WO2015015662A1 - 炭化珪素粉末、及び、炭化珪素単結晶の製造方法 - Google Patents

炭化珪素粉末、及び、炭化珪素単結晶の製造方法 Download PDF

Info

Publication number
WO2015015662A1
WO2015015662A1 PCT/JP2013/081886 JP2013081886W WO2015015662A1 WO 2015015662 A1 WO2015015662 A1 WO 2015015662A1 JP 2013081886 W JP2013081886 W JP 2013081886W WO 2015015662 A1 WO2015015662 A1 WO 2015015662A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
carbide powder
powder
single crystal
raw material
Prior art date
Application number
PCT/JP2013/081886
Other languages
English (en)
French (fr)
Inventor
増田 賢太
一坪 幸輝
将和 鈴木
潔 野中
智久 加藤
秀秋 田中
Original Assignee
太平洋セメント株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太平洋セメント株式会社, 独立行政法人産業技術総合研究所 filed Critical 太平洋セメント株式会社
Priority to US14/908,307 priority Critical patent/US9816200B2/en
Priority to EP13890859.5A priority patent/EP3028994B1/en
Priority to CN201380076003.7A priority patent/CN105246826B/zh
Priority to KR1020157031098A priority patent/KR102145650B1/ko
Publication of WO2015015662A1 publication Critical patent/WO2015015662A1/ja
Priority to HK16100699.6A priority patent/HK1212667A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a silicon carbide powder and a method for producing a silicon carbide single crystal using the silicon carbide powder.
  • Silicon carbide has been widely used as an industrial material such as an abrasive (grinding material), a ceramic sintered body, and a conductive material.
  • silicon carbide has attracted attention as a raw material for single crystal wafers used for power semiconductors and the like under the social background, such as an increase in energy saving orientation and the expectation for utilization of natural regeneration energy by denuclearization.
  • a sublimation recrystallization method improved to obtain a silicon carbide single crystal on a silicon carbide seed crystal by sublimating silicon carbide powder as a raw material under a high temperature condition of 2,000 ° C. or higher.
  • the Rayleigh method is known.
  • Patent Document 1 discloses silicon carbide for growing silicon carbide single crystal, which is a pulverized product of one or both of silicon carbide single crystal and silicon carbide polycrystal grown by sublimation recrystallization method. Raw materials are listed. This silicon carbide raw material for silicon carbide single crystal growth is used as a raw material for the next silicon carbide single crystal growth. Thereby, the concentration of impurities in the silicon carbide single crystal is greatly reduced.
  • the average particle size is at 100 ⁇ m or more 700 ⁇ m or less, and a specific surface area of 0.05 m 2 / g or more 0.30 m 2 / g or less is a silicon carbide single crystal for producing a silicon carbide powder Are listed. This powder exhibits a high and stable sublimation rate in single crystal growth by the sublimation recrystallization method.
  • the present invention When the present invention is used as a raw material for the sublimation recrystallization method, the sublimation rate is high and the amount of silicon carbide remaining without sublimation is small, so that the productivity of the silicon carbide single crystal can be improved. And it aims at providing the silicon carbide powder which can enlarge the silicon carbide single crystal (for example, single crystal wafer).
  • the present inventors have found that the above object can be achieved by using a silicon carbide powder having a specific surface area of Blane and a specific particle size distribution within a specific range.
  • the present invention has been completed. That is, the present invention provides the following [1] to [6].
  • the above silicon carbide powder is placed in the crucible so as to have a thermal conductivity of 0.05 to 0.15 W / m ⁇ K and heated, so that the carbonized powder placed on the bottom surface of the upper lid of the crucible
  • the silicon carbide powder of the present invention has a high sublimation rate when used as a raw material for producing a silicon carbide single crystal by a sublimation recrystallization method. For this reason, the growth rate of the silicon carbide single crystal adhering to the seed crystal after sublimation is high, and it is possible to reduce the energy cost and the manufacturing time required for manufacturing the silicon carbide single crystal.
  • crystals can be grown under high pressure, when manufactured under high pressure, a single crystal having a small impurity content can be obtained from the silicon carbide powder because impurities are not easily sublimated.
  • the amount of silicon carbide remaining without being sublimated is reduced, the yield can be improved.
  • the productivity of the silicon carbide single crystal can be improved. Furthermore, according to the present invention, even if the temperature gradient between the temperature in the vicinity of the silicon carbide single crystal raw material (silicon carbide powder) and the temperature in the vicinity of the seed crystal above the raw material is small, the raw material (silicon carbide powder) It is possible to maintain a state in which the sublimation speed of is high. For this reason, miscellaneous crystals are hardly formed around the silicon carbide single crystal, and the wafer can be increased in size.
  • the Blaine specific surface area of the silicon carbide powder of the present invention is 250 to 1,000 cm 2 / g, preferably 270 to 900 cm 2 / g, more preferably more than 300 cm 2 / g, and 800 cm 2 / g or less, more preferably 400. It is ⁇ 700 cm 2 / g, particularly preferably 500 to 600 cm 2 / g. When the value is less than 250 cm 2 / g, the specific surface area of the silicon carbide powder is too small, so the reactivity of the silicon carbide powder is reduced, and the amount of sublimation gas generated and the sublimation rate are reduced.
  • the silicon carbide powder of the present invention has a particle size distribution in which the particle size (particle size) exceeds 0.70 mm and the proportion of silicon carbide powder of 3.00 mm or less in the total amount of silicon carbide powder is 50% by volume or more.
  • the ratio of the silicon carbide powder satisfying the numerical range of the particle size is 50% by volume or more, preferably 70% by volume or more, more preferably 90% by volume or more.
  • the proportion is less than 50% by volume, the sublimation rate of the silicon carbide powder becomes small.
  • the particle size is 0.70 mm or less, the bulk density increases when the silicon carbide powder is filled in a container such as a crucible, and when the silicon carbide powder is sublimated, the passage of the sublimation gas is narrow.
  • the sublimation speed is reduced.
  • the silicon carbide powders are sintered with each other as the sublimation reaction proceeds.
  • the sublimation rate gradually decreases, and a stable sublimation rate is maintained. I can't.
  • the amount of silicon carbide remaining without being sublimated increases.
  • the particle size exceeds 3.00 mm, the bulk density decreases when the silicon carbide powder is filled in a container such as a crucible, the voids in the silicon carbide powder are too large, and the thermal conductivity of the particles deteriorates, resulting in sublimation. The reaction is difficult to proceed and the sublimation rate is reduced.
  • the particle size exceeds 0.70 mm and is not more than 3.00 mm means that it passes through a sieve having an opening of 3.00 mm and does not pass through a sieve having an opening of 0.70 mm.
  • the particle size distribution of the silicon carbide powder of the present invention is preferably such that the proportion of the silicon carbide powder having a particle size of 0.75 to 2.50 mm is 50% by volume or more (preferably 70% by volume or more, more preferably 90% by volume or more). More preferably 95% by volume or more, particularly preferably 99% by volume or more, and more preferably, the proportion of silicon carbide powder having a particle size of 0.80 to 2.00 mm is 50% by volume or more (preferably 70% by volume or more, more preferably 90% by volume or more, further preferably 95% by volume or more, particularly preferably 99% by volume or more), and particularly preferably silicon carbide having a particle size of 0.85 to 1.70 mm.
  • the proportion of the powder is 50% by volume or more (preferably 70% by volume or more, more preferably 90% by volume or more, further preferably 95% by volume or more, particularly preferably 99% by volume or more).
  • the true density of the silicon carbide powder of the present invention is not particularly limited, but is usually 2.90 to 3.10 g / cm 3 .
