WO2015005194A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2015005194A1
WO2015005194A1 PCT/JP2014/067682 JP2014067682W WO2015005194A1 WO 2015005194 A1 WO2015005194 A1 WO 2015005194A1 JP 2014067682 W JP2014067682 W JP 2014067682W WO 2015005194 A1 WO2015005194 A1 WO 2015005194A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
circumferential
tire
vehicle
land portion
Prior art date
Application number
PCT/JP2014/067682
Other languages
English (en)
French (fr)
Inventor
佳史 小石川
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201480021962.3A priority Critical patent/CN105358339B/zh
Priority to US14/904,675 priority patent/US11135879B2/en
Priority to DE112014003255.7T priority patent/DE112014003255B4/de
Priority to JP2015526282A priority patent/JP6436080B2/ja
Publication of WO2015005194A1 publication Critical patent/WO2015005194A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0327Tread patterns characterised by special properties of the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0348Narrow grooves, i.e. having a width of less than 4 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0351Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • B60C2011/0383Blind or isolated grooves at the centre of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0393Narrow ribs, i.e. having a rib width of less than 8 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface

Definitions

  • the present invention relates to a pneumatic tire having at least four main grooves extending in the tire circumferential direction on a tread surface. More specifically, the present invention relates to noise while maintaining both steering stability performance on a dry road surface and running performance on a wet road surface. The present invention relates to a pneumatic tire capable of improving performance.
  • a lug groove or sipe extending in the tire width direction is formed to ensure drainage.
  • a lug groove or sipe extending in the tire width direction is formed to ensure drainage.
  • Patent Document 1 since there is a land portion where no lug groove is formed, it cannot be said that sufficient wet performance can be obtained. Moreover, although the rigidity of the land part can be secured by the small number of lug grooves, the feeling of response during steering by the lug grooves and the linearity of the rudder (linearity of the vehicle behavior with respect to the rudder angle at the time of steering) are insufficient. In particular, it becomes difficult to sufficiently improve the handling stability (dry handling stability) on the dry road surface. Therefore, further improvement for improving noise performance is demanded while achieving both dry performance and wet performance.
  • An object of the present invention is to provide a pneumatic tire that can improve noise performance while achieving both stable driving performance on a dry road surface and traveling performance on a wet road surface.
  • the pneumatic tire of the present invention has at least four main grooves extending in the tire circumferential direction on the tread surface, and a plurality of circumferential land extending in the tire circumferential direction between adjacent main grooves. Is formed with a shoulder land portion between each of the outermost main grooves in the tire width direction and the ground contact ends on both sides of the tire width direction, and the mounting direction with respect to the vehicle is designated.
  • each of the plurality of circumferential land portions extends in the tire width direction and communicates with a main groove that is inward with respect to the vehicle when the vehicle is mounted.
  • a plurality of lug grooves that terminate in the circumferential land portion without communicating with the grooves are formed at intervals in the tire circumferential direction.
  • all of the lug grooves formed in the circumferential land portion open to the main groove that is on the inner side with respect to the vehicle when the vehicle is mounted, whereas Since it does not open in the groove, pumping noise and pattern noise during traveling are radiated inward with respect to the vehicle, and noise outside the vehicle can be reduced.
  • the above-mentioned lug grooves are formed in all the circumferential land portions, rain water or the like interposed between the land portions and the road surface easily flows efficiently toward the main groove inside the vehicle during wet road running. Thus, the wet performance can be improved.
  • all the lug grooves terminate in the circumferential land portion and do not divide the circumferential land portion, the rigidity of each circumferential land portion is ensured and the dry performance can be maintained.
  • a circumferential narrow groove extending in the tire circumferential direction is formed at least in a shoulder land portion that is on the outer side with respect to the vehicle when the vehicle is mounted, and extends in the tire width direction. While opening, it is preferable to form the shoulder lug groove which does not open to the main groove at intervals in the tire circumferential direction. As a result, the air column resonance caused by the main groove is not radiated to the outside of the vehicle through the shoulder lug groove. On the other hand, the air column resonance caused by the circumferential narrow groove is small because the sectional area of the circumferential narrow groove is small. Since the sound is sufficiently low, noise outside the vehicle can be suppressed.
  • the groove area ratio of the circumferential land portion on the outer side in the tire width direction is larger than the groove area ratio of the circumferential land portion on the tire equator side, and the groove area of the circumferential land portion on the outermost side in the tire width direction
  • the groove area ratio of the shoulder land portion is preferably larger than the ratio.
  • a shoulder lug groove that does not open in the main groove is formed at an interval in the tire circumferential direction, and extends in the tire width direction to at least a shoulder land portion that is on the inner side of the vehicle when the vehicle is mounted. It is preferable to form a sipe that opens to the ground end but does not open to the main groove.
  • the lug grooves are preferably inclined in the same direction with respect to the tire circumferential direction.
  • the shoulder lug groove is inclined in the same direction as the lug groove.
  • FIG. 1 is a meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a front view showing a tread surface of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 3 is a front view showing an example of a tread surface of a conventional pneumatic tire.
  • 4 is a front view showing a tread pattern of Comparative Example 1.
  • FIG. 5 is a front view showing a tread pattern of Comparative Example 2.
  • the pneumatic tire T is designated with respect to the mounting direction with respect to the vehicle, the symbol IN is the side that is on the inner side of the vehicle when the vehicle is mounted (hereinafter referred to as the vehicle inner side), Side (hereinafter referred to as the vehicle outside), the symbol CL represents the tire equator.
  • the pneumatic tire T includes a tread portion 1, sidewall portions 2, and bead portions 3.
  • a carcass layer 4 is mounted between the pair of left and right bead portions 3.
  • the carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded from the tire inner side to the outer side around the bead core 5 disposed in each bead portion 3.
  • a bead filler 6 is disposed on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the main body portion and the folded portion of the carcass layer 4.
  • a plurality of layers (two layers in FIG. 1) of belt layers 7 and 8 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1.
  • Each of the belt layers 7 and 8 includes a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and is disposed so that the reinforcing cords cross each other between the layers.
  • the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in the range of 10 ° to 40 °, for example.
  • a belt reinforcing layer 9 is provided on the outer peripheral side of the belt layers 7 and 8.
