WO2016115991A1 - 一种铝合金型材及其制造方法 - Google Patents

一种铝合金型材及其制造方法 Download PDF

Info

Publication number
WO2016115991A1
WO2016115991A1 PCT/CN2016/070693 CN2016070693W WO2016115991A1 WO 2016115991 A1 WO2016115991 A1 WO 2016115991A1 CN 2016070693 W CN2016070693 W CN 2016070693W WO 2016115991 A1 WO2016115991 A1 WO 2016115991A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
fluorocarbon
alloy profile
manufacturing
profile
Prior art date
Application number
PCT/CN2016/070693
Other languages
English (en)
French (fr)
Inventor
熊建卿
罗士烓
陈志刚
戴悦星
朱胜林
Original Assignee
广东坚美铝型材厂(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东坚美铝型材厂(集团)有限公司 filed Critical 广东坚美铝型材厂(集团)有限公司
Priority to EP16739738.9A priority Critical patent/EP3248779B1/en
Publication of WO2016115991A1 publication Critical patent/WO2016115991A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/20Metallic substrate based on light metals
    • B05D2202/25Metallic substrate based on light metals based on Al
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/752Corrosion inhibitor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated

Definitions

  • the invention relates to the technical field of building materials, in particular to an aluminum alloy profile and a manufacturing method thereof.
  • Aluminum alloy profiles are commonly used as a building material. Before the use of aluminum alloy profiles, in order to improve the corrosion resistance of the profiles and to have a certain color decoration, the surface of the profiles must be treated. Aluminum alloy profiles are classified into oxidative coloring and spray coating organic coatings according to the surface treatment.
  • the oxidative coloring product is formed by forming a dense oxide film on the surface of the aluminum alloy profile and electrolytically reducing a certain amount of non-ferrous metal ions in the oxide film to exhibit a certain color by the principles of anodizing and electrolytic coloring.
  • the organic coating product is coated with a layer of organic coating on the surface of the profile after degreasing and chemical conversion.
  • the main organic coatings are powder coatings or liquid coatings such as polyester coatings, acrylic coatings and fluorocarbon coatings. Chemical conversion can make the surface of the profile have certain corrosion resistance and adhesion to the performance of organic coatings, such as chromium, phosphorus chrome, zirconium and titanium conversion.
  • the coloring principle of the oxidative coloring product is to electrolytically reduce the non-ferrous metal ions into the oxide film by placing the electrolytically oxidized aluminum alloy profile in an acidic metal salt solution, and relying on depositing different amounts of non-ferrous metals to absorb light and Scatter to produce color.
  • the main metal salts used are copper, tin, nickel, montanium, silver and selenium salts, copper salts are red, manganese, silver salts and selenium salts are yellow, and other metal salts exhibit a range of shades mostly from bronze to Black, single color.
  • the oxidized coloring product is discolored by the fact that the color-producing metal is easily oxidized in the ultraviolet light or the high-humidity, high-salt ion content air, so the weather resistance is not satisfactory.
  • the sprayed organic coating product must be chemically converted on the surface of the aluminum profile before coating to form a conversion film to improve the corrosion resistance of the aluminum profile and the adhesion to the organic coating.
  • the chromium or phosphorous chrome treatment currently used can meet the better performance requirements, due to the acute toxicity of the chemicals, the process is banned by the country or the locality, and the zirconium-titanium conversion film is transparent, and the film quality cannot be Intuitive judgment and control on-line, and corrosion resistance is not ideal. That is, the pitting corrosion resistance or the filiform corrosion resistance of the sprayed organic paint profile product are not satisfactory.
  • an object of the present invention is to provide an aluminum alloy profile and a method of manufacturing the same that solve the above problems.
  • the aluminum alloy profile has excellent weather resistance and is resistant to corrosion damage of the aluminum alloy profile by the aggressive salt ions under high humidity.
  • the invention provides a method for manufacturing an aluminum alloy profile, the manufacturing method comprising the following steps:
  • the curing baking temperature is 120 to 160 °C.
  • the curing baking time is 20 to 30 minutes.
  • the curing baking temperature was 130 ° C
  • the curing baking time was 25 minutes.
  • the step (5) comprises the steps of: (51) spraying a fluorocarbon primer to form a fluorocarbon primer layer; (52) spraying a fluorocarbon topcoat to form a fluorocarbon topcoat layer; wherein
  • the fluorocarbon primer includes an acrylic resin, a fluorocarbon resin, an epoxy resin/polyester resin, and wherein the proportion by weight of the fluorocarbon resin is 35 to 50%, the proportion of the acrylic resin is 10 to 20%, and the epoxy resin or the polyester The resin accounts for 16 to 30%.
  • the step (5) further comprises the step (53) after the step (52): spraying the fluorocarbon varnish to form a fluorocarbon varnish layer.
  • the step (5) further comprises a step (511) between the step (51) and the step (52): spraying fluorocarbon to paint to form a fluorocarbon coating.
  • forming the fluorocarbon primer layer has a thickness of 5 to 10 um;
  • forming the fluorocarbon topcoat layer has a thickness of 25 to 30 um;
  • step (53) forming the fluorocarbon varnish layer has a thickness of 10 to 20 um;
  • the thickness of the coating layer in the fluorocarbon is 20 to 25 um.
  • step (1) comprises the following steps:
  • the step (2) comprises: placing an aluminum alloy profile into a sulfuric acid solution, using an aluminum alloy profile as an anode, a pure aluminum plate as a cathode, and connecting a direct current to generate the oxide film on the surface of the aluminum alloy profile, wherein the oxidation
  • the thickness of the film is 5 to 15 um;
  • the step (3) comprises: placing the aluminum alloy profile into the electrophoretic paint solution, using the aluminum alloy profile as the anode, the stainless steel plate as the cathode, and connecting the direct current to form the electrophoretic paint film by electrolytic deposition on the surface of the aluminum alloy profile.
  • the aluminum alloy profile is subjected to a water washing treatment and a soup washing treatment;
  • the aluminum alloy profile is subjected to a water washing treatment
  • the aluminum alloy profile is cured and baked.
  • an aluminum alloy profile manufactured by the above-described manufacturing method is provided.
  • the manufacturing method of the aluminum alloy profile provided by the invention adopts the integrated production process of the composite film coating by oxidation, electrophoresis and fluorocarbon coating spraying, adopts low temperature baking after the electrophoresis process and adopts acrylic resin and fluorine in the fluorocarbon primer.
  • the manufacturing method of the manufacturing method is stable and easy.
  • the surface of the aluminum alloy profile product produced by the manufacturing method has a special composite film protective coating, has excellent corrosion resistance, weather resistance and the like, and is effective against ultraviolet rays, high humidity, and aggressive salt ions to corrode aluminum alloy profiles. Destructive effect. Therefore, this aluminum alloy profile is particularly suitable for use in islands and seaside areas under marine climate.
  • Figure 1 is a flow chart of a method of manufacturing an aluminum alloy profile
  • FIG. 2 is a schematic structural view of an aluminum alloy profile.
  • the invention provides an aluminum alloy profile and a method of manufacturing the same.
  • the method for manufacturing the aluminum alloy profile comprises: (1) pretreating the aluminum alloy profile substrate; and (2) anodizing the pretreated aluminum alloy profile to form an oxide film on the surface of the aluminum alloy profile; 3) Anodizing the aluminum alloy profile to form an electrophoretic paint film on the surface of the aluminum alloy profile; (4) curing and baking the aluminum alloy profile; (5) spraying the surface of the aluminum alloy profile with a fluorocarbon paint, A fluorocarbon coating is formed.
  • the aluminum alloy profile is cured and baked by a low-temperature baking process, that is, the baking temperature is 120-160 °C.
  • the fluorocarbon primer is a primer coating based on an acrylic resin or a fluorocarbon resin and a functional resin such as an epoxy resin or a polyester resin, and a fluorocarbon primer and an electrophoretic paint film. Cross-linking is integrated to solve the problem of adhesion between coatings.
  • FIG. 1 is a flow chart of a method of manufacturing an aluminum alloy profile provided by the present invention. As shown in FIG. 1, the manufacturing method includes the following steps:
