WO2015149646A1 - 一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法 - Google Patents

一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法 Download PDF

Info

Publication number
WO2015149646A1
WO2015149646A1 PCT/CN2015/075078 CN2015075078W WO2015149646A1 WO 2015149646 A1 WO2015149646 A1 WO 2015149646A1 CN 2015075078 W CN2015075078 W CN 2015075078W WO 2015149646 A1 WO2015149646 A1 WO 2015149646A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
gas
methylal
paraformaldehyde
dimethyl ether
Prior art date
Application number
PCT/CN2015/075078
Other languages
English (en)
French (fr)
Inventor
王金福
唐强
王胜伟
王铁峰
陈双喜
王玉强
Original Assignee
山东玉皇化工有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东玉皇化工有限公司, 清华大学 filed Critical 山东玉皇化工有限公司
Publication of WO2015149646A1 publication Critical patent/WO2015149646A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • B01J8/28Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/48Preparation of compounds having groups
    • C07C41/50Preparation of compounds having groups by reactions producing groups
    • C07C41/56Preparation of compounds having groups by reactions producing groups by condensation of aldehydes, paraformaldehyde, or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00902Nozzle-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/00911Sparger-type feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • B01J2208/0092Perforated plates

Definitions

  • the invention belongs to the technical field of energy and chemical industry, and particularly relates to a fluidized bed device and a method for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde.
  • Polymethoxy dimethyl ether is a very promising diesel additive and has received wide attention.
  • Polymethoxy dimethyl ether (CH 3 O(CH 2 O) n CH 3 , PODE n ) is a generic term for a class of substances.
  • the molecular chain contains 3 to 5 methoxy groups, its oxygen content ( ⁇ 50%) and cetane number (70-100) are higher, the physical properties are consistent with diesel, and it is directly used as a diesel additive (addition amount ⁇ 20V) %) can improve the combustion efficiency of diesel fuel, reduce the emissions of diesel fuel combustion process (including particulate matter, nitrogen oxides, CO, etc.) and at the same time alleviate the shortage of diesel fuel, which has important environmental and economic benefits.
  • BP (US5959156A, US6160174A, US6160186A, US6392102B1, etc.) discloses that formaldehyde is obtained by oxidative dehydrogenation using methanol or dimethyl ether as a starting material, and the obtained formaldehyde is further reacted with methanol or dimethyl ether to obtain methylal and Process for polymethoxy dimethyl ether.
  • the whole process includes oxidative dehydrogenation, adsorption cooling, catalytic distillation, neutralization and separation processes, and the process is complicated, and the PODE n>1 obtained in the product is less than 10% selective.
  • the product contains a relatively large amount of PODE n>5 which is not suitable as a diesel additive, and the product separation process is relatively complicated.
  • Chinese Academy of Sciences (US0056830A1, US7560599B2) discloses the synthesis of polymethoxy dimethyl ether using ionic liquid as a catalyst using methanol and paraformaldehyde as raw materials. The process achieves a higher conversion rate of trioxane ( ⁇ 90%), but the catalyst is expensive and difficult to recycle, and the liquid ionic liquid brings difficulties to the separation and the like, and the process flow is complicated.
  • the reactor In the polymethoxy dimethyl ether production process, the reactor is the most important operating unit.
  • the reactor design is related to aldehyde conversion, product selectivity, and production continuity and unit time processing capability.
  • patents are concentrated in the process flow and catalytic system, and there are few reactor designs.
  • most of the processes use paraformaldehyde as a source of aldehyde monomer, which has high raw material cost and seriously affects process economy.
  • CN102249869A discloses a loop reactor, which uses methanol and paraformaldehyde as raw materials and an ionic liquid as a catalyst; the invention has large temperature fluctuation of the reaction system, uneven mixing of reactants, easy stratification of materials and catalysts, and product conversion rate. Low, high cost of paraformaldehyde and high cost and low life of ionic liquid catalysts.
  • CN102701923A discloses a loop reactor equipped with a circulating cooler, which is intended to better control the internal temperature of the reactor; however, the invention still has uneven mixing of reactants, easy stratification of materials and catalysts, low product conversion rate, and trioxane High cost and high cost and low life of ionic liquid catalysts.
  • the present application provides a fluidized bed apparatus and method for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde.
  • a fluidized bed device for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde wherein the fluidized bed device has a fluidized bed or a multi-stage fluidized bed, and the bottom of the fluidized bed device is provided with a bottom a member; when the fluidized bed device has two or more fluidized beds, inside the fluidized bed device, one or more inter-segment members are sequentially disposed above the bottom member, and the fluidized bed device is provided by the bottom member a portion to the top end of the fluidized bed device, divided into a two-stage fluidized bed or a multi-stage fluidized bed;
  • each of the fluidized bed portions is respectively provided with a catalyst filling port, and each of the fluidized bed portions is respectively provided with a catalyst discharging port, and each of the fluidized bed bottoms is respectively provided with a gas distributor;
  • a gas distributor located in the lowermost fluidized bed is connected to a gas inlet disposed at a bottom of the fluidized bed apparatus through a bottom member gas ascending passage through which the bottom member gas ascending passage passes; at the lowermost end of the fluidization
  • the gas distributors in each of the fluidized beds on the bed are respectively connected to the adjacent fluidized bed sections located under the inter-segment member gas ascending passages, and the gas rising passages of the inter-segment members pass through the lower portions thereof respectively. Adjacent segment member;
  • a fluid inlet pipe on the uppermost fluidized bed the fluid inlet pipe passing through the top of the fluidized bed device, the two ends of which are respectively located in the uppermost fluidized bed and the uppermost fluidized bed; in the lowermost flow a downcomer is disposed on the bed, the downcomer passes through the bottom member, and both ends thereof are located in the fluidized bed device, respectively located on two sides of the bottom member; fluidized beds at adjacent ends Inter-segment downcomers are provided between;
  • a fluid outlet is provided at the bottom of the fluidized bed apparatus, and a gas outlet is provided at the top of the uppermost fluidized bed.
  • a filter screen is respectively disposed at the top inlet of the downcomer or the interstage downcomer to prevent solid catalyst or solid paraformaldehyde from entering the reactor space below the bottom member or entering the adjacent lower fluidized bed in.
  • the gas distributor is a plate type distributor, and the plate type distributor is provided with a plurality of holes or a plurality of nozzles.
  • the gas distributor is a tubular distributor.
  • the tubular distributor is a ring structure having a ring number of 1 to 5 rings, and each ring is provided with a plurality of holes or a plurality of nozzles.
  • the cross-sectional area of the bottom member gas ascending passage is 0.1% to 20% of the cross-sectional area of the member plate of the bottom member.
  • the inter-segment member gas ascending passage has a cross-sectional area of 0.1% to 20% of the cross-sectional area of the member plate of the inter-segment member through which it passes.
  • fluidizing gas enters the fluidized bed device from the gas inlet, and is passed from the bottom member gas ascending passage through the gas distributor to the bottom bed. a layer; the gas rises to the gas outlet leaving the fluidized bed device; the paraformaldehyde and the methylal enter the fluidized bed device through the fluid inlet tube, and the corresponding bed liquid level in the fluidized bed device reaches the corresponding downcomer inlet After the height, flowing through the corresponding downcomer, leaving the fluidized bed device when the liquid drops to the fluid outlet;
  • fluidizing gas enters the fluidized bed apparatus from the gas inlet, and the gas rising passage of the bottom member passes through the corresponding gas distributor Passing into the lowermost fluidized bed, passing through the bottom bed, passing through the bottom bed, and then entering the gas distributor of the adjacent upper fluidized bed through the gas rising passage of the inter-segment member; the gas passes through the gas rise channel of the inter-segment member
  • the fluidized bed device rises step by step, and the gas outlet in the uppermost fluidized bed leaves the fluidized bed device; the paraformaldehyde and the methylal are mixed and then enter the uppermost fluidized bed through the fluid inlet pipe; the uppermost stream After the corresponding bed level in the chemical bed reaches the inlet height of the corresponding downcomer or the corresponding interstage downcomer, the overflow flows through the corresponding downcomer or the interstage downcomer into the adjacent lower fluidized bed.
  • the liquid descends step by step through the corresponding down
  • the fluidized bed device is provided with a jacket temperature control device on the outer side of each section of the fluidized bed wall and connected thereto.
  • the heat exchange medium used in the jacket temperature control device is one or more of hot water, steam, heat transfer oil and cooling water.
  • the material of the fluidized bed device is carbon steel or stainless steel.
  • the bed temperature of each of the fluidized beds in the fluidized bed apparatus is 40 ° C to 120 ° C, respectively.
  • the bed operating pressure of each of the fluidized beds in the fluidized bed apparatus is normal pressure to 0.5 MPa, respectively.
  • the invention discloses a fluidized bed device for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials, and can realize polymethoxy dimethyl ether prepared by using methylal and paraformaldehyde as raw materials from the prior Laboratory research has broken through large-scale industrialization.
  • the invention discloses a fluidized bed device for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials, which uses a fluidized gas to flow from bottom to top, and a liquid (which may include raw materials and products) from top to bottom.
  • Countercurrent process to increase reaction driving force and improve product distribution. It is difficult to achieve such a countercurrent process using a conventional fixed bed, and it is difficult to obtain these advantages.
  • the invention adopts a fluidized bed device for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials, and is provided with a downcomer for guiding the liquid of the bottom bed liquid level beyond the inlet of the downcomer to the bottom.
  • the part below the bed can make the implementation of the countercurrent process easier, further improve the reaction driving force and improve the product distribution.
