WO2015145961A1 - エンジンの冷却構造 - Google Patents

エンジンの冷却構造 Download PDF

Info

Publication number
WO2015145961A1
WO2015145961A1 PCT/JP2015/000869 JP2015000869W WO2015145961A1 WO 2015145961 A1 WO2015145961 A1 WO 2015145961A1 JP 2015000869 W JP2015000869 W JP 2015000869W WO 2015145961 A1 WO2015145961 A1 WO 2015145961A1
Authority
WO
WIPO (PCT)
Prior art keywords
water jacket
cylinder
engine
coolant
jacket spacer
Prior art date
Application number
PCT/JP2015/000869
Other languages
English (en)
French (fr)
Inventor
正▲礼▼ 道法
義昭 早水
中島 純
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to CN201580015067.5A priority Critical patent/CN106103957B/zh
Priority to DE112015001528.0T priority patent/DE112015001528T5/de
Priority to US15/119,842 priority patent/US10202932B2/en
Publication of WO2015145961A1 publication Critical patent/WO2015145961A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/004Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F2001/104Cylinders; Cylinder heads  having cooling means for liquid cooling using an open deck, i.e. the water jacket is open at the block top face

Definitions

  • the technology disclosed in this specification relates to an engine cooling structure, and particularly relates to a structure in which a water jacket spacer that forms a flow path of cooling water is disposed in a water jacket of a cylinder block.
  • Patent Document 1 a water jacket spacer that covers substantially the entire outer periphery of the cylinder liner is disposed in the water jacket, and the flow rate of cooling water in the outer peripheral portion of the cylinder liner is increased above the water jacket spacer.
  • a cooling structure for an engine that is provided with a notch for forming a space for the cooling water to flow inside and outside the water jacket spacer.
  • the technology disclosed in the present specification has been made in view of the above points, and the object thereof is to suppress the heat release to the outer peripheral wall of the cylinder block and to increase the temperature of the cylinder liner early and quickly.
  • the purpose is to achieve uniform temperature and to ensure the cooling performance of the upper part of the cylinder liner.
  • the technique disclosed in the present specification makes the upper portion of the water jacket spacer close to the outer peripheral wall of the cylinder block, and between the upper portion of the water jacket spacer and the upper outer periphery of the cylinder liner. A coolant path is formed.
  • a water jacket is formed around a cylinder liner of a cylinder block that constitutes an engine, and the water jacket is formed on the outer peripheral wall of the cylinder block that forms the outer periphery of the water jacket.
  • the water jacket spacer is disposed so as to surround substantially the entire circumference of a portion corresponding to the water jacket of the cylinder liner, and the coolant introduction portion of the water jacket spacer is arranged. Is formed with an opening for introducing the coolant introduced from the coolant introduction portion to the inside of the water jacket spacer, and the upper portion of the water jacket spacer is adjacent to the outer peripheral wall of the cylinder block.
  • a coolant path is formed between the upper periphery of the cylinder liner and the coolant introduced from the opening to circulate around the upper periphery of the cylinder liner, while the lower portion of the water jacket spacer is , Close to the cylinder liner.
  • the coolant path is formed between the upper part of the water jacket spacer and the upper outer periphery of the cylinder liner, the coolant flowing in the coolant path does not contact the cylinder block outer peripheral wall, Since the upper portion of the water jacket spacer is close to the outer peripheral wall of the cylinder block, the coolant flowing through the coolant path is insulated by the water jacket spacer. Therefore, it is possible to suppress the heat of the cylinder liner from being radiated to the outer peripheral wall of the cylinder block through the coolant flowing through the coolant path.
  • the lower portion of the water jacket spacer is close to the lower portion of the cylinder liner and the lower portion of the cylinder liner is thermally insulated by the water jacket spacer, it is possible to suppress the lower portion of the cylinder liner from being cooled.
  • the temperature of the cylinder liner can be raised quickly and a uniform temperature distribution can be achieved.
  • the sliding resistance of the piston can be reduced, and fuel consumption can be improved.
  • the cooling property in the upper part of a cylinder liner is also securable.
  • the coolant flows only in substantially the upper portion of the water jacket, the coolant flow rate can be suppressed, and the load on the water pump that sends the coolant to the water jacket can be reduced. As a result, engine warm-up can be promoted.
  • the cooling fluid path is preferably formed by separating the upper portion of the water jacket spacer from the outer periphery of the upper portion of the cylinder liner.
  • the coolant path is formed by separating the upper portion of the water jacket from the upper outer periphery of the cylinder liner, the coolant path is formed without changing the shape of the upper periphery of the cylinder liner. be able to.
  • the engine is a multi-cylinder engine
  • the water jacket is formed around the cylinder liner provided in each cylinder
  • the water jacket spacer is made of resin and surrounds the plurality of cylinder liners.
  • a seal member is provided between the cylinder bores of the cylinder block and a portion corresponding to the space between the cylinder bores of the water jacket spacer.
  • the water jacket spacer made of resin is formed so as to increase the gap between the bores in consideration of manufacturing errors and assembling properties, but a spacer member is provided in the gap. Therefore, it is possible to suppress the coolant flowing through the coolant path from flowing out of the coolant path through the gap.
  • the opening is formed at one end in the cylinder row direction of the water jacket spacer, and the coolant path circulates the coolant introduced from the opening from the exhaust side portion to the intake side portion of the coolant path. It is preferable to be formed as described above.
  • the cylinder liner of each cylinder can be appropriately cooled.
  • the cylinder head that constitutes the engine together with the cylinder block is formed with a cylinder head water jacket through which coolant from the water jacket of the cylinder block flows, and at one end in the cylinder row direction of the water jacket spacer, A cooling liquid lead-out portion for leading the cooling liquid circulating through the cooling liquid path to the cylinder head water jacket is formed, and is introduced from the opening portion between the cooling liquid lead-out portion and the opening in the water jacket spacer. It is preferable that a coolant limiting portion for limiting the flow of the coolant is formed.
  • the coolant introduced from the coolant introduction part flows into the coolant path from the opening and flows to the exhaust side and the intake side of the coolant path.
  • the coolant flowing to the intake side is restricted from flowing from the opening to the coolant outlet portion flowing from the opening to the cylinder head water jacket by the coolant restricting portion. Therefore, most of the coolant flowing into the coolant path from the opening flows to the exhaust side of the coolant path, and the coolant path can be reliably circulated to flow to the cylinder head water jacket.
  • the cylinder liner while suppressing heat dissipation to the outer peripheral wall of the cylinder block, the cylinder liner can be quickly heated and quickly uniformed, and the cooling of the upper part of the cylinder liner can be ensured. can do.
  • FIG. 1 is a top view of a cylinder block.
  • FIG. 2 is a cross-sectional view of the engine taken along line II-II in FIG.
  • FIG. 3 is a cross-sectional view of the engine taken along the line III-III of FIG.
  • FIG. 4 is a perspective view of the water jacket spacer as viewed from the exhaust side.
  • FIG. 5 is a perspective view of the water jacket spacer as viewed from the intake side.
  • FIG. 6A is a plan view showing a water jacket spacer.
  • FIG. 6B is a side view of the water jacket spacer as viewed from the exhaust side.
  • FIG. 6C is a side view of the water jacket spacer as viewed from the intake side.
  • FIG. 7A is a partially enlarged view of FIG.
  • FIG. 7B is a partially enlarged view of FIG. 1 in a state where a water jacket spacer is attached, and shows a VIIb portion.
  • FIG. 7C is a partially enlarged view of FIG. 1 in a state where a water jacket spacer is attached, and shows a VIIc portion.
  • 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • FIG. 9 is a diagram showing the temperature distribution of the cylinder liner.
  • FIG. 1 is a top view of a cylinder block 3 constituting a multi-cylinder engine 1 (hereinafter referred to as an engine 1) having an engine cooling structure according to an exemplary embodiment.
  • 2 and 3 are cross-sectional views of the engine 1 taken along lines II-II and III-III in FIG. 1, respectively.
  • the engine 1 is an in-line four-cylinder engine in which four siamese type cylinders 5, 5,... Arranged in series are arranged in series along the axial direction of a crankshaft (not shown).
  • the engine 1 is constituted by the cylinder block 3 made of aluminum alloy and a cylinder head 7 made of aluminum alloy which is assembled on the upper side of the cylinder block 3.
  • the engine 1 is formed by the cylinder block 3 and the cylinder head 7.
  • Pistons (not shown) are configured to reciprocate up and down.
  • the engine 1 is mounted horizontally in an engine room provided at the front of the vehicle so that the crankshaft extends in the vehicle width direction. More specifically, the engine 1 is disposed in a slanted state so that the center line of each cylinder 5 is inclined at a predetermined angle with respect to the vertical direction.
  • An intake manifold (not shown) for introducing intake air into each cylinder 5 is disposed on the left side (upper side in FIG. 1) of the engine 1, while the right side (lower side in FIG. 1) of the engine 1 is disposed. ) Is provided with an exhaust system (exhaust manifold, etc., not shown).
  • the engine 1 is provided with a water pump (not shown) for sending cooling water into water jackets 13 and 15 formed in the cylinder block 3 and the cylinder head 7, respectively. ing.