  • the aluminum alloy profile substrate is pretreated in step (1), wherein the aluminum alloy profile substrate is a substrate required according to design requirements and national standards (GB 5237, 1-2008).
  • the preprocessing includes the following steps:
  • the aluminum alloy profile substrate is immersed in a degreasing solution for degreasing pretreatment.
  • an acid degreaser is used to prepare a degreasing solution of 4 to 10% by weight, and the profile substrate is immersed in the solution for 5 to 10 minutes to remove the oil stain caused by the processing or the surface of the aluminum profile. Handprints, etc.
  • the aluminum alloy profile is immersed in a sodium hydroxide solution for alkali etching.
  • the temperature is controlled at 60 to 70 ° C in a solution having a sodium hydroxide concentration of 40 to 60 g/L, and immersed for 3 to 5 minutes.
  • the aluminum alloy profile is immersed in a sulfuric acid solution for neutralization treatment.
  • the solution is immersed for 2 to 4 minutes in a solution having a sulfuric acid concentration of 160 to 220 g/L.
  • An anodizing treatment is performed in the step (2) to form an oxide film on the surface of the aluminum alloy profile.
  • the aluminum alloy profile is placed in a solution having a sulfuric acid concentration of 150-180 g/L, the aluminum alloy profile is used as an anode, the pure aluminum plate is a cathode, and a direct current is connected, and a layer of denseness is formed on the surface of the aluminum profile by electrolytic oxidation.
  • Oxide film Specific parameters for oxidation are: oxidation voltage of 13 to 15 V, current density of 1 to 1.3 A/dm 2 , bath temperature of 18 to 22 ° C, aluminum ion ⁇ 20 g / L; time of 25 to 40 minutes. Under the control of the above parameters, the film thickness of the generated oxide film is 5-15 ⁇ m.
  • anodic electrophoresis treatment is performed in the step (3) to form an electrophoretic paint film on the surface of the aluminum alloy profile.
  • anodic electrophoresis is more suitable for the formation of electrophoretic paint film on the surface of aluminum alloy profiles.
  • the method comprises the following steps: using a Hani brand acrylic electrophoretic paint to add a functional resin to prepare a solution having a solid content of 6 to 8%, an aluminum alloy profile as an anode, a stainless steel plate as a cathode, and a direct current electricity, and electrolytically depositing on the surface of the aluminum alloy profile to form a solution.
  • Layer electrophoretic paint film is used in the step (3) to form an electrophoretic paint film on the surface of the aluminum alloy profile.
  • the specific parameters during electrophoresis are: conductivity of 600-800us/cm, isopropanol of 1.5-2.5%, ethylene glycol monobutyl ether of 0.5-1.5%, voltage of 90-150V, current density of 10-15A/ M2, the temperature is 20 to 26 °C. Under the control of the above parameters, the generated electrophoretic paint film has a film thickness of 5 to 10 um.
  • the aluminum alloy profile is subjected to a water washing treatment and a soup washing treatment between the above steps (2) and (3).
  • the water temperature is 80 to 85 ° C
  • the time is 1 to 3 minutes.
  • the aluminum alloy profile is subjected to a curing baking treatment.
  • a low-temperature baking process is employed because the low-temperature baking allows the electrophoretic paint film to be in a semi-crosslinked state, which facilitates adhesion to the fluorocarbon coating.
  • the aluminum alloy profile is also subjected to a water washing treatment between the above steps (3) and (4).
  • the surface of the aluminum profile is sprayed with a fluorocarbon coating using an electrostatic liquid phase spraying method to form a fluorocarbon coating.
  • the fluorocarbon coating can be formed by a two-layer process, but in order to obtain a coating with excellent performance, a three-layer and four-layer process is generally adopted, wherein a three-layer process is mainly used, which is a fluorocarbon primer layer and a fluorocarbon topcoat layer. And a fluorocarbon varnish layer.
  • the fluorocarbon coating is mainly based on polyvinylidene fluoride resin (PVDF), synthesized with metal powder or mineral powder, has metallic luster, and the fluorocarbon coating is resistant to ultraviolet radiation, and its corrosion resistance is superior to that of powder coating.
  • PVDF polyvinylidene fluoride resin
  • the fluorocarbon coating is filtered using a 120-200 mesh filter screen.
  • step (5) includes:
  • the primer is made of acrylic resin and polyvinylidene fluoride resin as the main base material, and a fluorocarbon primer of a functional resin such as an epoxy resin or a polyester resin is added. Specifically, by weight, fluorocarbon tree
  • the fat (ie PVDF) accounts for 35-50%
  • the acrylic resin accounts for 10-20%
  • the epoxy resin or polyester resin accounts for 16-30%.
  • the fluorocarbon primer can be intercalated and cross-linked with the electrophoretic paint film to form a solution, which solves the problem of adhesion between the coatings.
  • the fluorocarbon primer has strong corrosion resistance, which makes the aluminum alloy profile effectively resistant to the corrosion damage of aluminum alloy profiles by ultraviolet rays, high humidity and aggressive salt ions, and is therefore particularly suitable for islands under marine climate. And the construction of the seaside area.
  • the thickness of the fluorocarbon primer layer is controlled to be 5 to 10 um. After spraying the fluorocarbon primer, it is leveled at room temperature for 8 to 15 minutes.
  • step (5) may further include the following steps after step (52):
  • step (5) may further comprise a step (511) between the step (51) and the step (52): spraying a fluorocarbon paint (also called a barrier paint) to form a fluorocarbon.
  • a fluorocarbon paint also called a barrier paint
  • the fluorocarbon coating can increase the film thickness and further block the ultraviolet rays.
  • the thickness of the coating in the fluorocarbon is 20 to 25 ⁇ m, preferably 23 ⁇ m.
  • the aluminum alloy profile is also required to be cured and baked. That is, the baking time is 5 minutes or more under the condition that the temperature is 232 ° C or more.
  • step (5) includes the steps (51), (52), and (53), that is, a three-layer process:
  • Aluminum profile substrate Take a section of 6063 alloy 100mm*25mm*2mm (wall thickness) square tube profile that meets the requirements of national standards (GB 5237, 1-2008);
  • Degreasing pretreatment using the acid degreaser of Pude Chemical Co., Ltd. to form a 5% by weight degreasing solution, immersing the profile in the solution for 5 minutes, and cleaning the surface of the visual profile to remove the oil;
  • Alkali etching soaking in a solution having a sodium hydroxide concentration of 52 g/L and a temperature of 64 ° C for 4 minutes;
  • Oxidation voltage is 14.5V
  • current density is 1.05A / dm2
  • bath temperature is 18.5 ° C
  • aluminum ion is 18g / L
  • time is 33 minutes
  • the average thickness of the production oxide film is 9um
  • Soup wash water temperature is 83 ° C, time 2 minutes;
  • the method is to use a acrylic resin electrophoretic paint with a functional resin to prepare a solution having a solid content of 7.5%, an aluminum profile as an anode, a stainless steel plate as a cathode, and a direct current;
  • the process parameters are: conductivity 650us/cm, isopropanol 2.5%, ethylene glycol monobutyl ether 0.5%, voltage 120V, current density 12A/m2, temperature 22.5°C, soaking treatment for 5 minutes.
  • the generated electrophoretic paint film has a film thickness of 5 um;
  • Curing baking drying at a temperature of 130 ° C for 25 minutes;
  • Spraying The surface of the square tube aluminum profile obtained by curing and baking is sprayed with a fluorocarbon coating by an electrostatic liquid phase spraying method to form a fluorocarbon coating.
  • the spraying equipment adopts the Japanese Lan's electrostatic spraying equipment system, and the fluorocarbon paint topcoat adopts the metal color paint of the Aksu company color number EC-DG-M313746JM.
  • the coating was diluted with xylene and filtered through a 150-mesh filter screen for use;
  • Spray fluorocarbon primer the average thickness of the fluorocarbon primer layer is controlled to 8um;
  • the average thickness of the fluorocarbon topcoat layer is controlled to 28um;
  • Curing baking The aluminum alloy profile product of the present invention is obtained by baking at a temperature of 235 ° C for 10 minutes.
  • Aluminum profile substrate Take a section of 6063 alloy 100mm*25mm*2mm (wall thickness) square tube profile that meets the requirements of national standards (GB 5237, 1-2008);
  • Degreasing pretreatment using the acid degreaser of Pude Chemical to form a degreasing solution with 4% by weight, soaking the profile in the solution for 10 minutes, and cleaning the surface of the visual profile to remove the oil;
  • Alkali etching soaking in a solution having a sodium hydroxide concentration of 40 g/L and a temperature of 70 ° C for 3 minutes;
  • Oxidation voltage is 13V
  • current density is 1.3A/dm2
  • bath temperature is 18 ° C
  • aluminum ion is 19g / L