  • the invention adopts a fluidized bed device for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials, and a filter screen is arranged at the inlet of the downcomer to prevent solid catalyst or solid paraformaldehyde from entering the bottom member.
  • the lower reactor space thereby preventing the catalyst and the like from escaping, maintains the catalyst at a set optimal fill amount range, so that the reactor operates stably.
  • the invention discloses a fluidized bed device for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials, preferably using a solid acid as a catalyst, and the catalyst price is greatly reduced compared with the prior art using an ionic liquid as a catalyst. Easier recycling, easy separation, and simplified process flow.
  • the fluidized bed apparatus makes the catalyst dispersion more uniform and the aldehyde conversion rate higher than that of the conventional loop reactor.
  • FIG. 1 is a schematic structural view of a one-stage fluidized bed apparatus of the present invention
  • FIG. 2 is a schematic structural view of a two-stage fluidized bed apparatus according to the present invention.
  • the label 201-gas inlet; 202-1, 202-2-gas distributor; 203-1, 203-2-catalyst packing port; 204-fluid inlet tube; 205-gas outlet; 206-1-liquid Tube; 206-2-interstage downcomer; 207-bottom member; 208-1, 208-2-catalyst discharge port; 209-bottom member gas ascending channel; 210-fluid outlet; 211-inter-section member, 212 - the gas rise channel of the inter-segment member;
  • FIG. 3 is a schematic structural view of a three-stage fluidized bed apparatus of the present invention.
  • the present invention provides a fluidized bed apparatus and method for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde, and the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
  • bottom bed layer refers to a bed layer located at the bottom of the fluidized bed device.
  • the bed is a fluidized bed of various stages in which the catalyst is packed. Additionally, in the case of a multi-stage fluidized bed configuration, each fluidized bed has a corresponding bed.
  • bottom member herein is meant a member located at the bottom of the fluidized bed apparatus.
  • the components are used to separate the beds to ensure that there is no material between the beds.
  • inter-segment members are disposed between adjacent fluidized beds for separating the integrated fluidized bed apparatus into a multi-stage fluidized bed.
  • Paraformaldehyde is a linear polymer with a degree of formaldehyde polymerization of generally 8-100. Compared with the melting point of trisal, it has poor solubility in methylal, but the cost is about 50% lower than that of paraformaldehyde.
  • a fluidized bed device for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde wherein the fluidized bed device has a fluidized bed or a multi-stage fluidized bed, and the bottom of the fluidized bed device is provided with a bottom a member 107, 207 or 307; when the fluidized bed device has two or more fluidized beds, one or more inter-segment members 211 are sequentially disposed above the bottom member 107, 207 or 307 inside the fluidized bed device , 311-1 or 311-2, dividing the fluidized bed device from the bottom member 107, 207 or 307 to the top portion of the fluidized bed device into a two-stage fluidized bed or a multi-stage fluidized bed;
  • a catalyst packing port 103, 203-1, 203-2, 303-1, 303-2 or 303-3 is respectively disposed in each of the fluidized bed portions, and each of the lower portions of the fluidized bed is separately disposed.
  • the gas distributor 102, 202-1 or 302-1 located in the lowermost fluidized bed is connected to the gas inlet 101, 201 or 301 provided at the bottom of the fluidized bed apparatus through the bottom member gas ascending passage 109, 209 or 309.
  • the bottom member gas ascending passage 109, 209 or 309 passes through the bottom member 107, 207 or 307; the gas distributors 202-2, 302-2 in each of the fluidized beds at the lowermost fluidized bed or 302-3, connected to the adjacent fluidized bed section located below by the inter-segment member gas ascending passage 212, 312-1 or 312-2, respectively, the inter-segment member gas ascending passage 212, 312-1 or 312- 2 respectively through the adjacent inter-segment members 211, 311-1 or 311-2 located below;
  • a fluid inlet tube 104, 204 or 304 on the uppermost fluidized bed, the fluid inlet tube 104, 204 or 304 passing through the top of the fluidized bed apparatus, the two ends of which are respectively located in the uppermost fluidized bed and most Outside the upper fluidized bed;
  • a downcomer 106, 206-1 or 306-1 is disposed on the lowermost fluidized bed, and the downcomers 106, 206-1 or 306-1 pass through the bottom members 107, 207 Or 307, both ends of which are In the fluidized bed device, respectively located on both sides of the bottom member 107, 207 or 307; inter-segment downcomers 206-2, 306-3 or 306-3 are disposed between adjacent two fluidized beds ;
  • a fluid outlet 110, 210 or 310 is provided at the bottom of the fluidized bed apparatus, and a gas outlet 105, 205 or 305 is provided at the top of the uppermost fluidized bed.
  • a filter screen is respectively disposed at the top inlets of the downcomers 106, 206-1 or 306-1 or the interstage downcomers 206-2, 306-3 or 306-3 to prevent solid catalyst or solid polymerization Formaldehyde enters the reactor space below the bottom member 107, 207 or 307 or enters the adjacent lower stage fluidized bed.
  • the gas distributor 102, 202-1, 202-2, 302-1, 302-2 or 302-3 is a plate type distributor, and the plate type distributor is provided with a plurality of holes or a plurality of nozzles.
  • the gas distributors 102, 202-1, 202-2, 302-1, 302-2 or 302-3 are tubular distributors.
  • the tubular distributor is a ring structure having a ring number of 1 to 5 rings, and each ring is provided with a plurality of holes or a plurality of nozzles.
  • the cross-sectional area of the bottom member gas ascending passage 109, 209 or 309 is 0.1% to 20% of the cross-sectional area of the member plate of the bottom member 107, 207 or 307.
  • the cross-sectional area of the inter-segment member gas ascending passage 212, 312-1 or 312-2 is 0.1% to 20% of the cross-sectional area of the member plate of the inter-segment member 211, 311-1 or 311-2 through which it passes. %.
  • the structure of the device of this embodiment is as shown in FIG. 1.
  • the bed layer is a section, the bed body refers to the outer body of the entire fluidized bed device; and the bed layer refers to each section of the fluidized bed;
  • the fluidized bed apparatus in this embodiment includes a fluid inlet pipe 104 and a gas outlet 105 disposed at the top of the fluidized bed device, a catalyst packing port 103 disposed at an upper portion of the fluidized bed device, and a catalyst discharging device disposed at a lower portion of the fluidized bed device.
  • a port 108 a gas inlet 101 and a fluid outlet 110 disposed at the bottom of the fluidized bed apparatus, a bottom member 107 disposed at the bottom end of the fluidized bed apparatus, a gas ascending passage 109 and a downcomer 106 installed on the bottom member 107, A gas distributor 102 above the gas riser passage 9 and in communication with the gas riser passage 9 on the gas flow.
  • the gas distributor can pass through the gas rise channel 109 Connected to the bottom member.
  • the gas distributor 102 may be a tubular distributor, which is characterized in that a ring structure is adopted, and the number of rings is 1 to 5 rings, preferably 2 to 3 rings, and the ring is opened or a nozzle is provided, and the gas rising passage 109 is provided.
  • the cross-sectional area accounts for 0.1 to 20%, preferably 0.1 to 5%, more preferably 3% to 4%, of the cross-sectional area of the bottom member 107.
  • the gas distributor 102 may also be a plate type distributor formed by perforating a member plate as an inter-segment member or a bottom member, and the perforation rate may be 0.1 to 20%, preferably 0.1 to 5%, more It is preferably 3% to 4%.
  • the material of the fluidized bed device can be carbon steel or stainless steel.
  • the fluidized bed apparatus for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials may include: loading solid acid catalyst particles from a catalyst packing port 103 into a fluidized bed apparatus, and solidifying The content is from 5% to 40%, preferably from 5% to 20%, more preferably from 10% to 15%. After the catalyst is deactivated, it is discharged through the catalyst discharge port 108. Both the catalyst packing port 103 and the catalyst discharge port 108 are disposed on the wall of the fluidized bed apparatus.
  • the catalyst is a fixed acid such as a molecular sieve, an ion exchange resin or the like. Paraformaldehyde and methylal enter the fluidized bed apparatus through the fluid inlet pipe 104.
  • the mixed paraformaldehyde and methylal enter the fluidized bed apparatus through the fluid inlet pipe 104, and are fed.
  • the fluid inlet pipe 104 is mixed with paraformaldehyde and methylal before, which is beneficial to the solid material transportation; after the bed liquid level reaches the inlet height of the downcomer 106, the liquid enters the bottom of the fluidized bed device through the downcomer 106, from the fluid
  • the outlet 110 exits the fluidized bed unit.
  • the fluidizing gas enters the gas distributor 102 from the gas inlet 101 through the bottom member gas ascending passage 109.
  • the fluidizing gas is an inert gas.
  • the fluidizing gas is methylal superheated steam, and the methylal is used as both a reactant and a fluidizing gas, which is advantageous in that by-products can be reduced and the reaction conversion rate can be improved.
  • the fluidizing gas is passed into the bed to completely fluidize the bed, the catalyst particles are dispersed in the bed, and then the fluidizing gas exits the fluidized bed unit through the gas outlet 105.
  • the bed temperature is 40 ° C to 120 ° C, preferably 80 ° C to 100 ° C, more preferably 85 ° C to 95 ° C, the bed temperature is too high, the catalyst is easily deactivated, and the life is easily affected, while the temperature is too low, the catalyst activity Poor, the reaction rate will be slower.
  • the bed operating pressure can be from normal pressure to 0.5 MPa.
  • the fluidized bed device may be provided with a jacket temperature control device at the wall of the cylinder, and the heat exchange medium may adopt one or more of hot water, steam, heat transfer oil core cooling water and the like.
  • a fluidized bed apparatus for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials can realize polymethoxy dimethyl ether prepared by using methylal and paraformaldehyde as raw materials. From previous laboratory research to breakthroughs in large-scale industrialization.
  • a fluidized bed apparatus for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde using a fluidizing gas flowing from bottom to top, and a liquid (which may include raw materials and products) from above The countercurrent process to the next, thereby improving the reaction driving force and improving the product distribution. It is difficult to achieve such a countercurrent process using a conventional fixed bed, and it is difficult to obtain these advantages.
  • a fluidized bed apparatus for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde is provided, and a downcomer is provided for the liquid of the bottom bed liquid level beyond the inlet of the downcomer Leading to the portion below the bottom bed can make the countercurrent process easier to implement, further improving the reaction driving force and improving product distribution.
  • a fluidized bed apparatus for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as raw materials, and a filter screen at the inlet of the downcomer can prevent solid catalyst or solid paraformaldehyde from entering.