  • the water pump is driven by a crankshaft via a crank pulley (not shown) provided in the cylinder block 3.
  • cylinder bores 17, 17,... Constituting a part of the plurality of cylinders 5, 5,. Is formed.
  • the cylinder bore 17 is cooled so as to cool around the cylinder liner 19 (see FIG. 3) disposed on the inner peripheral surface of each cylinder 5 (on the inner peripheral surface of the cylinder bore 17).
  • 17,... Are formed on the intake side and exhaust side of the cylinder block water jacket 13 (water jacket) as a cooling water flow path.
  • the cylinder block water jacket 13 surrounds from the upper portion of the cylinder liner 19 to the central portion in the vertical direction (piston reciprocating direction), more specifically, from the upper end portion of the cylinder liner 19.
  • the cylinder liner 19 is disposed so as to surround a portion corresponding to about 60% of the length in the vertical direction.
  • the cylinder block water jacket 13 is constricted at a portion corresponding to the above-mentioned cylinder bores 9, 9,. Further, cooling water fed from the water pump is introduced into the cylinder block water jacket 13 at the exhaust-side engine front end of the cylinder block outer peripheral wall 21 that forms the outer periphery of the cylinder block water jacket 13.
  • An introduction path 23 (coolant introduction part) is formed.
  • the cooling water introduction passage 23 is formed at a location corresponding to the lower side of the center portion in the vertical direction of the cylinder block water jacket 13 in the outer peripheral wall 21 of the cylinder block. Inclined. Therefore, the cooling water introduced into the cylinder block water jacket 13 from the cooling water introduction path 23 branches to the engine front side and the rear side, most of which flows to the engine rear side, and the other flows to the engine front side.
  • a water jacket spacer 25 that forms a channel for cooling water flowing through the cylinder block water jacket 13 corresponds to the cylinder block water jacket 13 of the four cylinder liners 19, 19,.
  • Is disposed so as to surround substantially the entire circumference of the. 4 and 5 are overall perspective views of the water jacket spacer 25 as seen from the exhaust side and the intake side, respectively.
  • 6 is a view showing the water jacket spacer 25, FIG. 6A is a plan view, FIG. 6B is a side view seen from the exhaust side, and FIG. 6C is a side view seen from the intake side.
  • the water jacket spacer 25 is made of a heat resistant synthetic resin.
  • the water jacket spacer 25 includes a jacket spacer lower portion 27 that surrounds a central portion in the vertical direction of each cylinder liner 19, and a flange portion 29 that projects outward from the upper end of the jacket spacer lower portion 27 toward the cylinder block outer peripheral wall 21.
  • a jacket spacer upper portion 31 extending upward from the outer peripheral end of the flange portion 29 and surrounding the upper end portion of each cylinder liner 19.
  • the jacket spacer lower portion 27 has a substantially cylindrical shape elongated in the longitudinal direction of the engine, and a portion corresponding to the cylinder bores 9, 9,... Is narrowed along the shape of the cylinder bores 9, 9,.
  • the upper end of the portion corresponding to the cylinder 5 on the most front side of the engine in the exhaust side portion of the jacket spacer lower portion 27 maintains a certain height and moves upward from the portion toward the rear side of the engine. It is inclined to.
  • the upper end of the intake side portion of the jacket spacer lower portion 27 is inclined upward toward the front of the engine with a gentler gradient than the upper end of the exhaust side portion.
  • the lightening portions 33 are formed at equal intervals in the circumferential direction from the viewpoint of weight reduction.
  • the jacket spacer lower portion 27 is close to the center of the cylinder liner 19 in the vertical direction, and is substantially in contact with the outer peripheral surface of the cylinder 5 outside the cylinder liner 19.
  • the portion of the jacket spacer lower portion 27 corresponding to the cylinder bores 9, 9,... Has a relatively narrow portion corresponding to the cylinder bores 9, 9,. It is located slightly outside from 9, 9,. Therefore, as shown in FIG. 2, a relatively large gap is formed between a portion of the jacket spacer lower portion 27 corresponding to the cylinder bores 9, 9,... And the cylinder bores 9, 9,. Yes.
  • the water jacket spacer 25 is arranged on the outermost surface of the cylinder 5 on the front side of the engine and on the rear side of the engine. It is designed such that a relatively large gap is formed between the cylinder 5 and the outer peripheral surface. However, if these relatively large gaps are formed, cooling water flowing in a cooling water passage 45 (described later) formed inside the jacket spacer upper portion 31 may leak out to the inside of the jacket spacer lower portion 27. Therefore, urethane rubber sealing members 35, 37, and 39 are disposed in the relatively large gap.
  • FIG. 7 is a partially enlarged view of FIG. 1 in a state where the water jacket spacer 25 is attached.
  • FIG. 7A is a view showing the VIIa portion
  • FIG. 7B is a view showing the VIIb portion
  • FIG. FIG. 7A a seal member 35 is attached to a gap corresponding to the cylinder bores 9, 9,... To close the gap.
  • arc-shaped seal members 37 and 39 are attached to the gaps corresponding to the cylinders 5 on both sides in the longitudinal direction of the engine to close the gaps.
  • the sealing member 35 is omitted.
  • the flange part 29 is formed over the entire upper end of the jacket spacer lower part 27 as shown in FIGS. A portion of the flange portion 29 corresponding to the cooling water introduction path 23 projects outward along the shape of the cooling water introduction path 23.
  • the outer peripheral end of the portion corresponding to the cylinder bores 9, 9,... Of the flange 29 is curved more gently than the portion of the jacket spacer lower portion 27 corresponding to the cylinder bores 9, 9,. .
  • the flange 29 has a width substantially the same as the width of the cylinder block water jacket 13 over the entire circumference of the cylinder block water jacket 13.
  • the portion of the flange portion 29 located on the engine front side of the cylinder 5 closest to the engine front leads the cooling water to a jacket main body 55 (cylinder head water jacket) described later formed inside the cylinder head 7.
  • an intermediate portion between the cooling water outlet portion 41 and the portion corresponding to the cooling water introduction path 23 in the flange portion 29 (hereinafter referred to as an intermediate portion) is configured as the cooling water outlet portion 41. It is narrower than other parts.
  • the jacket spacer upper portion 31 is formed along the outer peripheral end of the flange portion 29, and, like the jacket spacer lower portion 27, has a substantially cylindrical shape elongated in the front-rear direction of the engine, and between the cylinder bores 9, 9,. Are constricted along the shape of the cylinder bores 9, 9,...
  • a rectangular opening 43 is formed in a portion corresponding to the cooling water introduction path 23 in the exhaust side portion of the jacket spacer upper portion 31.
  • the opening 43 introduces the cooling water introduced from the cooling water introduction path 23 into the jacket spacer upper portion 31.
  • the jacket spacer upper portion 31 is separated from the outer peripheral surface of each cylinder 5 and is close to the cylinder block outer peripheral wall 21. As shown in FIG. Therefore, a wide space is formed between the jacket spacer upper portion 31 and the cylinders 5, 5,..., And the cooling water introduced from the opening 43 circulates in this space. In other words, this space constitutes a cooling water path 45 (cooling liquid path) for circulating the cooling water introduced from the opening 43 around the upper periphery of the cylinder liners 19, 19,... From the exhaust side to the intake side. ing.
  • the upper end of the jacket spacer upper portion 31 has a certain height, and as shown in FIG. 6B, the portion of the jacket spacer upper portion 31 corresponding to the cylinder 5 on the most engine front side is constant. The height dimension decreases from the portion toward the rear side of the engine. As shown in FIG. 6C, the intake side portion of the jacket spacer upper portion 31 has a height dimension that decreases toward the front of the engine.
  • the portion corresponding to the intermediate portion of the flange portion 29 in the jacket spacer upper portion 31 is closest to the outer peripheral surface of the cylinder 5 on the front side of the engine. Therefore, since the location corresponding to the intermediate portion of the cooling water path 45 is narrower than the other locations of the cooling water path 45, the cooling water restriction portion 47 is configured to restrict the flow of the cooling water. . Therefore, the cooling water flowing into the cooling water path 45 from the opening 43 branches to the engine front side and the rear side, but the flow of the cooling water flowing to the engine front side is restricted by the cooling water restriction unit 47. Therefore, most of the cooling water flowing into the cooling water passage 45 flows to the rear side of the engine.
  • the water jacket spacer 25 formed by the jacket spacer lower portion 27 and the jacket spacer upper portion 31 surrounds substantially the entire circumference of the portion corresponding to the cylinder block water jacket 13 of the four cylinder liners 19, 19,.
  • the water jacket spacer 25 has a gap in the cylinder block water jacket 13 by a plurality of protrusions disposed at the lower end of the jacket spacer lower portion 27.
  • cooling water flows into the gap between the jacket spacer lower portion 27 and the outer peripheral surface of the cylinder 5 and the cylinder block peripheral wall 21 and the gap between the jacket spacer upper portion 31 and the cylinder block outer peripheral wall 21.
  • this cooling water since there is almost no flow of this cooling water, there is almost no influence on the cooling performance.
  • the cylinder head 7 is composed of a substantially rectangular parallelepiped block material, and the portion corresponding to each cylinder bore 17 on the lower surface constitutes the ceiling surface of the combustion chamber 49.
  • 8 is a cross-sectional view taken along line VIII-VIII in FIG.