  • time is 40 minutes
  • the average thickness of the production oxide film is 15um
  • Soup wash water temperature is 80 ° C, time 3 minutes;
  • the method is to use a acrylic resin electrophoretic paint with functional resin to prepare a solution with a solid content of 6%, an aluminum profile as an anode, a stainless steel plate as a cathode, and a direct current;
  • the process parameters are: conductivity of 800us/cm, isopropanol of 1.5%, ethylene glycol monobutyl ether of 1.5%, voltage of 90V, current density of 15A/m2, temperature of 20 ° C, soaking for 5 minutes. , the generated electrophoretic paint film has a film thickness of 10 um;
  • Curing baking drying at a temperature of 120 ° C for 30 minutes;
  • Spraying The surface of the square tube aluminum profile obtained by curing and baking is sprayed with a fluorocarbon coating by an electrostatic liquid phase spraying method to form a fluorocarbon coating.
  • the spraying equipment adopts the Japanese Lan's electrostatic spraying equipment system, and the fluorocarbon paint topcoat adopts the metal color paint of the Aksu company color number EC-DG-M313746JM.
  • the coating was diluted with xylene and filtered through a 120-mesh filter screen for use;
  • the average thickness of the fluorocarbon primer layer is controlled to 5 um;
  • the average thickness of the fluorocarbon topcoat layer is controlled to 25um;
  • Aluminum profile substrate Take a section of 6063 alloy 100mm*25mm*2mm (wall thickness) square tube profile that meets the requirements of national standards (GB 5237, 1-2008);
  • Degreasing pretreatment using the acid degreaser of Pude Chemical to form a degreasing solution with 10% by weight, soaking the profile in the solution for 8 minutes, and cleaning the surface of the visual profile to remove the oil;
  • Alkali etching soaking in a solution having a sodium hydroxide concentration of 60 g/L and a temperature of 60 ° C for 5 minutes;
  • Oxidation voltage is 15V
  • current density is 1A / dm2
  • bath temperature is 22 ° C
  • aluminum ion is 17g / L
  • time is 25 minutes
  • the average thickness of the production oxide film is 5um
  • Soup wash water temperature is 85 ° C, time 1 minute;
  • the method is to use an acrylic electrophoretic paint with a functional resin to prepare a solution having a solid content of 8%, an aluminum profile as an anode, a stainless steel plate as a cathode, and a direct current;
  • the process parameters are: conductivity of 600us/cm, isopropanol of 2%, ethylene glycol monobutyl ether of 1%, voltage of 150V, current density of 10A/m2, temperature of 26 ° C, soaking for 5 minutes. , the generated electrophoretic paint film has a film thickness of 8 um;
  • Curing baking drying at a temperature of 160 ° C for 20 minutes;
  • Spraying The surface of the square tube aluminum profile obtained by curing and baking is sprayed with a fluorocarbon coating by an electrostatic liquid phase spraying method to form a fluorocarbon coating.
  • the spraying equipment adopts the Japanese Lan's electrostatic spraying equipment system, and the fluorocarbon paint topcoat adopts the metal color paint of the Aksu company color number EC-DG-M313746JM.
  • the coating was diluted with xylene and filtered through a 200-mesh filter screen for use;
  • the average thickness of the fluorocarbon primer layer is controlled to 10 um;
  • the average thickness of the fluorocarbon topcoat layer is controlled to 30um;
  • the method for manufacturing the aluminum alloy profile provided by the invention adopts a complete set of production process after optimization design to ensure the adhesion performance between the respective film layers, and at the same time improve the corrosion resistance and weather resistance of each film layer.
  • the curing baking process of the electrophoretic paint film adopts low-temperature baking, which is because the low-temperature baking can make the electrophoretic paint film in a semi-crosslinked state, which is favorable for bonding with the fluorocarbon coating.
  • the fluorocarbon primer is made of an acrylic resin or a fluorocarbon resin, and a primer coating material based on a functional resin such as an epoxy resin or a polyester resin is added to make the fluorocarbon primer and the electrophoretic paint film. Together, it solves the problem of adhesion between coatings.
  • the present invention also provides an aluminum alloy profile manufactured by the above manufacturing method.
  • Figure 2 shows a schematic view of the aluminum alloy profile.
  • the aluminum alloy profile comprises an aluminum alloy profile substrate 1, and the surface of the aluminum alloy profile substrate 1 is provided with an oxide film layer 2, an electrophoretic paint layer 3, and a fluorocarbon coating layer.
  • the aluminum alloy profile substrate 1 is pretreated and anodized to form an oxide film layer 2, and then the electrophoretic paint film layer 3 is applied, and both have a certain thickness, so that the surface of the aluminum alloy profile substrate 1 has double corrosion resistance.
  • the electrophoretic paint layer 3 is adhered to the fluorocarbon coating layer, and is not easily peeled off.
  • the aluminum alloy profile substrate 1 is coated with a fluorocarbon coating on the outermost side to ensure the weather resistance and corrosion resistance of the product of the invention, and has a rich color feature.
  • a fluorocarbon coating is sequentially divided into a fluorocarbon primer layer 4-1, a fluorocarbon topcoat layer 4-2, and a fluorocarbon varnish layer 4-3 from the inside to the outside.
  • the fluorocarbon coating formed by several processes has a certain thickness. If a two-layer process is employed, the fluorocarbon coating is sequentially divided into a fluorocarbon primer layer 4-1 and a fluorocarbon topcoat layer 4-2 from the inside to the outside.
  • the fluorocarbon coating is divided into a fluorocarbon primer layer 4-1, a fluorocarbon coating (not shown), a fluorocarbon topcoat layer 4-2, and fluorine from the inside to the outside.
  • the fluorocarbon primer layer 4-1 has the function of bonding the electrophoretic paint layer 3 and the fluorocarbon top coat layer 4-2 and the corrosion resistance.
  • the fluorocarbon top coat layer 4-2 has color decoration, is resistant to ultraviolet rays and other weather resistance, and is fluorine.
  • Carbon varnish layer 4-3 further enhances color and corrosion resistance, and the fluorocarbon coating further blocks UV light.
  • the aluminum alloy profile has high corrosion resistance and weather resistance, and overcomes the problem of coating adhesion.
  • the aluminum alloy profile provided by the invention is mainly completed by an integrated surface treatment process such as anodizing, anodic electrophoresis and fluorocarbon coating spraying, and is formed by an oxide film, an electrophoretic paint film and a fluorocarbon coating film on the surface of the profile.
  • the special composite film protective layer, the oxide film is dense and has high corrosion resistance.
  • the fluorocarbon coating provides rich decorative color and high weather resistance.
  • the electrophoretic paint and the fluorocarbon paint primer add functional resin and special After the process, the two coating films can be inserted and cross-linked, and the corrosion resistance of the oxide film is further optimized, and the corrosion damage of the aluminum alloy profile by the aggressive salt ions is effectively resisted under high humidity.
  • the surface of the aluminum alloy profile produced by the manufacturing method of the invention has a special composite film protective coating, has excellent corrosion resistance, weather resistance and the like, and is effective against ultraviolet rays, high humidity, and aggressive salt ions on the aluminum alloy. Corrosion damage of the profile. Therefore, this aluminum alloy profile is particularly suitable for use in islands and seaside areas in marine climates.
  • the specific dimensional values of the members listed in the present invention are exemplary values, and the dimensional parameters of the different members may take different values in actual engineering as needed.
  • the invention adopts an integrated production process of composite film coating by oxidation, electrophoresis and fluorocarbon coating spraying, adopts low temperature baking after electrophoresis process and adopts acrylic resin and fluorocarbon resin in fluorocarbon primer, and adds ring
  • a functional resin such as an oxygen resin or a polyester resin is used as a primer coating for the base material to ensure adhesion between the respective film layers, and at the same time improve corrosion resistance and weather resistance of each film layer, and the production process is stable and easy.
  • the surface of the aluminum alloy profile product produced by the manufacturing method has a special composite film protective coating, has excellent corrosion resistance, weather resistance and the like, and can effectively resist corrosion damage of aluminum alloy profiles by ultraviolet rays, high humidity and aggressive salt ions. effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