  • the silicon carbide powder of the present invention is preferably composed of particles obtained by agglomerating (sintering) primary particles having a particle size of 1 ⁇ m or more and 1 mm or less, preferably 100 ⁇ m to 800 ⁇ m. If the particles are in such a form, the specific surface area of the silicon carbide powder is increased, and as a result, when the silicon carbide powder is sublimated, the sublimation speed is high and the speed can be maintained for a long time. it can. Further, the amount of silicon carbide remaining without being sublimated is reduced.
  • the proportion of particles having a particle size of 1 ⁇ m or more and 1 mm or less in the total amount of primary particles constituting the silicon carbide powder of the present invention is preferably 90% by volume or more, more preferably 95% by volume or more, and particularly preferably 100% by volume. It is.
  • the ratio of particles having a particle size of 100 to 800 ⁇ m in the total amount of primary particles constituting the silicon carbide powder of the present invention is preferably 70% by volume or more, more preferably 80% by volume or more, and particularly preferably 90% by volume or more. is there.
  • the silicon carbide powder of the present invention may be any of a powder made of ⁇ -type silicon carbide, a powder made of ⁇ -type silicon carbide, and a powder made of a mixture of ⁇ -type silicon carbide and ⁇ -type silicon carbide.
  • the silicon carbide powder of the present invention preferably has a high silicon carbide content in the silicon carbide powder and a low impurity content.
  • the impurities referred to here are components other than silicon (Si) and carbon (C) in all elements except oxygen (O) removed in the production process of silicon carbide powder, and correspond to repellent components of SiC semiconductors.
  • boron (B), phosphorus (P), aluminum (Al), iron (Fe), titanium (Ti), copper (Cu), nickel (Ni), and the like can be given.
  • the content of B, P, Al, Fe, Ti, Cu, and Ni in the silicon carbide powder is preferably 3 ppm or less, more preferably 1.5 ppm or less, and still more preferably 1.
  • the content rate of B and P is respectively more preferably 0.3 ppm or less.
  • the content of oxygen (O) in the silicon carbide powder is preferably less than 0.5% by mass.
  • the “content ratio of oxygen (O)” indicates the total amount of oxygen atoms constituting the metal oxide contained in the silicon carbide powder.
  • the total content of impurities in the silicon carbide powder is preferably 500 ppm or less, more preferably 200 ppm or less, and particularly preferably 100 ppm or less.
  • ppm is based on mass.
  • the content (purity) of silicon carbide in the silicon carbide powder is preferably 99.0% by mass or more, more preferably 99.5% by mass or more, and still more preferably 99% as a proportion in 100% by mass of the silicon carbide powder. 9.9% by mass or more, particularly preferably 99.99% by mass or more.
  • Examples of the method for producing the silicon carbide powder of the present invention include a method of heating a silicon carbide production raw material obtained by mixing a siliceous raw material and a carbonaceous raw material using an Atchison furnace.
  • the mixing molar ratio (C / SiO 2 ) of the carbonaceous raw material and siliceous raw material in the raw material for producing silicon carbide is preferably 2.5 to 4.0, more preferably 2.8 to 3.6. Particularly preferably, it is 3.0 to 3.3.
  • the mixing molar ratio affects the composition of the silicon carbide powder.
  • mixing molar ratio of carbonaceous raw material to silicic acid raw material means that the carbonaceous raw material in the case of preparing the raw material for silicon carbide production by mixing the carbonaceous raw material and the siliceous raw material.
  • a pelletized mixed raw material obtained by mixing a powdery siliceous raw material and a powdery carbonaceous raw material can be used.
  • the pelletized raw material for producing silicon carbide include a raw material obtained by pelletizing a mixture of silica and an organic resin.
  • siliceous raw materials used in the method for producing the silicon carbide powder include crystalline silica such as natural silica sand, natural silica stone powder, and artificial silica stone powder, and amorphous silica such as silica fume and silica gel. It is done. These can be used individually by 1 type or in combination of 2 or more types. Among these, amorphous silica is preferable from the viewpoint of reactivity.
  • the average particle diameter of the siliceous raw material is preferably 3 mm or less, more preferably 2 mm or less, still more preferably 1 mm or less, and particularly preferably 800 ⁇ m or less.
  • average particle size means an arithmetic average value of particle size (particle size).
  • the average particle diameter can be calculated, for example, by measuring each particle diameter of an appropriate number (for example, 100 particles) and then dividing the sum of these particle diameters by the number of particles measured. .
  • Examples of the carbonaceous raw material used for the production of the silicon carbide powder include petroleum coke, coal pitch, carbon black, and various organic resins. These may be used alone or in combination of two or more. Among these, carbon black is preferable from the viewpoints of purity and particle size.
  • the average particle diameter of the carbonaceous raw material is preferably 1 nm to 500 ⁇ m, more preferably 5 nm to 100 ⁇ m, still more preferably 10 nm to 10 ⁇ m, still more preferably 20 nm to 1 ⁇ m, and still more preferably, from the viewpoint of reactivity with the siliceous raw material. It is 30 to 500 nm, particularly preferably 50 to 300 nm.
  • the carbonaceous raw material is a material in which primary particles and secondary particles are present (for example, carbon black)
  • the average particle size of the carbonaceous raw material here refers to the average particle size of the primary particles.
  • silicon carbide production raw material used for the production of the silicon carbide powder is a particle prepared such that each of carbon and silicic acid is distributed throughout the particle, and the carbon in the particle Of particles having a mixing molar ratio of C to SiO 2 (C / SiO 2 ) of preferably 2.5 to 4.0, more preferably 2.8 to 3.6, particularly preferably 2.9 to 3.3
  • the powder which is a body can be mentioned.
  • the type of the heating element of the Atchison furnace used for manufacturing the silicon carbide powder is not particularly limited as long as it can conduct electricity, and examples thereof include graphite powder and carbon rod.
  • the content of impurities other than carbon (the total content of B, P, etc.) in the heating element is preferably smaller than the content of impurities contained in the above-mentioned raw material for producing silicon carbide.
  • the form of the heating element only needs to be able to conduct electricity to the heating element, and may be powdery or rod-like. In the case of a rod shape, the shape of the rod-shaped body is not particularly limited, and may be a columnar shape or a prismatic shape.
  • the silicon carbide powder of the present invention can be obtained by heating the above-mentioned raw material for producing silicon carbide using an Atchison furnace and then pulverizing it.
  • the Atchison furnace By using the Atchison furnace, silicon carbide powder can be produced cheaply, in large quantities, and safely compared to other electric furnaces and the like.
  • the Atchison furnace a general one (for example, a furnace that is open to the atmosphere and has a substantially U-shaped cross section of the furnace body) may be used.
  • a direct reduction reaction represented by the following formula (1) occurs around the heating element, and a lump of silicon carbide (SiC) is generated.
  • the temperature at which the above reaction is performed is preferably 1,600 to 3,000 ° C., more preferably 1,600 to 2,500 ° C.
  • the obtained silicon carbide lump is pulverized to a predetermined particle size using a ball mill or the like, and then classified using a sieve, whereby the silicon carbide powder of the present invention can be obtained. Since the Atchison furnace is large and the reaction is performed in a non-oxidizing atmosphere, silicon carbide powder having a lower content of impurities (B, P, etc.) than other electric furnaces can be obtained. . Silicon carbide powder having a low impurity content is suitable as a raw material for single crystals used for power semiconductors and the like.