  • a pair of intake ports 51, 51 are formed in the front-rear direction of the engine on the intake side of each ceiling surface, and a pair of exhaust ports 53, 53 are spaced in the front-rear direction of the engine on the exhaust side. Is formed.
  • a plug hole 52 is formed between the intake ports 51 and 51 and the exhaust ports 53 and 53, and an injector hole 54 is formed on the intake side of the plug hole 52.
  • the cylinder head water jacket 15 includes a jacket body 55 formed around the combustion chamber 49 of each cylinder 5 and an anti-combustion chamber 49 of the exhaust port 53 of each cylinder 5. And an exhaust side jacket 57 formed on the side.
  • the jacket body 55 extends over the entire front-rear direction of the cylinder head 7 so as to wrap around the outer periphery of the intake / exhaust ports 51 and 53 and the plug hole 52 of each cylinder 5 in the vicinity of the periphery of the combustion chamber 49 of each cylinder 5. Is formed.
  • the jacket body 55 communicates with both ends of the exhaust side jacket 57 in the engine front-rear direction through holes formed at both ends of the engine front-rear direction. As a result, the cooling water flowing through the jacket main body 55 sequentially flows to the exhaust side jacket 57.
  • a gasket 59 is disposed on the lower surface of the cylinder head 7 so as to cover the jacket body 55.
  • bolt insertion holes 61, 61,... are formed at portions corresponding to the bolt holes 11, 11,.
  • the cooling water fed from the water pump flows into the cooling water introduction path 23, and is introduced from the cooling water introduction path 23 into the cooling water path 45 through the opening 43 formed in the water jacket spacer 25.
  • the cooling water introduced into the cooling water path 45 hits the outermost surface of the cylinder 5 on the front side of the engine and branches to the front side and the rear side of the engine. Since the coolant introduction path 23 is inclined toward the engine rear side as approaching the cylinder 5 as described above, the flow of the coolant introduced from the coolant introduction path 23 is directed to the engine rear side. Therefore, the cooling water introduced into the exhaust side portion of the cooling water passage 45 flows toward the rear side of the engine, and the other flows toward the front side.
  • the cooling water flowing toward the front side of the engine is limited in flow rate by the cooling water restricting portion 47, and therefore has a smaller flow rate than the cooling water flowing toward the rear side of the engine. Then, the cooling water that has passed through the cooling water restricting portion 47 reaches the cooling water outlet portion 41 and flows into the jacket main body 55 of the cylinder head 7 through the communication path formed in the gasket 59. At this time, since the seal member 39 is press-fitted into the gap between the portion corresponding to the cooling water outlet 41 of the water jacket spacer 25 and the cylinder 5 on the front side of the engine, the cooling water may leak from this gap. Absent.
  • the cooling water flowing toward the rear side of the engine circulates in the exhaust side portion of the cooling water introduction path 23.
  • the vertical width of the cooling water passage 45 is gradually reduced, so that the flow path cross-sectional area is gradually reduced. Therefore, the cooling water flow rate is maintained at a predetermined speed.
  • a part of the cooling water passes between the cylinder bores 9, 9,..., And at this time, the seal member 35 is press-fitted into the gap between the water jacket spacer 25 and the cylinder bores 9, 9,. Therefore, the cooling water does not leak from this gap.
  • the cooling water that has flowed through the exhaust side portion of the cooling water passage 45 goes around the outer periphery of the cylinder 5 on the most rear side of the engine. At this time, since the sealing member 37 is press-fitted into the gap between the water jacket spacer 25 and the cylinder 5, the cooling water does not leak from this gap.
  • the cooling water that has entered the outer periphery of the cylinder on the most rear side of the engine flows through the intake side portion of the cooling water passage 45 toward the front side of the engine.
  • the vertical cross-sectional area of the cooling water path 45 gradually decreases toward the front of the engine, so that the cross-sectional area of the flow path gradually decreases. Therefore, the flow rate of the cooling water is maintained at a predetermined speed.
  • the cooling water that has flowed through the intake side portion of the cooling water passage 45 circulates around the cylinder 5 on the most front side of the engine, reaches the cooling water outlet 41, and passes through the second communication path to the jacket body 55 of the cylinder head 7. Inflow.
  • the cooling water flows into the jacket main body 55 of the cylinder head 7 through the communication holes 63, 63,.
  • the inventors measured the wall temperature in the height direction of the cylinder liner 19. In this measurement, cooling water is sent from the water pump to the cylinder block water jacket 13 and the engine 1 is driven, and the wall temperature in the height direction of one of the cylinder liners 19, 19,. did.
  • the measurement conditions are as follows: (a) when the water jacket spacer 25 according to the present embodiment is disposed on the cylinder block water jacket 13, (b) when the water jacket spacer is not disposed on the cylinder block water jacket 13, and (c 3) The case where a conventional water jacket spacer is disposed on the cylinder block water jacket 13 is used. It is assumed that the conventional water jacket spacer is entirely adjacent to the cylinder liners 19, 19,... And separated from the cylinder block outer peripheral wall 21.
  • FIG. 9 is a diagram showing the results of the measurement, wherein the vertical axis and the horizontal axis show the height and wall temperature of the cylinder liner 19, respectively, and the solid line shows the result under the measurement condition (a), and the broken line Shows the result under the measurement condition (b), and the alternate long and short dash line shows the result under the measurement condition (c).
  • the wall temperature at the upper end of the cylinder liner 19 reaches about 130 ° C., while the wall temperature at the lower end is about 112 ° C.
  • the temperature difference was about 18 ° C.
  • the wall temperature at the upper end of the cylinder liner 19 reaches about 135 ° C.
  • the wall temperature at the lower end was about 122 ° C., and the temperature difference was about 13 ° C.
  • the wall temperature at the upper end of the cylinder liner 19 is about 130 ° C., which is about 5 ° C. lower than the conventional one.
  • the temperature difference was about 115 ° C. from the center to the lower end, and the temperature difference was about 15 ° C. That is, it was found that the water jacket spacer 25 according to the present embodiment can suppress the temperature difference in the height direction while keeping the temperature of the entire cylinder liner 19 low.
  • the jacket spacer lower portion 27 is close to the cylinder liner 19 and the center portion of the cylinder liner 19 is thermally insulated by the water jacket spacer 25, the center portion of the cylinder liner 19 can be prevented from being cooled. .
  • the temperature of the cylinder liner 19 can be increased quickly and a uniform temperature distribution can be achieved.
  • the sliding resistance of the piston can be reduced and the fuel consumption can be improved.
  • the cooling property in the upper part of the cylinder liner 19 is also securable.
  • the cooling water flows only in the upper part of the cylinder block water jacket 13, the cooling water flow rate can be suppressed, and the load of the water pump that sends the cooling water to the cylinder block water jacket 13 can be reduced. As a result, warming up of the engine 1 can be promoted.
  • the cooling water passage 45 is formed by separating the jacket spacer upper portion 31 from the upper outer periphery of the cylinder liners 19, 19,.
  • the cooling water path 45 can be formed without changing.
  • the water jacket spacer 25 made of resin is formed so that the gaps between the cylinder bores 9, 9,... Since the seal members 35, 37, and 39 are provided so as to close the gap, it is possible to suppress the cooling water flowing through the cooling water path 45 from flowing out of the cooling water path 45 through the gap. it can.
  • the cylinder liner 19 of each cylinder 5 can be appropriately cooled.
  • the cooling water introduced from the cooling water introduction path 23 flows into the cooling water path 45 from the opening 43 of the water jacket spacer 25 and flows to the front and rear sides of the engine.
  • the cooling water flowing to the engine front side is restricted by the cooling water restricting portion 47 from the opening 43 to the cooling water deriving portion 41 flowing to the cylinder head water jacket 15. Therefore, most of the cooling water flowing into the cooling water passage 45 from the opening 43 flows to the exhaust side of the cooling water passage 45 and reliably circulates through the cooling water passage 45 and can flow to the cylinder head water jacket 15. .
  • the technology disclosed in this specification achieves an early temperature rise and early temperature uniformization of the cylinder liner while suppressing heat dissipation to the cylinder block outer peripheral wall
  • the present invention can be applied to uses for ensuring cooling performance.
  • Cylinder block (5) Cylinder (7) Cylinder head (9) Between cylinder bores (19) Cylinder liner (13) Cylinder block water jacket (water jacket) (15) Cylinder head water jacket (21) Cylinder block outer peripheral wall (23) Cooling water introduction path (cooling liquid introduction part) (25) Water jacket spacer (27) Lower jacket spacer (lower water jacket spacer) (31) Jacket spacer top (top of water jacket spacer) (35) Seal member (41) Cooling water outlet (cooling liquid outlet) (43) Opening (45) Cooling water path (cooling liquid path) (47) Cooling water restriction part (cooling liquid restriction part)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 ウォータジャケットスペーサは、シリンダライナのウォータジャケットに対応する部位の略全周を囲むように配置されている。ウォータジャケットスペーサの冷却液導入部に対応する部位には、冷却液導入部から導入された冷却液をウォータジャケットスペーサの内側に導入する開口部が形成されている。ウォータジャケットスペーサの上部は、シリンダブロック外周壁に近接すると共に、シリンダライナの上部外周りとの間に開口部から導入された冷却液をシリンダライナの上部外周りに循環させる冷却液経路が形成されている。ウォータジャケットスペーサの下部は、シリンダライナに近接している。