一种铝合金型材及其制造方法。该制造方法包括:(1)对铝合金型材基材(1)进行预处理;(2)对预处理后的铝合金型材进行阳极氧化处理,以在铝合金型材的表面形成氧化膜(2);(3)对铝合金型材进行阳极电泳处理,以在铝合金型材的表面形成电泳漆膜(3);(4)对铝合金型材进行固化烘烤;(5)对铝合金型材的表面喷涂氟碳涂料,以形成氟碳涂层。该制造方法生产工艺稳定易行。且该制造方法生产的铝合金型材产品的表面拥有特殊的复合膜保护涂层,具有优异的耐腐蚀、耐侯性等性能,并能有效抵抗紫外线、高湿度、侵蚀性盐离子对铝合金型材腐蚀破坏作用。因此,这种铝合金型材特别适用于海洋气候下的海岛和海边区域建筑。

Description

一种铝合金型材及其制造方法
本申请要求在2015年01月20日提交中国专利局、申请号为201510029035.2、发明名称为“一种铝合金型材及其制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及建筑材料技术领域,尤其涉及一种铝合金型材及其制造方法。
背景技术
铝合金型材是常用的一种建筑材料。在铝合金型材使用前,为提高型材的防腐性能和具有一定的色彩装饰作用,须对型材表面进行处理。铝合金型材产品按表面处理方式分为氧化着色、喷涂有机涂料等产品。氧化着色产品是通过阳极氧化和电解着色原理,在铝合金型材表面形成一层致密的氧化膜和电解还原一定量的有色金属离子在氧化膜中从而呈现一定颜色。喷涂有机涂料产品是在经过除油、化学转化处理后的型材表面涂装一层有机涂料,主要的有机涂料有聚酯涂料、丙烯酸涂料、氟碳涂料等粉末或液体涂料。化学转化可使型材表面有一定的耐腐蚀和黏附有机涂料的性能,常用铬化、磷铬化、锆钛转化等。
然而,氧化着色产品的着色原理是将已电解氧化后的铝合金型材放在酸性的金属盐溶液中进行电解还原有色金属离子到氧化膜中,并依靠沉积不同量的有色金属对光的吸收和散射而产生颜色。目前主要使用的金属盐有铜、锡、镍、孟、银和硒盐等,铜盐则呈红色,锰、银盐和硒盐呈黄色,其他金属盐呈现的色调范围大多是由青铜色到黑色,色彩单一。同时氧化着色产品会因呈现颜色的金属容易在紫外线强烈或高湿度、高盐离子含量的空气中氧化而变色,因此耐候性不理想。
另外,喷涂有机涂料产品在涂装前须对铝型材表面进行化学转化处理,形成一层转化膜,以提高铝型材的耐腐蚀性和与有机涂料的附着性。目前常采用的铬化或磷铬化处理虽可满足较好的性能要求,但由于药剂的剧毒性,都属国家或地方即将取缔的工艺,而锆钛转化膜为透明,膜层质量无法在线进行直观判断和控制,且耐腐性也不理想。即,喷涂有机涂料型材产品的耐点腐蚀性或耐丝状腐蚀性均不理想。
因此,需要一种耐腐蚀性、耐候性能好的铝合金型材产品。
发明内容
针对上述问题,本发明的目的是提供一种解决以上问题的铝合金型材及其制造方法。这种铝合金型材具有极为优异的耐候性能,且可有效抵抗在高湿度下,侵蚀性盐离子对铝合金型材腐蚀破坏作用。
本发明提供了一种铝合金型材的制造方法,所述制造方法包括以下步骤:
(1)对铝合金型材基材进行预处理;
(2)对预处理后的铝合金型材进行阳极氧化处理,以在铝合金型材的表面形成氧化膜;
(3)对铝合金型材进行阳极电泳处理,以在铝合金型材的表面形成电泳漆膜;
(4)对铝合金型材进行固化烘烤;
(5)对铝合金型材的表面喷涂氟碳涂料,以形成氟碳涂层。
其中,在所述步骤(4)中,固化烘烤的温度为120~160℃。
其中,在所述步骤(4)中,固化烘烤的时间为20~30分钟。
其中,固化烘烤的温度为130℃,固化烘烤的时间为25分钟。
其中,所述步骤(5)包括以下步骤:(51)喷涂氟碳底漆,以形成氟碳底漆层;(52)喷涂氟碳面漆,以形成氟碳面漆层;其中,所述氟碳底漆包括丙烯酸树脂、氟碳树脂、环氧树脂/聚酯树脂,并且其中按重量份氟碳树脂占比35~50%,丙烯酸树脂占比10~20%,环氧树脂或聚酯树脂占比16~30%。
其中,所述步骤(5)还包括在所述步骤(52)后的步骤(53):喷涂氟碳清漆,以形成氟碳清漆层。
其中,所述步骤(5)还包括在所述步骤(51)和所述步骤(52)之间的步骤(511):喷涂氟碳中涂漆,以形成氟碳中涂层。
其中,在所述步骤(51)中,形成所述氟碳底漆层的厚度为5~10um;
在所述步骤(52)中,形成所述氟碳面漆层的厚度为25~30um;
在所述步骤(53)中,形成所述氟碳清漆层的厚度为10~20um;
在所述步骤(511)中,形成所述氟碳中涂层的厚度为20~25um。
其中,所述步骤(1)包括以下步骤:
(11)将铝合金型材基材浸泡在除油溶液中,进行除油预处理;
(12)对铝合金型材进行水洗处理;
(13)将铝合金型材浸泡在氢氧化钠溶液中,进行碱蚀处理;
(14)对铝合金型材进行水洗处理;
(15)将铝合金型材浸泡在硫酸溶液中,进行中和处理;
(16)对铝合金型材进行水洗处理;
所述步骤(2)包括:将铝合金型材放入硫酸溶液中,以铝合金型材为阳极,纯铝板为阴极,接上直流电,以在铝合金型材表面生成所述氧化膜,其中所述氧化膜的厚度为5~15um;
所述步骤(3)包括:将铝合金型材放入电泳漆溶液中,以铝合金型材为阳极,不锈钢板为阴极,接上直流电,以在铝合金型材表面电解沉积形成所述电泳漆膜。
在所述步骤(2)和所述步骤(3)之间包括:对铝合金型材进行水洗处理和汤洗处理;
在所述步骤(3)和所述步骤(4)之间包括:对铝合金型材进行水洗处理;
在所述步骤(5)之后进行:对铝合金型材进行固化烘烤。
根据本发明的另一个方面,提供了一种由上述的制造方法制造的铝合金型材。
本发明提供的铝合金型材的制造方法采用氧化、电泳、氟碳涂料喷涂的复合膜涂层一体化生产工艺,通过在电泳工艺后采取低温烘烤以及在氟碳底漆中采用丙烯酸树脂、氟碳树脂为主,并添加环氧树脂或聚酯树脂等功能性树脂为基料的底漆涂料,确保各个膜层之间附着性能,同时提高各膜层的耐腐蚀、耐侯性等性能。该制造方法生产工艺稳定易行。且该制造方法生产的铝合金型材产品的表面拥有特殊的复合膜保护涂层,具有优异的耐腐蚀、耐侯性等性能,并能有效抵抗紫外线、高湿度、侵蚀性盐离子对铝合金型材腐蚀破坏作用。因此,这种铝合金型材特别适用于海洋气候下的海岛和海边区域建筑。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本发明的实施例,并且与描述一起用于解释本发明的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本发明的一些实施例,而不是全部实施例。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1是铝合金型材的制造方法的流程图;
图2是铝合金型材的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明 一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明提供了一种铝合金型材及其制造方法。该铝合金型材的制造方法包括:(1)对铝合金型材基材进行预处理;(2)对预处理后的铝合金型材进行阳极氧化处理,以在铝合金型材的表面形成氧化膜;(3)对铝合金型材进行阳极电泳处理,以在铝合金型材的表面形成电泳漆膜;(4)对铝合金型材进行固化烘烤;(5)对铝合金型材的表面喷涂氟碳涂料,以形成氟碳涂层。其中,对铝合金型材进行固化烘烤采用低温烘烤工艺,即烘烤的温度为120~160℃。这是因为低温烘烤可使电泳漆膜处于半交联的状态,利于与氟碳涂层粘接。并且,氟碳底漆采用的是以丙烯酸树脂、氟碳树脂为主,并添加了环氧树脂或聚酯树脂等功能性树脂为基料的底漆涂料,使氟碳底漆和电泳漆膜进行交联成为一体,从而解决了涂层之间附着力的问题。
以下结合附图进一步详细描述本发明提供的铝合金型材及其制造方法。
图1是本发明提供的铝合金型材的制造方法的流程图。如图1所示,该制造方法包括以下步骤:
(1)对铝合金型材基材进行预处理;
(2)对预处理后的铝合金型材进行阳极氧化处理,以在铝合金型材的表面形成氧化膜;
(3)对铝合金型材进行阳极电泳处理,以在铝合金型材的表面形成电泳漆膜;
(4)对铝合金型材进行固化烘烤;
(5)对铝合金型材的表面喷涂氟碳涂料,以形成氟碳涂层。
下面详细说明上述每个步骤。
步骤(1)中对铝合金型材基材进行预处理,其中的铝合金型材基材是根据设计要求和国家标准(GB 5237,1-2008)要求的基材。预处理包括下述步骤:
(11)将铝合金型材基材浸泡在除油溶液中,进行除油预处理。该步骤中,采用酸性除油剂配成4~10%重量比的除油溶液,并将型材基材在溶液中浸泡除油5~10分钟,以除去铝型材表面因加工带来的油污或手印等。
(12)对铝合金型材进行水洗处理。
(13)将铝合金型材浸泡在氢氧化钠溶液中,进行碱蚀处理。该步骤中,在氢氧化钠浓度为40~60g/L的溶液中,温度控制在60~70℃,浸泡3~5分钟。
(14)对铝合金型材进行水洗处理。
(15)将铝合金型材浸泡在硫酸溶液中,进行中和处理。该步骤中,在硫酸浓度为160~220g/L的溶液中,浸泡2~4分钟。
(16)对铝合金型材进行水洗处理。
步骤(2)中进行阳极氧化处理,以在铝合金型材的表面形成氧化膜。具体包括:将铝合金型材放入硫酸浓度为150~180g/L的溶液中,以铝合金型材为阳极,纯铝板为阴极,接上直流电,利用电解氧化作用,在铝型材表面生成一层致密的氧化膜。氧化时的具体参数为:氧化电压为13~15V,电流密度为1~1.3A/dm2,槽液温度为18~22℃,铝离子<20g/L;时间为25~40分钟。在上述参数控制下,生成的氧化膜膜厚为5~15um。
步骤(3)中进行阳极电泳处理,以在铝合金型材的表面形成电泳漆膜。相比于阴极电泳,这里采用阳极电泳更适合铝合金型材表面电泳漆膜的形成。具体包括:采用哈尼牌丙烯酸电泳漆添加功能性树脂配成固体份为6~8%的溶液,以铝合金型材为阳极,不锈钢板为阴极,接通直流电,在铝合金型材表面电解沉积形成一层电泳漆膜。电泳时的具体参数为:电导率为600~800us/cm,异丙醇为1.5~2.5%,乙二醇单丁醚为0.5~1.5%,电压为90~150V,电流密度为10~15A/m2,温度为20~26℃。在上述参数控制下,生成的电泳漆膜的膜厚为5~10um。
需要说明的是在上述步骤(2)和步骤(3)之间还要对铝合金型材进行水洗处理和汤洗处理。其中,在汤洗处理中,水温为80~85℃,时间为1~3分钟。
步骤(4)中,对铝合金型材进行固化烘烤处理。在该步骤中,采用低温烘烤工艺,这是因为低温烘烤可使电泳漆膜处于半交联的状态,利于与氟碳涂层粘接。经过大量实验发现当烘烤温度在120~160℃范围时,电泳漆膜与氟碳涂层的粘接效果最好。另外,经过实验发现,在上述烘烤温度下,当烘烤时间为20~30分钟时,电泳漆膜与氟碳涂层的粘接效果最好。
需要说明的是在上述步骤(3)和步骤(4)之间还要对铝合金型材进行水洗处理。
步骤(5)中,对铝型材的表面使用静电液相喷涂法进行氟碳涂料喷涂,形成氟碳涂层。形成氟碳涂层可以采用两层工艺,但是为得到性能优良的涂层,一般采用三层、四层工艺,其中以三层工艺为主,分别是氟碳底漆层、氟碳面漆层和氟碳清漆层。氟碳涂料主要以聚偏二氟乙烯树脂(PVDF)为基料,加以金属粉或矿物质粉合成,具有金属光泽,氟碳涂层耐紫外线辐射,其耐蚀性能优于粉末涂层。氟碳涂料用120~200目的过滤筛过滤后使用。具体地,步骤(5)包括:
(51)喷涂氟碳底漆,以形成氟碳底漆层。底漆采用丙烯酸树脂和聚偏二氟乙烯树脂为主要基料,并添加环氧树脂或聚酯树脂等功能树脂的氟碳底漆。具体地,按重量份,氟碳树 脂(即PVDF)占比35~50%,丙烯酸树脂占比10~20%,环氧树脂或聚酯树脂占比16~30%。这种氟碳底漆能和电泳漆膜进行穿插交联反应,融为一体,解决了涂层之间附着力的问题。另外,这种氟碳底漆具有很强的耐腐蚀性能,使得铝合金型材能有效抵抗紫外线、高湿度、侵蚀性盐离子对铝合金型材的腐蚀破坏作用,从而特别适用于海洋气候下的海岛和海边区域的建筑。控制氟碳底漆层的厚度为5~10um。喷涂氟碳底漆后,在室温下流平8~15min。
(52)喷涂氟碳面漆,以形成氟碳面漆层。控制氟碳面漆层的厚度为25~30um。喷涂氟碳面漆后,在室温下流平8~15min。
此外为了实现更佳的效果,步骤(5)还可以包括在步骤(52)后的下述步骤:
(53)喷涂氟碳清漆,以形成氟碳清漆层。即,喷氟碳罩光漆形成氟碳罩保护层。控制氟碳保护层的厚度为10~20um、喷涂氟碳清漆后,在室温下流平15~30min。
进一步地,步骤(5)还可以包括在所述步骤(51)和所述步骤(52)之间的步骤(511):喷涂氟碳中涂漆(也称为阻挡漆),以形成氟碳中涂层。该氟碳中涂层能够增加膜厚,进一步阻挡紫外线。氟碳中涂层的厚度为20~25um,优选地为23um。
需要说明的是在步骤(5)之后,还需要对铝合金型材进行固化烘烤。即,在温度大于等于232℃的条件下,烘烤大于等于5分钟的时间。
以下给出本发明的铝合金型材的制造方法的具体实施例,其中是以步骤(5)中包括步骤(51)、(52)、(53),即三层工艺为例:
实施例1
1.铝型材基材:取符合国家标准(GB 5237,1-2008)要求的6063合金100mm*25mm*2mm(壁厚)方管型材一段;
2.除油预处理:采用普德化工的酸性除油剂配成5%重量比的除油溶液,将型材浸泡在溶液中5分钟,目视型材表面油污清洗干净取出;
3.水洗;
4.碱蚀:在氢氧化钠浓度为52g/L,温度为64℃的溶液中浸泡4分钟;
5.水洗;
6.中和:在硫酸浓度为185g/L的溶液中,浸泡3分钟;
7.水洗;
8.阳极氧化:
8.1.将型材放入硫酸浓度为165g/L的溶液中,以铝型材为阳极,纯铝板为阴极,接通直流电;
8.2.工艺参数为:氧化电压为14.5V,电流密度为1.05A/dm2,槽液温度为18.5℃,铝离子为18g/L;时间为33分钟,生产氧化膜的平均厚度为9um;
9.水洗;
10.汤洗:水温为83℃,时间2分钟;
11.阳极电泳:
11.1.方法是采用添加功能树脂的丙烯酸电泳漆配成固体份为7.5%的溶液,以铝型材为阳极,不锈钢板为阴极,接通直流电;
11.2.工艺参数为:电导率为650us/cm,异丙醇为2.5%,乙二醇单丁醚为0.5%,电压为120V,电流密度为12A/m2,温度为22.5℃,浸泡处理5分钟,生成的电泳漆膜的膜厚为5um;
12.水洗;
13.固化烘烤:在温度130℃下烘干,时间25分钟;
14.喷涂:在经过固化烘烤处理得到的方管铝型材的表面使用静电液相喷涂法进行氟碳涂料喷涂,形成氟碳涂层。喷涂设备采用日本兰氏静电喷涂设备***,氟碳涂料面漆采用阿克苏公司的色号为EC-DG-M313746JM的金属色涂料。将涂料用二甲苯进行稀释,并用150目的过滤筛过滤待用;
14.1.喷氟碳底漆,氟碳底漆层的平均厚度控制为8um;
14.2.室温下流平10min;
14.3.继续喷氟碳面漆形成氟碳面漆层,氟碳面漆层的平均厚度控制为28um;
14.4.室温下流平10min;
14.5.最后喷阿克苏公司的氟碳罩光清漆形成氟碳罩光保护层,氟碳保护层的平均厚度控制为10um;
14.6.室温下流平15min;
15.固化烘烤:在温度为235℃的条件下,烘烤10分钟,即得本发明的铝合金型材产品。
实施例2
1.铝型材基材:取符合国家标准(GB 5237,1-2008)要求的6063合金100mm*25mm*2mm(壁厚)方管型材一段;
2.除油预处理:采用普德化工的酸性除油剂配成4%重量比的除油溶液,将型材浸泡在溶液中10分钟,目视型材表面油污清洗干净取出;
3.水洗;
4.碱蚀:在氢氧化钠浓度为40g/L,温度为70℃的溶液中浸泡3分钟;
5.水洗;