  • the silicon carbide powder produced by the above production method is usually composed of particles in which a plurality of primary particles having a particle size of 1 ⁇ m or more and 1 mm or less are 90% by volume or more are aggregated.
  • the particle size of the silicon carbide powder is a specific size
  • the Blaine specific surface area can be increased.
  • the true density of the silicon carbide powder is usually 2.90 to 3.10 g / cm 3 .
  • a silicon carbide single crystal can be easily obtained by using the silicon carbide powder of the present invention as a raw material for the sublimation recrystallization method (improved Rayleigh method).
  • a description will be given with reference to FIG.
  • the silicon carbide powder (single crystal raw material) 5 of the present invention in the crucible 1 has a bulk density of preferably 0.7 to 1.4 g / cm 3 , more preferably 0.8 to 1.3 g / cm 3.
  • silicon carbide single crystal 6 can be grown on seed crystal 4 by sublimating silicon carbide powder 5 by heating.
  • the bulk density is 0.7 g / cm 3 or more, since the voids in silicon carbide powder 5 are small, heat is sufficiently transmitted and the sublimation rate of silicon carbide powder 5 can be further increased.
  • the bulk density is 1.4 g / cm 3 or less, the silicon carbide powder 5 does not become excessively dense, so that the generated sublimation gas easily escapes from the inside of the silicon carbide powder 5, and the silicon carbide single crystal The growth rate of 6 can be further increased.
  • the heating temperature of the silicon carbide powder 5 is preferably 2,000 to 5,000 ° C, more preferably 2,200 to 4,000 ° C, and particularly preferably 2,300 to 3,000 ° C. When the heating temperature is 2,000 ° C. or higher, silicon carbide powder 5 is more easily sublimated. A heating temperature of 5,000 ° C. or lower is advantageous in terms of energy cost.
  • the crucible 1 the thing made from graphite is mentioned, for example.
  • the thermal conductivity of the silicon carbide powder 5 accommodated in the crucible 1 is preferably 0.05 to 0.15 W / m ⁇ K, more preferably 0.06 to 0.12 W / m ⁇ K, and particularly preferably 0.8. 07 to 0.10 W / m ⁇ K.
  • the thermal conductivity can be measured by a thermal osmosis method using a thermal conductivity measuring device (manufactured by Rigaku, trade name “thermal conductivity measuring device TCi”).
  • the silicon carbide powder of the present invention has a high sublimation rate during heating, the growth rate of the silicon carbide single crystal on the seed crystal can be increased by using the powder as a raw material for the sublimation recrystallization method. From this, the energy cost for producing the silicon carbide single crystal can be reduced. In addition, since the growth rate of the silicon carbide single crystal is high, the time required to obtain the target silicon carbide single crystal can be shortened, and the productivity can be increased. Further, the silicon carbide single crystal can be grown even under high pressure, and it becomes easy to control impurities (to prevent impurities from being mixed by increasing the pressure during the reaction).
  • the sublimation recrystallization method even if the temperature gradient is small, a high sublimation rate can be maintained, and miscellaneous crystals are hardly generated around the obtained silicon carbide single crystal, and the wafer can be increased in size. Furthermore, since the silicon carbide powder of the present invention has a low bulk density and large voids present in the powder, the generated sublimation gas is not accumulated inside the silicon carbide powder, and the sublimation gas is regenerated inside the silicon carbide powder. Densification due to crystallization can be prevented, and the amount of silicon carbide remaining without being sublimated is reduced. For this reason, a yield can be improved.
  • Blaine specific surface area The Blaine specific surface area was measured according to “JIS R 5201”.
  • True density The true density was measured by “Accumic 1330” (trade name) manufactured by Shimadzu Corporation by the pycnometer method (gas displacement).
  • (3) Content ratio of B (boron) and P (phosphorus) Based on the ICP-AES analysis by the alkali melting method which is an analysis method of B (boron) in soil (see BUNSEKI KAGAKU VOL47, No7, pp451-454) , B (boron) and P (phosphorus) content were measured.
  • silicon carbide powder A The silicon carbide powder for polishing described in (4) of the “use raw material” was pulverized with a ball mill to obtain a silicon carbide powder A having the particle size, the brain specific surface area, and the true density shown in Table 1. The ratio of silicon carbide powder having a particle size of 0.85 to 1.70 mm was 99% by volume or more. Unlike silicon carbide powder B described later, silicon carbide powder A does not have a particle form in which primary particles are aggregated.
  • the obtained silicon carbide lump was pulverized using a ball mill. After pulverization, the silicon carbide pulverized product is classified using a sieve, and the proportion of silicon carbide powder having a particle size of 0.85 to 1.70 mm is 99% by volume or more. Silicon carbide type: mixture of ⁇ -type and ⁇ -type). When silicon carbide powder B was observed using a scanning electron microscope, it was found that the particles were in the form of agglomerated various primary particles having a particle diameter of 1 ⁇ m or more and 1 mm or less. In FIG. 2, the figure which represented the photograph of the silicon carbide powder simply was shown.
  • the proportion of particles having a particle size of 1 ⁇ m or more and 1 mm or less was 100% by volume.
  • the ratio of particles having a particle size of 100 to 800 ⁇ m in the total amount of primary particles constituting the silicon carbide powder was 90% by volume or more.
  • the content rate of the impurity (B, P, Al, Fe, Ti, Cu, Ni, and O) in each obtained silicon carbide powder was measured using the analysis method mentioned above. The results are shown in Table 2.
  • the content of impurities (excluding oxygen atoms) in the silicon carbide powder was 100 ppm or less.
  • the content rate (purity) of silicon carbide in the silicon carbide powder was 99.99% by mass or more.
  • silicon carbide powder C The silicon carbide powder for polishing described in (4) of the above “use raw material” was pulverized with a ball mill to obtain silicon carbide powder C having the particle size, the specific surface area of brain and the true density shown in Table 1. The proportion of silicon carbide powder having a particle size of 0.05 to 0.70 mm was 99% by volume or more.
  • Example 1 1140 g of “silicon carbide powder A” was placed in a graphite crucible.
  • a single crystal plate having a Si surface appearing by polishing was installed as a seed crystal at the upper lid portion of the graphite crucible.
  • the bulk density of silicon carbide powder A in the crucible was 1.26 g / cm 3 .
  • the thermal conductivity of the silicon carbide powder A in the crucible was measured using the analysis method described above. By heating the graphite crucible at 2300 ° C. under a pressure of 1 Torr, the silicon carbide powder A in the crucible was sublimated to grow a silicon carbide single crystal on the seed crystal.
  • the heating was performed until the silicon carbide single crystal grown on the seed crystal had a thickness of 13 mm.
  • the time required for the silicon carbide single crystal to reach a thickness of 13 mm was 63 hours.
  • the mass (residual amount) of the remaining silicon carbide powder was measured to be 772 g. From this measurement result, it was found that 67.7% of the charged amount remained. From the above time (63 hours) and the amount of silicon carbide powder remaining (772 g), the sublimation rate of the silicon carbide powder and the growth rate of the silicon carbide single crystal were calculated. The results are shown in Table 3.
  • Example 2 A silicon carbide single crystal was obtained in the same manner as in Example 1 except that 935 g of “silicon carbide powder B” was used instead of silicon carbide powder A. The results are shown in Table 3.
  • Example 1 A silicon carbide single crystal was obtained in the same manner as in Example 1 except that 1400 g of “silicon carbide powder C” was used in place of silicon carbide powder A. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 昇華再結晶法の原料として用いた場合に、昇華速度が大きく、かつ、昇華されずに残存する炭化珪素の量が少ないため、炭化珪素単結晶の生産性を向上させることができ、しかも、炭化珪素単結晶(例えば、単結晶ウェハ)の大型化が可能な炭化珪素粉末を提供する。 ブレーン比表面積が250~1,000cm/gである炭化珪素粉末であって、該炭化珪素粉末の全量中の、粒度が0.70mmを超え、3.00mm以下の炭化珪素粉末の割合が、50体積%以上である炭化珪素粉末。坩堝1内に収容した炭化珪素粉末5を加熱して昇華させることによって、上蓋3の底面部分に設けた種結晶4上に、炭化珪素の単結晶6を形成させることができる。

