%以下と小さくすることで、射出成型によりインサート成形品を製造した際の、樹脂部分の固化収縮を小さくすることができる。樹脂部材の固化収縮が小さければ、インサート部材と樹脂部材との間に微小な空隙が生じにくく、気密性の高いインサート成形品を得やすい。なお、ここでいう「液晶性樹脂の融点よりも10~30℃高いシリンダー温度」とは、上述のとおりであるからここでは記載を省略する。
 ここで、収縮率について、樹脂の流動方向の収縮率と、樹脂の流動方向に対して直角方向(以下、流動直角方向ともいう。)の収縮率との差を用いる理由としては、実際の成形品において、インサート部材と樹脂部材との間に生じる収縮は、形状により異なるものの、樹脂の流動方向の収縮率と、流動直角方向の収縮率のどちらか一方のみの影響を受けることは少なく、両方の収縮率の影響を受けるため、両者をあわせて考える必要があると推定されるためである。
 樹脂組成物の溶融粘度は、液晶性樹脂の融点よりも10~30℃高いシリンダー温度で測定したせん断速度1000sec-1での溶融粘度が、5Pa・s以上100Pa・s以下であることが好ましく、10Pa・s以上50Pa・s以下であることがさらに好ましい。溶融粘度が5Pa・s以上100Pa・s以下である場合に、インサート部材と樹脂部材とがより良い密着性を得ることができる。
(樹脂組成物の製造方法)
 樹脂組成物の製造方法は、この樹脂組成物中の成分を均一に混合できる方法であれば特に限定されず、従来知られる樹脂組成物の製造方法から適宜選択することができる。例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出した後、得られた樹脂組成物を粉末、フレーク、ペレット等の所望の形態に加工する方法が挙げられる。
[インサート成形品]
 インサート成形品は、上記した液晶性樹脂組成物からなる樹脂部材と、インサート部材とを有する。インサート成形品は、上記した液晶性樹脂組成物からなる樹脂部材とインサート部材とをインサート成形により一体的に成形して得る。
 インサート部材は、特に限定されないが、その特性を生かし且つ樹脂の欠点を補う目的で使用されるため、成形時に樹脂と接触したときに形が変化したり溶融したりしないものが好ましく使用される。例えば、主として、アルミニウム、マグネシウム、銅、鉄、真鍮、及びそれらの合金等の金属や、ガラス、セラミックスのような無機固体により、あらかじめ棒、ピン、ネジ等に成形されているものが使用される。本発明においては、インサート部材として金属を用いた場合に、本発明の効果が顕著に表れる。インサート部材の形状等については、限定されるものではない。
 インサート部材の表面は、粗面化処理されていてもよく、未処理であってもよい。粗面化処理は、サンドブラストやレーザー照射等の物理的な方法により施されてもよく、化学的に処理されていてもよい。化学的に処理する場合、インサート部材と樹脂部材との間に、共有結合、水素結合、又は分子間力等の化学的接着効果が付与されるため、インサート部材と樹脂部材との界面における気密性が向上しやすくなる。化学的な処理としては、例えば、コロナ放電等の乾式処理、トリアジン処理(特開2000-218935号公報参照)、ケミカルエッチング(特開2001-225352号公報)等が挙げられる。また、インサート部材を構成する材料がアルミニウムである場合には、温水処理(特開平-142110号公報)も挙げられる。温水処理としては、100℃の水への3~5分間の浸漬が挙げられる。複数の化学的な処理を組み合わせて施してもよい。
 インサート成形方法は、一般的な方法とすることができる。例えば、成形用金型に金属等で形成されたインサート部材をあらかじめ装着し、その外側に樹脂組成物を充填して複合成形する。樹脂組成物を金型に充填するための成形法としては、射出成形法、押出圧縮成形法等があるが、射出成形法が一般的である。特に、射出成形法の場合には、本発明に係る樹脂組成物のような優れた流動性が求められる。
(用途)
 本発明に係る樹脂組成物を用いて製造されたインサート成形品は、種々の用途に用いることができる。特に、本発明に係る樹脂組成物は、気密性に優れるインサート成形品を与えるため、高度な気密性が要求される用途に好適に用いられる。