6.中和:在硫酸浓度为220g/L的溶液中,浸泡2分钟;
7.水洗;
8.阳极氧化:
8.1.将型材放入硫酸浓度为180g/L的溶液中,以铝型材为阳极,纯铝板为阴极,接通直流电;
8.2.工艺参数为:氧化电压为13V,电流密度为1.3A/dm2,槽液温度为18℃,铝离子为19g/L;时间为40分钟,生产氧化膜的平均厚度为15um;
9.水洗;
10.汤洗:水温为80℃,时间3分钟;
11.阳极电泳:
11.1.方法是采用添加功能树脂的丙烯酸电泳漆配成固体份为6%的溶液,以铝型材为阳极,不锈钢板为阴极,接通直流电;
11.2.工艺参数为:电导率为800us/cm,异丙醇为1.5%,乙二醇单丁醚为1.5%,电压为90V,电流密度为15A/m2,温度为20℃,浸泡处理5分钟,生成的电泳漆膜的膜厚为10um;
12.水洗;
13.固化烘烤:在温度120℃下烘干,时间30分钟;
14.喷涂:在经过固化烘烤处理得到的方管铝型材的表面使用静电液相喷涂法进行氟碳涂料喷涂,形成氟碳涂层。喷涂设备采用日本兰氏静电喷涂设备***,氟碳涂料面漆采用阿克苏公司的色号为EC-DG-M313746JM的金属色涂料。将涂料用二甲苯进行稀释,并用120目的过滤筛过滤待用;
14.1.喷氟碳底漆,氟碳底漆层的平均厚度控制为5um;
14.2.室温下流平8min;
14.3.继续喷氟碳面漆形成氟碳面漆层,氟碳面漆层的平均厚度控制为25um;
14.4.室温下流平8min;
14.5.最后喷阿克苏公司的氟碳罩光清漆形成氟碳罩光保护层,氟碳保护层的平均厚度控制为20um;
14.6.室温下流平30min;
15.固化烘烤:在温度为237℃的条件下,烘烤8分钟,即得本发明的铝合金型材产品。
实施例3
1.铝型材基材:取符合国家标准(GB 5237,1-2008)要求的6063合金100mm*25mm*2mm(壁厚)方管型材一段;
2.除油预处理:采用普德化工的酸性除油剂配成10%重量比的除油溶液,将型材浸泡在溶液中8分钟,目视型材表面油污清洗干净取出;
3.水洗;
4.碱蚀:在氢氧化钠浓度为60g/L,温度为60℃的溶液中浸泡5分钟;
5.水洗;
6.中和:在硫酸浓度为160g/L的溶液中,浸泡4分钟;
7.水洗;
8.阳极氧化:
8.1.将型材放入硫酸浓度为150g/L的溶液中,以铝型材为阳极,纯铝板为阴极,接通直流电;
8.2.工艺参数为:氧化电压为15V,电流密度为1A/dm2,槽液温度为22℃,铝离子为17g/L;时间为25分钟,生产氧化膜的平均厚度为5um;
9.水洗;
10.汤洗:水温为85℃,时间1分钟;
11.阳极电泳:
11.1.方法是采用添加功能树脂的丙烯酸电泳漆配成固体份为8%的溶液,以铝型材为阳极,不锈钢板为阴极,接通直流电;
11.2.工艺参数为:电导率为600us/cm,异丙醇为2%,乙二醇单丁醚为1%,电压为150V,电流密度为10A/m2,温度为26℃,浸泡处理5分钟,生成的电泳漆膜的膜厚为8um;
12.水洗;
13.固化烘烤:在温度160℃下烘干,时间20分钟;
14.喷涂:在经过固化烘烤处理得到的方管铝型材的表面使用静电液相喷涂法进行氟碳涂料喷涂,形成氟碳涂层。喷涂设备采用日本兰氏静电喷涂设备***,氟碳涂料面漆采用阿克苏公司的色号为EC-DG-M313746JM的金属色涂料。将涂料用二甲苯进行稀释,并用200目的过滤筛过滤待用;
14.1.喷氟碳底漆,氟碳底漆层的平均厚度控制为10um;
14.2.室温下流平15min;
14.3.继续喷氟碳面漆形成氟碳面漆层,氟碳面漆层的平均厚度控制为30um;
14.4.室温下流平15min;
14.5.最后喷阿克苏公司的氟碳罩光清漆形成氟碳罩光保护层,氟碳保护层的平均厚度控制为15um;
14.6.室温下流平25min;
15.固化烘烤:在温度为232℃的条件下,烘烤5分钟,即得本发明的铝合金型材产品。
本发明提供的铝合金型材的制造方法,采用优化设计后的一整套生产工艺,确保各个膜层之间附着性能,同时提高各膜层的耐腐蚀、耐侯性等性能。其中,电泳漆膜的固化烘烤工艺采取的是低温烘烤,这是由于低温烘烤可使电泳漆膜处于半交联的状态,利于与氟碳涂层粘接。氟碳底漆采用的是以丙烯酸树脂、氟碳树脂为主,并添加了环氧树脂或聚酯树脂等功能性树脂为基料的底漆涂料,使氟碳底漆和电泳漆膜进行交联一体,解决了涂层之间附着力的问题。
本发明还提供了由上述制造方法制造的铝合金型材。图2示出了该铝合金型材的示意图。参照图2所示,该铝合金型材包括铝合金型材基材1,铝合金型材基材1表面依次向外设有氧化膜层2、电泳漆层3、氟碳涂层。通过对铝合金型材基材1进行预处理和阳极氧化后生成氧化膜层2,再涂装电泳漆膜层3,两者具备一定厚度,使铝合金型材基材1表面具有双重耐腐蚀性能,且并依靠电泳漆层3与氟碳涂层进行粘接,不易脱落。铝合金型材基材1最外侧涂装氟碳涂层,确保本发明产品的耐侯性和耐腐蚀性能,同时具有色彩丰富特点。以三层工艺为例,如图2所示,氟碳涂层由内到外依次分为氟碳底漆层4-1、氟碳面漆层4-2和氟碳清漆层4-3,经过几次工序形成的氟碳涂层,具备一定的厚度。如果采用二层工艺,则氟碳涂层由内到外依次分为氟碳底漆层4-1、氟碳面漆层4-2。如果采用三层工艺,则氟碳涂层由内到外依次分为氟碳底漆层4-1、氟碳中涂层(图中未示出)、氟碳面漆层4-2和氟碳清漆层4-3。氟碳底漆层4-1具有粘接电泳漆层3和氟碳面漆层4-2的作用和耐腐蚀性能,氟碳面漆层4-2具有色彩装饰,抵抗紫外线等耐侯性能,氟碳清漆层4-3进一步巩固色彩和耐腐蚀性能,氟碳中涂层能够进一步阻挡紫外线。
对通过上述制造方法制造的铝合金型材进行产品性能检测,可以得到表1所示的检测结果:
检测结果
Figure PCTCN2016070693-appb-000001
由上述检测结果可知,该铝合金型材具有较高的耐腐蚀性和耐候性,并且克服了涂层问附着力的问题。
由上述可知,本发明提供的铝合金型材主要经过阳极氧化、阳极电泳和氟碳涂料喷涂等一体化表面处理工艺后完成,在型材表面先后形成由氧化膜、电泳漆膜、氟碳涂料膜组成的特殊的复合膜保护层,氧化膜致密好具有较高的耐腐蚀性能,氟碳涂料提供丰富的装饰色彩和极高的耐侯性能,电泳漆和氟碳涂料底漆添加功能性树脂并经特殊工艺处理后,两层涂膜可穿插交联一体,同时进一步优化氧化膜的耐腐蚀性,有效抵抗在高湿度下,侵蚀性盐离子对铝合金型材腐蚀破坏作用。
通过本发明的制造方法生产的铝合金型材产品的表面拥有特殊的复合膜保护涂层,具有优异的耐腐蚀、耐侯性等性能,并能有效抵抗紫外线、高湿度、侵蚀性盐离子对铝合金型材的腐蚀破坏作用。因此,这种铝合金型材特别适用于海洋气候下的海岛和海边区域的建筑。
上面描述的内容可以单独地或者以各种方式组合起来实施,而这些变型方式都在本发明的保护范围之内。
本发明中列出的构件的具体尺寸数值是示例性数值,不同构件的尺寸参数根据需要可在实际工程中采用不同的数值。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括......”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案而非限制,仅仅参照较佳实施例对本发明进行了详细说明。本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
本发明采用氧化、电泳、氟碳涂料喷涂的复合膜涂层一体化生产工艺,通过在电泳工艺后采取低温烘烤以及在氟碳底漆中采用丙烯酸树脂、氟碳树脂为主,并添加环氧树脂或聚酯树脂等功能性树脂为基料的底漆涂料,确保各个膜层之间附着性能,同时提高各膜层的耐腐蚀、耐侯性等性能,且该制造方法生产工艺稳定易行。该制造方法生产的铝合金型材产品的表面拥有特殊的复合膜保护涂层,具有优异的耐腐蚀、耐侯性等性能,并能有效抵抗紫外线、高湿度、侵蚀性盐离子对铝合金型材腐蚀破坏作用。