Description

エンジンの冷却構造
 本明細書に開示される技術は、エンジンの冷却構造に関し、特に、シリンダブロックのウォータジャケット内に冷却水の流路を形成するウォータジャケットスペーサが配設されたものに関するものである。
 従来、エンジンを構成するシリンダブロックに冷却水が流通するウォータジャケットが形成され、該ウォータジャケットに冷却水の流路を形成するウォータジャケットスペーサが配設されたエンジンの冷却構造がある。その一例が特許文献1に開示されている。
 特許文献1には、ウォータジャケット内にシリンダライナの外周の略全周を覆うウォータジャケットスペーサが配設され、該ウォータジャケットスペーサの上部には、シリンダライナの外周部における冷却水の流量を増加させるための空間部を形成する切り欠きが設けられ、ウォータジャケットスペーサの内側及び外側に冷却水を流通させるエンジンの冷却構造が開示されている。
特許第4279713号公報
 しかしながら、特許文献1に開示のエンジンの冷却構造では、ウォータジャケット内の冷却水がウォータジャケットスペーサの外側を流れるため、シリンダライナの熱が冷却水を介してウォータジャケットの外周を形成するシリンダブロック外周壁に放熱される。その結果、シリンダライナの昇温効果が低下し、シリンダライナ全体が安定した略均一の温度分布になるまでに時間を要する。そのため、シリンダライナの内側を摺動するピストンの摺動抵抗が低減し難く、また、暖機促進効果も低下する。その上、燃焼室近傍のシリンダライナ上部の効果的な冷却も不十分となる。
 本明細書に開示される技術は、かかる点に鑑みてなされたものであり、その目的とするところは、シリンダブロック外周壁への放熱を抑制しつつ、シリンダライナの早期の昇温及び早期の温度均一化を達成し、かつシリンダライナ上部の冷却性を確保することにある。
 上記の目的を達成するために、本明細書に開示される技術は、ウォータジャケットスペーサの上部をシリンダブロック外周壁に近接させると共に、ウォータジャケットスペーサの上部とシリンダライナの上部外周りとの間に冷却液経路を形成したものである。
 具体的には、本明細書に開示される技術は、エンジンを構成するシリンダブロックのシリンダライナ周りにウォータジャケットが形成され、該ウォータジャケットの外周りを形成するシリンダブロック外周壁に該ウォータジャケットに冷却液を導入する冷却液導入部が形成されると共に、上記ウォータジャケットにウォータジャケットスペーサが配設されたエンジンの冷却構造を対象とし、次のような解決手段を講じた。
 すなわち、本明細書に開示される技術は、上記ウォータジャケットスペーサは、上記シリンダライナの上記ウォータジャケットに対応する部位の略全周を囲むように配置され、 上記ウォータジャケットスペーサの上記冷却液導入部に対応する部位には、該冷却液導入部から導入された冷却液を上記ウォータジャケットスペーサの内側に導入する開口部が形成され、上記ウォータジャケットスペーサの上部は、上記シリンダブロック外周壁に近接すると共に、上記シリンダライナの上部外周りとの間に上記開口部から導入された冷却液を上記シリンダライナの上部外周りに循環させる冷却液経路が形成されている一方、上記ウォータジャケットスペーサの下部は、上記シリンダライナに近接しているものである。
 これによれば、ウォータジャケットスペーサの上部とシリンダライナの上部外周りとの間に冷却液経路が形成されているので、冷却液経路を流れる冷却液がシリンダブロック外周壁に接触せず、また、ウォータジャケットスペーサの上部がシリンダブロック外周壁に近接しているので、冷却液経路を流れる冷却液がこのウォータジャケットスペーサによって断熱される。そのため、冷却液経路を流れる冷却液を介してシリンダライナの熱がシリンダブロック外周壁に放熱されるのを抑制することができる。また、ウォータジャケットスペーサの下部がシリンダライナの下部に近接しており、シリンダライナの下部がウォータジャケットスペーサによって断熱されるので、シリンダライナの下部が冷却されるのを抑制することができる。以上により、シリンダライナが早期に昇温し、かつ均一な温度分布を達成することができる。その結果、ピストンの摺動抵抗を低減することができて、燃費向上を図ることができる。また、シリンダライナの上部における冷却性も確保することができる。さらには、冷却液がウォータジャケットの略上部だけを流れるため、冷却液流量を抑えることが可能となり、ウォータジャケットに冷却液を送出するウォータポンプの負荷を低減することができる。その結果、エンジンの暖気を促進することができる。
 上記冷却液経路は、上記ウォータジャケットスペーサの上部を上記シリンダライナの上部外周りから離間させて形成されていることが好ましい。
 これによれば、冷却液経路がウォータジャケットの上部をシリンダライナの上部外周りから離間させて形成されているので、シリンダライナの上部外周りの形状を変更することなく、冷却液経路を形成することができる。
 上記エンジンは多気筒エンジンであり、上記ウォータジャケットは、各気筒に設けられた上記シリンダライナ周りに形成され、上記ウォータジャケットスペーサは、樹脂製であって、複数の上記シリンダライナ周りを囲むように配置され、上記シリンダブロックのシリンダボア間と上記ウォータジャケットスペーサの該シリンダボア間に対応する部位との間には、シール部材が設けられていることが好ましい。
 これによれば、樹脂製のウォータジャケットスペーサは、製造誤差や組付性を考慮して、各ボア間との隙間が大きくなるように成形されているが、この隙間にスペーサ部材が設けられているので、冷却液経路を流れる冷却液が当該隙間を通って冷却液経路の外部に流出するのを抑制することができる。
 上記開口部は、上記ウォータジャケットスペーサの気筒列方向一端部に形成され、上記冷却液経路は、上記開口部から導入された冷却液を該冷却液経路の排気側部分から吸気側部分に循環させるように形成されていることが好ましい。
 これによれば、冷却液を比較的高温の排気側から循環させるため、各気筒のシリンダライナを適正に冷却することができる。
 上記シリンダブロックと共に上記エンジンを構成するシリンダヘッドには、該シリンダブロックのウォータジャケットからの冷却液が流れるシリンダヘッドウォータジャケットが形成されており、上記ウォータジャケットスペーサの気筒列方向一端部には、上記冷却液経路を循環した冷却液を上記シリンダヘッドウォータジャケットに導出する冷却液導出部が形成され、上記ウォータジャケットスペーサにおける上記冷却液導出部と上記開口部との間には、該開口部から導入された冷却液の流れを制限する冷却液制限部が形成されていることが好ましい。
 これによれば、冷却液導入部から導入された冷却液は、開口部から冷却液経路に流入し、冷却液経路の排気側及び吸気側に流れる。このうち、吸気側に流れる冷却液は、冷却液制限部によって上記開口部からシリンダヘッドウォータジャケットへ流れる冷却液導出部への流れが制限されている。したがって、開口部から冷却液経路に流入した冷却液の大部分を冷却液経路の排気側に流れて当該冷却液経路を確実に循環させ、シリンダヘッドウォータジャケットに流すことができる。
 本明細書に開示される技術によれば、シリンダブロック外周壁への放熱を抑制しつつ、シリンダライナの早期の昇温及び早期の温度均一化を達成し、かつシリンダライナ上部の冷却性を確保することができる。
図1は、シリンダブロックの上面図である。 図2は、エンジンの図1のII-II線断面相当図である。 図3は、エンジンの図1のIII-III線断面相当図である。 図4は、ウォータジャケットスペーサを排気側から見た斜視図である。 図5は、ウォータジャケットスペーサを吸気側から見た斜視図である。 図6Aは、ウォータジャケットスペーサを示す平面図である。 図6Bは、ウォータジャケットスペーサを示す排気側から見た側面図である。 図6Cは、ウォータジャケットスペーサを示す吸気側から見た側面図である。 図7Aは、ウォータジャケットスペーサを取り付けた状態における図1の一部拡大図であって、VIIa部を示す図である。 図7Bは、ウォータジャケットスペーサを取り付けた状態における図1の一部拡大図であって、VIIb部を示す図である。 図7Cは、ウォータジャケットスペーサを取り付けた状態における図1の一部拡大図であって、VIIc部を示す図である。 図8は、図3のVIII-VIII線断面図である。 図9は、シリンダライナの温度分布を示す図である。
 以下、例示的実施形態を図面に基づいて詳細に説明する。
 図1は、例示的実施形態に係るエンジンの冷却構造を備えた多気筒エンジン1(以下、エンジン1という)を構成するシリンダブロック3の上面図である。また、図2及び図3は、それぞれ上記エンジン1を図1におけるII-II線及びIII-III線で切断した場合の断面図である。
 上記エンジン1は、直列に並ぶ4つのサイアミーズタイプの気筒5,5,…がクランク軸(図示省略)の軸方向に沿って直列に並ぶ直列4気筒エンジンである。このエンジン1は、アルミニウム合金製の上記シリンダブロック3と該シリンダブロック3の上側に組み付けられる同じくアルミニウム合金製のシリンダヘッド7とによって構成され、これらシリンダブロック3とシリンダヘッド7とによって形成される上記気筒5,5,…内でピストン(図示省略)が上下往復動するように構成されている。
 上記エンジン1は、車両前部に設けられたエンジンルーム内に、クランク軸が車幅方向に延びるように横置き搭載されるものである。より具体的には、上記エンジン1は、上記各気筒5の中心線が鉛直方向に対して所定角度で傾斜するようにスラント状態で配設されている。該エンジン1の左側(図1において上側)には、各気筒5内に吸気を導入するための吸気マニホールド(図示省略)が配設されている一方、上記エンジン1の右側(図1において下側)には、排気系(排気マニホールド等、図示省略)が設けられている。このシリンダブロック3において、その長手方向(気筒列方向であり、以下、エンジン前後方向ともいう)両端部及びシリンダボア間9,9,…のそれぞれの吸気側及び排気側には、上記シリンダヘッド7とボルト締結するためのボルトが螺合されるボルト穴11,11,…が形成されている。
 また、上記エンジン1には、後述するように、上記シリンダブロック3及びシリンダヘッド7にそれぞれ形成されたウォータジャケット13,15内に冷却水を送出するためのウォータポンプ(図示省略)が配設されている。該ウォータポンプは、上記シリンダブロック3に設けられたクランクプーリ(図示省略)を介してクランク軸によって駆動される。