  • the reactor space below the bottom member prevents the catalyst from escaping, so that the catalyst is maintained at the set optimal fill range, allowing the reactor to operate stably.
  • a fluidized bed apparatus for preparing polymethoxy dimethyl ether by using methylal and paraformaldehyde as a raw material preferably using a solid acid as a catalyst
  • the catalyst price Greatly reduced, easier to recycle, easy to separate, and streamlined the process.
  • the fluidized bed apparatus makes the catalyst dispersion more uniform and the aldehyde conversion rate higher than that of the conventional loop reactor.
  • the structure of the apparatus of this embodiment is shown in Fig. 2.
  • the bed is divided into two sections.
  • the fluidized bed apparatus includes a bed body, a fluid inlet pipe 204 disposed at a top of the fluidized bed device, and
  • the gas outlets 205 are respectively disposed at the upper portion of the upper fluidized bed and the lower portion of the fluidized bed, and the catalyst filling ports 203-1 and 203-2 are respectively disposed at the lower portion of the upper fluidized bed and the lower portion of the fluidized bed.
  • a gas inlet 201 and a fluid outlet 210 disposed at the bottom of the fluidized bed apparatus a bottom member 207 disposed at the inner bottom end of the fluidized bed apparatus, a bottom member gas ascending passage 209 mounted on the bottom member 207, and a downcomer 206-1, a gas distributor 202-1 located above the bottom member gas ascending passage 209 and communicating with the gas ascending passage 209 on the gas flow, and an inter-segment member 211 disposed in the inner middle portion of the fluidized bed apparatus, installed
  • the inter-segment member gas ascending passage 212 and the inter-segment downcomers 206-2 on the inter-segment member 211 are connected to the gas distributor 202-2 on the inter-segment member gas ascending passage 212.
  • the gas distributors 202-1 and 202-2 may adopt a tubular distributor, which is characterized in that a ring structure is adopted, and the number of rings is 1 to 5 rings, preferably 2 to 3 rings, and the rings are opened. Or a nozzle is provided, the gas rising passage 209 has a cross-sectional area of 0.1 to 20%, preferably 0.1 to 5%, more preferably 3% to 4% of the cross-sectional area of the bottom member 207; and the inter-segment member gas ascending passage 212 has a cross-sectional area.
  • the member 211 has a cross-sectional area of 0.1 to 20%, preferably 0.1 to 5%, more preferably 3% to 4%.
  • the gas distributors 202-1, 202-2 may also be plate-type distributors formed by perforating a plate of a member as an inter-segment member or a bottom member.
  • the two-stage fluidized bed apparatus for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde may include: solid acid catalyst particles from catalyst packing ports 203-1, 203-2
  • the two-stage fluidized bed is charged in a solid content of 5% to 40%, preferably 5% to 20%, more preferably 10% to 15%.
  • Paraformaldehyde and methylal enter the fluidized bed of the two-stage fluidized bed in the upper part of the fluidized bed apparatus (hereinafter referred to as the upper fluidized bed) through the fluid inlet pipe 204.
  • the mixed paraformaldehyde and methylal enter the fluidized bed apparatus through the fluid inlet pipe 204, and the paraformaldehyde and the methylal are mixed before being fed into the fluid inlet pipe 104, which facilitates the solid material transportation; and the upper stream After the bed level corresponding to the chemical bed reaches the inlet height of the inter-segment downcomer 206-2, the liquid enters the lower part of the fluidized bed device through the inter-segment downcomer 206-2 into the two-stage fluidized bed.
  • a chemical bed hereinafter referred to simply as a lower fluidized bed
  • the bed level corresponding to the lower fluidized bed reaches the inlet of the downcomer 206-1
  • the liquid enters the bottom of the fluidized bed unit through the downcomer 206-1 and exits the fluidized bed unit from the fluid outlet 210.
  • the fluidizing gas enters the gas distributor 202-1 from the gas inlet 201 through the bottom member gas ascending passage 209.
  • the fluidizing gas is an inert gas.
  • the fluidizing gas is methylal superheated steam, and the methylal is used as both a reactant and a fluidizing gas, which is advantageous in that by-products can be reduced and the reaction conversion rate can be improved.
  • the fluidizing gas is introduced into the bed corresponding to the lower fluidized bed to completely fluidize, the catalyst particles are dispersed in the bed, and then the fluidizing gas enters the gas distributor through the inter-segment member gas ascending passage 212 on the inter-segment member 211. 202-2, the fluidizing gas is introduced into the bed corresponding to the upper fluidized bed to completely fluidize, the catalyst particles are dispersed in the bed, and then the fluidizing gas exits the fluidized bed device through the gas outlet 205.
  • the bed temperature is 40 ° C ⁇ 120 ° C, preferably 80 ° C - 100 ° C, more preferably 85 ° C - 95 ° C, the bed temperature is too high, the catalyst is easily deactivated, so the life is susceptible, and the temperature is too low, the catalyst Poor activity and slower reaction rates.
  • the bed operating pressure can be from normal pressure to 0.5 MPa.
  • the two-stage fluidized bed apparatus of polyacetal dimethyl ether made of methylal and paraformaldehyde of the present embodiment has the aforementioned advantages of a single-stage fluidized bed, and can be made compared to a one-stage fluidized bed.
  • the single pass conversion of paraformaldehyde is increased.
  • the structure of the device of this embodiment is shown in FIG. 3.
  • the bed layer is divided into three sections, from the top to the bottom, the first stage fluidized bed, the second stage fluidized bed and the third stage. Section fluidized bed.
  • the fluidized bed device comprises a bed body, a fluid inlet pipe 304 and a gas outlet 305 disposed at the top of the fluidized bed device, respectively disposed in the third-stage fluidized bed, the second-stage fluidized bed, and the first-stage fluidized bed portion.
  • the catalyst packing ports 303-1, 303-2, and 303-3 are respectively disposed in the third stage fluidized bed, the second stage fluidized bed, and the catalyst discharge ports 308-1, 308 in the lower part of the first stage fluidized bed.
  • the gas distributors 302-2 and 302-3 may adopt a tubular distributor, which is characterized in that a ring structure is adopted, the number of rings is too small, the gas distribution effect is poor, and the number of rings is too large, and the fluidized bed is required. Large size.
  • the number of rings may be 1 to 5 rings, preferably 2 to 3 rings, and the nozzles may be apertured or provided with a nozzle.
  • the cross-sectional area of the bottom member gas ascending channel 309 may be 0.1% to 20%, preferably 0.1% to 5% of the cross-sectional area of the bottom member 307.
  • the cross-sectional area of the inter-segment member gas ascending passages 312-1, 312-1 is 0.1% to 20%, preferably 0.1%, of the cross-sectional area of the inter-segment members 311-1, 311-2. ⁇ 5%, more preferably 3%-4%.
  • the gas distributors 202-1, 202-2 may also be plate-type distributors formed by perforating a plate of a member as an inter-segment member or a bottom member.
  • the punch ratio may be from 0.1 to 20%, preferably from 0.1 to 5%, more preferably from 3% to 4%.
  • the material of the fluidized bed device can be carbon steel or stainless steel.
  • the fluidized bed device may be provided with a jacket temperature control device at the wall of the cylinder, and the heat exchange medium may adopt one or more of hot water, steam, heat transfer oil and cooling water.
  • the three-stage fluidized bed apparatus of the present embodiment for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde may include: solid acid catalyst particles from catalyst packing ports 303-1, 303- 2.
  • the 303-3 is charged into the fluidized bed apparatus, and has a solid content of 5% to 40%, preferably 5% to 20%, more preferably 10% to 15%. After the catalyst is deactivated, it is discharged through the catalyst discharge ports 308-1, 308-2, 308-3.
  • Catalyst packing ports 303-1, 303-2, 303-3 and catalyst discharge ports 308-1, 308-2 or 308-3 are all disposed on the wall of the fluidized bed apparatus.
  • the catalyst is a fixed acid such as a molecular sieve, an ion exchange resin or the like.
  • Paraformaldehyde and methylal enter the first stage fluidized bed in the upper portion of the three-stage fluidized bed apparatus through the fluid inlet pipe 304, and the paraformaldehyde and the methylal are mixed before being fed into the fluid inlet, such that Conducive to solid material transportation; after the first stage bed level reaches the inlet height of the inter-segment downcomer 306-3, the liquid enters the second stage fluidized bed via the interstage downcomer 306-3; the second stage bed After the liquid level reaches the inlet height of the inter-segment downcomer 306-2, the liquid enters the third section through the inter-segment downcomer 306-2.
  • the fluidized bed after the third stage liquid level reaches the inlet height of the downcomer 306-1, the liquid enters the bottom of the fluidized bed apparatus through the downcomer 306-1, and exits the fluidized bed apparatus from the fluid outlet 310.
  • the fluidizing gas enters the gas distributor 302-1 from the gas inlet 301 through the bottom member gas ascending passage 309; the gas is introduced into the third stage bed to be completely fluidized, the catalyst particles are dispersed in the bed, and then the inter-segment members are The inter-segment member gas ascending passage 312-1 on 311-1 enters the gas distributor 302-2, the gas is introduced into the second-stage bed to be completely fluidized, and the catalyst particles are dispersed in the bed, followed by the inter-segment member 311.
  • the gas ascending channel 312-2 on -2 enters the gas distributor 302-3, the gas passes into the first stage bed to completely fluidize, the catalyst particles are dispersed in the bed, and then exit the fluidized bed device through the gas outlet 305.
  • the bed temperature is 40 ° C ⁇ 120 ° C, preferably 80 ° C - 100 ° C, more preferably 85 ° C - 95 ° C, the bed temperature is too high, the catalyst is easily deactivated, so the life is susceptible, and the temperature is too low, the catalyst Poor activity and slower reaction rates.
  • Bed operating pressure can be normal pressure ⁇ 0.5MPa
  • the three-stage fluidized bed apparatus of polymethoxy dimethyl ether made of methylal and paraformaldehyde has all the advantages of the two-stage fluidized bed apparatus described above, and is compared with two-stage fluidization.
  • the bed device can further improve the single pass conversion rate of paraformaldehyde.
  • the fluidized bed device for preparing polymethoxy dimethyl ether from methylal and paraformaldehyde as a raw material and the corresponding process flow are described by taking a one-stage, two-stage and three-stage fluidized bed device as an example. However, the actual number of fluidized bed units can be more.
  • the number of stages is increased, and the single-pass conversion rate of the reactants can be increased, and accordingly, the structure of the fluidized bed apparatus becomes complicated and the cost increases.
  • the number of stages of the fluidized bed unit should be selected according to actual needs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