 例えば、本発明に係る樹脂組成物を用いて製造されたインサート成形品は、湿度や水分により悪影響を受けやすいコネクタ、半導体パッケージ等の電気・電子部品等を内部に備えるインサート成形品として好適である。特に、高レベルで防水が求められる分野、例えば、川、プール、スキー場、お風呂等での使用が想定される、水分や湿気の侵入が故障に繋がる電気又は電子機器用の部品として用いることが好適である。また、インサート成形品は、例えば、傾斜センサー、燃料センサー等のセンサーとしても有用である。傾斜センサーとしては、姿勢制御等の車載用途に用いられるものや、ゲームコントローラに用いられるものが例示される。燃料センサーとしては、燃料量計測等の車載用途に用いられるものが例示される。さらに、インサート成形品は、例えば、内部に樹脂製のボスや保持部材等を備えた、電気・電子機器用筐体としても有用である。ここで、電気・電子機器用筐体としては、携帯電話の他に、カメラ、ビデオ一体型カメラ、デジタルカメラ等の携帯用映像電子機器の筐体、ノート型パソコン、ポケットコンピュータ、電卓、電子手帳、PDC、PHS、携帯電話等の携帯用情報あるいは通信端末の筐体、MD、カセットヘッドホンステレオ、ラジオ等の携帯用音響電子機器の筐体、液晶TV・モニター、電話、ファクシミリ、ハンドスキャナー等の家庭用電化機器の筐体等を挙げることができる。
 以下に実施例を示して本発明をさらに具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
[実施例1~12、比較例1~11]
 以下に示す材料を用いて、表1,2に示す組成及び含有割合で、シリンダー温度350℃の二軸押出機で溶融混練して、実施例及び比較例の樹脂組成物のペレットを作製した。なお、板状充填剤、繊維状充填剤は、サイドフィーダーを用いて押出機に導入した。なお、表1,2において、含有量の単位は「質量%」である。
[実施例13~16]
 以下に示す材料を、表3に示す組成及び含有割合で用いた以外は、実施例1と同様にして、樹脂組成物のペレットを作製した。なお、表3において、含有量の単位は「質量%」である。
[実施例17,18、比較例12]
 以下に示す材料を、表3に示す組成及び含有割合で用い、かつシリンダー温度380℃の二軸押出機で溶融混練した以外は、実施例1と同様にして、樹脂組成物のペレットを作製した。
(液晶性樹脂:LCP)
 液晶性ポリエステルアミド樹脂(LCP)を次のようにして調整した。重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で2時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は335℃、溶融粘度は14.0Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 [原料]
 (I)4-ヒドロキシ安息香酸;188.4g(60モル%)
 (II)2-ヒドロキシ-6-ナフトエ酸;21.4g(5モル%)
 (III)テレフタル酸;66.8g(17.7モル%)
 (IV)4,4’-ジヒドロキシビフェニル;52.2g(12.3モル%)
 (V)4-アセトキシアミノフェノール;17.2g(5モル%)
 金属触媒(酢酸カリウム触媒);15mg
 アシル化剤(無水酢酸);226.2g
(液晶性樹脂:LCP2)
 液晶性ポリエステル樹脂(LCP2)を次のようにして調整した。重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから30分かけて5Torr(即ち667Pa)まで減圧にして、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で8時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は352℃、380℃における溶融粘度は27.0Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 [原料]
 (I)2-ヒドロキシ-6-ナフトエ酸(HNA);166g(48モル%)
 (II)テレフタル酸(TA);76g(25モル%)
 (III)4,4’-ジヒドロキシビフェニル(BP);86g(25モル%)
 (IV)4-ヒドロキシ安息香酸(HBA);5g(2モル%)
 金属触媒(酢酸カリウム触媒);22.5mg
 アシル化剤(無水酢酸);191g
(熱可塑性樹脂)
 ポリフェニレンスルファイド樹脂(PPS):株式会社クレハ製、「W203A」、ガラス転移温度Tg85℃
 ポリフェニレンエーテル樹脂(PPE):三菱エンジニアリングプラスチック株式会社製、「PX100F」、ガラス転移温度Tg213℃