Description

炭化珪素粉末、及び、炭化珪素単結晶の製造方法
 本発明は、炭化珪素粉末、及び、該炭化珪素粉末を用いた炭化珪素単結晶の製造方法に関する。
 炭化珪素(SiC)は、研磨材(研削材)、セラミックス焼結体、導電性材料等の工業用材料として、従来、幅広く使用されている。特に、最近では、省エネルギー志向の強まりや脱原発による自然再生エネルギーの活用への期待等の社会的背景下において、炭化珪素は、パワー半導体等に用いられる単結晶ウェハの原料として注目されている。
 炭化珪素単結晶の製造方法としては、2,000℃以上の高温条件下で、原料である炭化珪素粉末を昇華させて、炭化珪素種結晶上に炭化珪素単結晶を得る昇華再結晶法(改良レーリー法)が知られている。
 上記昇華再結晶法に用いられる原料として、特許文献1には、昇華再結晶法により成長した炭化珪素単結晶又は炭化珪素多結晶の一方又は双方の粉砕物である炭化珪素単結晶育成用炭化珪素原料が記載されている。この炭化珪素単結晶育成用炭化珪素原料は、次回の炭化珪素単結晶成長の原料として使用される。これにより、炭化珪素単結晶中の不純物の濃度が大幅に低減される。
 また、特許文献2には、平均粒径が100μm以上700μm以下であり、かつ比表面積が0.05m/g以上0.30m/g以下である炭化ケイ素単結晶製造用炭化ケイ素粉体が記載されている。この粉体は、昇華再結晶法による単結晶成長において、高くかつ安定した昇華速度を示す。
特開2005-239496号公報 特開2012-101996号公報
 本発明は、昇華再結晶法の原料として用いた場合に、昇華速度が大きく、かつ、昇華されずに残存する炭化珪素の量が少ないため、炭化珪素単結晶の生産性を向上させることができ、しかも、炭化珪素単結晶(例えば、単結晶ウェハ)の大型化が可能な炭化珪素粉末を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、特定の範囲内のブレーン比表面積および特定の粒度分布を有する炭化珪素粉末によれば、上記目的を達成することができることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1] ブレーン比表面積が250~1,000cm/gである炭化珪素粉末であって、
 該炭化珪素粉末の全量中の、粒度が0.70mmを超え、3.00mm以下の炭化珪素粉末の割合が、50体積%以上であることを特徴とする炭化珪素粉末。
[2] 上記炭化珪素粉末が、粒度が1μm以上、1mm以下の粒子の割合が90体積%以上である一次粒子が凝集した粒子からなる前記[1]に記載の炭化珪素粉末。
[3] 上記炭化珪素粉末が、α型炭化珪素からなる粉末、β型炭化珪素からなる粉末、又はα型炭化珪素とβ型炭化珪素の混合物からなる粉末である、前記[1]または[2]に記載の炭化珪素粉末。
[4] 前記[1]~[3]のいずれかに記載の炭化珪素粉末を原料として用いて、昇華再結晶法により、炭化珪素種結晶上に炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法。
[5] 上記炭化珪素粉末を、坩堝内にかさ密度が0.7~1.4g/cmとなるように収容して加熱することで、坩堝の上蓋の底面部分に設置された炭化珪素種結晶上に炭化珪素単結晶を成長させる前記[4]に記載の炭化珪素単結晶の製造方法。
[6] 上記炭化珪素粉末を、坩堝内に熱伝導率が0.05~0.15W/m・Kとなるように収容して加熱することで、坩堝の上蓋の底面部分に設置された炭化珪素種結晶上に炭化珪素単結晶を成長させる前記[4]または[5]に記載の炭化珪素単結晶の製造方法。
 本発明の炭化珪素粉末は、昇華再結晶法による炭化珪素単結晶の製造の原料として用いた場合、昇華速度が大きい。このため、昇華後に種結晶に付着する炭化珪素単結晶の成長速度が大きく、炭化珪素単結晶の製造に要するエネルギーコストの削減及び製造時間の短縮を図ることができる。また、高圧下でも結晶の成長が可能であるため、高圧下で製造した場合、炭化珪素粉末から不純物が昇華しにくく、不純物の含有率が小さな単結晶を得ることができる。
 また、昇華されずに残存する炭化珪素の量が少なくなるため、歩留まりを向上させることができる。
 このように、本発明によれば、炭化珪素単結晶の生産性を向上させることができる。
 さらに、本発明によれば、炭化珪素単結晶の原料(炭化珪素粉末)付近の温度と、該原料の上方の種結晶付近の温度の間の温度勾配が小さくても、原料(炭化珪素粉末)の昇華速度が大きい状態を維持することができる。このため、炭化珪素単結晶の周囲に雑晶が生じにくく、ウェハの大型化を図ることができる。
昇華再結晶法に用いられる坩堝及びその内容物を概念的に示す断面図である。 炭化珪素粉末Bを示す写真を簡易に表した図である。
 本発明の炭化珪素粉末のブレーン比表面積は、250~1,000cm/g、好ましくは270~900cm/g、より好ましくは300cm/gを超え、800cm/g以下、さらに好ましくは400~700cm/g、特に好ましくは500~600cm/gである。
 該値が250cm/g未満であると、炭化珪素粉末の比表面積が小さすぎるため、炭化珪素粉末の反応性が小さくなり、昇華ガスの発生量および昇華速度が小さくなる。該値が1,000cm/gを超えると、炭化珪素粉末を昇華させた際に、昇華初期の段階では昇華速度が大きいものの、徐々に昇華速度が小さくなり、安定した昇華速度を維持することができない。
 本発明の炭化珪素粉末は、炭化珪素粉末の全量中の、粒度(粒径)が0.70mmを超え、3.00mm以下の炭化珪素粉末の割合が、50体積%以上であるような粒度分布を有する。上記の粒度の数値範囲を満たす炭化珪素粉末の割合は、50体積%以上、好ましくは70体積%以上、より好ましくは90体積%以上である。該割合が50体積%未満であると、炭化珪素粉末の昇華速度が小さくなる。
 上記粒度が0.70mm以下であると、炭化珪素粉末を坩堝等の容器に充填した際にかさ密度が大きくなり、該炭化珪素粉末を昇華させた際に、昇華ガスの抜け道が狭いため、ガスの発生量が小さくなり、結果として昇華速度が遅くなる。また、炭化珪素粉末中にガスが滞留しやすくなるため、昇華反応が進行するにつれて炭化珪素粉末同士が焼結してしまい、結果として徐々に昇華速度が小さくなり、安定した昇華速度を維持することができない。また、昇華されずに残存する炭化珪素の量が多くなる。
 上記粒度が3.00mmを超えると、炭化珪素粉末を坩堝等の容器に充填した際にかさ密度が小さくなり、該炭化珪素粉末中の空隙が大きすぎて粒子の熱伝導性が悪くなり、昇華反応が進みにくく、昇華速度が小さくなる。また、昇華されずに残存する炭化珪素の量が多くなる。
 なお、本明細書中において、「粒度が0.70mmを超え、3.00mm以下」とは、目開き3.00mmの篩を通過し、かつ、目開き0.70mmの篩を通過しないことをいう。
 本発明の炭化珪素粉末の粒度分布は、好ましくは、粒度が0.75~2.50mmの炭化珪素粉末の割合が、50体積%以上(好ましくは70体積%以上、より好ましくは90体積%以上、さらに好ましくは95体積%以上、特に好ましくは99体積%以上)のものであり、より好ましくは、粒度が0.80~2.00mmの炭化珪素粉末の割合が、50体積%以上(好ましくは70体積%以上、より好ましくは90体積%以上、さらに好ましくは95体積%以上、特に好ましくは99体積%以上)のものであり、特に好ましくは、粒度が0.85~1.70mmの炭化珪素粉末の割合が、50体積%以上(好ましくは70体積%以上、より好ましくは90体積%以上、さらに好ましくは95体積%以上、特に好ましくは99体積%以上)のものである。
 本発明の炭化珪素粉末の真密度は、特に限定されるものではないが、通常、2.90~3.10g/cmである。
 また、本発明の炭化珪素粉末は、粒度が1μm以上、1mm以下、好ましくは100μm~800μmである一次粒子が凝集(焼結)した粒子からなることが好ましい。粒子がこのような形態であれば、炭化珪素粉末の比表面積が大きくなり、その結果、炭化珪素粉末を昇華させた際に、その昇華速度が大きく、かつ、該速度を長時間維持することができる。また、昇華されずに残存する炭化珪素の量が少なくなる。
 本発明の炭化珪素粉末を構成する一次粒子の全量中、粒度が1μm以上、1mm以下である粒子の割合は、好ましくは90体積%以上、より好ましくは95体積%以上、特に好ましくは100体積%である。
 本発明の炭化珪素粉末を構成する一次粒子の全量中、粒度が100~800μmである粒子の割合は、好ましくは70体積%以上、より好ましくは80体積%以上、特に好ましくは90体積%以上である。
 また、炭化珪素粉末が上記形態を有することで、特定の粒度(0.70mmを超え、3.00mm以下)を満たす炭化珪素粉末の割合が50体積%以上であっても、炭化珪素粉末のブレーン比表面積を大きく(例えば、400cm/g以上)することができる。