一种由甲缩醛和多聚甲醛制备甲氧基二甲醚的流化床装置及方法,其中流化床装置包括气体入口(301)、气体分布器(302-1,302-2,302-3)、催化剂填料口(303-1,303-2,303-3)、气体出口(305)、流体入口管(304)、催化剂卸料口(308-1,308-2,308-3)、底部构件(307)和段间构件(311-1,311-2)、底部构件气体上升通道(309)、段间构件气体上升通道(312-1,312-2)、流体出口(310)、降液管(306-1)和段间降液管(306-2,306-3);采用该装置制备聚甲氧基二甲醚的过程包括:流化气体从气体入口(301),由底部构件气体上升通道(309)经气体分布器((302-1,302-2,302-3))通入底部床层;气体上升至气体出口(305)离开流化床;以及多聚甲醛和甲缩醛经流体入口,进入流化床层,以及液体下降至流体出口(310)离开流化床。

Description

一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法 技术领域
本发明属于能源化工技术领域,特别涉及一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法。
背景技术
柴油作为动力燃料,成为国民经济中的重要产品。尤其中国一直存在严重的柴油供需矛盾。然而,柴油的大量消耗不仅带来严重的环境污染,如雾霾等,而且给人类健康带了巨大威胁。绿色柴油添加剂可提高柴油的燃烧效率,减少柴油燃烧过程的废气(包括颗粒物,氮氧化物,CO等)。因此,开发应用绿色柴油添加剂迫在眉睫。
聚甲氧基二甲醚是非常具有潜力的柴油添加剂,受到广泛关注。聚甲氧基二甲醚(CH3O(CH2O)nCH3,PODEn)是一类物质的通称。当分子链中间含3~5个甲氧基数时其氧含量(~50%)及十六烷值(70~100)都较高,物性与柴油吻合,直接作为柴油添加剂使用(添加量~20V%)可提高柴油的燃烧效率,减少柴油燃烧过程的废气(包括颗粒物,氮氧化物,CO等)排放并同时缓解柴油供应不足,具有重要的环境和经济效益。
目前,多家公司和科研机构正在研究聚甲氧基二甲醚的生产工艺,但尚无工业化生产。
BP公司(US5959156A,US6160174A,US6160186A,US6392102B1等)公开了以甲醇或二甲醚为起始原料,经氧化脱氢制得甲醛,得到的甲醛进一步与甲醇或二甲醚反应制得甲缩醛及聚甲氧基二甲醚的工艺。整个工艺流程包括氧化脱氢,吸附冷却,催化精馏,中和分离等过程,流程复杂,且产物中 所得PODEn>1不足10%选择性差。BASF公司(US7700809B2,US20070260094A1,US7671240B2)公开了以甲缩醛和三聚甲醛为原料,在酸催化下合成聚甲氧基二甲醚的工艺。由于该体系中水含量低(水质量分数<1%),所以反应产物中副产物少,产物选择性较高(PODE3~5产物中含量~20wt%),流程相对简单。但是以高纯度的三聚甲醛及甲缩醛为原料,原料成本过高。另外产物中含有较大量不适于作为柴油添加剂的PODEn>5部分,产物分离过程相对复杂。中国科学院兰州化学物理研究所(US0056830A1,US7560599B2)公开了以甲醇和三聚甲醛作为原料以离子液体为催化剂合成聚甲氧基二甲醚。该过程实现了三聚甲醛较高的转化率(~90%),但是催化剂价格昂贵,回收利用困难,同时液态离子液体给分离等操作带来困难,工艺流程复杂。
在聚甲氧基二甲醚生产工艺中,反应器是最重要的操作单元。反应器的设计关乎醛转化率,产物选择性以及生产连续性和单位时间处理能力。目前专利多集中在工艺流程和催化体系方面,关于反应器设计较少。另外,大多工艺采用三聚甲醛作为醛单体源,原料成本高,严重影响工艺经济性。
在实验室研究中,多采用间歇式反应器;如将其直接放大到工业规模,将面临工艺处理能力低,生产周期长等问题。CN102249869A公开了一种环管式反应器,采用甲醇和三聚甲醛作原料,离子液体作催化剂;该发明存在反应体系温度波动大,反应物混合不均,物料与催化剂容易分层,产物转化率低,三聚甲醛成本高以及离子液体催化剂高成本、低寿命的问题。
CN102701923A公开了配有循环冷却器的环管式反应器,意图更好控制反应器内部温度;然而该发明依然存在反应物混合不均,物料与催化剂容易分层,产物转化率低,三聚甲醛成本高以及离子液体催化剂高成本、低寿命的问题。
存在研发能够实现聚甲氧基二甲醚的工业化生产的反应器和相关的产生工艺的需要。综上可见,开发一种结液相返混小、反应转化率高、换热能力强、反应器效率高的反应器具有重要的工业应用价值。
发明内容
针对现有技术不足,本申请提供了一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法。
一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,所述流化床装置具有一段流化床或多段流化床,所述流化床装置底部设置底部构件;当所述流化床装置具有两段以上流化床时,在所述流化床装置内部,底部构件上方依次设置一个或多个段间构件,将所述流化床装置由底部构件至所述流化床装置顶端的部分,分割为两段流化床或多段流化床;
所述流化床装置中,每段流化床上部分别设置一个催化剂填料口,每段流化床下部分别设置一个催化剂卸料口,每段流化床底部分别设置一个气体分布器;
位于最下段流化床的气体分布器通过底部构件气体上升通道与设置在所述流化床装置底部的气体入口相连,所述底部构件气体上升通道穿过所述底部构件;位于最下端流化床上方的各段流化床中的气体分布器,分别通过段间构件气体上升通道与位于其下方的相邻流化床段相连,所述段间构件气体上升通道分别穿过位于其下方的相邻段间构件;
在最上段流化床上设置流体入口管,所述流体入口管穿过所述流化床装置顶部,其两端分别位于最上段流化床内和最上段流化床外;在最下段流化床上设置降液管,所述降液管穿过所述底部构件,其两端均位于所述流化床装置内,分别位于所述底部构件两侧;在相邻两端流化床之间设置段间降液管;
在最下段流化床下方,所述流化床装置底部设置流体出口,在最上段流化床顶部设置气体出口。
所述降液管或所述段间降液管的顶端入口处分别设置滤网,以防止固体催化剂或固体多聚甲醛进入所述底部构件之下的反应器空间或进入相邻下段流化床中。
所述气体分布器为板式分布器,所述板式分布器上设置多个孔或多个喷嘴。
所述气体分布器为管式分布器。
所述管式分布器为环式结构,其环数为1~5环,每个环上设置多个孔或多个喷嘴。
所述底部构件气体上升通道的横截面积占所述底部构件的构件板横截面积的0.1%~20%。
所述段间构件气体上升通道的横截面积占其所穿过的段间构件的构件板横截面积的0.1%~20%。
一种利用上述流化床装置以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其具体方法为:
a.当所述流化床装置为一段式流化床时,在反应过程中,流化气体从所述气体入口进入流化床装置,由底部构件气体上升通道经气体分布器通入底部床层;气体上升至气体出口离开流化床装置;多聚甲醛和甲缩醛经流体入口管,进入流化床装置,所述流化床装置内对应的床层液面达到对应降液管入口高度后,通过该对应降液管流下,当液体下降至流体出口时离开流化床装置;
b.当所述流化床装置具有两段以上流化床时,在反应过程中,流化气体从所述气体入口进入流化床装置,由底部构件气体上升通道经与其对应的气体分布器通入最下段流化床,经底部床层之后,通过底部床层,之后经段间构件气体上升通道进入相邻上一段流化床所设气体分布器;气体通过段间构件气体上升通道在流化床装置中逐级上升,至最上段流化床中的气体出口离开流化床装置;多聚甲醛和甲缩醛混合后经流体入口管,进入最上段流化床内;最上段流化床内对应的床层液面达到对应降液管或对应段间降液管的入口高度后,溢流经该对应的降液管或段间降液管进入相邻下一段流化床内;液体经各段流化床对应的降液管或段间降液管逐级下降,至流体出口时离开 流化床装置。
所述流化床装置在各段流化床筒壁外侧设置夹套控温装置并与其相连。
所述该夹套控温装置中所采用的换热介质为热水、蒸汽、导热油和冷却水中的一种或多种。
所述流化床装置的材质为碳钢或不锈钢。
所述流化床装置中各段流化床的床层温度分别为40℃~120℃。
所述流化床装置中各段流化床的床层操作压力分别为常压~0.5MPa。
本发明的有益效果为:
本发明以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,能够实现以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的从先前的实验室研究到大规模工业化的突破。
本发明以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,采用了流化气体从下到上流动、液体(可包括原料和产物)从上到下的逆流工艺,从而提高反应推动力、改善产物分布。利用传统的固定床很难实现这种逆流工艺,从而难以获得这些优点。
本发明以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,设置了降液管,用于将底部床层液面超出降液管入口的液体引导到底部床层以下的部分,能够使得逆流工艺的实现更容易,进一步提高反应推动力、改善产物分布。