  • the belt reinforcing layer 9 includes an organic fiber cord oriented in the tire circumferential direction.
  • the organic fiber cord has an angle of, for example, 0 ° to 5 ° with respect to the tire circumferential direction.
  • the present invention is applied to such a general pneumatic tire, but its cross-sectional structure is not limited to the basic structure described above.
  • a plurality of (four in FIG. 2) main grooves 11 extending in the tire circumferential direction are provided on the outer surface of the tread portion 1 of the pneumatic tire of the present invention, that is, the tread surface 10. It has been.
  • the main groove 11 has a groove width of, for example, 5 mm to 10 mm, and a groove depth of, for example, 5 mm to 10 mm.
  • a plurality of (three in FIG. 2) circumferential land portions 12 extending in the tire circumferential direction are defined between adjacent main grooves 11. Further, on both sides of the tire equator CL in the tire width direction, a shoulder land portion 13 is defined between the outermost main groove 11 and the ground contact end E in the tire width direction.
  • Each of the plurality of circumferential land portions 12 extends in the tire width direction and communicates with the main groove 11 on the vehicle inner side, but terminates within the circumferential land portion 12 without communicating with the main groove 11 on the vehicle outer side.
  • a plurality of lug grooves 14 are formed at intervals in the tire circumferential direction.
  • the lug groove 14 has a groove width of 2 mm to 10 mm, for example, and a groove depth shallower than the main groove 11, for example, 2 mm to 8 mm.
  • the lug groove 14 having such a shape is opened only in the main groove 11 inside the vehicle and is not opened in the main groove 11 outside the vehicle, pumping noise and pattern noise during traveling radiate toward the inside of the vehicle. Will be. Therefore, the noise outside the vehicle is reduced and the noise performance can be improved. Further, since the lug grooves 14 having the above-described shape are formed in all the circumferential land portions 12, rain water or the like interposed between the land portions and the road surface is generated in the main groove 11 inside the vehicle when traveling on a wet road surface. It becomes easy to flow efficiently toward, and can improve wet performance.
  • each circumferential land portion 12 has a rib structure extending continuously in the tire circumferential direction, Rigidity is ensured and dry performance can be maintained.
  • a groove having a shape different from that of the lug groove 14 described above that is, a groove extending in the tire width direction and communicating with the main groove 11 on the vehicle inner side and the main groove 11 on the vehicle outer side is formed in the circumferential land portion 12.
  • the flow of rainwater and the like is improved and the wet performance is improved, pumping noise and pattern noise during traveling are radiated to the outside of the vehicle, and noise outside the vehicle cannot be reduced.
  • the circumferential land portion 12 is divided in the circumferential direction, the rigidity of the circumferential land portion 12 is reduced, and the dry performance is deteriorated. Therefore, it is preferable to provide only the lug groove 14 described above in the circumferential land portion 12.
  • the lug groove 14 may be terminated in the circumferential land portion 12 as described above.
  • the length L1 of the lug groove 14 projected in the circumferential direction is equal to the width L2 of the circumferential land portion 12. It may be 30% to 70%. In other words, the interval between the end portion of the lug groove 14 and the adjacent main groove 11 not communicating with the lug groove 14 may be 30% to 70% of the width of the circumferential land portion 12. If the length L1 is smaller than 30% of the width L2 of the circumferential land portion 12, the lug groove 14 is too small, and the effect of improving the drainage performance cannot be sufficiently obtained. When the length L1 is larger than 70% of the width L2 of the circumferential land portion 12, it is difficult to ensure sufficient rigidity of the circumferential land portion 12.
  • the number of the main grooves 11 is not particularly limited as long as at least four main grooves 11 are formed. From the relationship between the drainage performance by the grooves and the rigidity of the tread surface, four main grooves 11 as in the embodiment of FIG. 11 is preferably provided. That is, it is preferable to partition and form three circumferential land portions 12 and one (two in total) shoulder land portions 13 on both sides in the tire width direction.
  • the shoulder land portion 13 is preferably provided with a circumferential narrow groove 15 extending in the tire circumferential direction and a shoulder lug groove 16 extending in the tire width direction.
  • the circumferential narrow groove 15 is a groove extending in the tire circumferential direction along the tire width direction outermost main groove 11 between the tire width direction outermost main groove 11 and the ground contact E.
  • the groove width and the groove depth of the circumferential narrow groove 15 are preferably made smaller than the groove width and the groove depth of the main groove 11, for example, the groove width is 1 mm to 5 mm and the groove depth is 2 mm to 8 mm.
  • the shoulder lug groove 16 has a shape that opens to the circumferential narrow groove 15 and the ground contact E, but does not open to the main groove 11.
  • the shoulder lug groove 16 intersects with the circumferential narrow groove 15 and is adjacent to the circumferential narrow groove 15 and the circumferential narrow groove 15 (that is, the outermost tire width direction outermost groove). It terminates in a land portion that is partitioned between the main groove 11).
  • a plurality of the shoulder lug grooves 16 are arranged at intervals in the tire circumferential direction.
  • the groove width of the shoulder lug groove 16 is preferably 1 mm to 5 mm, and the groove depth is preferably 2 mm to 10 mm, for example.
  • the shoulder lug groove 16 does not communicate with the main groove 11, so that the air column resonance sound caused by the main groove 11 is generated by the shoulder lug groove 16. Can be prevented from being emitted to the outside of the vehicle. Further, since the circumferential narrow groove 15 has a groove cross-sectional area smaller than that of the main groove 11, the air column resonance generated by the circumferential narrow groove 15 is sufficiently smaller than the air column resonance generated by the main groove 11. Even if the lug groove 16 communicates with the circumferential narrow groove 15, the noise outside the vehicle does not deteriorate. Therefore, noise performance can be improved.
  • the circumferential narrow groove 15 and the shoulder lug groove 16 described above may be formed at least in the shoulder land portion 13 on the vehicle inner side, but preferably the shoulder land portions 13 on both sides in the tire width direction as illustrated in FIG. It is good to provide each.
  • the groove area ratio of the circumferential land portion 12 and the shoulder land portion 13 is larger than the groove area ratio of the circumferential land portion 12 on the outer side in the tire width direction than the groove area ratio of the circumferential land portion 12 on the tire equator CL side. And it is preferable to have the tendency that the groove area ratio of the shoulder land portion 13 is larger than the groove area ratio of the circumferential land portion 12 on the outermost side in the tire width direction.
  • the circumferential land portion 12 on the tire equator CL is a first circumferential land portion 12A, and the circumferential land portions 12 on both sides in the tire width direction are second circumferential land portions 12B.
  • the groove area ratio of the directional land portion 12A is S1
  • the groove area ratio of the second circumferential land portion 12B is S2
  • the groove area ratio of the shoulder land portion 13 is S3
  • the groove area ratio is S1 ⁇ S2 ⁇ S3. It is good to.