 本発明の炭化珪素粉末は、α型炭化珪素からなる粉末、β型炭化珪素からなる粉末、及び、α型炭化珪素とβ型炭化珪素の混合物からなる粉末、のいずれでもよい。
 本発明の炭化珪素粉末は、炭化珪素粉末中の炭化珪素の含有率が高く、また、不純物の含有率が低いものであることが好ましい。
 ここでいう不純物とは、炭化珪素粉末の製造過程で除去される酸素(O)を除く全元素中、珪素(Si)及び炭素(C)以外の成分であって、SiC半導体の忌避成分に該当するものである。具体的には、ホウ素(B)、リン(P)、アルミニウム(Al)、鉄(Fe)、チタン(Ti)、銅(Cu)、ニッケル(Ni)等が挙げられる。
 具体的には、上記炭化珪素粉末中、B、P、Al、Fe、Ti、Cu、及びNiの含有率は、それぞれ、好ましくは3ppm以下、より好ましくは1.5ppm以下、さらに好ましくは1.0ppm以下である。中でも、B及びPの含有率は、それぞれ、さらに好ましくは0.3ppm以下である。
 また、上記炭化珪素粉末中の酸素(O)の含有率は、好ましくは0.5質量%未満である。なお、上記「酸素(O)の含有率」とは、炭化珪素粉末中に含まれる金属酸化物を構成する酸素原子の総量を示す。
 炭化珪素粉末中の上記B、P、Al、Fe、Ti、Cu、及びNiの含有率を上記範囲内にすることで、上記炭化珪素粉末を原料として、昇華再結晶法を用いて炭化珪素単結晶を製造した場合に、より高純度の炭化珪素単結晶を得ることができる。
 炭化珪素粉末中の不純物の合計の含有率は、好ましくは500ppm以下、より好ましくは200ppm以下、特に好ましくは100ppm以下である。該含有率が500ppm以下であると、上記炭化珪素粉末を原料として、昇華再結晶法を用いて炭化珪素単結晶を製造した場合に、より高純度の炭化珪素単結晶を得ることができる。
 なお、本明細書中、「ppm」は質量基準である。
 上記炭化珪素粉末中の炭化珪素の含有率(純度)は、炭化珪素粉末100質量%中の割合として、好ましくは99.0質量%以上、より好ましくは99.5質量%以上、さらに好ましくは99.9質量%以上、特に好ましくは99.99質量%以上である。
 本発明の炭化珪素粉末を製造する方法としては、アチソン炉を用いて、珪酸質原料と炭素質原料を混合してなる炭化珪素製造用原料を加熱する方法が挙げられる。
 上記炭化珪素製造用原料中の、炭素質原料と珪酸質原料の混合モル比(C/SiO)は、好ましくは2.5~4.0であり、より好ましくは2.8~3.6、特に好ましくは3.0~3.3である。
 上記混合モル比は、炭化珪素粉末の組成に影響を与える。例えば、上記混合モル比が2.5未満、または4.0を超えると、炭化珪素粉末中に未反応の珪酸質原料や炭素質原料が多く残存してしまうため、好ましくない。
 なお、本明細書中、「炭素質原料と珪酸質原料の混合モル比」とは、炭素質原料と珪酸質原料を混合して、炭化珪素製造用原料を調製する場合における、炭素質原料中の炭素(C)のモルと、珪酸質原料中の珪酸(SiO)のモルの比(C/SiO)をいう。
 上記炭化珪素製造用原料として、粉体状の珪酸質原料と粉体状の炭素質原料を混合して得られる混合原料をあらかじめペレット化したものを使用することができる。ペレット化された炭化珪素製造用原料としては、例えば、シリカと有機樹脂の混合物をペレット化した原料が挙げられる。
 上記炭化珪素粉末を製造する方法に用いられる珪酸質原料としては、例えば、天然の珪砂、天然の珪石粉、人造珪石粉等の結晶質シリカや、シリカフューム、シリカゲル等の非晶質シリカ等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。中でも、反応性の観点から非晶質シリカが好ましい。
 珪酸質原料の平均粒径は、好ましくは3mm以下、より好ましくは2mm以下、さらに好ましくは1mm以下、特に好ましくは800μm以下である。該平均粒径が3mmを超えると、反応性が著しく悪くなり、生産性が劣る結果となる。
 なお、本明細書中、「平均粒径」とは、粒径(粒度)の算術平均値を意味する。平均粒径は、例えば、適当な個数(例えば、100個)の粒子の各粒径を測定した後、これらの粒径の合計を、測定した粒子の個数で除することによって算出することができる。
 上記炭化珪素粉末の製造に用いられる炭素質原料としては、例えば、石油コークス、石炭ピッチ、カーボンブラック、各種有機樹脂等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用してもよい。中でも、純度及び粒度の観点から、カーボンブラックが好ましい。
 炭素質原料の平均粒径は、珪酸質原料との反応性の観点から、好ましくは1nm~500μm、より好ましくは5nm~100μm、さらに好ましくは10nm~10μm、さらに好ましくは20nm~1μm、さらに好ましくは30~500nm、特に好ましくは50~300nmである。なお、炭素質原料が、一次粒子と二次粒子が存在するもの(例えば、カーボンブラック)である場合、ここでの炭素質原料の平均粒径とは、一次粒子の平均粒径をいう。
 上記炭化珪素粉末の製造に用いられる炭化珪素製造用原料の他の例としては、炭素と珪酸の各々が粒子内に全体的に分布しているように調製した粒子であって、粒子内の炭素と珪酸の混合モル比(C/SiO)が、好ましくは2.5~4.0、より好ましくは2.8~3.6、特に好ましくは2.9~3.3である粒子の集合体である粉末を挙げることができる。
 上記炭化珪素粉末の製造に用いられるアチソン炉の発熱体の種類は、電気を通すことができるものである限りにおいて、特に限定されることはなく、例えば、黒鉛粉、カーボンロッド等が挙げられる。発熱体中の、炭素以外の不純物の含有率(B、P等の含有率の合計)は、上述した炭化珪素製造用原料中に含まれる不純物の含有率よりも小さいことが好ましい。
 発熱体の形態は、発熱体に電気を通すことができればよく、粉状でも棒状でもよい。また、棒状の場合、該棒状体の形態も特に限定されず、円柱状でも角柱状でもよい。
 上述した炭化珪素製造用原料を、アチソン炉を用いて加熱した後、粉砕することで、本発明の炭化珪素粉末を得ることができる。
 アチソン炉を用いることで、他の電気炉等と比べて、安価にかつ大量に、しかも安全に炭化珪素粉末を製造することができる。
 アチソン炉としては、一般的なもの(例えば、大気開放型であり、炉本体の断面が略U字状である炉)を用いればよい。
 アチソン炉の発熱体を通電加熱することで、発熱体の周囲において下記式(1)で示される直接還元反応が起こり、炭化珪素(SiC)の塊状物が生成される。
 SiO+3C → SiC+2CO   (1)
 上記反応が行われる温度は、好ましくは1,600~3,000℃、より好ましくは1,600~2,500℃である。
 得られた炭化珪素の塊状物を、ボールミル等を用いて、所定の粒度になるまで粉砕した後、篩を用いて分級することによって、本発明の炭化珪素粉末を得ることができる。
 アチソン炉は、炉が大きく、非酸化性雰囲気下で反応が行われることから、他の電気炉等と比べて、不純物(B、P等)の含有率の低い炭化珪素粉末を得ることができる。不純物の含有率が低い炭化珪素粉末は、パワー半導体等に用いられる単結晶の原料として好適である。
 上記製造方法によって製造された炭化珪素粉末は、通常、粒度が1μm以上、1mm以下の粒子の割合が90体積%以上である一次粒子が複数凝集した粒子からなる。このため、炭化珪素粉末の粒度(一次粒子が複数凝集した粒子の粒度)が特定の大きさであるにもかかわらず、ブレーン比表面積を大きくすることができる。
 また、上記炭化珪素粉末の真密度は、通常、2.90~3.10g/cmである。
 本発明の炭化珪素粉末を、昇華再結晶法(改良レーリー法)の原料として用いることで、容易に炭化珪素単結晶を得ることができる。以下、図1を参照しながら説明する。
 本体2及び上蓋3からなる坩堝1の上蓋3の内側の面(底面部分)に、炭化珪素種結晶4として、研磨によりSi面が表れている単結晶板を設置する。一方、坩堝1内に本発明の炭化珪素粉末(単結晶の原料)5を、かさ密度が好ましくは0.7~1.4g/cm、より好ましくは0.8~1.3g/cm、さらに好ましくは0.9~1.2g/cm、特に好ましくは1.0~1.1g/cmとなるように収容する。その後、加熱によって炭化珪素粉末5を昇華させることで、種結晶4上に炭化珪素単結晶6を成長させることができる。
 上記かさ密度が0.7g/cm以上であると、炭化珪素粉末5中の空隙が小さいため、熱が十分に伝わり、炭化珪素粉末5の昇華速度をより大きくすることができる。上記かさ密度が1.4g/cm以下であると、炭化珪素粉末5が過度に緻密になることがないため、発生した昇華ガスが炭化珪素粉末5の内部から抜け易くなり、炭化珪素単結晶6の成長速度をより大きくすることができる。
 炭化珪素粉末5の加熱温度は、好ましくは2,000~5,000℃、より好ましくは2,200~4,000℃、特に好ましくは2,300~3,000℃である。加熱温度が2,000℃以上であると、炭化珪素粉末5が、より昇華し易くなる。加熱温度が5,000℃以下であると、エネルギーコストの点で有利である。