本发明以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,在降液管的入口处设置滤网,能够防止固体催化剂或固体多聚甲醛进入底部构件之下的反应器空间,从而防止催化剂等流失,使得催化剂维持在设定的最佳填充量范围,使得反应器稳定的运转。
本发明以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,优选采用固体酸作为催化剂,相比于先前技术中采用离子液体作为催化剂,催化剂价格大大降低,更容易回收利用,易于进行分离,简化了工艺流程。
相比于传统的环管式反应器,根据本发明实施例的流化床装置使催化剂分散更均匀,醛转化率更高。
附图说明
图1为本发明的一种一段式流化床装置的结构示意图;
图中标号:101-气体入口;102-气体分布器;103-催化剂填料口;104-流体入口管;105-气体出口;106-降液管;107-底部构件;108-催化剂卸料口;109-底部构件气体上升通道;110-流体出口;
图2为本发明的一种两段式流化床装置的结构示意图;
图中标号:201-气体入口;202-1、202-2-气体分布器;203-1、203-2-催化剂填料口;204-流体入口管;205-气体出口;206-1-降液管;206-2-段间降液管;207-底部构件;208-1、208-2-催化剂卸料口;209-底部构件气体上升通道;210-流体出口;211-段间构件、212-段间构件气体上升通道;
图3为本发明的一种三段式流化床装置的结构示意图;
图中标号:301-气体入口;302-1、302-2、302-3-气体分布器;303-1、303-2、303-3-催化剂填料口;304-流体入口管;305-气体出口;306-1-降液管;、306-2、306-3-段间降液管;307-底部构件;308-1、308-2、308-3-催化剂卸料口;309-底部构件气体上升通道;310-流体出口;311-1、311-2-段间构件;312-1、312-2-段间构件气体上升通道。
具体实施方式
本发明提供了一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法,下面结合附图和具体实施方式对本发明做进一步说明。
需要说明的是,本文中的“底部床层”是指位于流化床装置最底部的一段床层。床层是填装催化剂的各段流化床。另外,在采用多段流化床结构的情况下,每段流化床具有对应的床层。
本文中的“底部构件”是指位于流化床装置底部的构件。构件用于分隔床层,保证床层间不串料。另外,在采用多段流化床结构的情况下,相邻段流化床之间设置有段间构件,用于将整体流化床装置分隔为多段流化床。
多聚甲醛是甲醛聚合度一般为8-100的直链聚合物,相比三聚甲醛熔点高,在甲缩醛中溶解性较差,但是成本相对三聚甲醛低50%左右。
一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,所述流化床装置具有一段流化床或多段流化床,所述流化床装置底部设置底部构件107、207或307;当所述流化床装置具有两段以上流化床时,在所述流化床装置内部,底部构件107、207或307上方依次设置一个或多个段间构件211、311-1或311-2,将所述流化床装置由底部构件107、207或307至所述流化床装置顶端的部分,分割为两段流化床或多段流化床;
所述流化床装置中,每段流化床上部分别设置一个催化剂填料口103、203-1、203-2、303-1、303-2或303-3,每段流化床下部分别设置一个催化剂卸料口108、208-1、208-2、308-1、308-2或308-3,每段流化床底部分别设置一个气体分布器102、202-1、202-2、302-1、302-2或302-3;
位于最下段流化床的气体分布器102、202-1或302-1通过底部构件气体上升通道109、209或309与设置在所述流化床装置底部的气体入口101、201或301相连,所述底部构件气体上升通道109、209或309穿过所述底部构件107、207或307;位于最下端流化床上方的各段流化床中的气体分布器202-2、302-2或302-3,分别通过段间构件气体上升通道212、312-1或312-2与位于其下方的相邻流化床段相连,所述段间构件气体上升通道212、312-1或312-2分别穿过位于其下方的相邻段间构件211、311-1或311-2;
在最上段流化床上设置流体入口管104、204或304,所述流体入口管104、204或304穿过所述流化床装置顶部,其两端分别位于最上段流化床内和最上段流化床外;在最下段流化床上设置降液管106、206-1或306-1,所述降液管106、206-1或306-1穿过所述底部构件107、207或307,其两端均位 于所述流化床装置内,分别位于所述底部构件107、207或307两侧;在相邻两端流化床之间设置段间降液管206-2、306-3或306-3;
在最下段流化床下方,所述流化床装置底部设置流体出口110、210或310,在最上段流化床顶部设置气体出口105、205或305。
所述降液管106、206-1或306-1或所述段间降液管206-2、306-3或306-3的顶端入口处分别设置滤网,以防止固体催化剂或固体多聚甲醛进入所述底部构件107、207或307之下的反应器空间或进入相邻下段流化床中。
所述气体分布器102、202-1、202-2、302-1、302-2或302-3为板式分布器,所述板式分布器上设置多个孔或多个喷嘴。
所述气体分布器102、202-1、202-2、302-1、302-2或302-3为管式分布器。
所述管式分布器为环式结构,其环数为1~5环,每个环上设置多个孔或多个喷嘴。
所述底部构件气体上升通道109、209或309的横截面积占所述底部构件107、207或307的构件板横截面积的0.1%~20%。
所述段间构件气体上升通道212、312-1或312-2的横截面积占其所穿过的段间构件211、311-1或311-2的构件板横截面积的0.1%~20%。
实施例1
本实施例装置结构如图1所示,在该实施例的流化床装置中,床层为一段,床体是指整个流化床装置的外体;床层是指每一段流化床;本实施例中流化床装置包括设置在流化床装置顶部的流体入口管104及气体出口105、设置在流化床装置上部的催化剂填料口103、设置在流化床装置下部的催化剂卸料口108、设置在流化床装置底部的气体入口101及流体出口110、设置在流化床装置内部底端的底部构件107、安装在底部构件107上的气体上升通道109和降液管106、位于在气体上升通道9之上并与气体上升通道9在气体流动上连通的气体分布器102。气体分布器可以通过气体上升通道109 与底部构件连接。
本实施例中,气体分布器102可以采用管式分布器,其特征在于采用环式结构,环数为1~5环,优选2~3环,环上开孔或设置喷嘴,气体上升通道109截面积占底部构件107横截面积的0.1~20%,优选0.1~5%,更优选为3%-4%。气体分布器102也可以为板式分布器,该板式分布器由在作为段间构件或底部部件的构件板上打孔而形成,打孔率可以为0.1~20%,优选0.1~5%,更优选为3%-4%。
所述流化床装置材质可以采用碳钢或不锈钢。
所述流化床装置用于以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的过程可以包括:将固体酸催化剂颗粒由催化剂填料口103装入流化床装置内,固含率为5%~40%,优选5%~20%,更优选为10%-15%。催化剂待失活之后,经催化剂卸料口108卸出。催化剂填料口103和催化剂卸料口108均设置于流化床装置的筒壁上。在本实施例中,催化剂为固定酸,例如为分子筛、离子交换树脂等。多聚甲醛和甲缩醛经流体入口管104进入流化床装置内,在本实施例中,经混合的多聚甲醛和甲缩醛经流体入口管104进入流化床装置内,在送入流体入口管104之前将多聚甲醛和甲缩醛混合,这样有利于固体物料输送;床层液面达到降液管106入口高度后,液体经降液管106进入流化床装置底部,从流体出口110离开流化床装置。流化气体从气体入口101,经底部构件气体上升通道109进入气体分布器102。本实施例的一个优选方案,流化气体为惰性气体。本实施例的另一个优选方案,流化气体为甲缩醛过热蒸汽,甲缩醛既用作反应物也用作流化气体的优势在于能够减少副产物,提高反应转化率。流化气体通入床层使床层完全流化,催化剂颗粒在床层中分散,之后流化气体经气体出口105离开流化床装置。床层温度为40℃~120℃,优选80℃-100℃,更优选为85℃-95℃,床层温度过高,催化剂容易失活,从而寿命易受影响,而温度过低,催化剂活性差,反应速率会变慢。床层操作压力可以为常压~0.5MPa。
所述流化床装置可以在筒壁处设置夹套控温装置,其换热介质可采用热水、蒸汽、导热油核冷却水等中的一种或多种。
根据本实施例的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,能够实现以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的从先前的实验室研究到大规模工业化的突破。