  • the groove area ratio is included in each land portion (circumferential land portion 12, shoulder land portion 13) with respect to the area of each land portion (circumferential land portion 12, shoulder land portion 13) on the ground contact surface. It is a ratio of the total area of the lug groove 14 or the circumferential narrow groove 15 and the shoulder lug groove 16 (and sipe 17 described later).
  • the ground contact area is defined as when the tire is filled with air pressure corresponding to the maximum load capacity specified by JATMA and placed vertically on a flat plate and a load corresponding to 80% of the maximum load capacity is applied. It is a ground plane formed on a flat plate.
  • the shoulder land portion 13 on the vehicle inner side further extends in the tire width direction and the circumferential narrow groove 15. It is preferable to form a sipe 17 that opens to the grounding end E but does not open to the main groove 11. More preferably, as illustrated in FIG. 2, the sipes 17 may be arranged one by one in the middle between two adjacent shoulder lug grooves 16.
  • the sipe 17 having such a shape, drainage performance during wet road running can be improved.
  • the sipe 17 on the shoulder land portion 13 on the vehicle inner side the land portion on the vehicle inner side where the contact pressure increases when the negative camber is set can easily move, and uneven wear can be suppressed.
  • the sipe 17 is a fine groove having a groove width of 0.6 mm to 1.2 mm and a groove depth of 1 mm to 5 mm.
  • the lug groove 14 is preferably inclined with respect to the tire circumferential direction as illustrated in FIG.
  • the inclination direction is preferably the same direction regardless of the position of the circumferential land portion 12 where the lug groove 14 is formed.
  • the inclination angle ⁇ 1 of the lug groove 14 with respect to the tire width direction is preferably set to 15 ° to 45 °, for example.
  • the shoulder lug groove 16 is also preferably inclined with respect to the tire circumferential direction as illustrated in FIG.
  • the inclination direction of the shoulder lug groove 16 may be the same direction as the lug groove 14.
  • the inclination angle ⁇ 2 of the shoulder lug groove 16 is preferably equal to or smaller than the inclination angle ⁇ 1 of the lug groove 14, for example, 15 ° to 30 °.
  • the tire size is 215 / 45R17 87W, has the cross-sectional shape illustrated in FIG. 1, the basic tread pattern, the presence or absence of circumferential narrow grooves, the shape of shoulder lug grooves, the circumferential land portion (first circumferential land) , Groove area ratio of the second circumferential direction land part on the vehicle inner side, second circumferential direction land part on the vehicle outer side) and shoulder land part (vehicle inner side, vehicle outer side), presence / absence of sipes, inclination direction of the lug groove, lug groove Twelve types of pneumatic tires of Conventional Example 1, Comparative Examples 1 and 2, and Examples 1 to 9 in which the inclination direction of the shoulder lug groove with respect to the inclination direction of each was set as shown in Table 1 were produced.
  • the pneumatic tire of Conventional Example 1 is a tire having a tread pattern illustrated in FIG. Specifically, it has four main grooves extending in the tire circumferential direction on the tread surface, and three rows of land portions are defined between adjacent main grooves. These three rows of land portions extend in the tire width direction and are divided in the circumferential direction by a plurality of lug grooves respectively communicating with the main grooves on the vehicle inner side and the vehicle outer side to form block rows.
  • the shoulder land portion defined between the outermost main groove in the tire width direction and the grounding ends on both sides in the tire width direction also extends in the tire width direction and opens to the main groove and the grounding end respectively. Is divided in the circumferential direction to form a block row.
  • the circumferential narrow groove is not formed in the shoulder land portion. Moreover, as shown in Table 1, the inclination direction of the lug groove is different for each land portion, and the inclination direction of the lug groove is opposite between adjacent land portions.
  • the lug grooves formed in either the first circumferential land portion or the second circumferential land portion are arranged on the vehicle inner side and the vehicle.
  • the first circumferential land portion or the second circumferential land portion is divided in the circumferential direction to form a block row.
  • the first circumferential land portion is divided in the circumferential direction by a lug groove to form a block row
  • the pneumatic tire of Comparative Example 2 FIG.
  • the second circumferential land portion (the vehicle inner side and the vehicle outer side) is divided in the circumferential direction by lug grooves to form a block row.
  • the tires of Comparative Examples 1 and 2 (FIGS. 4 and 5) have the same structure as the tire of Example 1 (FIG. 2) except for the points described above.
  • the case where all the inclination directions of the lug grooves formed in the first circumferential land portion and the second circumferential land portion are aligned is “match”, the first circumference If the lug groove formed in either the directional land portion or the second circumferential land portion (vehicle inner side, vehicle outer side) is not aligned with the lug groove formed in the other circumferential land portions, ". Further, in the column “inclination direction of the shoulder lug groove”, the shoulder lug groove is also the lug groove when the inclination directions of the lug grooves formed in the first circumferential land portion and the second circumferential land portion are all aligned. The case of being inclined in the same direction is indicated as “match”, and the case of being inclined in a different direction is indicated as “mismatch”.
  • Each test tire is mounted on a wheel with a rim size of 17 x 7 J, mounted on a test vehicle (front-wheel drive vehicle) with a displacement of 1.8 liters and an air pressure of 250 kPa.
  • the passing sound was measured according to the measurement method based on regulations.
  • the evaluation results are shown as an index with the conventional example 1 as 100, using the reciprocal of the measured value.
  • a larger index value means less currency noise and better noise performance.
  • Dry steering stability performance Each test tire is mounted on a wheel with a rim size of 17 x 7 J, mounted on a test vehicle (front-wheel drive vehicle) with a displacement of 1.8 liters with an air pressure of 230 kPa, and on a test course consisting of a dry asphalt road surface.
  • the vehicle was run while changing in the range of 60 km / h to 140 km / h, and sensory evaluation was performed by three test drivers.
  • the evaluation results were expressed as index values with the evaluation score of sensory evaluation indexed, with Conventional Example 1 taken as 100. The larger the index value, the better the dry steering stability performance.
  • test tire is assembled on a wheel with a rim size of 17 ⁇ 7J, mounted on a test vehicle (front-wheel drive vehicle) with a displacement of 1.8L with an air pressure of 230 kPa, The vehicle was run while changing the speed within a range of 40 km / h to 80 km / h, and sensory evaluation was performed by three test drivers.
  • the evaluation results were expressed as index values with the evaluation score of sensory evaluation indexed, with Conventional Example 1 taken as 100. The larger the index value, the better the wet steering stability performance.
  • each of Examples 1 to 9 improved the noise performance and the dry maneuvering stability performance while maintaining a high wet performance as compared with Conventional Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 乾燥路面での操縦安定性能とウェット路面での走行性能とを両立させながら、騒音性能を向上させることを可能にした空気入りタイヤ(T)を提供する。トレッド面(10)にタイヤ周方向に延びる少なくとも4本の主溝(11)を有し、これら主溝(11)により周方向陸部(12)とショルダー陸部(13)とが区画形成され、且つ、車両に対する装着方向が指定された空気入りタイヤ(T)において、複数本の周方向陸部(12)のそれぞれに、タイヤ幅方向に延び、車両内側の主溝(11)に連通する一方で、車両外側の主溝(11)に連通せずに周方向陸部(12)内で終端する複数本のラグ溝(14)を、タイヤ周方向に間隔を開けて形成する。