 なお、坩堝1としては、例えば、黒鉛製のものが挙げられる。
 坩堝1に収容された炭化珪素粉末5の熱伝導率は、好ましくは0.05~0.15W/m・K、より好ましくは0.06~0.12W/m・K、特に好ましくは0.07~0.10W/m・Kである。上記熱伝導率が0.05W/m・K以上であると、炭化珪素粉末に熱が伝わり易くなり、生産性がさらに向上する。上記熱伝導率が0.15W/m・K以下であると、放熱が抑制され、必要な熱エネルギーを節減することができる。
 なお、上記熱伝導率は、熱伝導率測定装置(Rigaku社製、、商品名「熱伝導率測定装置TCi」)を用いて熱浸透法によって測定することができる。
 本発明の炭化珪素粉末は、加熱時の昇華速度が大きいので、該粉末を昇華再結晶法の原料として用いれば、種結晶上の炭化珪素単結晶の成長速度を大きくすることができる。このことから、炭化珪素単結晶を製造するためのエネルギーコストを下げることができる。また、炭化珪素単結晶の成長速度が大きいため、目的とする炭化珪素単結晶を得るために要する時間を短くすることができ、生産性を上げることができる。また、高圧下でも炭化珪素単結晶の成長を行うことができ、不純物の制御(反応の際に、高圧にすることで不純物が混入することを防ぐ)が行いやすくなる。
 また、昇華再結晶法において、温度勾配が小さくても、大きい昇華速度を維持することができ、得られる炭化珪素単結晶の周囲に雑晶が生じにくく、ウェハの大型化を図ることができる。
 さらに、本発明の炭化珪素粉末は、かさ密度が小さく、粉末中に存在する空隙が大きいため、発生した昇華ガスが炭化珪素粉末の内部に蓄積されず、昇華ガスが炭化珪素粉末の内部で再結晶することによる緻密化を防ぐことができ、昇華されずに残存する炭化珪素の量が少なくなる。このため、歩留まりを向上させることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[使用原料]
(1)珪酸質原料(炭化珪素粉末Bの原料)
 高純度シリカ(非晶質シリカであるシリカゲル);シリカの含有率(絶乾状態):99.99質量%以上;酸素原子を除く不純物の含有率:10ppm以下;平均粒径:600μm;太平洋セメント社製)
(2)炭素質原料(炭化珪素粉末Bの原料)
 カーボンブラック(東海カーボン社製;商品名「シーストTA」;平均粒径:122nm)
(3)発熱体(炭化珪素粉末Bの製造用)
 発熱体用黒鉛粉(太平洋セメント社製の試製品:カーボンブラックを3,000℃で熱処理したもの)
(4)炭化珪素粉末(炭化珪素粉末A、Cの材料)
 研磨用炭化珪素粉末(屋久島電工社製;商品名「GC」;酸素原子を除く不純物の含有率:495ppm;炭化珪素の含有率:99.5質量%;炭化珪素の種類:α型)
[分析方法]
(1)ブレーン比表面積
 「JIS R 5201」に準じて、ブレーン比表面積を測定した。
(2)真密度
 ピクノメータ法(気体置換)により、島津製作所社製の「アキュピック1330」(商品名)を用いて、真密度を測定した。
(3)B(ホウ素)及びP(リン)の含有率
 土壌中のB(ホウ素)の分析方法(BUNSEKI KAGAKU VOL47,No7,pp451-454参照)であるアルカリ溶融法によるICP-AES分析に基づいて、B(ホウ素)及びP(リン)の含有率を測定した。
 具体的には、試料1gおよびNaCO4gを白金ルツボに入れた後、この白金ルツボを電気炉内に載置して700℃で1時間加熱した。次いで1時間ごとに、白金ルツボ内の混合物を撹拌しながら、800℃で4時間加熱し、さらに1000℃で15分間加熱した。加熱後の混合物(融成物)に50質量%のHCl20mlを添加し、ホットプレートを用いて、140℃で10分間、融成物をくずしながら溶解した。水を加えて100mlにメスアップした後、ろ過を行い、得られた固形分に対して、ICP-AES分析を行った。
(4)B及びP以外の元素(Al、Fe、Ti、Cu、及びNi)の含有率
 「JIS R 1616」に記載された加圧酸分解法によるICP-AES分析に基づいて、B及びP以外の元素を測定した。
(5)酸素(O)の含有率
 LECO社製の「TCH-600」を用いて、酸素(O)の含有率を測定した。
(6)熱伝導率
 熱伝導率測定装置(Rigaku社製、商品名「熱伝導率測定装置TCi」)を用いて熱浸透法によって、熱伝導率を測定した。
[炭化珪素粉末Aの製造]
 上記「使用原料」の(4)に記載した研磨用炭化珪素粉末をボールミルで粉砕して、表1に示される粒度、ブレーン比表面積、及び真密度を有する炭化珪素粉末Aを得た。なお、粒度が0.85~1.70mmの炭化珪素粉末の割合は、99体積%以上であった。
 炭化珪素粉末Aは、後述の炭化珪素粉末Bと異なり、一次粒子が凝集した粒子形態を有するものではない。
[炭化珪素粉末Bの製造]
 上記「使用原料」の(1)及び(2)に記載した高純度シリカ及びカーボンブラックを、2軸ミキサーを用いて炭素と珪酸のモル比(C/SiO)が3.0となるように混合して、炭化珪素製造用原料160kgを得た。得られた炭化珪素製造用原料、及び、上記「使用原料」の(3)に記載した発熱体用黒鉛粉を、アチソン炉(アチソン炉の内寸;長さ1000mm、幅500mm、高さ500mm)の中へ収容した後、約2500℃で約10時間通電加熱を行い、炭化珪素の塊状物20.0kgを生成させた。
 得られた炭化珪素の塊状物を、ボールミルを用いて粉砕した。粉砕後、篩を用いて炭化珪素の粉砕物を分級し、粒度が0.85~1.70mmの炭化珪素粉末の割合が、99体積%以上である、表1に示される炭化珪素粉末B(炭化珪素の種類:α型とβ型の混合)を得た。
 炭化珪素粉末Bを、走査型電子顕微鏡を用いて観察したところ、1μm以上、1mm以下の粒子径を有する様々な一次粒子が凝集した粒子形態であることがわかった。図2に、炭化珪素粉末の写真を簡易に表した図を示す。
 炭化珪素粉末を構成する一次粒子の全量中、粒度が1μm以上、1mm以下である粒子の割合は、100体積%であった。また、炭化珪素粉末を構成する一次粒子の全量中、粒度が100~800μmである粒子の割合は、90体積%以上であった。
 また、得られたそれぞれの炭化珪素粉末中の不純物(B、P、Al、Fe、Ti、Cu、Ni、及びO)の含有率を、上述した分析方法を用いて測定した。結果を表2に示す。
 炭化珪素粉末中の不純物(酸素原子を除く。)の含有率は、100ppm以下であった。また、炭化珪素粉末中の炭化珪素の含有率(純度)は、99.99質量%以上であった。
[炭化珪素粉末Cの製造]
 上記「使用原料」の(4)に記載した研磨用炭化珪素粉末をボールミルで粉砕して、表1に示される粒度、ブレーン比表面積、及び真密度を有する炭化珪素粉末Cを得た。なお、粒度が0.05~0.70mmの炭化珪素粉末の割合は、99体積%以上であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[実施例1]
 「炭化珪素粉末A」1140gを、黒鉛製坩堝に入れた。また、黒鉛製坩堝の上蓋の部分には、種結晶として、研磨によりSi面が表れている単結晶板を設置した。なお、坩堝中の炭化珪素粉末Aのかさ密度は、1.26g/cmであった。また、坩堝中の炭化珪素粉末Aの熱伝導率を、上述した分析方法を用いて測定した。
 上記黒鉛製坩堝を、1Torrの圧力下において、2,300℃で加熱することによって、坩堝中の炭化珪素粉末Aを昇華させて、種結晶上に炭化珪素単結晶を成長させた。加熱は、種結晶上に成長した炭化珪素単結晶が13mmの厚みとなるまで行った。炭化珪素単結晶が13mmの厚みとなるまでに要した時間は、63時間であった。反応終了後、残存する炭化珪素粉末の質量(残存量)を測定したところ、772gであり、この測定結果から、仕込み量の67.7%が残存したことがわかった。
 上記時間(63時間)と、残存する炭化珪素粉末の量(772g)から、炭化珪素粉末の昇華速度、および炭化珪素単結晶の成長速度を算出した。結果を表3に示す。
[実施例2]
 炭化珪素粉末Aの代わりに、「炭化珪素粉末B」935gを用いる以外は、実施例1と同様にして、炭化珪素単結晶を得た。結果を表3に示す。
[比較例1]
 炭化珪素粉末Aの代わりに、「炭化珪素粉末C」1400gを用いる以外は、実施例1と同様にして、炭化珪素単結晶を得た。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3中、本発明の炭化珪素粉末を用いた場合(実施例1~2)には、本発明に該当しない炭化珪素粉末を用いた場合(比較例1)に比べて、炭化珪素単結晶の成長速度が大きく、また、反応終了後に、昇華されずに残存する炭化珪素粉末の量が少ないことがわかる。
1 坩堝
2 本体
3 上蓋
4 炭化珪素種結晶
5 炭化珪素粉末(単結晶の原料)
6 炭化珪素単結晶