根据本实施例的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,采用了流化气体从下到上流动、液体(可包括原料和产物)从上到下的逆流工艺,从而提高反应推动力、改善产物分布。利用传统的固定床很难实现这种逆流工艺,从而难以获得这些优点。
根据本实施例的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,设置了降液管,用于将底部床层液面超出降液管入口的液体引导到底部床层以下的部分,能够使得逆流工艺的实现更容易,进一步提高反应推动力、改善产物分布。
根据本实施例的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,在降液管的入口处设置滤网,能够防止固体催化剂或固体多聚甲醛进入底部构件之下的反应器空间,从而防止催化剂等流失,使得催化剂维持在设定的最佳填充量范围,使得反应器稳定的运转。
根据本实施例的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置,优选采用固体酸作为催化剂,相比于先前技术中采用离子液体作为催化剂,催化剂价格大大降低,更容易回收利用,易于进行分离,简化了工艺流程。
相比于传统的环管式反应器,根据本实施例的流化床装置使催化剂分散更均匀,醛转化率更高。
实施例2
本实施例装置结构如图2所示,在该实施例的流化床装置中,床层分为两段。该流化床装置包括床体、设置在流化床装置顶部的流体入口管204及 气体出口205,分别设置在上段流化床和下段流化床的上部的催化剂填料口203-1、203-2,分别设置在上段流化床和下段流化床的下部的催化剂卸料口208-1、208-2,设置在流化床装置底部的气体入口201及流体出口210,设置在流化床装置内部底端的底部构件207,安装在底部构件207上的底部构件气体上升通道209和降液管206-1,位于底部构件气体上升通道209之上并与气体上升通道209在气体流动上连通的气体分布器202-1,设置在流化床装置内部中段的段间构件211,安装在段间构件211上的段间构件气体上升通道212及段间降液管206-2,连接在段间构件气体上升通道212上的气体分布器202-2。
在本发明实施例中,气体分布器202-1、202-2可以采用管式分布器,其特征在于采用环式结构,环数为1~5环,优选2~3环,环上开孔或设置喷嘴,气体上升通道209截面积占底部构件207横截面积的0.1~20%,优选0.1~5%,更优选为3%-4%;段间构件气体上升通道212截面积占段间构件211横截面积的0.1~20%,优选0.1~5%,更优选为3%-4%。气体分布器202-1、202-2也可以为板式分布器,该板式分布器由在作为段间构件或底部部件的构件板上打孔而形成。
所述两段式流化床装置用于以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的过程可以包括:将固体酸催化剂颗粒由催化剂填料口203-1、203-2装入两段流化床内,固含率为5%~40%,优选5%~20%,更优选为10%-15%。多聚甲醛和甲缩醛经流体入口管204进入该两段流化床中位于流化床装置上部的一段流化床(下文简称之为上段流化床)内,在本实施例中,经混合的多聚甲醛和甲缩醛经流体入口管204进入流化床装置内,在送入流体入口管104之前将多聚甲醛和甲缩醛混合,这样有利于固体物料输送;与该上段流化床对应的床层液面达到段间降液管206-2的入口高度后,液体经段间降液管206-2的进入该两段流化床中位于流化床装置下部的一段流化床(下文简称之为下段流化床);与该下段流化床对应的床层液面达到降液管206-1的入口 高度后,液体经降液管206-1进入流化床装置底部,从流体出口210离开流化床装置。流化气体从气体入口201,经底部构件气体上升通道209进入气体分布器202-1。本实施例的一个优选方案,流化气体为惰性气体。本实施例的另一优选方案,流化气体为甲缩醛过热蒸汽,甲缩醛既用作反应物也用作流化气体的优势在于能够减少副产物,提高反应转化率。流化气体通入与下段流化床对应的床层使其完全流化,催化剂颗粒在床层中分散,之后流化气体经段间构件211上的段间构件气体上升通道212进入气体分布器202-2,流化气体通入与上段流化床对应的床层使其完全流化,催化剂颗粒在床层中分散,之后流化气体经气体出口205离开流化床装置。床层温度分别为40℃~120℃,优选80℃-100℃,更优选为85℃-95℃,床层温度过高,催化剂容易失活,从而寿命易受影响,而温度过低,催化剂活性差,反应速率会变慢。床层操作压力可以为常压~0.5MPa。
本实施例的由甲缩醛和多聚甲醛制聚甲氧基二甲醚的两段式流化床装置,具有单段流化床的前述优点,而且相比一段式流化床,能够使多聚甲醛的单程转化率提高。
实施例3
本实施例装置结构如图3所示,在该实施例的流化床装置中,床层分为三段,自上而下为第一段流化床,第二段流化床和第三段流化床。该流化床装置包括床体,设置在流化床装置顶部的流体入口管304及气体出口305,分别设置在第三段流化床、第二段流化床、第一段流化床上部的催化剂填料口303-1、303-2、303-3,分别设置在第三段流化床、第二段流化床、第一段流化床下部的催化剂卸料口308-1、308-2、308-3,设置在流化床装置底部的气体入口301及流体出口310,设置在流化床装置内部底端的底部构件307,安装在底部构件307上的底部构件气体上升通道309和降液管306-1,位于底部构件气体上升通道309之上并与气体上升通道309在气体流动上连通的气体分布器302-1,设置在流化床装置内部的两个段间构件311-1、311-2, 安装在段间构件311-1、311-2上的段间构件气体上升通道312-1、312-2及降液管306-2、306-3,连接在段间构件气体上升通道312-1、312-2上的气体分布器302-2、302-3。
在本发明实施例中,气体分布器302-2、302-3可以采用管式分布器,其特征在于采用环式结构,环数过少气体分布效果较差,环数过多需要流化床尺寸大。环数可以为1~5环,优选2~3环,环上开孔或设置喷嘴,底部构件气体上升通道309截面积占底部构件307横截面积的0.1%~20%,优选0.1%~5%,更优选为3%-4%;段间构件气体上升通道312-1、312-1截面积占段间构件311-1、311-2横截面积的0.1%~20%,优选0.1%~5%,更优选为3%-4%。气体分布器202-1、202-2也可以为板式分布器,该板式分布器由在作为段间构件或底部部件的构件板上打孔而形成。打孔率可以为0.1~20%,优选0.1~5%,更优选为3%-4%。
所述流化床装置材质可以采用碳钢或不锈钢。
所述流化床装置可以在筒壁处设置夹套控温装置,其换热介质可采用热水、蒸汽、导热油和冷却水等中的一种或多种。
本实施例三段式流化床装置用于以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的过程可以包括:将固体酸催化剂颗粒由催化剂填料口303-1、303-2、303-3装入流化床装置内,固含率为5%~40%,优选5%~20%,更优选为10%-15%。催化剂待失活之后,经催化剂卸料口308-1、308-2、308-3卸出。催化剂填料口303-1、303-2、303-3和催化剂卸料口308-1、308-2或308-3均设置于流化床装置的筒壁上。在本发明实施例中,催化剂为固定酸,例如为分子筛、离子交换树脂等。多聚甲醛和甲缩醛经流体入口管304进入该三段式流化床装置中位于上部的第一段流化床内,在送入流体入口之前将多聚甲醛和甲缩醛混合,这样有利于固体物料输送;第一段床层液面达到段间降液管306-3的入口高度后,液体经段间降液管306-3进入第二段流化床;第二段床层液面达到段间降液管306-2入口高度后,液体经段间降液管306-2进入第三段 流化床;第三段床层液面达到降液管306-1入口高度后,液体经降液管306-1进入流化床装置底部,从流体出口310离开流化床装置。流化气体从气体入口301,经底部构件气体上升通道309进入气体分布器302-1;气体通入第三段床层使其完全流化,催化剂颗粒在床层中分散,之后经段间构件311-1上的段间构件气体上升通道312-1进入气体分布器302-2,气体通入第二段床层使其完全流化,催化剂颗粒在床层中分散,之后经段间构件311-2上的气体上升通道312-2进入气体分布器302-3,气体通入第一段床层使其完全流化,催化剂颗粒在床层中分散,之后经气体出口305离开流化床装置。床层温度为40℃~120℃,优选为80℃-100℃,更优选为85℃-95℃,床层温度过高,催化剂容易失活,从而寿命易受影响,而温度过低,催化剂活性差,反应速率会变慢。床层操作压力可以为常压~0.5MPa
根据本实施例的由甲缩醛和多聚甲醛制聚甲氧基二甲醚的三段式流化床装置具有前述两段式流化床装置的所有优点,而且相比两段式流化床装置,能够使多聚甲醛的单程转化率进一步提高。
前面以一段式、两段式和三段式流化床装置为例说明了以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的流化床装置和对应的工艺流程。不过,实际流化床装置的段数可以更多。
需要说明的是,段数增加,能够提高反应物的单程转化率,相应地流化床装置结构也变得复杂,成本增加。流化床装置的段数应该根据实际需要加以选择。