 環状オレフィンコポリマー(COC):TOPAS Advanced Polymers社製、「TOPAS6017S-04」、ガラス転移温度Tg178℃
 ポリエーテルエーテルケトン樹脂(PEEK):ダイセル・エボニック株式会社製、「VESTAKEEP2000P」、ガラス転移温度Tg143℃
 ポリイミド樹脂(PI):三井化学株式会社製、「PL450C」、ガラス転移温度Tg250℃
(板状充填剤)
 マイカ:株式会社山口雲母工業所株式会社製、「AB-25S」、平均粒径23.4μm、アスペクト比40~50
 マイカ:株式会社山口雲母工業所株式会社製、「A-41S」、平均粒径48.5μm、アスペクト比40~50
 ガラスフレーク:日本板硝子株式会社製、「REF160」、平均粒径160μm、アスペクト比32
 タルク:松村産業株式会社製、「クラウンタルクPP」、平均粒径12.8μm、アスペクト比8
(エポキシ基含有オレフィン系共重合体)
 エチレン-グリシジルメタクリレート-アクリル酸メチル共重合体(EGMA):住友化学株式会社製、「ボンドファースト2C」(グリシジルメタクリレート単位含有量6質量%)
(繊維状充填剤)
 ガラス繊維:日本電気硝子株式会社製、「ECS03T-786H」、繊維径10μm、長さ3mmのチョップドストランド
 ミルドガラスファイバー:日東紡績株式会社製、「PF70E-001」、繊維径10μm、平均繊維長70μm
[評価]
(溶融粘度)
 実施例及び比較例の樹脂組成物ペレットについて、キャピラリー式レオメーター(株式会社東洋精機製作所製キャピログラフ1D:ピストン径10mm)により、以下の条件で、見かけの溶融粘度をISO 11443に準拠して測定した。測定には、内径1mm、長さ20mmのオリフィスを用いた。実施例1~12及び比較例1~11の結果を表1,2に示す。実施例13~18及び比較例12の結果を表3に示す。
  シリンダー温度:350℃(実施例1~12、比較例1~11)
          350℃(実施例13~16)
          380℃(実施例17,18、比較例12)
  せん断速度:1000sec-1
(収縮率)
 樹脂組成物の収縮率を、以下の方法で測定した。実施例及び比較例の樹脂組成物ペレットを用いて、成形機(住友重機械工業株式会社製「SE-100DU」)で以下の成形条件で成形した。
  シリンダー温度:350℃(実施例1~12、比較例1~11)
           350℃(実施例13~16)
          380℃(実施例17,18、比較例12)
  金型温度:150℃
  射出速度:33mm/sec
  保圧力:50MPa
 図1は、得られた試験用試験片100の平面図である。試験用試験片100の大きさは、80mm×80mm×厚さ2mmである。1日静置したこの試験片の寸法を、図1に示す流動方向測定箇所a及び直角方向測定箇所bで測定した。なお、図1のcは、ゲートを示す。測定された試験片の寸法と、上記測定箇所に対応する金型上の箇所における金型の寸法とから、式(1)に従い、成形収縮率を求めた。なお、金型寸法は、流動方向で80.021mm、直角方向で79.991mmであった。
 (金型寸法-試験片寸法)/金型寸法×100 ・・・(1)
 上記によって求められた流動方向の収縮率と直角方向の収縮率との平均値を、「収縮率(平均)」とし、流動方向の収縮率と直角方向の収縮率との差を「収縮率(異方性)」とした。実施例1~12及び比較例1~11の結果を表1,2に示す。実施例13~18及び比較例12の結果を表3に示す。なお、表1~3において、収縮率の単位は「%」である。
(インサート成形品の製造)
 図2(a)は、インサート成形品10の平面図であり、図2(b)は(a)のM-M断面図であり、図2(c)は底面図である。凹凸転写性及び気密性の評価に供するために、実施例及び比較例の樹脂組成物からなる樹脂部材1とインサート部材2とを用いて、樹脂部材1とインサート部材2とが一体的に成形された、実施例及び比較例のインサート成形品10を製造した。なお、後述する評価を行う際に用いるために、インサート成形品10の上面には、図2に示すような6個の凹部3が存在する。