 上記シリンダブロック3は、概略直方体形状のブロック材の上面に、上記エンジン1の複数の上記気筒5,5,…の一部を構成するシリンダボア17,17,…が直列に並んで開口するように形成されている。そして、上記シリンダブロック3には、上記各気筒5の内周面上(シリンダボア17の内周面上)に配設されるシリンダライナ19(図3参照)周りを冷却するように、上記シリンダボア17,17,…の吸気側及び排気側に冷却水の流通路としてのシリンダブロックウォータジャケット13(ウォータジャケット)が形成されている。該シリンダブロックウォータジャケット13は、図3に示すように、シリンダライナ19の上部から上下方向(ピストン往復動方向)中央部までを囲むように、より具体的には、シリンダライナ19の上端部から、シリンダライナ19の上下方向長さの約6割に相当する部分までを囲むように配置されている。
 該シリンダブロックウォータジャケット13は、上記シリンダボア間9,9,…に対応する箇所がくびれている。また、上記シリンダブロックウォータジャケット13の外周りを形成するシリンダブロック外周壁21の排気側エンジン前端部には、上記ウォータポンプから送給される冷却水を上記シリンダブロックウォータジャケット13に導入する冷却水導入路23(冷却液導入部)が形成されている。該冷却水導入路23は、上記シリンダブロック外周壁21における上記シリンダブロックウォータジャケット13の上下方向中央部の下側に対応する箇所に形成され、最もエンジン前側の気筒5に近づくに従ってエンジン後側に傾斜している。そのため、上記冷却水導入路23からシリンダブロックウォータジャケット13に導入された冷却水は、エンジン前側及び後側に分岐し、大部分がエンジン後側に流れ、その他がエンジン前側に流れる。
 上記シリンダブロックウォータジャケット13には、該シリンダブロックウォータジャケット13を流れる冷却水の水路を形成するウォータジャケットスペーサ25が4つの上記シリンダライナ19,19,…の上記シリンダブロックウォータジャケット13に対応する部位の略全周を囲むように配設されている。図4及び図5は、ウォータジャケットスペーサ25の全体斜視図であって、それぞれ排気側及び吸気側から見たものである。さらに、図6はウォータジャケットスペーサ25を示す図であって、図6Aは平面図、図6Bは排気側から見た側面図、図6Cは吸気側から見た側面図である。
 上記ウォータジャケットスペーサ25は、耐熱性の合成樹脂からなる。該ウォータジャケットスペーサ25は、上記各シリンダライナ19の上下方向中央部を囲むジャケットスペーサ下部27と、該ジャケットスペーサ下部27の上端から上記シリンダブロック外周壁21に向かって外側に張り出す鍔部29と、該鍔部29の外周端から上方に延びて上記各シリンダライナ19の上端部を囲むジャケットスペーサ上部31と、を有している。
 上記ジャケットスペーサ下部27は、エンジン前後方向に細長い略円筒状をなし、上記シリンダボア間9,9,…に対応する部位がこれらシリンダボア間9,9,…の形状に沿ってくびれている。
 図6Bに示すように、上記ジャケットスペーサ下部27の排気側部分における最もエンジン前側の上記気筒5に対応する部分の上端は、一定の高さを保持し、当該部分からエンジン後側に向かって上方に傾斜している。そして、図6Cに示すように、上記ジャケットスペーサ下部27の吸気側部分の上端は、排気側部分の上端よりも緩やかな勾配でエンジン前側に向かって上方に傾斜している。
 また、上記ジャケットスペーサ下部27の外周面には、図4乃至図6に示すように、軽量化の観点から、肉抜き部33が周方向に等間隔で形成されている。
 さらに、上記ジャケットスペーサ下部27は、上記各シリンダライナ19の上下方向中央部に近接しており、該各シリンダライナ19外側の上記気筒5の外周面とほぼ接触している。ただし、上記ジャケットスペーサ下部27の上記シリンダボア間9,9,…に対応する部位は、上記シリンダブロックウォータジャケット13の該シリンダボア間9,9,…に対応する箇所が比較的狭いため、該シリンダボア間9,9,…からやや外側に位置している。そのため、図2に示すように、上記ジャケットスペーサ下部27の上記シリンダボア間9,9,…に対応する部位と該シリンダボア間9,9,…との間には、比較的大きな隙間が形成されている。また、上記エンジン1の製造時に上記ウォータジャケットスペーサ25を上記シリンダブロックウォータジャケット13に取り付けやすくするために、上記ウォータジャケットスペーサ25は、最もエンジン前側の上記気筒5の外周面と最もエンジン後側の上記気筒5との外周面との間に比較的大きな隙間が形成されるように設計されている。しかしながら、これら比較的大きな隙間が形成されていると、上記ジャケットスペーサ上部31の内側に形成された後述する冷却水経路45を流れる冷却水が上記ジャケットスペーサ下部27の内側に漏れ出るおそれがある。そこで、上記の比較的大きな隙間には、ウレタンゴム製のシール部材35,37,39が配設されている。
 図7は、ウォータジャケットスペーサ25を取り付けた状態における図1の一部拡大図であって、図7AはVIIa部を示す図であり、図7BはVIIb部を示す図であり、図7CはVIIc部を示す図である。上記シリンダボア間9,9,…に対応する隙間には、図7Aに示すように、シール部材35が取り付けられ、当該隙間を閉塞している。また、エンジン前後方向両側の上記気筒5に対応する隙間には、図7B及びCに示すように、円弧状のシール部材37,39が取り付けられ、当該隙間を閉塞している。なお、図2では、上記シール部材35を省略している。
 上記鍔部29は、図4、図5及び図6Aに示すように、上記ジャケットスペーサ下部27の上端全周に亘って形成されている。該鍔部29の上記冷却水導入路23に対応する部位は、該冷却水導入路23の形状に沿って外側に突出している。
 また、上記鍔部29の上記シリンダボア間9,9,…に対応する部位の外周端は、上記ジャケットスペーサ下部27の該シリンダボア間9,9,…に対応する部位よりも緩やかに湾曲している。
 さらに、上記鍔部29は、上記シリンダブロックウォータジャケット13の全周に亘って該シリンダブロックウォータジャケット13の幅と略同じ幅を有している。ただし、上記鍔部29の最もエンジン前側の上記気筒5のエンジン前側に位置する部位は、上記シリンダヘッド7の内部に形成された後述するジャケット本体55(シリンダヘッドウォータジャケット)に冷却水を導出する冷却水導出部41を構成し、図6Aに示すように、上記鍔部29における該冷却水導出部41と上記冷却水導入路23対応部位との中間の部位(以下、中間部位という)は、他の部位よりも幅狭となっている。
 上記ジャケットスペーサ上部31は、上記鍔部29の外周端に沿って形成されており、上記ジャケットスペーサ下部27と同様に、エンジン前後方向に細長い略円筒状をなし、上記シリンダボア間9,9,…に対応する箇所がこれらシリンダボア間9,9,…の形状に沿ってくびれている。
 上記ジャケットスペーサ上部31の排気側部分における上記冷却水導入路23に対応する部位には、図4及び図6Bに示すように、矩形状の開口部43が形成されている。該開口部43は、上記冷却水導入路23から導入された冷却水を上記ジャケットスペーサ上部31の内側に導入する。
 上記ジャケットスペーサ上部31は、図2及び図3に示すように、上記各気筒5の外周面から離間し、上記シリンダブロック外周壁21に近接している。したがって、該ジャケットスペーサ上部31と上記気筒5,5,…との間には、幅広の空間が形成されており、この空間を上記開口部43から導入された冷却水が循環する。つまり、この空間は、上記開口部43から導入された冷却水を上記シリンダライナ19,19,…の上部外周りに排気側から吸気側に循環させる冷却水経路45(冷却液経路)を構成している。
 上記ジャケットスペーサ上部31の上端は、一定の高さを有しており、図6Bに示すように、上記ジャケットスペーサ上部31の排気側部分における最もエンジン前側の上記気筒5に対応する部分は、一定の高さ寸法を有し、当該部分からエンジン後側に向かって高さ寸法が小さくなっている。そして、図6Cに示すように、上記ジャケットスペーサ上部31の吸気側部分は、エンジン前側に向かって高さ寸法が小さくなっている。
 また、上記ジャケットスペーサ上部31における上記鍔部29の上記中間部位対応箇所は、最もエンジン前側の上記気筒5の外周面に近接している。したがって、上記冷却水経路45の上記中間部位対応箇所は、該冷却水経路45の他の箇所よりも狭くなっているため、冷却水の流れが制限される冷却水制限部47を構成している。よって、上記開口部43から上記冷却水経路45に流入した冷却水は、エンジン前側及び後側に分岐するが、エンジン前側に流れる冷却水は、上記冷却水制限部47によってその流れが制限されるため、上記冷却水経路45に流入した冷却水の大半はエンジン後側に流れる。
 上記ジャケットスペーサ下部27と上記ジャケットスペーサ上部31とによって形成される上記ウォータジャケットスペーサ25は、4つの上記シリンダライナ19,19,…の上記シリンダブロックウォータジャケット13に対応する部位の略全周を囲むように配置されている。つまり、上記ウォータジャケットスペーサ25は、図2、図3、図6B及び図6Cに示すように、上記ジャケットスペーサ下部27の下端に配設された複数の突起部によってシリンダブロックウォータジャケット13に隙間が形成されるように支持されていて、冷却水が導入される上記開口部43を備えているものであり、4つの上記シリンダライナ19,19,…の上記シリンダブロックウォータジャケット13に対応する部位をピストン往復動方向から見て4つの上記シリンダライナ19,19,…の略全周を囲むように設けられている。なお、上記ジャケットスペーサ下部27と上記気筒5の外周面及びシリンダブロック周壁21との間の隙間、並びに、上記ジャケットスペーサ上部31とシリンダブロック外周壁21との間の隙間には冷却水が流入するものの、この冷却水の流れは殆どないため、冷却性に関してその影響は殆どない。
 上記シリンダヘッド7は、概略直方体形状のブロック材で構成され、その下面の上記各シリンダボア17対応箇所が燃焼室49の天井面を構成している。図8は、図3のVIII-VIII線断面図である。各天井面の吸気側には、一対の吸気ポート51,51がエンジン前後方向に間隔をあけて形成され、また、排気側には、一対の排気ポート53,53がエンジン前後方向に間隔をあけて形成されている。そして、これら吸気ポート51,51と排気ポート53,53との間には、プラグホール52が形成され、該プラグホール52の吸気側には、インジェクタホール54が形成されている。