Claims (6)

  1.  ブレーン比表面積が250~1,000cm/gである炭化珪素粉末であって、
     該炭化珪素粉末の全量中の、粒度が0.70mmを超え、3.00mm以下の炭化珪素粉末の割合が、50体積%以上であることを特徴とする炭化珪素粉末。
  2.  上記炭化珪素粉末が、粒度が1μm以上、1mm以下の粒子の割合が90体積%以上である一次粒子が凝集した粒子からなる請求項1に記載の炭化珪素粉末。
  3.  上記炭化珪素粉末が、α型炭化珪素からなる粉末、β型炭化珪素からなる粉末、又はα型炭化珪素とβ型炭化珪素の混合物からなる粉末である、請求項1または2に記載の炭化珪素粉末。
  4.  請求項1~3のいずれか1項に記載の炭化珪素粉末を原料として用いて、昇華再結晶法により、炭化珪素種結晶上に炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法。
  5.  上記炭化珪素粉末を、坩堝内にかさ密度が0.7~1.4g/cmとなるように収容して加熱することで、坩堝の上蓋の底面部分に設置された炭化珪素種結晶上に炭化珪素単結晶を成長させる請求項4に記載の炭化珪素単結晶の製造方法。
  6.  上記炭化珪素粉末を、坩堝内に熱伝導率が0.05~0.15W/m・Kとなるように収容して加熱することで、坩堝の上蓋の底面部分に設置された炭化珪素種結晶上に炭化珪素単結晶を成長させる請求項4または5に記載の炭化珪素単結晶の製造方法。
PCT/JP2013/081886 2013-07-31 2013-11-27 炭化珪素粉末、及び、炭化珪素単結晶の製造方法 WO2015015662A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/908,307 US9816200B2 (en) 2013-07-31 2013-11-27 Silicon carbide powder and method for producing silicon carbide single crystal
EP13890859.5A EP3028994B1 (en) 2013-07-31 2013-11-27 Method for producing silicon carbide single crystal
CN201380076003.7A CN105246826B (zh) 2013-07-31 2013-11-27 碳化硅粉末和碳化硅单晶的制造方法
KR1020157031098A KR102145650B1 (ko) 2013-07-31 2013-11-27 탄화규소 분말 및 탄화규소 단결정의 제조 방법
HK16100699.6A HK1212667A1 (zh) 2013-07-31 2016-01-21 碳化硅粉末和碳化硅單晶的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158838 2013-07-31
JP2013158838 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015015662A1 true WO2015015662A1 (ja) 2015-02-05

Family

ID=52431229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081886 WO2015015662A1 (ja) 2013-07-31 2013-11-27 炭化珪素粉末、及び、炭化珪素単結晶の製造方法

Country Status (8)