Description

空気入りタイヤ
 本発明は、トレッド面にタイヤ周方向に延びる少なくとも4本の主溝を有する空気入りタイヤに関し、更に詳しくは、乾燥路面での操縦安定性能とウェット路面での走行性能とを両立させながら、騒音性能を向上させることを可能にした空気入りタイヤに関する。
 近年、道路整備の進展や車両の高性能化を受けて、空気入りタイヤに対して、高速走行時における乾燥路面での走行性能(ドライ性能)とウェット路面での走行性能(ウェット性能)とを両立させながら、騒音性能を向上させることが強く求められている。
 一般に、ウェット性能を向上させる方法としては、タイヤのトレッド面にタイヤ周方向に延びる主溝のほかにタイヤ幅方向に延びるラグ溝やサイプを形成して排水性を確保することが行われている。ところが、このような方法では、トレッド面に形成された陸部の剛性が低下してしまうために、ドライ性能を確保することが難しくなると同時に、騒音性能が悪化するという問題があった。
 従来、ドライ性能とウェット性能とを両立させながら、騒音性能を向上させるための対策として、タイヤの車両への装着方向を指定したうえで、ラグ溝の形態やその配置を特定することが提案されている(例えば、特許文献1参照)。
 しかしながら、特許文献1の構造では、ラグ溝が形成されない陸部が存在するため、ウェット性能が必ずしも充分に得られるとは言えない。また、ラグ溝が少ないことにより陸部の剛性は確保できるものの、ラグ溝による操舵時の手応え感や舵のリニアリティ(操舵時の舵角に対する車両挙動の線形性)は不足するため、ドライ性能のうち、特に、ドライ路面での操縦安定性(ドライ操縦安定性)を充分に向上することが難しくなる。そのため、ドライ性能とウェット性能とを両立させながら、騒音性能を向上させるための更なる改善が求められている。
日本国特開2010-247759号公報
 本発明の目的は、乾燥路面での操縦安定性能とウェット路面での走行性能とを両立させながら、騒音性能を向上させることを可能にした空気入りタイヤを提供することにある。
 上記目的を達成するための本発明の空気入りタイヤは、トレッド面にタイヤ周方向に延びる少なくとも4本の主溝を有し、隣接する主溝間にタイヤ周方向に延びる複数本の周方向陸部が区画形成されると共に、タイヤ幅方向最外側の各主溝とタイヤ幅方向両側の接地端との間にそれぞれショルダー陸部が区画形成され、且つ、車両に対する装着方向が指定された空気入りタイヤにおいて、前記複数本の周方向陸部のそれぞれに、タイヤ幅方向に延び、車両装着時に車両に対して内側になる主溝に連通する一方で、車両装着時に車両に対して外側になる主溝に連通せずに前記周方向陸部内で終端する複数本のラグ溝を、タイヤ周方向に間隔を開けて形成したことを特徴とする。
 本発明では、上述のように、周方向陸部に形成されるラグ溝がいずれも車両装着時に車両に対して内側になる主溝に開口する一方で車両装着時に車両に対して外側になる主溝に開口しないので、走行時におけるポンピング音やパターンノイズは車両に対して内側に向けて放射されることになり、車外騒音を低減することができる。また、全ての周方向陸部に上述のラグ溝が形成されているので、ウェット路面走行時には、陸部と路面との間に介在する雨水等が車両内側の主溝に向けて効率よく流れ易くなり、ウェット性能を向上することができる。その一方で、ラグ溝はいずれも周方向陸部内で終端し、周方向陸部を分断しないので、各周方向陸部の剛性が確保され、ドライ性能を維持することができる。
 本発明においては、周方向陸部のそれぞれに前記ラグ溝のみを形成することが好ましい。これにより、車外騒音を確実に低減することができる。
 本発明においては、少なくとも車両装着時に車両に対して外側になるショルダー陸部に、タイヤ周方向に延びる周方向細溝を形成すると共に、タイヤ幅方向に延び、周方向細溝と接地端とに開口する一方で、主溝に開口しないショルダーラグ溝を、タイヤ周方向に間隔を開けて形成することが好ましい。これにより、主溝に起因する気柱共鳴音がショルダーラグ溝を通じて車外に放射されることが無くなる一方で、周方向細溝の溝断面積が小さいために周方向細溝に起因する気柱共鳴音は充分に小さいので、車外騒音を抑制することができる。また、ウェット路面走行時には、周方向細溝とショルダーラグ溝とにより陸部と路面との間に介在する雨水等を排出することができるので、ウェット性能を向上することができる。その一方で、周方向細溝と周方向細溝に隣接する主溝との間に周方向に分断されない陸部が区画形成されるので、この部分の剛性が確保され、ドライ性能を向上することができる。
 本発明においては、タイヤ赤道側の周方向陸部の溝面積比率よりもタイヤ幅方向外側の周方向陸部の溝面積比率が大きく、且つ、タイヤ幅方向最外側の周方向陸部の溝面積比率よりもショルダー陸部の溝面積比率が大きいことが好ましい。このように溝面積比率を設定することで、急激なコーナリングフォースの増大を抑制して、より滑らかな操舵を、つまり、舵のリニアリティを向上させることができる。
 本発明においては、タイヤ幅方向両側のショルダー陸部に、タイヤ周方向に延びる周方向細溝を形成すると共に、タイヤ幅方向に延び、周方向細溝と接地端とに開口する一方で、前記主溝に開口しないショルダーラグ溝を、タイヤ周方向に間隔を開けて形成し、且つ、少なくとも車両装着時に車両に対して内側になるショルダー陸部に、タイヤ幅方向に延び、周方向細溝と接地端とに開口する一方で、主溝に開口しないサイプを形成することが好ましい。このようにサイプを設けることで、サイプによる排水性能が得られるため、ウェット性能を向上することができる。
 本発明においては、ラグ溝がいずれもタイヤ周方向に対して同じ方向に傾斜していることが好ましい。このようにラグ溝を配置することで、水深が深い路面等を走行する際にラグ溝を通る水の流れがスムーズになるので、排水性能を向上し、ウェット性能を改善することができる。
 このとき、更に、ショルダーラグ溝がラグ溝と同じ方向に傾斜していることが好ましい。このようにショルダーラグ溝を配置することで、水深が深い路面等を走行する際にラグ溝及びショルダーラグ溝を通る水の流れがスムーズになるので、排水性能を向上し、ウェット性能を改善することができる。
図1は、本発明の実施形態からなる空気入りタイヤの子午線断面図である。 図2は、本発明の実施形態からなる空気入りタイヤのトレッド面を示す正面  図である。 図3は、従来の空気入りタイヤのトレッド面の一例を示す正面図である。 図4は、比較例1のトレッドパターンを示す正面図である。 図5は、比較例2のトレッドパターンを示す正面図である。
 以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
 図1において、空気入りタイヤTは車両に対する装着方向が指定され符号INは車両装着時に車両に対して内側になる側(以下、車両内側という)、符号OUTは車両装着時に車両に対して外側になる側(以下、車両外側という)、符号CLはタイヤ赤道を表わす。この空気入りタイヤTは、トレッド部1、サイドウォール部2、ビード部3から構成される。左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りにタイヤ内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では2層)のベルト層7,8が埋設されている。各ベルト層7,8は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7,8において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。更に、ベルト層7,8の外周側にはベルト補強層9が設けられている。ベルト補強層9は、タイヤ周方向に配向する有機繊維コードを含む。ベルト補強層9において、有機繊維コードはタイヤ周方向に対する角度が例えば0°~5°に設定されている。