 上記シリンダヘッドウォータジャケット15は、図2及び図3に示すように、上記各気筒5の燃焼室49の周囲に形成されたジャケット本体55と、上記各気筒5の排気ポート53の反燃焼室49側に形成された排気側ジャケット57と、を有している。
 上記ジャケット本体55は、各気筒5の燃焼室49の周囲近傍において各気筒5の吸排気ポート51,53やプラグホール52の外周を包み込むようにして上記シリンダヘッド7のエンジン前後方向全体に亘って形成されている。また、上記ジャケット本体55は、エンジン前後方向両端部に形成された孔部を介して、上記排気側ジャケット57のエンジン前後方向両端部にも連通している。これにより、上記ジャケット本体55を流れる冷却水は、順次、上記排気側ジャケット57に流通するようになっている。
 上記シリンダヘッド7の下面には、図2及び図3に示すように、上記ジャケット本体55を覆うようにガスケット59が配設されている。当該下面には、上記シリンダブロック3に形成されたボルト穴11,11,…に対応する部分にボルト挿通孔61,61,…が形成されている。
 上記ガスケット59の上記シリンダボア間9,9,…に対応する部分には、図2に示すように、上記シリンダブロックウォータジャケット13と上記ジャケット本体55とを連通する連通孔63,63,…貫通形成されている一方、上記シリンダブロックウォータジャケット13の前端に対応する部分には、該シリンダブロックウォータジャケット13と上記ジャケット本体55とを連通する連通路(図示省略)が形成されている。
 次に、ウォータポンプから送給された冷却水の流れを具体的に説明する。ウォータポンプから送給された冷却水は、冷却水導入路23に流れ、該冷却水導入路23からウォータジャケットスペーサ25に形成された開口部43を通って冷却水経路45に導入される。
 冷却水経路45に導入された冷却水は、最もエンジン前側の気筒5の外周面に当たり、エンジン前側と後側に分岐する。冷却水導入路23は上述の如く上記気筒5に近づくに従ってエンジン後側に傾斜しているため、冷却水導入路23から導入された冷却水の流れは、エンジン後側に方向付けられる。したがって、冷却水経路45の排気側部分に導入された冷却水は、エンジン後側に向かって流れ、その他が前側に向かって流れる。
 エンジン前側に向かって流れる冷却水は、冷却水制限部47によってその流れが制限されるため、エンジン後側に向かって流れる冷却水よりも流量が小さい。そして、この冷却水制限部47を通過した冷却水は、冷却水導出部41に至り、ガスケット59に形成された連通路を通ってシリンダヘッド7のジャケット本体55に流入する。なお、このとき、ウォータジャケットスペーサ25の冷却水導出部41対応箇所と最もエンジン前側の気筒5との間の隙間にシール部材39が圧入されているので、冷却水がこの隙間から漏れ出ることがない。
 一方、エンジン後側に向かって流れる冷却水は、冷却水導入路23の排気側部分を循環する。この循環途中で、冷却水経路45の上下幅が次第に小さくなることで、流路断面積が徐々に小さくなっている。そのため、冷却水の流速が所定速度に維持される。また、この循環途中で、冷却水の一部はシリンダボア間9,9,…を通るが、このとき、ウォータジャケットスペーサ25とシリンダボア間9,9,…との間の隙間にシール部材35が圧入されているので、冷却水がこの隙間から漏れ出ることがない。
 冷却水経路45の排気側部分を流れた冷却水は、最もエンジン後側の気筒5の外周りを回り込む。このとき、ウォータジャケットスペーサ25と当該気筒5との間の隙間にシール部材37が圧入されているので、冷却水がこの隙間から漏れ出ることがない。
 最もエンジン後側の気筒の外周りを回り込んだ冷却水は、冷却水経路45の吸気側部分をエンジン前側に向かって流れる。このとき、冷却水導入路23からの距離が遠ざかり、冷却水の勢いが低下するものの、冷却水経路45の上下幅がエンジン前側に向かって次第に小さくなることで、流路断面積が徐々に小さくなっているため、冷却水の流速が所定速度に維持される。
 そして、冷却水経路45の吸気側部分を流れた冷却水は、最もエンジン前側の気筒5周りを回り込み、冷却水導出部41に至り、第2連通路を通ってシリンダヘッド7のジャケット本体55に流入する。なお、冷却水は、冷却水経路45を循環する途中で、ガスケット59の連通孔63,63,…を経由してシリンダヘッド7のジャケット本体55に流入する。
 (シリンダライナの壁温の測定)
 本発明者らは、シリンダライナ19の高さ方向の壁温を測定した。この測定は、ウォータポンプからシリンダブロックウォータジャケット13に冷却水を送出し、エンジン1を駆動した状態で、シリンダライナ19,19,…のうち一つのシリンダライナ19の高さ方向の壁温を測定した。測定条件は、(a)シリンダブロックウォータジャケット13に本実施形態に係るウォータジャケットスペーサ25を配設した場合、(b)シリンダブロックウォータジャケット13にウォータジャケットスペーサを配設しない場合、及び、(c)シリンダブロックウォータジャケット13に従来のウォータジャケットスペーサを配設した場合の3通りとした。なお、従来のウォータジャケットスペーサを、その全体がシリンダライナ19,19,…に近接し、シリンダブロック外周壁21から離間しているものとした。
 図9は、上記測定の結果を示す図であって、縦軸及び横軸はそれぞれシリンダライナ19の高さ及び壁温を示し、さらに、実線が上記測定条件(a)における結果を示し、破線が上記測定条件(b)における結果を示し、一点鎖線が上記測定条件(c)における結果を示している。
 図9から分かるように、ウォータジャケットスペーサを配設しない上記測定条件(b)では、シリンダライナ19の上端の壁温が約130℃に達している一方、下端部の壁温が約112℃であり、その温度差は約18℃であった。また、従来のウォータジャケットスペーサを配設した上記測定条件(c)では、全体として壁温が高温領域にシフトしており、シリンダライナ19の上端の壁温が約135℃に達している一方、下端部の壁温が約122℃であり、その温度差は約13℃であった。
 これらに対し、本実施形態に係るウォータジャケットスペーサ25を配設した上記測定条件(a)では、シリンダライナ19の上端の壁温が約130℃であり、従来のものよりも約5℃も低く、中央部から下端部にかけて約115℃であり、その温度差は約15℃であった。つまり、本実施形態に係るウォータジャケットスペーサ25では、シリンダライナ19全体の温度を低く保持しつつ、その高さ方向の温度差を抑制できることが分かった。
 -例示的実施形態の効果-
 上記実施形態によれば、ジャケットスペーサ上部31とシリンダライナ19,19,…の上部外周りとの間に冷却水経路45が形成されているので、冷却水経路45を流れる冷却水がシリンダブロック外周壁21に接触せず、また、ジャケットスペーサ上部31がシリンダブロック外周壁21に近接しているので、冷却水経路45を流れる冷却水がこのウォータジャケットスペーサ25によって断熱される。そのため、冷却水経路45を流れる冷却水を介してシリンダライナ19,19,…の熱がシリンダブロック外周壁21に放熱されるのを抑制することができる。また、ジャケットスペーサ下部27がシリンダライナ19に近接しており、シリンダライナ19の中央部がウォータジャケットスペーサ25によって断熱されるので、シリンダライナ19の中央部が冷却されるのを抑制することができる。以上により、シリンダライナ19が早期に昇温し、かつ均一な温度分布を達成することができる。その結果、ピストンの摺動抵抗を低減することができ、かつ燃費向上を図ることができる。また、シリンダライナ19の上部における冷却性も確保することができる。さらには、冷却水がシリンダブロックウォータジャケット13の上部だけを流れるため、冷却水流量を抑えることが可能となり、シリンダブロックウォータジャケット13に冷却水を送出するウォータポンプの負荷を低減することができる。その結果、エンジン1の暖気を促進することができる。
 また、上記実施形態によれば、冷却水経路45がジャケットスペーサ上部31をシリンダライナ19,19,…の上部外周りから離間させて形成されているので、シリンダライナ19の上部外周りの形状を変更することなく、冷却水経路45を形成することができる。
 また、上記実施形態によれば、樹脂製のウォータジャケットスペーサ25は、製造誤差や組付性を考慮して、各シリンダボア間9,9,…との隙間が大きくなるように成形されているが、この隙間を閉塞するようにシール部材35,37,39が設けられているので、冷却水経路45を流れる冷却水が隙間を通って冷却水経路45の外部に流出するのを抑制することができる。
 さらに、上記実施形態によれば、冷却水を比較的高温の排気側から循環させるため、各気筒5のシリンダライナ19を適正に冷却することができる。
 さらにまた、上記実施形態によれば、冷却水導入路23から導入された冷却水は、ウォータジャケットスペーサ25の開口部43から冷却水経路45に流入し、エンジン前側及び後側に流れる。このうち、エンジン前側に流れる冷却水は、冷却水制限部47によって上記開口部43からシリンダヘッドウォータジャケット15へ流れる冷却水導出部41への流れが制限されている。したがって、開口部43から冷却水経路45に流入した冷却水の大部分は冷却水経路45の排気側に流れて当該冷却水経路45を確実に循環し、シリンダヘッドウォータジャケット15へ流れることができる。
 以上説明したように、本明細書に開示される技術は、シリンダブロック外周壁への放熱を抑制しつつ、シリンダライナの早期の昇温及び早期の温度均一化を達成し、かつシリンダライナ上部の冷却性を確保する用途に適用することができる。
(1)  エンジン
(3)  シリンダブロック
(5)  気筒
(7)  シリンダヘッド
(9)  シリンダボア間
(19) シリンダライナ
(13) シリンダブロックウォータジャケット(ウォータジャケット)
(15) シリンダヘッドウォータジャケット
(21) シリンダブロック外周壁
(23) 冷却水導入路(冷却液導入部)
(25) ウォータジャケットスペーサ
(27) ジャケットスペーサ下部(ウォータジャケットスペーサの下部)
(31) ジャケットスペーサ上部(ウォータジャケットスペーサの上部)
(35) シール部材
(41) 冷却水導出部(冷却液導出部)
(43) 開口部
(45) 冷却水経路(冷却液経路)
(47) 冷却水制限部(冷却液制限部)