Claims (10)

  1. 一种铝合金型材的制造方法,其特征在于,所述制造方法包括以下步骤:
    (1)对铝合金型材基材进行预处理;
    (2)对预处理后的铝合金型材进行阳极氧化处理,以在铝合金型材的表面形成氧化膜;
    (3)对铝合金型材进行阳极电泳处理,以在铝合金型材的表面形成电泳漆膜;
    (4)对铝合金型材进行固化烘烤;
    (5)对铝合金型材的表面喷涂氟碳涂料,以形成氟碳涂层。
  2. 如权利要求1所述的制造方法,其特征在于,在所述步骤(4)中,固化烘烤的温度为120~160℃。
  3. 如权利要求2所述的制造方法,其特征在于,在所述步骤(4)中,固化烘烤的时间为20~30分钟。
  4. 如权利要求3所述的制造方法,其特征在于,固化烘烤的温度为130℃,固化烘烤的时间为25分钟。
  5. 如权利要求1所述的制造方法,其特征在于,所述步骤(5)包括以下步骤:
    (51)喷涂氟碳底漆,以形成氟碳底漆层;
    (52)喷涂氟碳面漆,以形成氟碳面漆层;
    其中,所述氟碳底漆包括丙烯酸树脂、氟碳树脂、环氧树脂/聚酯树脂,并且其中按重量份氟碳树脂占比35~50%,丙烯酸树脂占比10~20%,环氧树脂或聚酯树脂占比16~30%。
  6. 如权利要求5所述的制造方法,其特征在于,所述步骤(5)还包括在所述步骤(52)后的步骤(53):喷涂氟碳清漆,以形成氟碳清漆层。
  7. 如权利要求6所述的制造方法,其特征在于,所述步骤(5)还包括在所述步骤(51)和所述步骤(52)之间的步骤(511):喷涂氟碳中涂漆,以形成氟碳中涂层。
  8. 如权利要求7所述的制造方法,其特征在于,在所述步骤(51)中,形成所述氟碳底漆层的厚度为5~10um;
    在所述步骤(52)中,形成所述氟碳面漆层的厚度为25~30um;
    在所述步骤(53)中,形成所述氟碳清漆层的厚度为10~20um;
    在所述步骤(511)中,形成所述氟碳中涂层的厚度为20~25um。
  9. 如权利要求1所述的制造方法,其特征在于,所述步骤(1)包括以下步骤:
    (11)将铝合金型材基材浸泡在除油溶液中,进行除油预处理;
    (12)对铝合金型材进行水洗处理;
    (13)将铝合金型材浸泡在氢氧化钠溶液中,进行碱蚀处理;
    (14)对铝合金型材进行水洗处理;
    (15)将铝合金型材浸泡在硫酸溶液中,进行中和处理;
    (16)对铝合金型材进行水洗处理;
    所述步骤(2)包括:将铝合金型材放入硫酸溶液中,以铝合金型材为阳极,纯铝板为阴极,接上直流电,以在铝合金型材表面生成所述氧化膜,其中所述氧化膜的厚度为5~15um;
    所述步骤(3)包括:将铝合金型材放入电泳漆溶液中,以铝合金型材为阳极,不锈钢板为阴极,接上直流电,以在铝合金型材表面电解沉积形成所述电泳漆膜;
    在所述步骤(2)和所述步骤(3)之间包括:对铝合金型材进行水洗处理和汤洗处理;
    在所述步骤(3)和所述步骤(4)之间包括:对铝合金型材进行水洗处理;
    在所述步骤(5)之后进行:对铝合金型材进行固化烘烤。
  10. 一种铝合金型材,其特征在于,所述铝合金型材是按照权利要求1-9中任一项所述的制造方法制造的。
PCT/CN2016/070693 2015-01-20 2016-01-12 一种铝合金型材及其制造方法 WO2016115991A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16739738.9A EP3248779B1 (en) 2015-01-20 2016-01-12 Aluminum alloy section and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510029035.2A CN104589760B (zh) 2015-01-20 2015-01-20 一种铝合金型材及其制造方法
CN201510029035.2 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016115991A1 true WO2016115991A1 (zh) 2016-07-28

Family

ID=53115972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070693 WO2016115991A1 (zh) 2015-01-20 2016-01-12 一种铝合金型材及其制造方法

Country Status (3)