 本発明は、このような一般的な空気入りタイヤに適用されるが、その断面構造は上述の基本構造に限定されるものではない。
 図2に例示するように、本発明の空気入りタイヤのトレッド部1の外表面、即ち、トレッド面10には、タイヤ周方向に延びる複数本(図2では4本)の主溝11が設けられている。この主溝11は、溝幅が例えば5mm~10mm、溝深さが例えば5mm~10mmである。隣接する主溝11間には、タイヤ周方向に延びる複数本(図2では3本)の周方向陸部12が区画形成されている。また、タイヤ赤道CLのタイヤ幅方向両側において、タイヤ幅方向最外側の主溝11と接地端Eとの間にショルダー陸部13が区画形成されている。複数本の周方向陸部12には、それぞれ、タイヤ幅方向に延び車両内側の主溝11に連通する一方で、車両外側の主溝11に連通せずに周方向陸部12内で終端する複数本のラグ溝14が、タイヤ周方向に間隔を開けて形成されている。このラグ溝14は、溝幅が例えば2mm~10mm、溝深さが主溝11よりも浅く、例えば2mm~8mmである。
 このような形状のラグ溝14は、車両内側の主溝11のみに開口し、車両外側の主溝11には開口していないので、走行時におけるポンピング音やパターンノイズは車両内側に向けて放射されることになる。そのため、車外騒音が低減され、騒音性能を向上することができる。また、全ての周方向陸部12に、上述の形状のラグ溝14が形成されているので、ウェット路面走行時には、陸部と路面との間に介在する雨水等が車両内側の主溝11に向けて効率よく流れ易くなり、ウェット性能を高めることができる。その一方で、ラグ溝14はいずれも周方向陸部内で終端し、周方向陸部12を分断しないので、各周方向陸部12は、タイヤ周方向に連続的に延在するリブ構造となり、剛性が確保され、ドライ性能を維持することができる。
 このとき、周方向陸部12に、上述のラグ溝14とは異なる形状の溝、即ち、タイヤ幅方向に延び車両内側の主溝11と車両外側の主溝11に共に連通する溝を形成すると、雨水等の流れは良くなりウェット性能は向上するものの、走行時におけるポンピング音やパターンノイズは車両外側にも放射されることになり、車外騒音を低減することはできない。また、周方向陸部12が周方向に分断されることになるため、周方向陸部12の剛性が低下し、ドライ性能が悪化する。従って、周方向陸部12には、上述のラグ溝14のみを設けることが好ましい。
 ラグ溝14は、上述のように周方向陸部12内で終端していればよいが、好ましくは、ラグ溝14を周方向に投影した長さL1が、周方向陸部12の幅L2の30%~70%であるとよい。言い換えれば、ラグ溝14の終端部とそのラグ溝14に連通しない隣接する主溝11との間隔を周方向陸部12の幅の30%~70%にするとよい。長さL1が周方向陸部12の幅L2の30%より小さいと、ラグ溝14が小さ過ぎるため排水性能を向上する効果が充分に得られない。長さL1が周方向陸部12の幅L2の70%より大きいと、周方向陸部12の剛性が充分に確保することが難しくなる。
 主溝11は少なくとも4本が形成されていれば、その本数は特に限定されないが、溝による排水性能とトレッド面の剛性との関係から、図2の実施形態のように、4本の主溝11を設けることが好ましい。即ち、3本の周方向陸部12と、そのタイヤ幅方向両側にそれぞれ1本ずつ(計2本)のショルダー陸部13を区画形成することが好ましい。
 ショルダー陸部13には、図2に例示するように、タイヤ周方向に延びる周方向細溝15とタイヤ幅方向に延びるショルダーラグ溝16とを設けることが好ましい。周方向細溝15は、タイヤ幅方向最外側の主溝11と接地端Eとの間で、タイヤ幅方向最外側の主溝11に沿ってタイヤ周方向に延びる溝である。周方向細溝15の溝幅及び溝深さは、主溝11の溝幅及び溝深さよりも小さくし、例えば溝幅を1mm~5mm、溝深さを2mm~8mmにするとよい。一方、ショルダーラグ溝16は、周方向細溝15と接地端Eとに開口する一方で、主溝11に開口しない形状を有する。特に、図2の実施形態では、ショルダーラグ溝16は、周方向細溝15と交差し、周方向細溝15と周方向細溝15に隣接する主溝11(即ち、タイヤ幅方向最外側の主溝11)との間に区画形成される陸部内で終端している。このショルダーラグ溝16は、タイヤ周方向に間隔を開けて複数本が配置される。ショルダーラグ溝16の溝幅は例えば1mm~5mm、溝深さは例えば2mm~10mmにするとよい。
 このような形状の周方向細溝15とショルダーラグ溝16とを設けることで、ショルダーラグ溝16が主溝11に連通しないことにより、主溝11に起因する気柱共鳴音がショルダーラグ溝16を通じて車両外側に放射されることを防ぐことができる。また、周方向細溝15は溝断面積が主溝11よりも小さいため、周方向細溝15に起因する気柱共鳴音は主溝11に起因する気柱共鳴音よりも充分に小さく、ショルダーラグ溝16が周方向細溝15に連通していても、車外騒音が悪化することは無い。そのため、騒音性能を向上することができる。更に、ウェット路面走行時には、周方向細溝15とショルダーラグ溝16とにより陸部と路面との間に介在する雨水等を排出することができるので、ウェット性能も向上することができる。その一方で、周方向細溝15と周方向細溝15に隣接する主溝11(タイヤ幅方向最外側の主溝11)との間に、ショルダーラグ溝16により分断されずタイヤ周方向に連続的に延在するリブ構造の陸部が区画形成されるので、この部分の剛性が確保され、ドライ性能も向上することができる。
 上述の周方向細溝15とショルダーラグ溝16とは、少なくとも車両内側のショルダー陸部13に形成すればよいが、好ましくは、図2に例示するように、タイヤ幅方向両側のショルダー陸部13にそれぞれ設けると良い。
 周方向陸部12及びショルダー陸部13のそれぞれの溝面積比率は、タイヤ赤道CL側の周方向陸部12の溝面積比率よりもタイヤ幅方向外側の周方向陸部12の溝面積比率が大きく、且つ、タイヤ幅方向最外側の周方向陸部12の溝面積比率よりもショルダー陸部13の溝面積比率が大きいという傾向を有することが好ましい。図2の実施形態において、タイヤ赤道CL上の周方向陸部12を第1周方向陸部12A、そのタイヤ幅方向両側の周方向陸部12を第2周方向陸部12Bとし、第1周方向陸部12Aの溝面積比率をS1、第2周方向陸部12Bの溝面積比率をS2、ショルダー陸部13の溝面積比率をS3とすると、溝面積比率はS1<S2<S3という大小関係にするとよい。
 このようにタイヤ赤道CL側に向かって陸部の溝面積比率がより小さくなるように設定することで、急激なコーナリングフォースの増大を抑制して、より滑らかな操舵を、つまり、舵のリニアリティを向上させることができる。溝面積比率の大小関係が上述の関係から外れると、コーナリングフォースの増大を充分に抑制できなくなる。
 尚、本発明において、溝面積比率とは、接地面における各陸部(周方向陸部12、ショルダー陸部13)の面積に対する各陸部(周方向陸部12、ショルダー陸部13)に含まれるラグ溝14又は周方向細溝15及びショルダーラグ溝16(及び後述のサイプ17)の総面積の割合である。また、接地領域とは、JATMA規定の最大負荷能力に対応する空気圧をタイヤに充填して静止した状態で平板上に垂直に置き、最大負荷能力の80%に相当する荷重を負荷させたときの平板上に形成される接地面である。