 図3は、インサート部材2を示す図であって、(a)は平面図、(b)は正面図であり、インサート部材2は銅製の部材である。この部材2は、長尺方向の長さ19mm、短尺方向の幅8.5mm、及び厚さ0.2mmである。なお、インサート部材2は、表面を未処理のものと、予め以下に示す方法により化学処理を行ったものとを用いた。化学処理は、銅製のインサート部材の表面を、下記組成のエッチング液A(水溶液)に1分間浸漬して防錆皮膜除去を行い、次に下記組成のエッチング液B(水溶液)に5分間浸漬して表面をエッチングした。
  エッチング液A(温度20℃):過酸化水素26g/L、硫酸90g/L
  エッチング液B(温度25℃):過酸化水素80g/L、硫酸90g/L、ベンゾトリアゾール5g/L、塩化ナトリウム0.2g/L
 インサート成形は、以下のように行った。インサート部材2を射出成形用の金型内に配置し、堅型射出成型機(株式会社ソディック製、TR-40VR)を用いて、実施例及び比較例の樹脂組成物のペレットを以下の条件で溶融し金型内に射出して樹脂部材1とし、インサート成形品10を作製した。
  シリンダー温度:350℃(実施例1~12、比較例1~11)
         350℃(実施例13~16)
         380℃(実施例17,18、比較例12)
  金型温度:160℃
  射出速度:70mm/s
  保圧力:50MPa
(凹凸転写性)
 インサート成形品10を塩酸(10wt%水溶液)と硝酸(60wt%水溶液)の混合溶液に浸して室温にてインサート部材2を溶解させ、残った樹脂部材1の表面を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「S-3000H」、倍率:1000倍)で観察した。樹脂部材1の表面の凹凸の程度を、凹凸の大きいものを1、凹凸の小さいものを5として、5段階で評価した。3以下の場合に、凹凸転写性が高いといえる。実施例1~12及び比較例1~11の結果を表1,2に示す。実施例13~18及び比較例12の結果を表3に示す。
(初期気密性)
 インサート成形品10の気密性を次のように評価した。気密性の評価には、株式会社コスモ計器製DPゲージMODEL DP-330BA微差圧計を使用した(精度±0.03kPa,差圧レンジ100kPa)。具体的な評価方法を、図4,5に沿って説明する。図4は、気密性試験用サンプル20を作製する際の説明図であり、図5は、気密性試験用評価装置101のブロック図である。先ず、図4に示すように、上下二つのパーツに分かれた固定治具4,4’の内部の空間に、インサート成形品10を配置してサンプル20とした。次いで、このサンプル20を、図5に概略図を示す評価装置101に接続した。サンプル20、ブランク30及び差圧計40を、図5に示す配置でチューブを用いて接続した。また、サンプル20においては上側の固定治具4にチューブが接続されている。このチューブから空気が固定治具内に送り込まれ、インサート成形品10の上面に形成された6個の凹部3に圧力がかかるようになっている。そして、凹部3の底の樹脂部材1とインサート部材2との境界から、樹脂部材1とインサート部材2との接合部が剥がれると、固定治具の下側に空気が漏れるようになっている。また、ブランク30とは、樹脂部材1とインサート部材2との接合が維持されている状態で、上記凹部にかかる圧力を確認するためのものである。樹脂部材1とインサート部材2との接合部に隙間が生じるとブランク30にかかる圧力とサンプルに係る圧力との間に圧力差ΔPが生じるため、本評価でインサート成形品の気密性を評価することができる。
 空気の漏れ量Qを以下の式(2)から求め、気密性の指標とした。実施例1~12及び比較例1~11の結果を表1,2に示す。実施例13~18及び比較例12の結果を表3に示す。
 Q=Ve×ΔP/T ・・・(2)
 Q :漏れ量(Pa・m/s)
 Ve:容積(m)(=0.000005m
 ΔP:差圧(Pa)
 T :検出時間(s)(=60s)
 漏れ量Qが、2.8×10-4Pa・m/s以下の場合に、気密性が高いインサート成形品であるといえる。
(リフロー後の気密性)
 リフロー処理した後のインサート成形品10の気密性を評価した。リフロー処理は、株式会社アサヒエンジニアリング製、TPF-20Lを使用して、以下の条件で行った。
  試料送り速度:0.4m/min
  リフロー炉通過時間:5min
  温度条件:プレヒート200℃、リフローゾーン395℃、ピーク温度258℃
 気密性の測定は、上記と同じ方法で行った。実施例1~12及び比較例1~11の結果を表1,2に示す。実施例13~18及び比較例12の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005

Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007

 表1及び3から明らかなように、実施例の液晶性樹脂組成物は、いずれも、金属表面に対する凹凸転写性が高いとともに収縮率の異方性が小さい。また、この樹脂組成物を用いたインサート成形品は、初期の気密性に優れているとともに、リフロー処理後に気密性が低下することを防ぐことができる。
 1    樹脂部材
 2    インサート部材
 3    凹部
 4,4’ 固定治具
 10   インサート成形品
 20   気密性試験用サンプル
 100  収縮率試験用試験片
 101  気密性試験用評価装置
 a    流動方向測定箇所
 b    直角方向測定箇所
 c    ゲート

Claims (6)

  1.  液晶性樹脂と、ガラス転移温度Tgが230℃未満である熱可塑性樹脂と、平均粒径が15μm以上100μm以下でありアスペクト比が10以上である板状充填剤と、を含有し、
     液晶性樹脂の含有量が、全樹脂組成物中40質量%以上65質量%以下であり、
     熱可塑性樹脂の含有量が、全樹脂組成物中12質量%以上35質量%以下であり、及び、
     板状充填剤の含有量が、全樹脂組成物中10質量%以上35質量%以下である、液晶性樹脂組成物。
  2.  熱可塑性樹脂が、ポリアリーレンサルファイド樹脂、ポリフェニレンエーテル樹脂、環状オレフィン系樹脂、及びポリエーテルエーテルケトン樹脂から選ばれる1種又は2種以上である、請求項1に記載の液晶性樹脂組成物。
  3.  液晶性樹脂の融点よりも10~30℃高いシリンダー温度、金型温度150℃及び保持圧力50MPaの条件下で、80mm×80mm×2mmの成形品を射出成形した場合に、樹脂の流動方向に対して直角方向の収縮率と、樹脂の流動方向の収縮率との差が、0.51%以下である、請求項1又は2に記載の液晶性樹脂組成物。
  4.  さらに、エポキシ基含有共重合体を全樹脂組成物中6質量%以下含有する、請求項1から3のいずれか一項に記載の液晶性樹脂組成物。
  5.  さらに、繊維状充填剤を全樹脂組成物中12質量%以下含有する、請求項1から4のいずれか一項に記載の液晶性樹脂組成物。
  6.  請求項1から5のいずれか一項に記載の液晶性樹脂組成物からなる樹脂部材と、金属、合金又は無機固体物からなるインサート部材とを有する、インサート成形品。
PCT/JP2016/087373 2015-12-22 2016-12-15 液晶性樹脂組成物及びインサート成形品 WO2017110646A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187018627A KR101915731B1 (ko) 2015-12-22 2016-12-15 액정성 수지 조성물 및 인서트 성형품
CN201680075983.2A CN108431138B (zh) 2015-12-22 2016-12-15 液晶性树脂组合物及嵌入成型品
JP2017531640A JP6225297B1 (ja) 2015-12-22 2016-12-15 液晶性樹脂組成物及びインサート成形品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-250528 2015-12-22
JP2015250528 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110646A1 true WO2017110646A1 (ja) 2017-06-29

Family

ID=59090229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087373 WO2017110646A1 (ja) 2015-12-22 2016-12-15 液晶性樹脂組成物及びインサート成形品

Country Status (5)

Country Link
JP (1) JP6225297B1 (ja)
KR (1) KR101915731B1 (ja)
CN (1) CN108431138B (ja)
TW (1) TWI701281B (ja)
WO (1) WO2017110646A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125176A (ja) * 2016-08-31 2017-07-20 三井化学株式会社 低誘電性樹脂組成物、硬化物、ドライフィルム、フィルム、プリプレグ、金属張積層板、プリント配線基板および電子機器
KR101901662B1 (ko) 2018-04-27 2018-09-27 주식회사 더원테크 휴대용 통신 단말기의 방수용 유심 트레이 및, 그 제조 방법
WO2019087961A1 (ja) * 2017-10-30 2019-05-09 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体の防水方法ならびに電子機器の防水方法
CN110997820A (zh) * 2017-09-12 2020-04-10 宝理塑料株式会社 耐滑动摩耗构件用液晶性树脂组合物和使用了其的耐滑动摩耗构件
JPWO2020175390A1 (ja) * 2019-02-25 2020-09-03
WO2020175389A1 (ja) * 2019-02-25 2020-09-03 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体を用いる防水方法ならびに電子機器の防水方法
JP2020151980A (ja) * 2019-03-20 2020-09-24 三井化学株式会社 金属樹脂複合体の製造方法および金属樹脂複合体
US10829634B2 (en) 2017-12-05 2020-11-10 Ticona Llc Aromatic polymer composition for use in a camera module
CN114616286A (zh) * 2019-10-31 2022-06-10 韩华思路信株式会社 结晶速率得到提高的高分子组合物及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113015765B (zh) * 2018-11-15 2022-04-26 宝理塑料株式会社 液晶性树脂组合物、及包含该液晶性树脂组合物的成形品的连接器
KR20200060585A (ko) 2018-11-21 2020-06-01 삼성전자주식회사 액정 고분자, 복합체 조성물, 성형품, 전지 케이스, 및 전지
CN113993937A (zh) 2019-03-20 2022-01-28 提克纳有限责任公司 用于相机模块的聚合物组合物
WO2020190568A1 (en) 2019-03-20 2020-09-24 Ticona Llc Actuator assembly for a camera module
JP7355523B2 (ja) * 2019-05-16 2023-10-03 上野製薬株式会社 液晶ポリマー組成物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146959A (ja) * 1986-12-10 1988-06-18 Polyplastics Co 液晶性ポリエステル樹脂組成物
JPH02206644A (ja) * 1989-02-06 1990-08-16 Toray Ind Inc 熱可塑性樹脂組成物の製造方法
JPH10316841A (ja) * 1997-05-20 1998-12-02 Toray Ind Inc 液晶性樹脂組成物
JP2001106923A (ja) * 1999-10-08 2001-04-17 Polyplastics Co 液晶性ポリマー組成物
JP2003268241A (ja) * 2002-03-13 2003-09-25 Toray Ind Inc 成形品用液晶性樹脂組成物および成形回路基板
JP2009155525A (ja) * 2007-12-27 2009-07-16 Polyplastics Co 液晶性ポリマー組成物
JP2012021147A (ja) * 2010-06-16 2012-02-02 Toray Ind Inc 液晶性ポリエステル樹脂組成物及びそれからなるコネクター
WO2012137271A1 (ja) * 2011-04-06 2012-10-11 東レ株式会社 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
WO2013128887A1 (ja) * 2012-02-29 2013-09-06 東レ株式会社 液晶ポリエステル樹脂組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043701A1 (ja) * 2005-10-13 2007-04-19 Polyplastics Co., Ltd. 射出成形用液晶性樹脂組成物
JP6174406B2 (ja) * 2013-07-23 2017-08-02 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146959A (ja) * 1986-12-10 1988-06-18 Polyplastics Co 液晶性ポリエステル樹脂組成物
JPH02206644A (ja) * 1989-02-06 1990-08-16 Toray Ind Inc 熱可塑性樹脂組成物の製造方法
JPH10316841A (ja) * 1997-05-20 1998-12-02 Toray Ind Inc 液晶性樹脂組成物
JP2001106923A (ja) * 1999-10-08 2001-04-17 Polyplastics Co 液晶性ポリマー組成物
JP2003268241A (ja) * 2002-03-13 2003-09-25 Toray Ind Inc 成形品用液晶性樹脂組成物および成形回路基板
JP2009155525A (ja) * 2007-12-27 2009-07-16 Polyplastics Co 液晶性ポリマー組成物
JP2012021147A (ja) * 2010-06-16 2012-02-02 Toray Ind Inc 液晶性ポリエステル樹脂組成物及びそれからなるコネクター
WO2012137271A1 (ja) * 2011-04-06 2012-10-11 東レ株式会社 液晶性ポリエステル樹脂組成物およびそれを用いた金属複合成形品
WO2013128887A1 (ja) * 2012-02-29 2013-09-06 東レ株式会社 液晶ポリエステル樹脂組成物