Claims (5)

  1.  エンジンを構成するシリンダブロックのシリンダライナ周りにウォータジャケットが形成され、該ウォータジャケットの外周りを形成するシリンダブロック外周壁に該ウォータジャケットに冷却液を導入する冷却液導入部が形成されると共に、上記ウォータジャケットにウォータジャケットスペーサが配設されたエンジンの冷却構造であって、
     上記ウォータジャケットスペーサは、上記シリンダライナの上記ウォータジャケットに対応する部位の略全周を囲むように配置され、
     上記ウォータジャケットスペーサの上記冷却液導入部に対応する部位には、該冷却液導入部から導入された冷却液を上記ウォータジャケットスペーサの内側に導入する開口部が形成され、
     上記ウォータジャケットスペーサの上部は、上記シリンダブロック外周壁に近接すると共に、上記シリンダライナの上部外周りとの間に上記開口部から導入された冷却液を上記シリンダライナの上部外周りに循環させる冷却液経路が形成されている一方、
     上記ウォータジャケットスペーサの下部は、上記シリンダライナに近接していることを特徴とするエンジンの冷却構造。
  2.  請求項1に記載のエンジンの冷却構造において、
     上記冷却液経路は、上記ウォータジャケットスペーサの上部を上記シリンダライナの上部外周りから離間させて形成されていることを特徴とするエンジンの冷却構造。
  3.  請求項1又は2に記載のエンジンの冷却構造において、
     上記エンジンは多気筒エンジンであり、
     上記ウォータジャケットは、各気筒に設けられた上記シリンダライナ周りに形成され、
     上記ウォータジャケットスペーサは、樹脂製であって、複数の上記シリンダライナ周りを囲むように配置され、
     上記シリンダブロックのシリンダボア間と上記ウォータジャケットスペーサの該シリンダボア間に対応する部位との間には、シール部材が設けられていることを特徴とするエンジンの冷却構造。
  4.  請求項1乃至3のいずれか1項に記載のエンジンの冷却構造において、
     上記開口部は、上記ウォータジャケットスペーサの気筒列方向一端部に形成され、
     上記冷却液経路は、上記開口部から導入された冷却液を該冷却液経路の排気側部分から吸気側部分に循環させるように形成されていることを特徴とするエンジンの冷却構造。
  5.  請求項4に記載のエンジンの冷却構造において、
     上記シリンダブロックと共に上記エンジンを構成するシリンダヘッドには、該シリンダブロックのウォータジャケットからの冷却液が流れるシリンダヘッドウォータジャケットが形成されており、
     上記ウォータジャケットスペーサの気筒列方向一端部には、上記冷却液経路を循環した冷却液を上記シリンダヘッドウォータジャケットに導出する冷却液導出部が形成され、
     上記ウォータジャケットスペーサにおける上記冷却液導出部と上記開口部との間には、該開口部から導入された冷却液の流れを制限する冷却液制限部が形成されていることを特徴とするエンジンの冷却構造。
     
PCT/JP2015/000869 2014-03-28 2015-02-23 エンジンの冷却構造 WO2015145961A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580015067.5A CN106103957B (zh) 2014-03-28 2015-02-23 发动机的冷却构造
DE112015001528.0T DE112015001528T5 (de) 2014-03-28 2015-02-23 Motorkühlstruktur
US15/119,842 US10202932B2 (en) 2014-03-28 2015-02-23 Engine cooling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-069178 2014-03-28
JP2014069178A JP6098561B2 (ja) 2014-03-28 2014-03-28 エンジンの冷却構造

Publications (1)

Publication Number Publication Date
WO2015145961A1 true WO2015145961A1 (ja) 2015-10-01

Family

ID=54194519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000869 WO2015145961A1 (ja) 2014-03-28 2015-02-23 エンジンの冷却構造

Country Status (5)