Claims (18)

  1. 一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于:所述流化床装置具有一段流化床或多段流化床,所述流化床装置底部设置底部构件(107、207或307);当所述流化床装置具有两段以上流化床时,在所述流化床装置内部,底部构件(107、207或307)上方依次设置一个或多个段间构件(211、311-1或311-2),将所述流化床装置由底部构件(107、207或307)至所述流化床装置顶端的部分,分割为两段流化床或多段流化床;
    所述流化床装置中,每段流化床上部分别设置一个催化剂填料口(103、203-1、203-2、303-1、303-2或303-3),每段流化床下部分别设置一个催化剂卸料口(108、208-1、208-2、308-1、308-2或308-3),每段流化床底部分别设置一个气体分布器(102、202-1、202-2、302-1、302-2或302-3);
    位于最下段流化床的气体分布器(102、202-1或302-1)通过底部构件气体上升通道(109、209或309)与设置在所述流化床装置底部的气体入口(101、201或301)相连,所述底部构件气体上升通道(109、209或309)穿过所述底部构件(107、207或307);位于最下端流化床上方的各段流化床中的气体分布器(202-2、302-2或302-3),分别通过段间构件气体上升通道(212、312-1或312-2)与位于其下方的相邻流化床段相连,所述段间构件气体上升通道(212、312-1或312-2)分别穿过位于其下方的相邻段间构件(211、311-1或311-2);
    在最上段流化床上设置流体入口管(104、204或304),所述流体入口管(104、204或304)穿过所述流化床装置顶部,其两端分别位于最上段流化床内和最上段流化床外;在最下段流化床上设置降液管(106、206-1或306-1),所述降液管(106、206-1或306-1)穿过所述底部构件(107、207或307),其两端均位于所述流化床装置内,分别位于所述底部构件(107、207或307)两侧;在相邻两端流化床之间设置段间降液管(206-2、306-3或306-3);
    在最下段流化床下方,所述流化床装置底部设置流体出口(110、210或310),在最上段流化床顶部设置气体出口(105、205或305)。
  2. 根据权利要求1所述的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于:所述降液管(106、206-1或306-1)或所述段间降液管(206-2、306-3或306-3)的顶端入口处分别设置滤网,以防止固体催化剂或固体多聚甲醛进入所述底部构件(107、207或307)之下的反应器空间或进入相邻下段流化床中。
  3. 根据权利要求1所述的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于:所述气体分布器(102、202-1、202-2、302-1、302-2或302-3)为板式分布器,所述板式分布器上设置多个孔或多个喷嘴。
  4. 根据权利要求1所述的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于:所述气体分布器(102、202-1、202-2、302-1、302-2或302-3)为管式分布器。
  5. 根据权利要求4所述的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于:所述管式分布器为环式结构,其环数为1~5环,每个环上设置多个孔或多个喷嘴。
  6. 根据权利要求4所述的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于,环数为2-3环。
  7. 根据权利要求1所述的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于:所述底部构件气体上升通道(109、209或309)的横截面积占所述底部构件(107、207或307)的构件板横截面积的0.1%~20%。
  8. 根据权利要求1所述的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置,其特征在于:所述段间构件气体上升通道(212、312-1或312-2)的横截面积占其所穿过的段间构件(211、311-1或311-2)的构件板横截面积的0.1%~20%。
  9. 根据权利要求7或8的由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流 化床装置,所述底部构件气体上升通道(109、209或309)的横截面积占所述底部构件(107、207或307)的构件板横截面积的比例和/或所述段间构件气体上升通道(212、312-1或312-2)的横截面积占其所穿过的段间构件(211、311-1或311-2)的构件板横截面积的比例为3%-4%。
  10. 一种利用权利要求1所述的流化床装置以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:
    a.当所述流化床装置为一段式流化床时,在反应过程中,流化气体从所述气体入口(101)进入流化床装置,由底部构件气体上升通道(109)经气体分布器(102)通入底部床层;气体上升至气体出口(105)离开流化床装置;多聚甲醛和甲缩醛经流体入口管(104),进入流化床装置,所述流化床装置内对应的床层液面达到对应降液管(106)入口高度后,通过该对应降液管(106)流下,当液体下降至流体出口(110)时离开流化床装置;
    b.当所述流化床装置具有两段以上流化床时,在反应过程中,流化气体从所述气体入口(201或301)进入流化床装置,由底部构件气体上升通道(209或309)经与其对应的气体分布器(202-1或302-1)通入最下段流化床,经底部床层之后,通过底部床层,之后经段间构件气体上升通道(212、312-1或312-2)进入相邻上一段流化床所设气体分布器(202-2、302-2或302-3);气体通过段间构件气体上升通道(212、312-1或312-2)在流化床装置中逐级上升,至最上段流化床中的气体出口(205或305)离开流化床装置;多聚甲醛和甲缩醛混合后经流体入口管(204或304),进入最上段流化床内;最上段流化床内对应的床层液面达到对应降液管(206-1或306-1)或对应段间降液管(206-2、306-3或306-3)的入口高度后,溢流经该对应的降液管(206-1或306-1)或段间降液管(206-2、306-3或306-3)进入相邻下一段流化床内;液体经各段流化床对应的降液管(106、206-1或306-1)或段间降液管(206-2、306-3或306-3)逐级下降,至流体出口(210或310)时离开流化床装置。
  11. 根据权利要求10所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二 甲醚的方法,其特征在于:所述流化床装置在各段流化床筒壁外侧设置夹套控温装置并与其相连。
  12. 根据权利要求11所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:所述该夹套控温装置中所采用的换热介质为热水、蒸汽、导热油和冷却水中的一种或多种。
  13. 根据权利要求10所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:所述流化床装置的材质为碳钢或不锈钢。
  14. 根据权利要求8所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:所述流化床装置中各段流化床的床层温度分别为40℃~120℃。
  15. 根据权利要求14所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:所述流化床装置中各段流化床的床层温度分别为85℃-95℃。
  16. 根据权利要求10所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:所述流化床装置中各段流化床的床层操作压力分别为常压~0.5MPa。
  17. 根据权利要求10所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:所述方法包括将固体酸催化剂颗粒由催化剂填料口装入流化床装置内,固含率为5%~40%。
  18. 根据权利要求17所述的以甲缩醛和多聚甲醛为原料制备聚甲氧基二甲醚的方法,其特征在于:固含率为10%-15%。
PCT/CN2015/075078 2014-04-01 2015-03-26 一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法 WO2015149646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410128524.9A CN104971667B (zh) 2014-04-01 2014-04-01 一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法
CN201410128524.9 2014-04-01