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125176A (ja) * 2016-08-31 2017-07-20 三井化学株式会社 低誘電性樹脂組成物、硬化物、ドライフィルム、フィルム、プリプレグ、金属張積層板、プリント配線基板および電子機器
CN110997820A (zh) * 2017-09-12 2020-04-10 宝理塑料株式会社 耐滑动摩耗构件用液晶性树脂组合物和使用了其的耐滑动摩耗构件
TWI762713B (zh) * 2017-09-12 2022-05-01 日商寶理塑料股份有限公司 耐滑動磨耗構件用液晶性樹脂組合物及使用該組合物的耐滑動磨耗構件
CN110997820B (zh) * 2017-09-12 2021-05-11 宝理塑料株式会社 耐滑动摩耗构件用液晶性树脂组合物和使用了其的耐滑动摩耗构件
US11969924B2 (en) 2017-10-30 2024-04-30 Kuraray Co., Ltd. Waterproof component and electronic equipment provided with same, method for waterproofing insert molded body, and method for waterproofing electronic equipment
WO2019087961A1 (ja) * 2017-10-30 2019-05-09 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体の防水方法ならびに電子機器の防水方法
EP3705257A4 (en) * 2017-10-30 2021-03-03 Kuraray Co., Ltd. WATERPROOF COMPONENT AND ELECTRONIC EQUIPMENT PROVIDED WITH IT, PROCESS FOR WATERPROOFING A MOLDED BODY BY INSERTION AND PROCESS FOR WATERPROOFING AN ELECTRONIC EQUIPMENT
US10829634B2 (en) 2017-12-05 2020-11-10 Ticona Llc Aromatic polymer composition for use in a camera module
US11725106B2 (en) 2017-12-05 2023-08-15 Ticona Llc Aromatic polymer composition for use in a camera module
KR101901662B1 (ko) 2018-04-27 2018-09-27 주식회사 더원테크 휴대용 통신 단말기의 방수용 유심 트레이 및, 그 제조 방법
WO2020175389A1 (ja) * 2019-02-25 2020-09-03 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体を用いる防水方法ならびに電子機器の防水方法
WO2020175390A1 (ja) * 2019-02-25 2020-09-03 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体を用いる防水方法ならびに電子機器の防水方法
JPWO2020175389A1 (ja) * 2019-02-25 2021-12-23 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体を用いる防水方法ならびに電子機器の防水方法
JPWO2020175390A1 (ja) * 2019-02-25 2020-09-03
JP7413344B2 (ja) 2019-02-25 2024-01-15 株式会社クラレ 防水部品およびそれを備えた電子機器、インサート成形体を用いる防水方法ならびに電子機器の防水方法
JP2020151980A (ja) * 2019-03-20 2020-09-24 三井化学株式会社 金属樹脂複合体の製造方法および金属樹脂複合体
CN114616286A (zh) * 2019-10-31 2022-06-10 韩华思路信株式会社 结晶速率得到提高的高分子组合物及其制备方法

Also Published As

Publication number Publication date
JPWO2017110646A1 (ja) 2017-12-21
TWI701281B (zh) 2020-08-11
KR20180081151A (ko) 2018-07-13
KR101915731B1 (ko) 2018-11-06
CN108431138A (zh) 2018-08-21
CN108431138B (zh) 2019-07-09
JP6225297B1 (ja) 2017-11-01
TW201739843A (zh) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6225297B1 (ja) 液晶性樹脂組成物及びインサート成形品
CN107922840B (zh) 用于摄像模组的液晶聚合物组合物
JP3387766B2 (ja) 液晶ポリエステル樹脂組成物
JP5633338B2 (ja) 液晶ポリエステル組成物
TWI772452B (zh) 液晶聚酯樹脂組成物及成形體
WO2014087842A1 (ja) カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール
JP5556223B2 (ja) 液晶高分子組成物、その製造方法及び成形体
JPWO2008023839A1 (ja) 非対称電子部品
KR20150011768A (ko) 카메라 모듈용 액정성 수지 조성물
KR20210035309A (ko) 내 볼베어링 접동 마모 부재용 액정성 수지 조성물 및 이를 이용한 내 볼베어링 접동 마모 부재
US9893442B2 (en) Actuator
KR20230098258A (ko) 라미네이트 구조체
KR20210055782A (ko) 액정성 수지 조성물 및 상기 액정성 수지 조성물의 성형품을 포함하는 커넥터
WO2005003238A1 (ja) 導電性樹脂組成物
JP6837184B2 (ja) 液晶性樹脂組成物
WO2019208709A1 (ja) ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
JP2000263586A (ja) インサート成形品
TW201932533A (zh) 液晶聚酯組成物及成形體
JP2011046191A (ja) 液晶性樹脂組成物の製造方法、液晶性樹脂組成物、及び液晶性樹脂製造用の装置
JP2021167408A (ja) 樹脂組成物及びその成形品
JP2005306955A (ja) 高熱伝導性樹脂組成物の製造方法
TW201634573A (zh) 聚對苯二甲酸亞烷基酯樹脂組合物
JP2006051750A (ja) 多層構造を持つ放熱性樹脂成形品
WO2023127734A1 (ja) 樹脂組成物及び成形体
JP2021055059A (ja) 樹脂組成物及びこれを用いたコネクタ部品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017531640

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018627

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16878537

Country of ref document: EP

Kind code of ref document: A1