Country Link
US (1) US9816200B2 (ja)
EP (1) EP3028994B1 (ja)
JP (1) JP6230106B2 (ja)
KR (1) KR102145650B1 (ja)
CN (1) CN105246826B (ja)
HK (1) HK1212667A1 (ja)
TW (1) TWI613335B (ja)
WO (1) WO2015015662A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502403A (zh) * 2016-01-14 2016-04-20 太原理工大学 一种有序介孔碳化硅的制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6581405B2 (ja) * 2015-06-25 2019-09-25 太平洋セメント株式会社 炭化ケイ素粉末、その製造方法、及び、炭化ケイ素単結晶の製造方法
JP6420735B2 (ja) * 2015-07-28 2018-11-07 太平洋セメント株式会社 炭化ケイ素粉末
CN105858664B (zh) * 2016-06-17 2017-11-28 大同新成新材料股份有限公司 可提高碳化硅质量的方法及艾奇逊炉
TWI616401B (zh) 2016-11-15 2018-03-01 財團法人工業技術研究院 微米粉體與其形成方法
JP6749230B2 (ja) * 2016-12-27 2020-09-02 太平洋セメント株式会社 炭化珪素の製造方法
JP7019362B2 (ja) * 2017-09-29 2022-02-15 太平洋セメント株式会社 炭化珪素粉末
JP2019119663A (ja) * 2018-01-11 2019-07-22 太平洋セメント株式会社 SiC粉末及びこれを用いたSiC単結晶の製造方法
JP7166111B2 (ja) 2018-09-06 2022-11-07 昭和電工株式会社 単結晶成長方法
JP7170470B2 (ja) * 2018-09-06 2022-11-14 昭和電工株式会社 単結晶成長用坩堝及び単結晶成長方法
CN109913943A (zh) * 2019-03-05 2019-06-21 扬州港信光电科技有限公司 一种SiC基板的制造方法
KR102192815B1 (ko) * 2019-03-21 2020-12-18 에스케이씨 주식회사 잉곳의 제조방법, 잉곳 성장용 원료물질 및 이의 제조방법
CN110016718A (zh) * 2019-04-19 2019-07-16 天通凯成半导体材料有限公司 一种用于生长高质量碳化硅晶体原料提纯的处理方法
KR102068933B1 (ko) 2019-07-11 2020-01-21 에스케이씨 주식회사 탄화규소 잉곳 성장용 분말 및 이를 이용한 탄화규소 잉곳의 제조방법
KR102269878B1 (ko) * 2019-10-24 2021-06-30 하나머티리얼즈(주) 탄화 규소 분말 및 단결정 탄화 규소의 제조 방법
TWI777692B (zh) * 2020-08-17 2022-09-11 環球晶圓股份有限公司 碳化矽晶圓及其製備方法
AT524237B1 (de) * 2020-09-28 2022-04-15 Ebner Ind Ofenbau Vorrichtung zur Siliziumcarbideinkristall-Herstellung
CN113501524A (zh) * 2021-06-10 2021-10-15 青海圣诺光电科技有限公司 一种碳化硅粉末的制备方法
CN114182348B (zh) * 2021-10-28 2023-09-19 江苏吉星新材料有限公司 减少碳包裹的碳化硅单晶的制备方法
CN114032607B (zh) * 2021-11-02 2024-01-09 西北工业大学 一种采用碳化锆籽晶制备碳化锆晶须的方法
CN116443880A (zh) * 2023-03-02 2023-07-18 安徽微芯长江半导体材料有限公司 一种提高碳化硅粉料堆积密度的方法
KR102672791B1 (ko) * 2023-10-25 2024-06-05 주식회사 쎄닉 탄화규소 잉곳의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157307A (ja) * 1993-12-06 1995-06-20 Bridgestone Corp 炭化ケイ素単結晶製造用高純度β型炭化ケイ素粉末の製造方法
JP2005239496A (ja) 2004-02-27 2005-09-08 Nippon Steel Corp 炭化珪素単結晶育成用炭化珪素原料と炭化珪素単結晶及びその製造方法
JP2007223867A (ja) * 2006-02-24 2007-09-06 Bridgestone Corp 粉体表面平坦化治具及び炭化ケイ素単結晶の製造方法
JP2007284306A (ja) * 2006-04-19 2007-11-01 Nippon Steel Corp 炭化珪素単結晶及びその製造方法
JP2012101996A (ja) 2010-11-15 2012-05-31 National Institute Of Advanced Industrial Science & Technology 炭化ケイ素単結晶製造用炭化ケイ素粉体及びその製造方法
JP2013112541A (ja) * 2011-11-25 2013-06-10 Taiheiyo Cement Corp 炭化珪素を含む耐火物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122043A (en) * 1981-01-23 1982-07-29 Ube Ind Ltd Preparation of oxalic acid diester
JPH0525079A (ja) * 1990-05-25 1993-02-02 Nippon Shokubai Co Ltd 置換ベンズアルデヒドの製造方法
JP4547031B2 (ja) * 2009-03-06 2010-09-22 新日本製鐵株式会社 炭化珪素単結晶製造用坩堝、並びに炭化珪素単結晶の製造装置及び製造方法
KR101940351B1 (ko) * 2011-08-24 2019-01-18 다이헤이요 세멘토 가부시키가이샤 탄화규소 분말 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07157307A (ja) * 1993-12-06 1995-06-20 Bridgestone Corp 炭化ケイ素単結晶製造用高純度β型炭化ケイ素粉末の製造方法
JP2005239496A (ja) 2004-02-27 2005-09-08 Nippon Steel Corp 炭化珪素単結晶育成用炭化珪素原料と炭化珪素単結晶及びその製造方法
JP2007223867A (ja) * 2006-02-24 2007-09-06 Bridgestone Corp 粉体表面平坦化治具及び炭化ケイ素単結晶の製造方法
JP2007284306A (ja) * 2006-04-19 2007-11-01 Nippon Steel Corp 炭化珪素単結晶及びその製造方法
JP2012101996A (ja) 2010-11-15 2012-05-31 National Institute Of Advanced Industrial Science & Technology 炭化ケイ素単結晶製造用炭化ケイ素粉体及びその製造方法
JP2013112541A (ja) * 2011-11-25 2013-06-10 Taiheiyo Cement Corp 炭化珪素を含む耐火物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BUNSEKI KAGAKU, vol. 47, no. 7, pages 451 - 454

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502403A (zh) * 2016-01-14 2016-04-20 太原理工大学 一种有序介孔碳化硅的制备方法

Also Published As

Publication number Publication date
KR20160036527A (ko) 2016-04-04
JP6230106B2 (ja) 2017-11-15
TWI613335B (zh) 2018-02-01
KR102145650B1 (ko) 2020-08-19
TW201504488A (zh) 2015-02-01
CN105246826A (zh) 2016-01-13
EP3028994A1 (en) 2016-06-08
US20160160386A1 (en) 2016-06-09
HK1212667A1 (zh) 2016-06-17
EP3028994A4 (en) 2017-03-29
CN105246826B (zh) 2017-06-16
US9816200B2 (en) 2017-11-14
EP3028994B1 (en) 2020-06-10
JP2015044726A (ja) 2015-03-12

Similar Documents

Publication Publication Date Title
JP6230106B2 (ja) 炭化珪素単結晶の製造方法
JP5999715B2 (ja) 炭化珪素粉末の製造方法
KR101413653B1 (ko) 고순도 탄화규소 분말의 제조방법
US20130266810A1 (en) Silicon carbide powder for producing silicon carbide single crystal and a method for producing the same
JP6210598B2 (ja) 炭化珪素粉末の製造方法
US20150218004A1 (en) Silicon carbide powder, and preparation method therefor
JP2018016498A (ja) 炭化珪素単結晶インゴットの製造方法
JP6297812B2 (ja) 炭化珪素の製造方法
JP6757688B2 (ja) 炭化ケイ素粉末、その製造方法、及び炭化ケイ素単結晶の製造方法
JP6778100B2 (ja) 炭化珪素粉末及びこれを原料とする炭化珪素単結晶の製造方法
JP6184732B2 (ja) 炭化珪素顆粒及びその製造方法
Feng et al. Synthesis, densification, microstructure, and mechanical properties of samarium hexaboride ceramic
Liu et al. Effect of removal of silicon on preparation of porous SiC ceramics following reaction bonding and recrystallization
JP6990136B2 (ja) 炭化ケイ素粉末
EP1460040A1 (en) Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same
JP6304477B2 (ja) 炭化珪素粉粒体及びその製造方法
JP7019362B2 (ja) 炭化珪素粉末
JP6378041B2 (ja) 炭化珪素粉末、粒度が調整された炭化珪素粉末の製造方法、及び、炭化珪素単結晶の製造方法
JP6508583B2 (ja) 炭化珪素単結晶の製造方法
JP2019112239A (ja) SiC粉末及びその製造方法
JP6527430B2 (ja) 炭化珪素の製造方法
JP6581405B2 (ja) 炭化ケイ素粉末、その製造方法、及び、炭化ケイ素単結晶の製造方法
JP2017171564A (ja) 炭化珪素単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031098

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908307

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013890859

Country of ref document: EP