Publications (1)

Publication Number Publication Date
WO2015149646A1 true WO2015149646A1 (zh) 2015-10-08

Family

ID=54188969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075078 WO2015149646A1 (zh) 2014-04-01 2015-03-26 一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法

Country Status (3)

Country Link
US (1) US9346916B2 (zh)
CN (1) CN104971667B (zh)
WO (1) WO2015149646A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105693479A (zh) * 2016-03-15 2016-06-22 江苏凯茂石化科技有限公司 一种气体甲醛制备聚甲氧基二甲醚的专用工艺装置
CN105749850B (zh) * 2016-05-17 2017-07-21 南京科技职业学院 一种定向合成对氯甲苯的专用反应器
CN108794294B (zh) * 2017-04-27 2020-12-11 中国科学院大连化学物理研究所 流化床气体分布器、应用其的反应器及生产对二甲苯联产低碳烯烃的方法
CN108786669B (zh) 2017-04-27 2021-01-12 中国科学院大连化学物理研究所 流化床气体分布器、应用其的反应器及生产对二甲苯联产低碳烯烃的方法
CN108261792B (zh) * 2018-01-04 2020-08-11 中石化上海工程有限公司 新型气动式搅拌催化精馏装置
CN112299963B (zh) * 2020-11-20 2022-01-07 清华大学 连续生产聚甲氧基二甲醚的方法
CN114950282A (zh) * 2022-06-24 2022-08-30 洛阳融惠化工科技有限公司 一种可抑制进料***结焦并强化反应过程的流化床及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195554A (zh) * 2006-12-07 2008-06-11 中国石油化工股份有限公司 一种从c4烃生产低碳烯烃的方法
CN101274879A (zh) * 2007-03-30 2008-10-01 中国石油化工股份有限公司 一种甲醇脱水生产二甲醚的流化装置
CN201768553U (zh) * 2010-05-07 2011-03-23 山东清大新能源有限公司 一种气相合成二甲醚流化床反应器
CN104292085A (zh) * 2014-10-08 2015-01-21 东营市润成碳材料科技有限公司 一种制备聚甲醛二甲醚的装置及方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457896A (en) * 1982-08-02 1984-07-03 Institute Of Gas Technology Apparatus and process for fluidized solids systems
RU2030207C1 (ru) * 1991-05-20 1995-03-10 Виталий Юрьевич Шувалов Многосекционный реактор с кипящим слоем
AU6105694A (en) * 1993-02-17 1994-09-14 China Petro-Chemical Corporation A multiple stage suspended reactive stripping process and apparatus
US6392102B1 (en) 1998-11-12 2002-05-21 Bp Corporation North America Inc. Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of formaldehyde formed by oxidation of dimethyl ether
US5959156A (en) 1998-11-12 1999-09-28 Bp Amoco Corporation Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxy-dehydrogenation of dimethyl ether
US6160186A (en) 1998-11-12 2000-12-12 Bp Amoco Corporation Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by dehydrogenation of dimethyl ether
US6160174A (en) 1998-11-12 2000-12-12 Bp Amoco Corporation Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxy-dehydrogenation of methanol
JP2008517960A (ja) 2004-10-25 2008-05-29 ビーエーエスエフ ソシエタス・ヨーロピア ポリオキシメチレンジメチルエーテルの製造方法
DE102005027701A1 (de) 2005-06-15 2006-12-21 Basf Ag Verfahren zur Herstellung von Polyoxymethylendimethylethern aus Methanol und Formaldehyd
DE102005027702A1 (de) 2005-06-15 2006-12-21 Basf Ag Verfahren zur Herstellung von Polyoxymethylendimethylethern aus Methanol und Formaldehyd
CN2861166Y (zh) * 2005-12-13 2007-01-24 上海氯碱化工股份有限公司 一种用于制备乳酸的升气反应器
CN101182367A (zh) 2007-07-31 2008-05-21 中国科学院兰州化学物理研究所 聚甲氧基甲缩醛的制备方法
CN101665414B (zh) 2008-09-04 2012-12-12 中国科学院兰州化学物理研究所 离子液体催化合成聚甲氧基甲缩醛的方法
CN102249869A (zh) 2010-05-18 2011-11-23 中国科学院兰州化学物理研究所 离子液体催化合成聚甲氧基二甲醚的工艺过程
CN103301786A (zh) * 2012-03-15 2013-09-18 清华大学 流化床反应器、丁二烯及其制备方法
CN102701923B (zh) 2012-06-11 2014-09-24 北京科尔帝美工程技术有限公司 一种制备聚甲氧基二甲醚的***装置及工艺
CN103360224A (zh) * 2013-07-31 2013-10-23 东营市润成碳材料科技有限公司 一种制备聚甲氧基二甲醚的组合工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195554A (zh) * 2006-12-07 2008-06-11 中国石油化工股份有限公司 一种从c4烃生产低碳烯烃的方法
CN101274879A (zh) * 2007-03-30 2008-10-01 中国石油化工股份有限公司 一种甲醇脱水生产二甲醚的流化装置
CN201768553U (zh) * 2010-05-07 2011-03-23 山东清大新能源有限公司 一种气相合成二甲醚流化床反应器
CN104292085A (zh) * 2014-10-08 2015-01-21 东营市润成碳材料科技有限公司 一种制备聚甲醛二甲醚的装置及方法

Also Published As

Publication number Publication date
US20150273426A1 (en) 2015-10-01
CN104971667A (zh) 2015-10-14
US9346916B2 (en) 2016-05-24
CN104971667B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2015149646A1 (zh) 一种由甲缩醛和多聚甲醛制备聚甲氧基二甲醚的流化床装置及方法
CN101653710B (zh) 一种多级多通道径向绝热式反应器
CN103394312B (zh) 一种醇/醚催化转化制芳烃的多段流化床装置及方法
CN102659498B (zh) 甲醇转化为低碳烯烃的装置及方法
CN102600771B (zh) 一种用于含h2和co混合气甲烷化流化床反应器及方法
WO2016054879A1 (zh) 一种催化裂化反应再生方法
CN103657536B (zh) 一种用于丁烯氧化脱氢的轴向径向复合式固定床催化反应器
RU2649385C1 (ru) Реактор с псевдоожиженным слоем, установка и способ получения легких олефинов
CN106854128B (zh) 一种甲苯与甲醇制取对二甲苯的方法
CN105536654A (zh) 一种大型轴向多段混合换热式丁烯氧化脱氢反应器
CN204474555U (zh) 一种有机氧化物催化转化制芳烃的***
CN200955019Y (zh) 合成多段径向冷激式反应器
CN103553864A (zh) 丁烯多级氧化脱氢制丁二烯的方法
CN104248940A (zh) 一种用于以含氧化合物为原料生产丙烯的多级径向固定床反应***及其方法
CN104130097A (zh) 一种液相连续制备挂式四氢双环戊二烯的工艺
CN102826970A (zh) 一种低碳烯烃氢甲酰化二段反应方法和装置
CN110252210A (zh) 一种适用于新建及提产改造的甲醇合成工艺及装置
CN112430188B (zh) 一种新型加氢技术制备异丙基苯胺的方法
CN205556511U (zh) 一种生产聚甲氧基二甲醚dmm3-5的装置
CN102659499B (zh) 甲醇转化为低碳烯烃的装置及方法
CN116020350A (zh) 一种合成碳酸酯的反应器、合成碳酸酯的***以及方法
CN104341259A (zh) 一种合成气催化甲烷化方法及装置
CN105001036A (zh) 一种用于甲醇制丙烯的反应器
CN106966848B (zh) 乙醇脱水生产乙烯的方法
CN1194948C (zh) 催化脱氢生产苯乙烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15772357

Country of ref document: EP

Kind code of ref document: A1