 図2に例示するように、タイヤ幅方向両側のショルダー陸部13にショルダーラグ溝16を形成する場合、更に、少なくとも車両内側のショルダー陸部13に、タイヤ幅方向に延び、周方向細溝15と接地端Eとに開口する一方で、主溝11に開口しないサイプ17を形成することが好ましい。より好ましくは、図2に例示するように、サイプ17を隣接する2本のショルダーラグ溝16の中間に1本ずつ配置するとよい。
 このような形状のサイプ17を設けることで、ウェット路面走行時の排水性能を向上することができる。また、特にサイプ17を車両内側のショルダー陸部13に設けることで、ネガティブキャンバーに設定された際に接地圧が高くなる車両内側の陸部が動き易くなり、偏摩耗を抑制することができる。
 尚、本発明において、サイプ17とは、溝幅が0.6mm~1.2mmで、溝深さが1mm~5mmの微細な溝である。
 ラグ溝14は、図2に例示するように、タイヤ周方向に対して傾斜していることが好ましい。その傾斜方向は、ラグ溝14が形成される周方向陸部12の位置によらず、いずれも同じ方向であることが好ましい。このときラグ溝14のタイヤ幅方向に対する傾斜角度θ1は例えば15°~45°にするとよい。このようにラグ溝14を配置することで、水深が深い路面等を走行する際にラグ溝14を通る水の流れがスムーズになるので、排水性能を向上し、ウェット性能を改善することができる。
 ショルダーラグ溝16についても、図2に例示するように、タイヤ周方向に対して傾斜していることが好ましい。特に、ショルダーラグ溝16の傾斜方向を、ラグ溝14と同じ方向にするとよい。このときショルダーラグ溝16の傾斜角度θ2は、ラグ溝14の傾斜角度θ1と同等もしくは小さくし、例えば15°~30°にするとよい。このようにラグ溝及びショルダーラグ溝を配置することで、水深が深い路面等を走行する際にラグ溝及びショルダーラグ溝を通る水の流れがスムーズになるので、排水性能を向上し、ウェット性能を改善することができる。
 タイヤサイズが215/45R17 87Wであり、図1に例示する断面形状を有し、基調とするトレッドパターン、周方向細溝の有無、ショルダーラグ溝の形状、周方向陸部(第1周方向陸部、車両内側の第2周方向陸部、車両外側の第2周方向陸部)及びショルダー陸部(車両内側、車両外側)の溝面積比率、サイプの有無、ラグ溝の傾斜方向、ラグ溝の傾斜方向に対するショルダーラグ溝の傾斜方向をそれぞれ表1のように設定した従来例1、比較例1~2、実施例1~9の12種類の空気入りタイヤを作製した。
 尚、従来例1の空気入りタイヤは、図3に例示するトレッドパターンを有するタイヤである。具体的には、トレッド面にタイヤ周方向に延びる4本の主溝を有し、隣接する主溝間に3列の陸部が区画形成されている。これら3列の陸部は、タイヤ幅方向に延び、車両内側及び車両外側の主溝にそれぞれ連通する複数本のラグ溝により周方向に分断され、ブロック列を成している。同様に、タイヤ幅方向最外側の主溝とタイヤ幅方向両側の接地端との間に区画形成されたショルダー陸部も、タイヤ幅方向に延び、主溝と接地端にそれぞれ開口するショルダーラグ溝により周方向に分断され、ブロック列を成している。本発明のタイヤとは異なり、ショルダー陸部に周方向細溝は形成されていない。また、表1に示すように、ラグ溝の傾斜方向は、陸部ごとに異なり、隣接する陸部どうしでラグ溝の傾斜方向が逆向きになっている。
 また、比較例1,2の空気入りタイヤは、図4,5に例示するように、第1周方向陸部又は第2周方向陸部のいずれかに形成されるラグ溝が車両内側及び車両外側の主溝に連通することで、第1周方向陸部又は第2周方向陸部が周方向に分断され、ブロック列を成す構造になっている。具体的には、比較例1(図4)の空気入りタイヤでは、第1周方向陸部がラグ溝により周方向に分断されてブロック列となり、比較例2(図5)の空気入りタイヤでは、第2周方向陸部(車両内側及び車両外側)がラグ溝により周方向に分断されてブロック列となっている。これら比較例1,2(図4,5)のタイヤは、上述の点以外は、実施例1(図2)のタイヤと同じ構造である。
 表中の「ラグ溝の傾斜方向」の欄では、第1周方向陸部及び第2周方向陸部に形成されたラグ溝の傾斜方向が全て揃っている場合を「一致」、第1周方向陸部又は第2周方向陸部(車両内側、車両外側)のいずれかに形成されたラグ溝が他の周方向陸部に形成されたラグ溝と傾斜方向が揃っていない場合を「不一致」として示した。また、「ショルダーラグ溝の傾斜方向」の欄では、第1周方向陸部及び第2周方向陸部に形成されたラグ溝の傾斜方向が全て揃っている場合に、ショルダーラグ溝もラグ溝と同じ方向に傾斜している場合を「一致」として示し、異なる方向に傾斜している場合を「不一致」として示した。
 これら12種類の空気入りタイヤについて、下記の評価方法により、騒音性能、ドライ操縦安定性能、ウェット性能を評価し、その結果を表1に併せて示した。
   騒音性能
 各試験タイヤをリムサイズ17×7Jのホイールに組み付けて、空気圧を250kPaとして排気量1.8Lの試験車両(前輪駆動車)に装着し、欧州通過音規制に対応したEEC/ECEタイヤ単体騒音規制に基づく測定方法に準拠して通過音を測定した。評価結果は、測定値の逆数を用い、従来例1を100とする指数で示した。この指数値が大きいほど通貨騒音が小さく、騒音性能が優れていることを意味する。
   ドライ操縦安定性能
 各試験タイヤをリムサイズ17×7Jのホイールに組み付けて、空気圧を230kPaとして排気量1.8Lの試験車両(前輪駆動車)に装着し、乾燥したアスファルト路面からなるテストコースにおいて、速度を60km/h~140km/hの範囲内で変化させながら走行させ、3名のテストドライバーによる官能評価を実施した。評価結果は、官能評価の評価点を指数化し、従来例1を100とする指数値にて示した。この指数値が大きいほどドライ操縦安定性能が優れていることを意味する。
   ウェット性能
 各試験タイヤをリムサイズ17×7Jのホイールに組み付けて、空気圧を230kPaとして排気量1.8Lの試験車両(前輪駆動車)に装着し、水深2mm~3mmのアスファルト路面からなるテストコースにおいて、速度を40km/h~80km/hの範囲内で変化させながら走行させ、3名のテストドライバーによる官能評価を実施した。評価結果は、官能評価の評価点を指数化し、従来例1を100とする指数値にて示した。この指数値が大きいほどウェット操縦安定性能が優れていることを意味する。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~9はいずれも従来例1に対して、ウェット性能を高度に維持しながら、騒音性能及びドライ操縦安定性能を向上した。
 一方、第1周方向陸部または第2周方向陸部に形成されたラグ溝のいずれかが、車両内側及び車両外側の主溝に開口している比較例1,2は、騒音性能、ドライ操縦安定性能、及び、ウェット性能を向上する効果が殆ど得られなかった。
 1 トレッド部
 2 サイドウォール部
 3 ビード部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7,8 ベルト層
 9 ベルト補強層
 10 トレッド面
 11 主溝
 12 周方向陸部
 12A 第1周方向陸部
 12B 第2周方向陸部
 13 ショルダー陸部
 14 ラグ溝
 15 周方向細溝
 16 ショルダーラグ溝
 17 サイプ
 CL タイヤ赤道
 E 接地端

Claims (7)

  1.  トレッド面にタイヤ周方向に延びる少なくとも4本の主溝を有し、隣接する主溝間にタイヤ周方向に延びる複数本の周方向陸部が区画形成されると共に、タイヤ幅方向最外側の各主溝とタイヤ幅方向両側の接地端との間にそれぞれショルダー陸部が区画形成され、且つ、車両に対する装着方向が指定された空気入りタイヤにおいて、
     前記複数本の周方向陸部のそれぞれに、タイヤ幅方向に延び、車両装着時に車両に対して内側になる主溝に連通する一方で、車両装着時に車両に対して外側になる主溝に連通せずに前記周方向陸部内で終端する複数本のラグ溝を、タイヤ周方向に間隔を開けて形成したことを特徴とする空気入りタイヤ。
  2.  前記周方向陸部のそれぞれに前記ラグ溝のみを形成したことを特徴とする請求項1に記載の空気入りタイヤ。
  3.  少なくとも車両装着時に車両に対して外側になるショルダー陸部に、タイヤ周方向に延びる周方向細溝を形成すると共に、タイヤ幅方向に延び、前記周方向細溝と接地端とに開口する一方で、前記主溝に開口しないショルダーラグ溝を、タイヤ周方向に間隔を開けて形成したことを特徴とする請求項1又は2に記載の空気入りタイヤ。
  4.  タイヤ赤道側の周方向陸部の溝面積比率よりもタイヤ幅方向外側の周方向陸部の溝面積比率が大きく、且つ、タイヤ幅方向最外側の周方向陸部の溝面積比率よりもショルダー陸部の溝面積比率が大きいことを特徴とする請求項1,2又は3に記載の空気入りタイヤ。
  5.  タイヤ幅方向両側の前記ショルダー陸部に、タイヤ周方向に延びる周方向細溝を形成すると共に、タイヤ幅方向に延び、前記周方向細溝と接地端とに開口する一方で、前記主溝に開口しないショルダーラグ溝を、タイヤ周方向に間隔を開けて形成し、且つ、少なくとも車両装着時に車両に対して内側になるショルダー陸部に、タイヤ幅方向に延び、前記周方向細溝と接地端とに開口する一方で、前記主溝に開口しないサイプを形成したことを特徴とする請求項1~4のいずれかに記載の空気入りタイヤ。
  6.  前記ラグ溝がいずれもタイヤ周方向に対して同じ方向に傾斜していることを特徴とする請求項1~5のいずれかに記載の空気入りタイヤ。
  7.  前記ショルダーラグ溝が前記ラグ溝と同じ方向に傾斜していることを特徴とする請求項6のいずれかに記載の空気入りタイヤ。
PCT/JP2014/067682 2013-07-12 2014-07-02 空気入りタイヤ WO2015005194A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480021962.3A CN105358339B (zh) 2013-07-12 2014-07-02 充气轮胎
US14/904,675 US11135879B2 (en) 2013-07-12 2014-07-02 Pneumatic tire
DE112014003255.7T DE112014003255B4 (de) 2013-07-12 2014-07-02 Luftreifen
JP2015526282A JP6436080B2 (ja) 2013-07-12 2014-07-02 空気入りタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-146758 2013-07-12
JP2013146758 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015005194A1 true WO2015005194A1 (ja) 2015-01-15

Family

ID=52279879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067682 WO2015005194A1 (ja) 2013-07-12 2014-07-02 空気入りタイヤ

Country Status (5)

Country Link
US (1) US11135879B2 (ja)
JP (1) JP6436080B2 (ja)
CN (1) CN105358339B (ja)
DE (1) DE112014003255B4 (ja)
WO (1) WO2015005194A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105835631A (zh) * 2015-02-04 2016-08-10 株式会社普利司通 充气轮胎
JP2017001472A (ja) * 2015-06-08 2017-01-05 横浜ゴム株式会社 空気入りタイヤ
CN109219531A (zh) * 2016-07-19 2019-01-15 横滨橡胶株式会社 充气轮胎
JP2019043233A (ja) * 2017-08-30 2019-03-22 住友ゴム工業株式会社 空気入りラジアルタイヤ
JP2019073062A (ja) * 2017-10-12 2019-05-16 横浜ゴム株式会社 空気入りタイヤ
JP2019137334A (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
DE112019005771T5 (de) 2018-12-19 2021-08-12 The Yokohama Rubber Co., Ltd. Luftreifen
US11331956B2 (en) 2017-06-19 2022-05-17 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789733B2 (en) * 2014-02-14 2017-10-17 Sumitomo Rubber Industries, Ltd. Pneumatic tire
AU361970S (en) * 2014-10-21 2015-05-25 Yokohama Rubber Co Ltd Automobile tire
USD780091S1 (en) * 2015-06-12 2017-02-28 Bridgestone Corporation Tyre tread
USD792323S1 (en) * 2015-06-12 2017-07-18 Bridgestone Corporation Tire tread
JP1541630S (ja) * 2015-06-12 2019-01-07
JP1541629S (ja) * 2015-06-12 2019-01-07
JP1541627S (ja) * 2015-06-12 2019-01-07
JP1541628S (ja) * 2015-06-12 2019-01-07
USD786176S1 (en) * 2015-06-12 2017-05-09 Bridgestone Corporation Tyre tread
JP1541338S (ja) * 2015-07-29 2016-01-12
DE102016224803A1 (de) * 2016-12-13 2018-06-28 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen
JP6891624B2 (ja) * 2017-05-02 2021-06-18 住友ゴム工業株式会社 タイヤ
US11167596B2 (en) * 2017-11-27 2021-11-09 Sumitomo Rubber Industries, Ltd. Tire
JP6980515B2 (ja) * 2017-12-26 2021-12-15 Toyo Tire株式会社 空気入りタイヤ
RU2752045C1 (ru) * 2018-07-13 2021-07-22 Дзе Йокогама Раббер Ко., Лтд. Пневматическая шина
CN109515073A (zh) * 2018-11-07 2019-03-26 安徽佳通乘用子午线轮胎有限公司 一种降低滑行噪音的充气子午线轮胎
JP7506298B2 (ja) * 2020-03-05 2024-06-26 横浜ゴム株式会社 タイヤ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018003U (ja) * 1983-07-14 1985-02-07 住友ゴム工業株式会社 非対称タイヤ
WO2008096498A1 (ja) * 2007-02-08 2008-08-14 Toyo Tire & Rubber Co., Ltd. 空気入りタイヤ
JP2009143327A (ja) * 2007-12-12 2009-07-02 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010215221A (ja) * 2009-02-20 2010-09-30 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012236455A (ja) * 2011-05-10 2012-12-06 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299264A (en) 1979-04-12 1981-11-10 Dunlop Limited Tires
JPS6018003A (ja) 1983-07-11 1985-01-30 Nippon Telegr & Teleph Corp <Ntt> 周波数共用アンテナ
JP2002283812A (ja) * 2001-03-29 2002-10-03 Bridgestone Corp スタッドレスタイヤ
US7207364B2 (en) * 2004-02-23 2007-04-24 Continental Tire North America, Inc. Radial tire with tread pattern having four or five circumferential ribs
WO2007145177A1 (ja) * 2006-06-12 2007-12-21 The Yokohama Rubber Co., Ltd. 空気入りタイヤ
JP4145341B1 (ja) 2007-03-30 2008-09-03 横浜ゴム株式会社 空気入りタイヤ
JP4223064B2 (ja) 2007-06-12 2009-02-12 横浜ゴム株式会社 空気入りタイヤ
JP5217384B2 (ja) * 2007-11-20 2013-06-19 横浜ゴム株式会社 空気入りタイヤ
JP4469399B2 (ja) 2008-03-12 2010-05-26 住友ゴム工業株式会社 スタッドレスタイヤ
JP4428466B2 (ja) 2008-06-26 2010-03-10 横浜ゴム株式会社 空気入りタイヤ
JP4394161B1 (ja) 2009-04-17 2010-01-06 横浜ゴム株式会社 空気入りタイヤ
JP4992951B2 (ja) * 2009-10-30 2012-08-08 横浜ゴム株式会社 空気入りタイヤ
US20120298269A1 (en) * 2011-05-26 2012-11-29 Vincent Benoit Mathonet Commercial truck tire
CN103717413B (zh) * 2011-07-26 2016-04-27 株式会社普利司通 轮胎
JP5980548B2 (ja) * 2012-04-10 2016-08-31 東洋ゴム工業株式会社 空気入りタイヤ
JP6060005B2 (ja) * 2013-02-22 2017-01-11 東洋ゴム工業株式会社 空気入りタイヤ
JP5603966B2 (ja) * 2013-03-26 2014-10-08 株式会社ブリヂストン タイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018003U (ja) * 1983-07-14 1985-02-07 住友ゴム工業株式会社 非対称タイヤ
WO2008096498A1 (ja) * 2007-02-08 2008-08-14 Toyo Tire & Rubber Co., Ltd. 空気入りタイヤ
JP2009143327A (ja) * 2007-12-12 2009-07-02 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2010215221A (ja) * 2009-02-20 2010-09-30 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2012236455A (ja) * 2011-05-10 2012-12-06 Yokohama Rubber Co Ltd:The 空気入りタイヤ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105835631A (zh) * 2015-02-04 2016-08-10 株式会社普利司通 充气轮胎
JP2017001472A (ja) * 2015-06-08 2017-01-05 横浜ゴム株式会社 空気入りタイヤ
CN109219531B (zh) * 2016-07-19 2021-04-20 横滨橡胶株式会社 充气轮胎
CN109219531A (zh) * 2016-07-19 2019-01-15 横滨橡胶株式会社 充气轮胎
US11331956B2 (en) 2017-06-19 2022-05-17 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP2019043233A (ja) * 2017-08-30 2019-03-22 住友ゴム工業株式会社 空気入りラジアルタイヤ
JP2019073062A (ja) * 2017-10-12 2019-05-16 横浜ゴム株式会社 空気入りタイヤ
JP7031213B2 (ja) 2017-10-12 2022-03-08 横浜ゴム株式会社 空気入りタイヤ
WO2019159544A1 (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
CN111699096A (zh) * 2018-02-14 2020-09-22 横滨橡胶株式会社 充气轮胎
JP2019137334A (ja) * 2018-02-14 2019-08-22 横浜ゴム株式会社 空気入りタイヤ
JP7135331B2 (ja) 2018-02-14 2022-09-13 横浜ゴム株式会社 空気入りタイヤ
US11999195B2 (en) 2018-02-14 2024-06-04 The Yokohama Rubber Co., Ltd. Pneumatic tire
DE112019005771T5 (de) 2018-12-19 2021-08-12 The Yokohama Rubber Co., Ltd. Luftreifen

Also Published As

Publication number Publication date
DE112014003255B4 (de) 2022-07-28
CN105358339B (zh) 2018-03-02
US20160144665A1 (en) 2016-05-26
US11135879B2 (en) 2021-10-05
CN105358339A (zh) 2016-02-24
JP6436080B2 (ja) 2018-12-12
DE112014003255T5 (de) 2016-03-31
JPWO2015005194A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6436080B2 (ja) 空気入りタイヤ
US11285763B2 (en) Pneumatic tire
WO2017122742A1 (ja) 空気入りタイヤ
US9150056B2 (en) Pneumatic tire
JP5796655B1 (ja) 空気入りタイヤ
WO2015178442A1 (ja) 空気入りタイヤ
WO2016056505A1 (ja) 空気入りタイヤ
US11203234B2 (en) Pneumatic tire
KR20170074999A (ko) 공기입 타이어
JP2009101846A (ja) 空気入りタイヤ
WO2016056506A1 (ja) 空気入りタイヤ
US20170001479A1 (en) Pneumatic Tire
JP2016132358A (ja) 空気入りタイヤ
WO2018131475A1 (ja) 空気入りタイヤ
US9889710B2 (en) Pneumatic tire mount method, and combination pneumatic tire
JP2015160469A (ja) 空気入りタイヤ
WO2016017543A1 (ja) 空気入りタイヤ
US20130292017A1 (en) Pnuematic tire
JP6421652B2 (ja) 空気入りタイヤ
JP6344088B2 (ja) 空気入りタイヤ
JP5862837B2 (ja) オールシーズンタイヤ
JP6619214B2 (ja) 空気入りタイヤ
JP2018161998A (ja) 空気入りタイヤ
WO2020059395A1 (ja) 空気入りタイヤ
WO2019203067A1 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021962.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015526282

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14904675

Country of ref document: US

Ref document number: 112014003255

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14823531

Country of ref document: EP

Kind code of ref document: A1