Country Link
US (1) US10202932B2 (ja)
JP (1) JP6098561B2 (ja)
CN (1) CN106103957B (ja)
DE (1) DE112015001528T5 (ja)
WO (1) WO2015145961A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111271188A (zh) * 2018-12-04 2020-06-12 现代自动车株式会社 安装在用于气缸体的水套中的结构

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776756B1 (ko) * 2016-03-16 2017-09-08 현대자동차 주식회사 워터자켓을 갖는 엔진
JP2018109361A (ja) * 2016-12-28 2018-07-12 株式会社クボタ 多気筒エンジンの水冷構造
JP6710169B2 (ja) * 2017-02-17 2020-06-17 ニチアス株式会社 内燃機関
DE102017216694B4 (de) * 2017-09-20 2022-02-03 Bayerische Motoren Werke Aktiengesellschaft Verbrennungsmotorgehäuse mit Zylinderkühlung
KR102614151B1 (ko) * 2018-06-15 2023-12-14 현대자동차주식회사 차량용 엔진의 egr 냉각 장치
KR20200068989A (ko) * 2018-12-06 2020-06-16 현대자동차주식회사 실린더블록용 워터재킷의 내장 구조물
JP7238413B2 (ja) 2019-01-17 2023-03-14 マツダ株式会社 エンジンの冷却構造
JP7172629B2 (ja) 2019-01-17 2022-11-16 マツダ株式会社 エンジンの冷却構造
CN110748432B (zh) * 2019-07-30 2021-01-15 中国第一汽车股份有限公司 一种导流嵌件及气缸体水套
JP7268585B2 (ja) * 2019-11-21 2023-05-08 マツダ株式会社 シリンダブロック
JP7238749B2 (ja) * 2019-12-09 2023-03-14 マツダ株式会社 シリンダブロック
JP6977088B2 (ja) * 2020-03-25 2021-12-08 本田技研工業株式会社 ウォータジャケット
CN112483272A (zh) * 2020-12-02 2021-03-12 潍柴动力股份有限公司 一种气缸套

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566612A (en) * 1978-11-10 1980-05-20 Nissan Motor Co Ltd Cooling system for compound siamese cylinder block
JP2001020738A (ja) * 1999-07-09 2001-01-23 Toyota Motor Corp 内燃機関の冷却装置
JP2005256660A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp シリンダブロックの冷却構造
JP2006090197A (ja) * 2004-09-22 2006-04-06 Aisan Ind Co Ltd 内燃機関の冷却装置
JP2009243414A (ja) * 2008-03-31 2009-10-22 Daihatsu Motor Co Ltd ウォータージャケット用スペーサ
JP2010014067A (ja) * 2008-07-04 2010-01-21 Toyota Motor Corp 内燃機関のシリンダブロック
JP2011064142A (ja) * 2009-09-17 2011-03-31 Toyoda Gosei Co Ltd ウォータジャケット構造

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164645U (ja) * 1984-04-12 1985-11-01 本田技研工業株式会社 エンジンのシリンダブロツクにおけるウオ−タジヤケツト容量調整用スリ−ブ
JPH07224651A (ja) * 1994-02-14 1995-08-22 Toyota Motor Corp 内燃機関の冷却装置
JP2000345838A (ja) * 1999-06-03 2000-12-12 Nissan Motor Co Ltd 水冷式内燃機関の冷却装置
US6581550B2 (en) * 2000-06-30 2003-06-24 Toyota Jidosha Kabushiki Kaisha Cooling structure of cylinder block
JP3601417B2 (ja) * 2000-06-30 2004-12-15 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP3596438B2 (ja) * 2000-07-13 2004-12-02 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP2003262155A (ja) * 2002-03-08 2003-09-19 Toyota Motor Corp シリンダブロック
JP4051019B2 (ja) * 2003-10-17 2008-02-20 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP4227914B2 (ja) * 2004-03-10 2009-02-18 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP2005282509A (ja) * 2004-03-30 2005-10-13 Toyota Motor Corp シリンダブロックの冷却構造
JP4279714B2 (ja) * 2004-03-31 2009-06-17 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP4279713B2 (ja) 2004-03-31 2009-06-17 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP4395002B2 (ja) * 2004-04-27 2010-01-06 トヨタ自動車株式会社 シリンダブロックの冷却構造
JP4465313B2 (ja) * 2005-09-05 2010-05-19 内山工業株式会社 ウォータジャケットスペーサ
JP4845620B2 (ja) * 2006-07-21 2011-12-28 トヨタ自動車株式会社 内燃機関冷却用熱媒体流路区画部材、内燃機関冷却構造及び内燃機関冷却構造形成方法
JP4851258B2 (ja) * 2006-07-31 2012-01-11 トヨタ自動車株式会社 内燃機関冷却用熱媒体流路区画部材、内燃機関冷却機構及び内燃機関冷却機構形成方法
JP4547017B2 (ja) * 2008-04-25 2010-09-22 トヨタ自動車株式会社 内燃機関の冷却構造
JP5175808B2 (ja) * 2009-07-14 2013-04-03 トヨタ自動車株式会社 内燃機関の冷却構造
JP2011106399A (ja) * 2009-11-19 2011-06-02 Honda Motor Co Ltd 内燃機関の冷却構造
JP2011106388A (ja) * 2009-11-19 2011-06-02 Honda Motor Co Ltd 内燃機関の冷却構造
JP5064470B2 (ja) * 2009-11-19 2012-10-31 本田技研工業株式会社 内燃機関の冷却構造
JP5064471B2 (ja) * 2009-11-19 2012-10-31 本田技研工業株式会社 内燃機関の冷却構造
JP5623122B2 (ja) * 2010-04-28 2014-11-12 トヨタ自動車株式会社 多気筒型内燃機関のシリンダブロック
JP5610290B2 (ja) * 2010-11-29 2014-10-22 内山工業株式会社 ウォータジャケットスペーサ
JP5935476B2 (ja) * 2012-04-19 2016-06-15 トヨタ自動車株式会社 エンジンの冷却装置
JP6199911B2 (ja) * 2014-03-31 2017-09-20 トヨタ自動車株式会社 ウォータージャケットスペーサ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566612A (en) * 1978-11-10 1980-05-20 Nissan Motor Co Ltd Cooling system for compound siamese cylinder block
JP2001020738A (ja) * 1999-07-09 2001-01-23 Toyota Motor Corp 内燃機関の冷却装置
JP2005256660A (ja) * 2004-03-10 2005-09-22 Toyota Motor Corp シリンダブロックの冷却構造
JP2006090197A (ja) * 2004-09-22 2006-04-06 Aisan Ind Co Ltd 内燃機関の冷却装置
JP2009243414A (ja) * 2008-03-31 2009-10-22 Daihatsu Motor Co Ltd ウォータージャケット用スペーサ
JP2010014067A (ja) * 2008-07-04 2010-01-21 Toyota Motor Corp 内燃機関のシリンダブロック
JP2011064142A (ja) * 2009-09-17 2011-03-31 Toyoda Gosei Co Ltd ウォータジャケット構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111271188A (zh) * 2018-12-04 2020-06-12 现代自动车株式会社 安装在用于气缸体的水套中的结构

Also Published As

Publication number Publication date
US10202932B2 (en) 2019-02-12
DE112015001528T5 (de) 2016-12-29
JP6098561B2 (ja) 2017-03-22
CN106103957B (zh) 2018-09-25
JP2015190403A (ja) 2015-11-02
CN106103957A (zh) 2016-11-09
US20170067411A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015145961A1 (ja) エンジンの冷却構造
JP6090535B2 (ja) 内燃機関
JP5880471B2 (ja) 多気筒エンジンの冷却装置
JP5974926B2 (ja) 多気筒エンジンの冷却構造
US7438026B2 (en) Cylinder block and internal combustion engine
JP6036668B2 (ja) 多気筒エンジンの冷却構造
JP6299737B2 (ja) 多気筒エンジンの冷却構造
JP2007127066A (ja) 内燃機関の冷却構造及び水路形成部材
US20160186641A1 (en) Cooling structure of internal combustion engine
CN110366636B (zh) 用于内燃机的气缸盖
US10018099B2 (en) Engine cooling system
JP6384492B2 (ja) 多気筒エンジンの冷却構造
JP6079594B2 (ja) 多気筒エンジンの冷却構造
JP2012188959A (ja) シリンダブロック
US10378419B2 (en) Water jacket spacer
JP5939176B2 (ja) 多気筒エンジンの冷却構造
US10808595B2 (en) Engine cooling system for vehicle
US8757111B2 (en) Engine assembly including cooling system
US9739231B2 (en) Engine block
JP2010203245A (ja) 内燃機関の冷却構造
JP6062312B2 (ja) シリンダブロックの冷却構造
JP4279760B2 (ja) 内燃機関の冷却装置
JP4279758B2 (ja) 内燃機関の冷却装置
JP2018071473A (ja) 多気筒内燃機関のシリンダヘッド
JP6344356B2 (ja) 内燃機関の冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15119842

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001528

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768039

Country of ref document: EP

Kind code of ref document: A1