Country Link
EP (1) EP3248779B1 (zh)
CN (1) CN104589760B (zh)
WO (1) WO2016115991A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112974192A (zh) * 2021-02-04 2021-06-18 杭州罗维标识***工程有限公司 一种标识牌的制备工艺
CN114011672A (zh) * 2021-11-23 2022-02-08 上海金泛斯标识有限公司 一种铝型材喷涂工艺
CN114381777A (zh) * 2021-12-20 2022-04-22 佛山泰铝新材料有限公司 一种铝合金阳极氧化复合封闭方法
CN115449791A (zh) * 2022-08-24 2022-12-09 江苏和兴汽车科技有限公司 一种提升压铸铝抗腐蚀性能的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104589760B (zh) * 2015-01-20 2017-05-31 广东坚美铝型材厂(集团)有限公司 一种铝合金型材及其制造方法
CN105135204A (zh) * 2015-08-04 2015-12-09 安徽科蓝特铝业有限公司 一种高稳定性铝合金型材及其制造工艺
CN106862042B (zh) * 2015-12-11 2020-10-09 广东兴发铝业(河南)有限公司 一种喷涂铝型材的方法
CN105569499B (zh) * 2016-03-03 2017-04-19 福建省闽发铝业股份有限公司 一种带有复合层的铝型材的生产工艺
CN106011837A (zh) * 2016-06-01 2016-10-12 江苏汇宏机械制造有限公司 一种环保型金属表面处理工艺
CN106655014A (zh) * 2017-01-09 2017-05-10 镇江华中电器有限公司 海洋专用铝合金电缆敷设装置的重防腐蚀表面处理方法
CN107955960A (zh) * 2017-12-07 2018-04-24 佛山市高明高盛铝业有限公司 一种铝合金表面多重防护层的制备方法
CN108250866A (zh) * 2017-12-28 2018-07-06 安徽鑫铂铝业股份有限公司 一种散热器用高导热铝合金型材的制备方法
CN108219637A (zh) * 2017-12-28 2018-06-29 安徽鑫铂铝业股份有限公司 一种汽车用表面光滑的铝合金型材制备方法
CN108286002A (zh) * 2018-01-30 2018-07-17 肇庆东弘铝业有限公司 一种木纹铝合金型材制作方法
CN108380471A (zh) * 2018-05-04 2018-08-10 自贡东方彩钢结构有限公司 一种型材氟碳涂层工艺
CN108544883A (zh) * 2018-05-18 2018-09-18 浙江晶科能源有限公司 一种光伏组件边框及其制作方法
CN109112603A (zh) * 2018-11-02 2019-01-01 湖北香江电器股份有限公司 一种锅具涂层的制作方法
CN109504246A (zh) * 2018-11-28 2019-03-22 安徽安铝铝业有限公司 防静电铝合金型材及其制备工艺
CN109647672A (zh) * 2018-12-11 2019-04-19 西安庄信新材料科技有限公司 一种不易变色的钛建材处理方法
CN109811390A (zh) * 2019-01-14 2019-05-28 苏州华远纳米烫印科技有限公司 笔记本铝或铝合金部件内侧及铣光面耐腐蚀漆层沉积工艺
CN110560344B (zh) * 2019-07-25 2022-02-22 广东省建筑科学研究院集团股份有限公司 一种与feve氟碳粉末涂料兼容的铝合金表面ats复合膜及其制备方法
CN110355076A (zh) * 2019-08-16 2019-10-22 江苏绿带新材料科技有限公司 一种石墨烯水基防辐射涂料涂层结构
CN110607547A (zh) * 2019-10-22 2019-12-24 山东华建铝业集团有限公司 一种铝合金型材双面处理工艺
CN112156958A (zh) * 2020-09-23 2021-01-01 北京遥感设备研究所 一种有机物在铝合金金属表面形成高可靠增附方法及结构
CN113546827A (zh) * 2021-05-26 2021-10-26 广东坚美铝型材厂(集团)有限公司 一种隔热铝合金型材的制备方法
CN114262922B (zh) * 2021-12-31 2024-06-18 广东润华轻合金有限公司 一种高耐腐蚀性的铝型材的加工工艺
CN114806248B (zh) * 2022-04-15 2023-10-13 福建省闽发铝业股份有限公司 一种氟碳喷涂涂料添加剂的使用方法
CN115007426B (zh) * 2022-05-27 2024-01-09 广东坚美铝型材厂(集团)有限公司 高光泽度铝合金型材及其喷涂方法
CN116273780A (zh) * 2023-02-09 2023-06-23 环讯精密制品(南通)有限公司 一种高附着力高耐磨性陶瓷涂料涂装方法
CN116237209B (zh) * 2023-02-16 2023-11-17 郑州梁裕新材料科技有限公司 一种防腐喷涂工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293460A (zh) * 2007-04-24 2008-10-29 比亚迪股份有限公司 一种轻金属材料的表面装饰方法
CN202098031U (zh) * 2011-06-30 2012-01-04 河南广电发射塔管理有限公司 一种表面涂层的镀锌钢结构件
CN104589760A (zh) * 2015-01-20 2015-05-06 广东坚美铝型材厂(集团)有限公司 一种铝合金型材及其制造方法
CN204749434U (zh) * 2015-01-20 2015-11-11 广东坚美铝型材厂(集团)有限公司 一种铝合金型材
CN105039808A (zh) * 2015-08-04 2015-11-11 安徽科蓝特铝业有限公司 一种新型节能铝合金型材及其制造工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290296A (ja) * 1987-05-22 1988-11-28 Yoshida Kogyo Kk <Ykk> アルミニウム又はその合金の塗装方法
DE4020115A1 (de) * 1990-06-23 1992-01-02 Basf Lacke & Farben Verfahren zum beschichten elektrisch leitfaehiger substrate, waessriger lack und blockierte nco-gruppen enthaltendes vernetzungsmittel
JP3210611B2 (ja) * 1997-10-03 2001-09-17 スカイアルミニウム株式会社 樹脂塗装アルミニウム合金部材およびその製造方法
JP2004155836A (ja) * 2002-11-05 2004-06-03 Kansai Paint Co Ltd アニオン型電着塗料及び塗替え方法
KR100674521B1 (ko) * 2002-11-07 2007-01-29 다이킨 고교 가부시키가이샤 불소 함유 적층체의 형성 방법, 및 피복 물품
CN102268716A (zh) * 2011-07-28 2011-12-07 东北大学 一种含镁高硅变形铝合金表面彩色电泳涂膜的制备方法
CN102943298A (zh) * 2012-10-11 2013-02-27 创金美科技(深圳)有限公司 镁合金复合表面处理方法及镁合金手表壳

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101293460A (zh) * 2007-04-24 2008-10-29 比亚迪股份有限公司 一种轻金属材料的表面装饰方法
CN202098031U (zh) * 2011-06-30 2012-01-04 河南广电发射塔管理有限公司 一种表面涂层的镀锌钢结构件
CN104589760A (zh) * 2015-01-20 2015-05-06 广东坚美铝型材厂(集团)有限公司 一种铝合金型材及其制造方法
CN204749434U (zh) * 2015-01-20 2015-11-11 广东坚美铝型材厂(集团)有限公司 一种铝合金型材
CN105039808A (zh) * 2015-08-04 2015-11-11 安徽科蓝特铝业有限公司 一种新型节能铝合金型材及其制造工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248779A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112974192A (zh) * 2021-02-04 2021-06-18 杭州罗维标识***工程有限公司 一种标识牌的制备工艺
CN114011672A (zh) * 2021-11-23 2022-02-08 上海金泛斯标识有限公司 一种铝型材喷涂工艺
CN114381777A (zh) * 2021-12-20 2022-04-22 佛山泰铝新材料有限公司 一种铝合金阳极氧化复合封闭方法
CN115449791A (zh) * 2022-08-24 2022-12-09 江苏和兴汽车科技有限公司 一种提升压铸铝抗腐蚀性能的方法

Also Published As

Publication number Publication date
EP3248779A1 (en) 2017-11-29
EP3248779A4 (en) 2018-08-08
EP3248779B1 (en) 2019-09-18
CN104589760B (zh) 2017-05-31
CN104589760A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
WO2016115991A1 (zh) 一种铝合金型材及其制造方法
US20090317556A1 (en) Method of Chrome Plating Magnesium and Magnesium Alloys
CN107641827A (zh) 一种铝合金阳极氧化工艺
WO2012059789A1 (en) Roll to roll manufacturing of solar selective sheets
US20140061052A1 (en) Outdoor suitable antique copper color aluminum material and process
CN106591920B (zh) 一种控制镀锡板表面黑灰程度的方法
CN108315797A (zh) 一种用于铝型材的无镍阳极着色工艺
CN107107534A (zh) 复合材料、复合材料制品及其制造方法和用途
RU2529328C1 (ru) Электролит для анодирования алюминия и его сплавов перед нанесением медных гальванопокрытий
CN103173762A (zh) 一种彩色不锈钢板材或不锈钢制品的制作方法
JP5690306B2 (ja) 塗装ステンレス鋼部材
CN103203915A (zh) 铝合金微弧电泳复合膜层及其制备工艺
KR100777176B1 (ko) 마그네슘을 주성분으로 하는 금속체의 표면 처리 방법
TWI461575B (zh) 電鍍鋅鋼板的製造方法
CN204749434U (zh) 一种铝合金型材
CN201761105U (zh) 黑色达克罗复合膜层
CN213142196U (zh) 一种无氰镀镉及电泳涂漆的防护层结构
KR102181607B1 (ko) 글래스의 표면 처리 방법 및 표면 처리된 글래스
CN205731902U (zh) 一种新型彩涂铝材
CN102465301A (zh) 铝制品及其制备方法
CN110961328A (zh) 一种金属表面的涂层处理方法
JP5625407B2 (ja) 電気亜鉛めっき鋼板の製造方法
CN205894456U (zh) 一种防腐自洁彩钢板
CN114394760A (zh) 一种漫反射彩色玻璃的制备方法
CN114289283A (zh) 一种铝型材的表面处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16739738

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016739738

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE