WO2008056569A1 - Composition de résine à base aqueuse durcissable par un rayonnement d'énergie actinique, matière de revêtement durcissable par rayonnement d'énergie actinique, procédé de formation d'un film de revêtement durci et article correspondant - Google Patents

Composition de résine à base aqueuse durcissable par un rayonnement d'énergie actinique, matière de revêtement durcissable par rayonnement d'énergie actinique, procédé de formation d'un film de revêtement durci et article correspondant Download PDF

Info

Publication number
WO2008056569A1
WO2008056569A1 PCT/JP2007/071110 JP2007071110W WO2008056569A1 WO 2008056569 A1 WO2008056569 A1 WO 2008056569A1 JP 2007071110 W JP2007071110 W JP 2007071110W WO 2008056569 A1 WO2008056569 A1 WO 2008056569A1
Authority
WO
WIPO (PCT)
Prior art keywords
active energy
energy ray
resin
weight
acrylic resin
Prior art date
Application number
PCT/JP2007/071110
Other languages
English (en)
French (fr)
Inventor
Masahiro Itou
Youichi Tanimoto
Original Assignee
Dic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic Corporation filed Critical Dic Corporation
Priority to DE602007010820T priority Critical patent/DE602007010820D1/de
Priority to US12/514,140 priority patent/US20100010162A1/en
Priority to EP07830844A priority patent/EP2090594B1/en
Priority to CN200780041680XA priority patent/CN101535347B/zh
Priority to AT07830844T priority patent/ATE489406T1/de
Priority to KR1020097006173A priority patent/KR101432689B1/ko
Priority to JP2008521068A priority patent/JP4229214B2/ja
Publication of WO2008056569A1 publication Critical patent/WO2008056569A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/54Polymerisation initiated by wave energy or particle radiation by X-rays or electrons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/02Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of acids, salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/673Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Definitions

  • Active energy ray curable aqueous resin composition Active energy ray curable coating, method for forming cured coating film, and article
  • the present invention is used for coating agents for plastics, films, etc., and has an excellent line of active energy with excellent storage stability, a good appearance of the cured coating film, and excellent wear resistance and water resistance.
  • the present invention relates to a curable aqueous resin composition, an active energy ray-curable coating composition containing the composition, a method of forming a cured coating film using the coating material, and an article in which the cured coating film of the coating material is disposed.
  • the active energy ray-curable composition is used as a hard coating agent for plastic substrates for home appliances, mobile phones, etc. due to its excellent coating film hardness and scratch resistance with little heat history on the coating substrate. It has been done.
  • an active energy ray-curable composition As such an active energy ray-curable composition,
  • a polymer having a polymerizable unsaturated double bond for example, acrylic acrylate
  • a polymer having substantially no polymerizable unsaturated double bond for example, an acrylic resin
  • a polymerizable monomer examples include active energy ray-curable compositions (non-aqueous active energy ray-curable compositions) containing a body and an organic solvent as a diluent.
  • active energy linear curable composition is used as an active energy ray curable coating for spray coating, for example, the organic solvent is contained in a large amount of 50 to 90% by weight based on the weight of the coating.
  • an active energy ray-curable aqueous composition using water as a diluent has been studied.
  • the photosensitive oligomer (2) having at least one carbon-carbon double bond in the molecule and the molecule Photosensitivity having at least one carbon-carbon double bond
  • An aqueous photosensitive coating composition comprising a monomer (3) is disclosed (for example, see Patent Document 1).
  • acrylic fine particle emulsion for example, NANOCRYL BCX-291 4 manufactured by Toyo Ink Manufacturing Co., Ltd.
  • 100 parts by weight of water-soluble urethane acrylate is 2.3 weights
  • trimethylolpropane tritalylate 2 A photosensitive coating composition containing 3 parts by weight is disclosed.
  • an ultraviolet curable aqueous coating composition containing a (meth) attaroyl group-containing water-soluble resin (A), a polyfunctional (meth) acrylate compound (B), and a photopolymerization initiator and in an emulsified state.
  • A a (meth) attaroyl group-containing water-soluble resin
  • B a polyfunctional (meth) acrylate compound
  • a photopolymerization initiator and in an emulsified state.
  • a water-dispersible acrylic resin obtained by neutralizing a carboxyl group of a carboxyl group-containing acrylic resin obtained essentially using methyl methacrylate and a urethane acrylate oligomer are dispersed in water. Emmarzion.
  • the acrylic fine particle emulsion used in Patent Document 1 has insufficient ability (dispersion force) and stability to disperse a hydrophobic polymerizable monomer such as trimethylolpropane tritalylate. . Therefore, in order to obtain an active energy ray-curable resin composition using the acrylic fine particle emulsion, a hydrophobic polymerizable monomer effective for improving wear resistance and water resistance and a water-soluble urethane are used.
  • a hydrophobic urethane acrylate oligomer is used as a multifunctional (meth) acrylate, which makes it possible to form a cured coating film. Improvement of scratch resistance and water resistance. However, it is sufficient to disperse a water-phobic urethane acrylate oligomer in water even when used in the UV-curable aqueous coating composition!
  • the water-soluble resin (A) containing the (meth) atallyloyl group in water is not polydisperse.
  • Patent Document 1 JP-A-9 302266
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-010779
  • An object of the present invention is an active energy which is used for coating agents such as plastics and films, has excellent storage stability, has a good appearance of a cured coating film, and has excellent wear resistance and water resistance
  • a radically polymerizable monomer containing an alkylene group having 2 to 8 carbon atoms and having a force propyl group added to the end of the alkylene group is 2 to 15% by weight, obtained using 55 to 70% by weight of methyl (meth) acrylate based on the weight of the resin formed, and 1.3 to 3 ⁇ 7 mmol / g of neutralized carboxyl groups
  • the contained acrylic resin hydrophilic acrylic resin
  • the active energy ray-curable aqueous resin composition has a long dispersion time even when a hydrophobic polymerizable monomer is used as the polymerizable monomer due to the strong dispersibility of the hydrophilic acrylic resin. And can be dispersed stably. As a result, the active energy ray-curable aqueous resin composition has good storage stability.
  • the acrylic resin can favorably disperse a hydrophobic polymerizable monomer.
  • the cured coating film obtained using the active energy ray-curable water-based paint is excellent in wear resistance and water resistance.
  • the active energy ray-curable coating material is applied to the surface of the substrate, the active energy ray-curable coating material is cured by irradiating the active energy ray, thereby improving scratch resistance and water resistance. An excellent cured coating film can be easily formed.
  • the present invention has been completed based on the above findings.
  • the present invention uses 2 to 15% by weight of a radical polymerizable monomer represented by the following general formula (1) based on the weight of the resin-forming component, and uses methyl metatalylate as the resin-forming component.
  • a resin solution obtained by dissolving 55 to 70% by weight of the acrylic resin (A) in water and having a neutralized carboxyl group of 1.3 to 2.7 mmol / g or Active energy ray-curable type obtained by dispersing a compound (B) having a polymerizable unsaturated double bond of 8.6-10. 5 mmol / g in a resin dispersion in which the acrylic resin (A) is dispersed in water.
  • An aqueous resin composition characterized in that the content ratio ((B) / (A)) of the acrylic resin (A) and the compound (B) is 1.5 to 6 in terms of weight
  • An active energy ray-curable aqueous resin composition is provided.
  • R1 is a hydrogen atom or a methyl group
  • R 2 is an alkylene group having 2 to 8 carbon atoms
  • n represents;! Is an integer of 1-10.
  • the present invention provides an active energy ray-curable coating material characterized by containing the active energy ray-curable aqueous resin composition.
  • the present invention provides a cured coating film characterized in that after the active energy ray-curable coating material is applied to a substrate, the applied active energy ray-curable coating material is cured by irradiating an active energy line. The formation method of this is provided.
  • the present invention provides an article comprising a cured coating film of the active energy ray-curable coating material.
  • the active energy ray-curable aqueous resin composition of the present invention is excellent in storage stability, the appearance of the cured coating film is excellent, and is excellent in abrasion resistance and water resistance. Further, by using the active energy ray-curable coating composition of the present invention, a cured coating film having a good appearance of the cured coating film and excellent in abrasion resistance and water resistance can be obtained. In addition, the cured coating film of the present invention can be easily obtained as a cured coating film having a good appearance and excellent wear resistance and water resistance. Further, the article of the present invention has a cured coating film having a good appearance and excellent wear resistance and water resistance. BEST MODE FOR CARRYING OUT THE INVENTION
  • the acrylic resin (A) used in the present invention contains 2 to 15% by weight of a methyl polymerizable compound represented by the general formula (1) based on the weight of the resin-forming component.
  • the rate is obtained using 55-70% by weight based on the weight of the resin-forming component and contains 1.3-2.7 mmol / g neutralized carboxyl groups.
  • Carboxypoly Prolacton (Meth) Atalylate is used in an amount of less than 2% by weight of acryl resin based on the weight of the resin, resulting in insufficient dispersion stability and precipitation or separation. This is not preferable because a problem arises and the active energy ray-curable aqueous resin composition has insufficient storage stability.
  • ⁇ -Carboxypolypropylene (meth) acrylate (meth) acrylate is more than 15% by weight of acrylic resin based on the weight of the resin-type component. If the acrylic resin is used, it becomes flexible and the cured coating film has insufficient wear resistance. It is not preferable that the active energy ray-curable resin composition can be obtained only.
  • the acrylic resin ( ⁇ ) used in the present invention is an acrylic resin obtained using 3 to 10% by weight of ⁇ -carboxypoly force prolatataton (meth) acrylate on the basis of the weight of the resin formed.
  • the active energy ray-curable aqueous resin composition is preferable.
  • methylmethacrylate is less than 55% by weight based on the weight of the resin formation. If an acrylic resin is used, the dispersion stability is insufficient, causing problems such as sedimentation and separation, and the active energy ray-curable aqueous resin composition having insufficient storage stability is not preferable.
  • acrylic resin with a methyl methacrylate content greater than 70% by weight based on the weight of the resin formed the fluidity of the acrylic resin decreases and the leveling properties deteriorate, resulting in poor coating appearance. And the resulting acrylic resin viscosity is very high, and it is not preferable because it becomes an active energy ray-curable aqueous resin composition that is difficult to handle.
  • the acrylic resin (A) used in the present invention is an active energy ray-curable aqueous resin composition having good storage stability.
  • the acrylic resin obtained by using 55 to 65% by weight of methyl methacrylate is based on the weight of the resin-forming component. Further, it is preferable because the resulting cured coating film is excellent in appearance and substrate adhesion.
  • the acrylic resin (A) used in the present invention has a neutralized carboxyl group of 1.3 to 2.
  • the content of neutralized carboxyl groups is less than 1.3 mmol / g! / If an acrylic resin is used, the storage stability of the active energy ray-curable resin composition and the active energy ray-curable paint of the present invention is poor. This is not preferable because it is sufficient. When an acrylic resin having a neutralized carboxyl group content of more than 2.7 mmol / g is used, the water resistance of the cured film of the active energy ray-curable resin composition or the active energy ray-curable paint of the present invention is lowered. This is not preferable.
  • the acrylic resin (A) used in the present invention is an active energy ray-curable resin composition or an active resin in which an acrylic resin containing a neutralized carboxyl group in the range of 1.5 to 2.2 mmol / g is excellent in storage stability. It is preferable because it becomes an energy ray curable coating and a cured coating film having excellent water resistance is obtained.
  • the content (molar amount) of the neutralized carboxyl group is the same as the molar amount of the basic compound calculated from the amine value of the basic compound used for neutralization (same molar amount).
  • the amine value of the basic compound used for neutralization was determined by neutralizing the basic compound sample 1. Og in 5 ml of tetrahydrofuran and neutralizing with 0.5 mol / 1 hydrochloric acid solution using bromphenol blue as an indicator. I asked for it.
  • the acrylic resin (A) used in the present invention includes, for example, a radical polymerizable monomer represented by the general formula (1) in an amount of 2 to 15% by weight based on the weight of the resin formed, It is obtained using 55 to 70% by weight of methatalylate based on the weight of the resin component, and After synthesizing the acrylic resin ⁇ containing a sil group, it can be obtained by neutralizing the carboxyl group in the acrylic resin ⁇ with a basic compound.
  • the acrylic resin ( ⁇ ) used in the present invention contains neutralized carboxyl groups in the range of 1.3 to 2.7 mmol / g as described above.
  • an acrylic resin containing a carboxyl group in the range of 1.3 to 2.7 mmol / g is used as the acrylic resin (a).
  • a method of neutralizing all the carboxyl groups with a basic compound neutralization rate 100%
  • an acrylic resin containing 2.7 mmol / g or more of the carboxyl group as the acrylic resin (a)
  • the acrylic resin (a) It can be obtained by a method of neutralizing a part of the carboxyl group with a basic compound.
  • a part of the carboxyl group in the acrylate resin (a) having an acid value of 100 mgKOH / g, for example, 85% is neutralized.
  • the carboxyl group in the acryl resin (a) having an acid value of 90 prepared so that the neutralized carboxyl group content is 1.5 mmol / g in the resin is neutralized. And the like so that the content of neutralized carboxyl groups is 1.6 mmol / g in the resin.
  • the acrylic resin (A) used in the present invention is obtained by using an acrylic resin containing a carboxyl group in the range of 1.3 to 2.7 mmol / g and neutralizing all the carboxyl groups of this resin.
  • Acrylic resin is preferable because it provides an active energy ray-curable aqueous resin composition and an active energy ray-curable coating material having excellent storage stability. Therefore, the acrylic resin (a) used for the preparation of the acrylic resin (A) used in the present invention is also preferably an acrylic resin containing a carboxyl group in the range of 1.3 to 2.7 mmol / g.
  • the acid value of the carboxyl group-containing acrylic resin (a) and the like is determined by dissolving a resin sample 1. Og in a mixed solution of 1.5 ml of toluene and 3.5 ml of methanol, and using phenolphthalein as an indicator. It was determined by neutralization titration with 0.1 mol / 1 potassium hydroxide / ethanol solution.
  • the carboxyl group-containing acrylic resin (a) includes, for example, a radically polymerizable monomer represented by the general formula (1) in an amount of 2 to 15% by weight, 55% to 70% by weight of the acrylate and the carboxyl group-containing ethylenically unsaturated monomer as essential components based on the weight of the resin-forming component, and other polymerizable monomers as necessary.
  • the mixture can be synthesized by a solution polymerization method or the like in which a radical polymerization reaction is performed in a solvent in the presence of a polymerization initiator. This reaction can be carried out under normal pressure or high pressure.
  • the molecular weight can be adjusted by adjusting the amount of polymerization initiator, for example, by adjusting the charge amount of the polymerization initiator.
  • radical polymerizable monomer represented by the general formula (1) examples include ⁇ -carboxypolycaprolataton (meth) acrylate. Specifically, for example, ⁇ -force tote can be mentioned. Above all, it is stably supplied to the market and is easily available
  • the ⁇ -carboxypoly force prolataton (meth) acrylate is, for example, (meth) acrylic acid and ⁇ -force prolatatone mixed and stirred in the presence of an acid catalyst and reacted at 40 to 150 ° C. It is obtained by letting
  • Examples of the acid catalyst include p-toluenesulfonic acid, benzenesulfonic acid, aluminum chloride, stannic chloride, and the like.
  • the acid catalyst is preferably used in the range of 1 to 20 parts by weight with respect to 100 parts by weight of (meth) acrylic acid.
  • Examples of the carboxyl group-containing ethylenically unsaturated monomer include (meth) atallylic acid, crotonic acid, isocrotonic acid, 2-methacryloxychetyl succinic acid, and 2-methacryloxychetyl hexahydrophthalate. Acid, 2-methacryloxychetyl daltalate; (anhydrous) maleic acid, fumaric acid, (anhydrous) dicarboxylic acid such as itaconic acid and its anhydride; monomethyl
  • monoalkyl esters of dicarboxylic acids such as monomethyl fumaric acid, monoethyl fumaric acid, monobutyl fumaleic acid, monooctyl fumanoleic acid, monomethyl itaconic acid, monoethyl itaconic acid, monobutyl itaconic acid and mono octyl itaconic acid.
  • carboxyl group-containing ethylenically unsaturated monomer (meth) acrylic acid such as acrylic acid and methacrylic acid is preferred! /.
  • the carboxyl group-containing ethylenically unsaturated monomer may be used alone or in combination of two or more.
  • acrylic acid is preferable because an acrylic resin (A) having a low viscosity and excellent dispersibility can be obtained.
  • the other ethylenically unsaturated monomers include methyl acrylate, ethynole (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, n -Butyl (meth) acrylate, iso-Butyl (meth) acrylate, tert-Butyl (meth) acrylate, 2-Ethylhexyl (meth) acrylate, Lauryl (meth) acrylate, Octadecyl (meth) acrylate , Docosanyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, bornyl (meth)
  • Aromatic butyl compounds such as styrene, p-tert-butylstyrene, ⁇ -methylstyrene, butyltoluene and the like;
  • Bullet monomers containing ⁇ -ad groups such as 2-methoxyethyl (meth) acrylate and 4-methoxybutyl (meth) acrylate; methoxy polyethylene glycol (meth) acrylate, methoxy polypropylene render alcohol Bull monomers having a polyalkylene oxide structure such as (meth) atallylate; ⁇ -methylol (meth) acrylamide, ⁇ -methoxymethyl (meth) a
  • Secondary amino group-containing butyl monomers such as ⁇ -methylaminoethyl (meth) atalylate; having an active methylene group such as vinylacetoacetate and 2-acetoacetoxyl (meth) atalylate Bull monomer; Bull monomer having a hydrolyzable silyl group such as butyltrimethoxysilane, 3- (meth) atylyloxypropyltrimethoxysilane;
  • the acrylic resin (A) used in the present invention is preferably an acrylic resin having a polymerizable unsaturated bond, because a cured coating film with reduced curing shrinkage and excellent substrate adhesion can be obtained. Masle.
  • methyl methacrylate, ethyl group-containing unsaturated monomer and other polymerizable monomers as raw materials, In order to prepare an acrylic resin having no polymerizable unsaturated bond, for example, one ethylenically unsaturated monomer as a carboxyl group-containing ethylenically unsaturated monomer and other polymerizable monomers is used. It can obtain by using the monomer which has.
  • the acrylic resin (A) used in the present invention is an active energy ray-curable aqueous resin composition or an active resin that provides a cured coating film with an acrylic resin having an alkyl group in the side chain having excellent adhesion and good appearance. This is preferred because it provides an energy ray curable paint.
  • the alkyl groups a cured coating film having excellent adhesion and appearance can be obtained, and an active energy ray curable resin composition and an active energy ray curable coating material having excellent storage stability can be obtained.
  • An alkyl group having 2 to 8 carbon atoms is more preferable.
  • alkyl group having 2 to 8 carbon atoms examples include a methyl group, an ethyl group, an n propyl group, an i propyl group, an n butynole group, an i butyl group, a t butyl group, a cyclohexyl group, and a 2-ethyl group. And hexyl group.
  • an acrylic resin having an alkyl group in the side chain as the acrylic resin (A) for example, an ethylenically unsaturated monomer having an alkyl group is used in synthesizing the acrylic resin (a). It is obtained by things.
  • the ethylenically unsaturated monomer having an alkyl group include the alkyl (meth) acrylates described above.
  • the amount of the ethylenically unsaturated monomer having an alkyl group used when synthesizing the acrylic resin (a) is based on the weight of the resin-forming component;! ⁇ 25% by weight is an activity with excellent storage stability.
  • Energy ray curable water From 3 to 20% by weight, which is preferable because it is an adhesive resin composition or an active energy ray-curable coating, and the resulting cured coating film has good adhesion to the substrate and excellent appearance.
  • ethylenically unsaturated monomers having an alkyl group n-butyl (meth) acrylate is preferable because it becomes an active energy ray curable aqueous resin composition and an active energy line curable coating material which are more excellent in storage stability. Masle.
  • an active energy ray-curable aqueous resin composition in which an acrylic resin having a hydroxyl group is excellent in storage stability and water resistance of the resulting cured coating film is good. It is preferable because an active energy ray-curable coating material can be obtained.
  • acrylic resins having a hydroxyl group an acrylic resin having a hydroxyl value of 15 to; an acrylic resin having a hydroxyl value of 25 to 65 mgKOH / g, which is preferable for an acrylic resin of 100 mgKOH / g, is more preferable.
  • an acrylic resin having a hydroxyl group is, for example, a resin-forming weight of the radical polymerizable monomer represented by the general formula (1) as the acrylic resin (a). 2 to 15% as a standard, 55 to 70% by weight based on the weight of the resin component of methyl metatalylate, an ethylenically unsaturated monomer containing a carboxyl group and an ethylenically unsaturated monomer containing a hydroxyl group
  • An acrylic resin is synthesized by a solution polymerization method or the like in which a radical polymerization reaction is performed in the presence of a polymerization initiator in a solvent using a mixture in which other polymerizable monomers are mixed as an essential component, if necessary. And then neutralizing the carboxyl group in the talyl resin with a basic compound.
  • Examples of the hydroxyl group-containing ethylenically unsaturated monomer include hydroxyethyl (metal and the like. Among them, an active energy ray-curable aqueous resin composition having excellent storage stability and active energy ray curing are mentioned. Hydroxyethyl (meth) tartrate is preferred because a mold paint can be obtained.
  • the hydroxyl value of acrylic resin (A) and the like was determined by adding 25 ml of acetic anhydride / pyridine solution (volume ratio 1/19) to 10.Og of resin sample and heating for 1 hour. Using phenolphthalein as an indicator, neutral titration was performed with a 0.5 mol / l potassium hydroxide / ethanol solution.
  • the solvent used in the synthesis of the acrylic resin (a) is not mixed with water. Even when water-miscible organic solvents are preferred, the solubility in water (grams of organic solvent dissolved in water lOOg) is 25 ° C! /, And organic solvents with 3g or more are preferred! Examples of these water-miscible organic solvents include alcohol solvents such as methanol, ethanol, propanol, and butanol; ketone solvents such as acetone and methyl ethyl ketone; ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, and ethylene glycol monomer.
  • alcohol solvents such as methanol, ethanol, propanol, and butanol
  • ketone solvents such as acetone and methyl ethyl ketone
  • ethylene glycol monomethyl ether ethylene glycol dimethyl ether
  • ethylene glycol monomer ethylene glycol monomer
  • Chinoleatenore ethyleneglycolole chinenoleethenore, ethyleneglycololemonopro pinoleetenore, ethyleneglycololemonoisopropinoreatenore, monobutinoreatenore, diethyleneglycolmonomethylether, diethyleneglycoldimethylether, diethyleneglycololemonothenore Ethenore, Diethylene Glyconole Jetinore Eteinole, Diethylene Glyconole Monoisopropinore Eteinole, Dieti Glycol Monore Monobutenoleate, Triethylene Glyconore Monomethinoreateoretre, Triethylene Glyconoremonomethinorete Tenole, Propylene Glycolenoremonomethinoreateorenore, Propylene Glyconoremonomethinoreate Tenole, Propylene Glycolenoremono Examples thereof include Dalicol ether solvents such as prop
  • the water-miscible organic solvent can be used in combination with another organic solvent as necessary.
  • aromatic hydrocarbon solvents such as toluene and xylene; hexane, heptane, octane Working with aliphatic hydrocarbon solvents such as decane; ester solvents such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, amyl acetate, ethyl formate, butyl propionate, etc. Even if it is necessary to use it because the environment deteriorates, it is preferable to use 1% or less based on the total amount of the aqueous resin composition.
  • the aromatic hydrocarbon solvents examples of the mixed aromatic hydrocarbon solvent include commercially available products such as Solvesso # 100 and Solvesso # 150.
  • radical polymerization initiator examples include 2, 2'-azobis (isobutyronitrile), 2, 2'-azobis (2- Azo compounds such as methyl butyronitrile and azobiscyananovaleric acid; tert butyl peroxy pinoleate, tert butyl peroxy benzoate, tert butynole peroxy 2- Organic peroxides such as tilhexanoate, di-tert butyl peroxide, cumene hydride peroxide, benzoyl peroxide, t butyl hydride peroxide; inorganics such as hydrogen peroxide, ammonium persulfate, potassium persulfate, sodium persulfate Peroxides can be mentioned, and these can be used alone or in combination of two or more.
  • the radical polymerization initiator is preferably used in a range of 0.;! To 10% by weight based
  • the nonvolatile content in the reaction vessel during the solution polymerization is preferably 30 to 90% by weight, more preferably 50 to 80% by weight.
  • Examples of the neutralizing agent (basic compound) used to neutralize the carboxyl group in the acrylic resin (a) include monomethylamine, dimethylamine, trimethylamine, monoethylamine, jetylamine, triethylamine.
  • Alkylamines such as monopropylamine, dipropylamine, propylamine, etc .; monoethanolamine, diethanolamine, monoisopropanolamine, diisopropanolamine, N-methylethanolamine, N, N dimethinorethananolamine, N , N Jetinorethananolamine, 2-amino-2-methylolpropanol, 2- (Dimethylolamino) -2-methylpropanol, N-alkanolamines such as methyljetanolamine; ethylenediamine, diethylenetriamine, triethylente Min, polyvalent Amin of the organic amine Ya ammonia such as tetraethylene pentamine (water) and the like. Ammonia water,
  • the number average molecular weight ( ⁇ ⁇ ) of the acrylic resin (a) used in the present invention is an active energy ray-curable aqueous resin composition or active energy ray that is excellent in storage stability and does not increase in viscosity too much.
  • 5,000-30,000 power S is preferable because a curable coating is obtained, and more preferable than 8,000-25,000.
  • the number average molecular weight and the weight average molecular weight of a resin such as a carboxyl group-containing acrylic resin (a) are measured using a gel permeation chromatograph under the following conditions. By conversion, the component having a molecular weight of 1000 or less was excluded.
  • HLC-8220 manufactured by Tosoh Corporation
  • the glass transition temperature of the carboxyl group-containing acrylic resin (a) used in the present invention is such that an active energy ray-curable aqueous resin composition that provides a cured coating film excellent in abrasion resistance and substrate adhesion can be obtained. Therefore, it is preferably 30 ° C to 100 ° C. For this reason, when synthesizing the acrylic resin (a), it is preferable to appropriately select and combine the raw material components so that the glass transition temperature is 30 ° C to 100 ° C! /. 60 ° C to 90 ° C is more preferred because it provides a cured coating with better wear resistance and substrate adhesion.
  • the glass transition temperature of a resin such as acrylic resin (a) was determined by differential scanning calorimetry (DSC) measurement according to JIS-K-7121. Measuring instrument; DSCQ-100 manufactured by TA Instruments
  • the glass transition temperature of the resin such as the acrylic resin (a) can also be calculated by the following equation.
  • the glass transition temperature in the following formula is an absolute temperature (° C.).
  • Tg _ 1 ⁇ Xi -Tg _ 1
  • Xi is the weight fraction of the i-th monomer
  • Tgi is the glass transition temperature of the homopolymer of the i-th monomer.
  • the glass transition temperature of the monomer homopolymer the values described in Polymer Handbook (4 th Edition), J. Brandrup, EH Immergut, EA Grulke ⁇ -(.Wiley Interscience;) can be used.
  • the acrylic resin (A) it is preferable to synthesize the carboxyl group-containing acrylic resin (a) and then neutralize all or part of the carboxyl groups with a basic compound.
  • a monomer in which all or part of the carboxyl group-containing ethylenically unsaturated monomer used for the synthesis of the acrylic resin (a) is previously neutralized with a basic compound the acrylic resin (a) is passed through. Nagu directly acrylic resin ( ⁇ ) may be prepared.
  • the compound ( ⁇ ) used in the present invention needs to have a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g.
  • the content of the polymerizable unsaturated double bond is less than 8.6 mmol / g, the abrasion resistance and water resistance of the cured coating film are insufficient due to insufficient crosslinking.
  • the content of the polymerizable unsaturated double bond is more than 10.5 mmol / g, the adhesion of the resulting cured coating to the substrate is not preferred.
  • Compound (B) is a polymerizable unsaturated double bond because it becomes an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material that can provide a cured coating film with excellent wear resistance, water resistance and adhesion.
  • Two or more kinds of compounds (B) used in the present invention may be used in combination. When two or more types are used in combination, compound (B) has an average polymerizable unsaturated double bond. 8. It should be 6 ⁇ 10.5mmol / g.
  • compounds that have a polymerizable unsaturated double bond of less than 8.6 mmol / g and compounds that have a polymerizable unsaturated double bond of greater than 10.5 mmol / g are selected by selecting the partner compound to be used together. If the average concentration of unsaturated double bonds is adjusted to 8.6-10.5 mmol / g, it can be used as a raw material for compound (B).
  • Examples of the compound (B) having a polymerizable unsaturated double bond of 8.6 to 10.5 mmol / g used in the present invention include, for example, isobonyl (meth) acrylate (content of polymerizable unsaturated double bond: 4. Mono (meth) acrylates such as 8 mmol / g), dicyclopentanyl (meth) acrylate (content of polymerizable unsaturated double bond: 4.9 mmol / g);
  • Tripropylene glycol di (meth) acrylate (content of polymerizable unsaturated double bond: 6.7 mmol / g), 1, 6 xanthi (meth) acrylate (polymerizable unsaturated double bond of Content:
  • Tri (meth) atrelates such as Ommol / g);
  • diisocyanates such as tolylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, dicyclohexylenomethane diisocyanate, and nonolebonenandiisocyanate Compounds, furthermore, isocyanate prepolymers obtained from these diisocyanate compounds and polyols, further, triisocyanate compounds which are nurate or burette obtained from these diisocyanate compounds, and 2-hydroxyxetyl (meth) acrylate.
  • diisocyanates such as tolylene diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, dicyclohexylenomethane diisocyanate, and nonolebonenandiisocyanate Compounds, furthermore, isocyanate prepolymers obtained from these diisocyanate compounds and polyols, further, triisocyanate compounds which are nurate or burette obtained from these di
  • Urethane (meth) which is a reaction product with hydroxyl-containing (meth) acrylate, such as 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc.
  • hydroxyl-containing (meth) acrylate such as 2-hydroxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, etc.
  • Non-polymerizable such as acrylates, monobasic acids of polybasic acids and hydroxyalkyl (meth) acrylates, polyesters of trees, or higher, or bisphenol A type epoxy acrylates, nopolac type epoxy acrylates. Examples thereof include oligomers having a double bond and prepolymers.
  • polymerizable unsaturated double bond may be used alone or in combination of two or more as long as the polymerizable unsaturated double bond is 8.6-10.5 mmol / g.
  • the compound (B) may be used alone or in combination of two or more.
  • the compound (B) used in the present invention is an active energy ray-curable aqueous resin composition or an active energy ray-curable coating material from which a cured coating film excellent in abrasion resistance can be obtained.
  • Erythritol hexa (meth) acrylate is preferred, and a mixture containing dipentaerythritol hexa (meth) acrylate and urethane (meth) acrylate is more preferred.
  • a mixture containing urethane (meth) acrylate having a polymerizable unsaturated double bond of 5.5 to 9.5 mmol / g is preferable.
  • the average polyunsaturated double bond concentration of this mixture is 9.0 to 10.2 mmol / g.
  • the active energy ray-curable aqueous resin composition of the present invention comprises the acrylic resin (A) and the compound (B) in a content ratio [(B) / (A)] of 1 in terms of weight. ⁇ Must be in the range of 5-6. If the content ratio [(B) / (A)] is less than 1.5, it is preferable because the cured coating has insufficient wear resistance and water resistance. The content ratio [(B) / (A)] is greater than 6! /, Which is not preferable because of insufficient storage stability.
  • the content ratio [(B) / (A)] is preferably 1.8 to 4, but 2 to 3.5 is preferable.
  • the method for producing the active energy ray-curable aqueous resin composition of the present invention is not particularly limited, and examples thereof include the following methods.
  • the resin ( ⁇ ) obtained by neutralizing the carboxyl group in the acrylic resin (a) and the compound ( ⁇ ) are dissolved in a water-miscible organic solvent to form a solution, and then mixed with water.
  • the resin ( ⁇ ) is dissolved in an aqueous medium containing a water-miscible organic solvent, and the compound ( ⁇ ) is dispersed in the aqueous medium (resin aqueous solution) in which the resin ( ⁇ ) is dissolved.
  • the methods (1) and (3) are preferable because an active energy ray-curable aqueous resin composition can be easily obtained. It is not necessary to dissolve the acrylic resin ⁇ or attalinole resin ( ⁇ ) and the compound ( ⁇ ) in the water-miscible organic solvent at the same time.
  • acrylic resin ⁇ or acrylic resin (A) can be dissolved in the water-miscible organic solvent.
  • the compound ( ⁇ ) may be dispersed by mixing with the compound ( ⁇ ) after being dissolved in the solution.
  • the active energy ray-curable aqueous resin composition or active energy ray-curable type of the present invention may be used. Even if the paint removes the organic solvent, the organic solvent content can be reduced to 1/10 or less compared to the conventional spray coating conditions. Therefore, problems such as deterioration of the working environment and air pollution caused by volatilized organic solvents are hardly caused.
  • the active energy ray-curable aqueous resin composition of the present invention usually contains a photo (polymerization) initiator.
  • a photo (polymerization) initiator can be used.
  • the photo (polymerization) initiator is 0.05 to 20% by weight, preferably 0.5 to 10% by weight, based on the solid content of the active energy ray-curable aqueous resin composition of the present invention. It is added within the range.
  • photosensitizers can be used in combination.
  • photosensitizers include amines, ureas, sulfur-containing compounds, phosphorus-containing compounds, chlorine-containing compounds, nitriles, and other nitrogen-containing compounds.
  • the active energy ray-curable aqueous resin composition of the present invention is an active energy ray-curable aqueous resin composition obtained by dispersing the compound (B) in a resin solution in which an acrylic resin (A) is dissolved in water. Yes, if the ratio of the content of the acrylic resin (A) to the compound (B) [(B) / (A)] is 1.5 to 6 in terms of weight, one good acrylic resin (A) Part of the compound (B) is dissolved in water! /.
  • an emulsifier may be used if necessary as long as the curing of the present invention is not impaired.
  • an emulsifier By using an emulsifier, the dispersion stability of the acrylic resin (A) and the compound (B) in water can be improved.
  • Examples of the emulsifier include nonionic emulsifiers such as polyoxyethylene alkyl ethers and polyoxyethylene alkylphenyl ethers, and anions such as alkyl sulfate esters, alkylbenzene sulfonates, and polyoxyethylene alkyl ether sulfate esters. And emulsifiers and cationic emulsifiers such as quaternary ammonium salts. When using an emulsifier, it is more preferable not to use a small amount as much as possible in order not to reduce the water resistance of the cured coating film.
  • an acrylic resin (a ), An acrylic resin (A), and a compound (B) can be variously used as mechanical means for dissolving and dispersing in a water-miscible organic solvent.
  • a method of mixing and dissolving and / or dispersing in a stirring blade using a turbine blade, Max blend blade, Hi-F mixer, etc. or a method of mixing and dissolving and / or dispersing in a homogenizer, sonolator, disperser, mixer, etc. Is used.
  • the active energy ray-curable resin composition of the present invention contains the active energy ray-curable resin composition of the present invention.
  • the active energy ray curable coating composition of the present invention is, for example, a mixture of the active energy ray curable resin composition of the present invention, a photoinitiator, and a leveling agent, an antifoaming agent, a rheology control agent, etc. as necessary. It is obtained by doing.
  • Examples of the leveling agent include silicon-based leveling agents such as polyether-modified polydimethylsiloxane and polyether-modified polydimethylsiloxane having an acryloyl group, and acrylic leveling agents. It is done.
  • Examples of the antifoaming agent include a silicon-based antifoaming agent, a mineral oil-based antifoaming agent, and a polymer-based antifoaming agent.
  • Examples of the rheology control agent include an alkali swelling type rheology control agent, an Al force re-swelling association type rheology control agent, and a urethane association type rheology control agent. These can be appropriately selected and used as necessary.
  • the active energy ray-curable coating composition of the present invention includes, as necessary, an emulsion of the compound having a polymerizable unsaturated double bond, an emulsion of a urethane resin or an epoxy resin, or a self-emulsified product. Or water-soluble resin etc. can also be mix
  • the active energy ray-curable coating material of the present invention is applied to a substrate, and then the active energy ray-curable coating material is cured by irradiation with active energy rays. It is characterized by. Coating is performed by, for example, a gravure coating method, a roll coating method, a spray coating method, a lip coating method, a comma coating method, a spin coating method, a coating method such as a dating method, a printing method such as a gravure printing method, a screen printing method, etc. I can do it.
  • the base material include plastic, metal or metal-deposited surface, glass, wood, paper and the like.
  • plastic examples include acrylic-butylene monostyrene copolymer (ABS), polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate. Sate (PET), polybutylene terephthalate (PBT), senorelose triacetate (TAC), etc., or a composite force of these.
  • metal examples include aluminum, stainless steel, tin, tinplate, and the like.
  • These base materials have a cured coating film obtained by curing the active energy ray-curable coating material applied by irradiating the active energy ray after applying the active energy ray-curable coating material of the present invention in advance. It may be a base material! /, And is a base material having a cured coating film that has been cured by applying a coating material other than the active energy ray-curable coating material of the present invention in advance and drying it if necessary. Or
  • the substrate may have various shapes. For example, a thick shape, a sheet shape, or a film shape may be used. Furthermore, a design such as irregularities may be applied to the surface of the substrate.
  • Examples of the method for forming a cured coating film of the present invention include a forming method comprising the following steps. First, the active energy ray-curable coating material of the present invention is applied to a substrate. Thereafter, it is pre-dried. The preliminary drying is performed, for example, by leaving the coated substrate in an environment of 50 to 100 ° C. for 1 to 30 minutes. Then, an active energy ray is irradiated. For example, when the base material is plastic, pre-drying is about 70 ° C for 5 minutes.
  • Examples of the active energy rays include electron beams, ultraviolet rays, and gamma rays.
  • the active energy ray irradiation conditions are the force determined according to the composition of the active energy ray curable paint to be used. It is preferable to irradiate so that the normal integrated light amount is 50 to 5000 mj / cm 2. 3000 mj / cm 2 and not more preferable that irradiation so.
  • the active energy ray-curable aqueous resin composition and the active energy ray-curable coating composition of the present invention may appropriately contain a water-miscible organic solvent according to coating performance such as spray coating. Further, the total solid content of the acrylic resin (A) and the compound (B) in the active energy ray-curable aqueous resin composition or the active energy linear-curable coating material of the present invention has a suitable viscosity and a coating agent. 10-70% by weight because it is easy to handle as Power S is preferable, and 20 to 50% by weight is more preferable.
  • the article in which the cured coating film of the active energy ray-curable coating material of the present invention is disposed has a cured coating film excellent in wear resistance and water resistance.
  • This cured coating film may be disposed on the surface of the article, or may be disposed on the article as a basic coating (base coat) or intermediate coating. Even if it is placed on the article as a basic coating (base coat) or intermediate coating, it can supplement the scratch resistance and water resistance of the hardened coating film on the surface and extend the life of the article. Forming a base coat on the base material prevents the base material from being damaged by the next step.
  • an acrylic resin (A-2) solution and an acrylic resin (A-9) solution were obtained using the monomer mixture and polymerization initiator shown in Table 1.
  • the characteristic values of the acrylic resin (A-2) and the acrylic resin (A-9) are shown together with the physical properties of the acrylic resin (a-1) to the acrylic resin (a9) in Tables 1 and 2.
  • a 1 liter reaction vessel equipped with a stirrer was charged with 104 g of hexamethylene diisocyanate, 0.2 g of methoquinone, and 0.2 g of dibutyltin dilaurate, and stirring was started, and the temperature was raised to 60 ° C.
  • Alonics M305 manufactured by Toa Gosei Co., Ltd., pentaerythritol triattalylate / pentaerythritol tetraatalylate, hydroxyl value 110 mgKOH / g) 64 5 g was charged in 10 portions every 10 minutes.
  • the reaction was further continued for 10 hours, and it was confirmed that the absorption of the isocyanate group of ZZSOcnT 1 had disappeared with an infrared spectrum. Then, the reaction was terminated and urethane acrylate (content of polymerizable unsaturated double bond: 7 8 mmol / g) and pentaerythritol tetraatalylate (BB-1) were obtained.
  • the concentration of the polymerizable unsaturated double bond of the compound (BB-1) was 9. Ommol / g.
  • a 1 liter reaction vessel equipped with a stirrer was charged with 128 g of isophorone diisocyanate, 0.2 g of methoxynone, and 0.2 g of dibutyltin dilaurate, and stirring was started, and the temperature was raised to 60 ° C. At the same temperature, Alonics M305 621g was charged 10 times in 10 minutes. The reaction was further continued for 10 hours, and it was confirmed that the absorption of the isocyanate group of ZZSOcnT 1 had disappeared in the infrared spectrum.
  • urethane acrylate content of polymerizable unsaturated double bond: 7.3 mmol) / g
  • pentaerythritol tetratalylate BB-2
  • concentration of the polymerizable unsaturated double bond in the compound (BB-2) is 8.6 mmol / g.
  • Noremiquiare DPA600 (Dainippon Ink Chemical Co., Ltd., dipentaerythritol pentaatalylate / dipentaerythritol hexatatalylate, hydroxyl value 50 mgKOH / g) 250 g
  • Noremiquiare DTA400 Dainippon Ink & Chemicals, Inc. 50 g of ditrimethylolpropane tetratalylate) and 200 g of the compound (BBl) were charged and stirred at 40 ° C. to obtain compound (B-1).
  • the concentration of the polymerizable unsaturated double bond of the compound (B 1) was 9.5 mmol / g.
  • a 1 liter reaction vessel equipped with a stirrer was charged with 150 g of Noremiquiare DPA600, 75 g of Aronix M350 (ethylene oxide-modified trimethylolpropane triacrylate, manufactured by Toa Gosei Co., Ltd.) and 275 g of compound (BB-2), 40 ° The mixture was stirred with C to obtain compound (B-3).
  • the concentration of the polymerizable unsaturated double bond of the compound (B-3) was 8.8 mmol / g.
  • Noremiquia DPA620 (Dainippon Ink Chemical Co., Ltd., dipentaerythritol pentaatalylate / dipentaerythritol hexax diuret, hydroxyl value 25 mgKOH / g) 225 g, AUX M305 250 g and Compound (B-4) was obtained by charging 25 g of the composite (BBl) and stirring at 40 ° C. The concentration of the polymerizable unsaturated double bond of Compound (B-4) was 10.4 mmol / g.
  • a 1 liter reaction vessel equipped with a stirrer was charged with 75 g of Noremiquiare DPA600, 150 g of ALONIX M309 and 275 g of compound (BB-2), and stirred at 40 ° C. to obtain compound (b-1).
  • the concentration of the polymerizable unsaturated double bond in compound (b-1) is 8.4 mmol / g. It was.
  • a 1 liter reaction vessel equipped with a stirrer was charged with 97 parts of the acrylic resin (A-1) solution obtained in Synthesis Example 1 and 147 g of the urethane acrylate (B-1) obtained in Synthesis Example 8 and stirred. Then, the temperature was raised to 70 ° C. and mixed with stirring. Then, 340 g of ion-exchanged water was added in 10 portions while stirring at 40 ° C. Next, Irgacure 500 (Photopolymerization initiator from Ciba Specialty Chemicals) 10.5g, Silicone leveling agent (BYK, BYK-33 3) 2.
  • Irgacure 500 Photopolymerization initiator from Ciba Specialty Chemicals
  • An active energy one-line curable aqueous resin composition 1 having a content of 35% and a pH of 7.8 was prepared.
  • the average particle size in the active energy ray-curable aqueous resin composition 1 was 320 nm.
  • the average particle size in the active energy ray-curable aqueous resin composition 1 was measured using NANOTRAC 150 manufactured by MICROT RAC (the same applies hereinafter).
  • the PH in the active energy ray-curable aqueous resin composition 1 was measured using a PH meter D-51, electrode type 9621C manufactured by Horiba, Ltd. (the same applies hereinafter).
  • test coating plate A method for producing a cured coating film (test coating plate).
  • Spray coating was applied on a PMMA (polymethylmethacrylate) plate to a film thickness of 10 m after drying, followed by predrying at 70 ° C for 10 minutes in a dryer using an 80 W / cm high-pressure mercury lamp.
  • a test coating plate was prepared by irradiating with 1000 mj / cm 2 of ultraviolet rays.
  • test coating plates based on ABS (acrylic-butylene-styrene copolymer) and PC (polycarbonate) were also prepared and used. A test was also conducted.
  • Storage stability test The active energy ray-curable aqueous resin composition 1 sealed in a 200 ml glass container was allowed to stand at 40 ° C, and the appearance evaluation was visually judged.
  • Appearance evaluation The appearance of the test painted plate was visually evaluated.
  • Abrasion resistance test In accordance with JIS—K5600—5—10, the coated surface of the test plate was rubbed 50 times with lKg load on # 0000 steel wool, and then ⁇ Judgment was made by measuring the measured value. In addition, Suga Test Instruments Co., Ltd. D IGITAL HAZE COMPUTER was used for the measurement of a haze value.
  • 5.0 or more and less than 15.0
  • Pencil hardness test A high-grade pencil specified in JIS-S-6006 was used on the painted surface of the test coating plate, and the hardness was examined according to JIS-K-5400.
  • Adhesion test In accordance with JIS-K5600-5-6, cut the grid with a lmm width on the painted surface of the test coating plate (test coating plate using PMMA, ABS and PC as the base material) 100 squares were made, a peel test was performed using cellophane tape, and the number of remaining grids was judged.
  • test coating plate (test coating plate using PMMA, ABS and PC as the base material) was immersed in warm water at 70 ° C for 5 hours, and then the above-mentioned adhesion test was performed.
  • test paint plate (test paint plate using PMMA, ABS and PC as the base material) was immersed in warm water at 40 ° C for 24 hours, and then the whitening state of the paint surface was judged visually. .
  • test panels do not change after 24 hours, but at least one test panel has partial whitening or blistering after 72 hours
  • Example 1! According to the method of Example 1! / ⁇ Active energy ray-curable water-based resin compositions 2 to 10 and the comparative active energy ray-curable water-based resin composition 1 'to 10 with the raw material compositions shown in Table 2 'I got. Each test was performed in the same manner as in Example 1, and the evaluation results are small in Tables 8 to 11k.
  • MMA Methyl metatalylate
  • BMA Butyl metaatylate
  • EA Ethyl atylate
  • BA Butyl acrylate
  • MAA methacrylic acid
  • Irgacure 500 Photopolymerization initiator made by Ciba Specialty Chemicals Silicone leveling agent: BYK, BYK— 333

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

明 細 書
活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型塗 料、硬化塗膜の形成方法及び物品
技術分野
[0001] 本発明は、プラスチック、フィルム等のコーティング剤に用いられ、貯蔵安定性に優 れ、またその硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる活性エネ ルギ一線硬化型水性樹脂組成物、該組成物を含有する活性エネルギー線硬化型塗 料、該塗料を用いた硬化塗膜の形成方法及び塗料の硬化塗膜が配置して!/、る物品 に関する。
背景技術
[0002] 活性エネルギー線硬化型組成物は、塗装基材への熱履歴が少なぐ塗膜硬度や 擦り傷性に優れるという特長から、家電製品、携帯電話等のプラスチック基材用ハー ドコート剤として使用されてレ、る。このような活性エネルギー線硬化型組成物としては
、例えば、重合性不飽和二重結合を有するポリマー(例えば、アクリルアタリレート等) や重合性不飽和二重結合を実質的に有さないポリマー (例えば、アクリル樹脂等)と 、重合性単量体と希釈剤として有機溶剤とを含有する活性エネルギー線硬化型組成 物(非水系の活性エネルギー線硬化型組成物)等が挙げられる。この活性エネルギ 一線硬化型組成物を例えばスプレー塗装用の活性エネルギー線硬化型塗料として 用いる場合、前記有機溶剤を該塗料の重量を基準として 50〜90重量%と多量に含 有させる。その為、該樹脂組成物を含有する活性エネルギー線硬化型塗料を用いて プラスチック等の基材表面に硬化塗膜を形成させる際に該塗料中の有機溶剤が揮 発する事で作業環境を悪化させる問題がある。また、この揮発した有機溶剤は大気 汚染の問題にもなつている。
[0003] このような中、希釈剤として水を用いる活性エネルギー線硬化型水性組成物が検 討されている。具体的には、例えば、平均粒径が 10〜100nmである水性樹脂分散 体(1)に分子内に少なくとも一つ以上の炭素一炭素二重結合を有する感光性オリゴ マー(2)および分子内に少なくとも一つ以上の炭素一炭素二重結合を有する感光性 モノマー(3)を配合してなる水性感光性コーティング組成物が開示されている(例え ば、特許文献 1参照。)。具体的には、例えば、特許文献 1の実施例 1ではアクリル系 微粒子ェマルジヨン〔例えば、東洋インキ製造(株)製の NANOCRYL BCX- 291 4等〕 100重量部に水溶性ウレタンアタリレート 2. 3重量部及びトリメチロールプロパン トリアタリレート 2. 3重量部を含有してなる感光性コーティング組成物が開示されてい
[0004] また、(メタ)アタリロイル基含有水溶性樹脂 (A)、多官能 (メタ)アタリレート化合物( B)、および光重合開始剤を含み、乳化状態である紫外線硬化型水性塗料組成物も 開示されている(例えば、特許文献 2参照。)。具体的には、例えば、メチルメタクリレ ートを必須として得られるカルボキシル基含有アクリル樹脂のカルボキシル基を中和 して得られる水分散性アクリル樹脂とウレタンアタリレートオリゴマーとが水に分散して なるェマルジヨンが挙げられる。
[0005] しかしながら、前記特許文献 1で用いているアクリル系微粒子ェマルジヨンはトリメチ ロールプロパントリアタリレート等の疎水性の重合性単量体を分散させる能力(分散 力)や安定性が不十分である。その為、該アクリル系微粒子ェマルジヨンを用いて活 性エネルギー線硬化型樹脂組成物を得るには、耐摩耗性、耐水性を向上させるのに 有効な疎水性の重合性単量体と水溶性ウレタンアタリレートや自己乳化性ウレタンァ タリレートを併用し、水溶性ウレタンアタリレートや自己乳化性ウレタンアタリレートに該 アクリル系微粒子ェマルジヨンの分散力や安定性を補わせることで、疎水性の重合 性単量体を水に分散させている。その為、耐摩耗性、耐水性向上に期待できる疎水 性の重合性単量体の効果が十分発揮されず、特許文献 1の水性感光性コーティング 組成物を用いて得られる硬化塗膜は耐摩耗性、耐水性が十分ではな!/、。
[0006] また、前記特許文献 2で開示されている紫外線硬化型水性塗料組成物では、多官 能(メタ)アタリレートとして疎水性のウレタンアタリレートオリゴマーを用いており、これ により硬化塗膜の耐擦傷性、耐水性の向上を図っている。し力、しながら、該紫外線硬 化型水性塗料組成物に用いて!/、る(メタ)アタリロイル基含有水溶性樹脂 (A)でも疎 水性のウレタンアタリレートオリゴマーを水中に分散させるだけの十分な分散力を有し ておらず、水中で前記 (メタ)アタリロイル基含有水溶性樹脂 (A)に多官能 (メタ)ァク リレート化合物(B)を分散させようとしてもうまく分散できない、または、多官能 (メタ)ァ タリレート化合物(B)の一部がすぐに分離してしまうという問題がある。その為、硬化 塗膜にハジキゃオレンジピール等の欠陥が生じやすい。また、該紫外線硬化型水性 塗料組成物は、貯蔵安定性も十分ではない。
[0007] 特許文献 1 :特開平 9 302266公報
特許文献 2 :特開 2004— 010779公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明の課題は、プラスチック、フィルム等のコーティング剤に用いられ、貯蔵安定 性に優れ、またその硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる活 性エネルギー線硬化型水性樹脂組成物、該組成物を含有する活性エネルギー線硬 化型塗料、該塗料を用いた硬化塗膜の形成方法及び塗料の硬化塗膜が表面に配 置している物品を提供することにある。
課題を解決するための手段
[0009] 本発明者らは、鋭意検討を進めた結果、下記の知見を見出した。
(1)炭素原子数 2〜8のアルキレン基を含有し、且つ、該アルキレン基の末端に力 ルポキシル基が付加しているラジカル重合性単量体を樹脂形成分の重量を基準とし て 2〜; 15重量%用い、メチル (メタ)アタリレートを樹脂形成分の重量を基準として 55 〜70重量%用いて得られ、且つ、 1. 3〜2· 7mmol/gの中和されたカルボキシル 基を含有するアクリル樹脂 (親水性アクリル樹脂)は疎水性の重合性単量体を分散さ せる分散力が強ぐ有機溶剤が大幅に少ない水中にて疎水性の重合性単量体でさ えも良好に分散できる。
[0010] (2)前記活性エネルギー線硬化型水性樹脂組成物は親水性アクリル樹脂の強力 な分散力により、重合性単量体として疎水性の重合性単量体を用いたときでも長期 に渡って安定的に分散できる。その結果、該活性エネルギー線硬化型水性樹脂組 成物は貯蔵安定性が良好である。
[0011] (3)前記の通り前記アクリル樹脂は疎水性の重合性単量体を良好に分散できる。
従って、これらを含有する活性エネルギー線硬化型水性塗料を用いる事によりハジ キゃオレンジピールが発生しにくい硬化塗膜が得られる。
[0012] (4)更に、前記活性エネルギー線硬化型水性塗料を用いて得られる硬化塗膜は耐 摩耗性、耐水性に優れる。
[0013] (5)前記活性エネルギー線硬化型塗料を基材表面に塗布した後、活性エネルギー 線を照射して塗布した活性エネルギー線硬化型塗料を硬化させることにより、耐擦傷 性、耐水性に優れる硬化塗膜を容易に形成することができる。
[0014] (6)前記活性エネルギー線硬化型塗料の硬化塗膜が表面に配置してなる物品は その表面はハジキゃオレンジピールが無 i硬化塗膜で覆われ、外観が美しい。また、 耐擦傷性、耐水性を有する硬化塗膜の為、物品の耐久性を向上させる。その為、物 品の価値が向上する。
本発明は上記知見に基づいて完成されたものである。
[0015] 即ち、本発明は、下記一般式(1)で表されるラジカル重合性単量体を樹脂形成分 の重量を基準として 2〜; 15重量%用い、メチルメタアタリレートを樹脂形成分の重量 を基準として 55〜70重量%用いて得られ、且つ、 1. 3〜2. 7mmol/gの中和され たカルボキシル基を含有するアクリル樹脂 (A)を水中に溶解させた樹脂溶液または 該アクリル樹脂 (A)を水中に分散させた樹脂分散液中に、重合性不飽和二重結合を 8. 6-10. 5mmol/g有する化合物(B)を分散してなる活性エネルギー線硬化型 水性樹脂組成物であり、該アクリル樹脂 (A)と該化合物 (B)との含有量の比〔 (B) / ( A)〕が重量換算で 1. 5〜6であることを特徴とする活性エネルギー線硬化型水性樹 脂組成物を提供するものである。
[0016] [化 1]
Figure imgf000005_0001
(R1は水素原子またはメチル基であり、 R2は炭素原子数 2〜8のアルキレン基であり 、 nは;!〜 10の整数である。 )
また、本発明は前記活性エネルギー線硬化型水性樹脂組成物を含有することを特 徴とする活性エネルギー線硬化型塗料を提供するものである。 [0018] また、本発明は前記活性エネルギー線硬化型塗料を基材に塗布した後、活性エネ ルギ一線を照射して塗布した活性エネルギー線硬化型塗料を硬化させることを特徴 とする硬化塗膜の形成方法を提供するものである。
[0019] 更に、本発明は、前記活性エネルギー線硬化型塗料の硬化塗膜が配置してなるこ とを特徴とする物品を提供するものである。
発明の効果
[0020] 本発明の活性エネルギー線硬化型水性樹脂組成物は、貯蔵安定性に優れ、また その硬化塗膜の外観が良好で、且つ、耐摩耗性、耐水性に優れる。また、本発明の 活性エネルギー線硬化型塗料を用いることにより硬化塗膜の外観が良好で、且つ、 耐摩耗性、耐水性に優れる硬化塗膜が得られる。また、本発明の硬化塗膜は、外観 が良好で、且つ、耐摩耗性、耐水性に優れる硬化塗膜が容易に得られる。更に、本 発明の物品は外観が良好で、且つ、耐摩耗性、耐水性に優れる硬化塗膜を有する。 発明を実施するための最良の形態
[0021] 本発明で用いるアクリル樹脂 (A)は、前記一般式(1 )で表されるラジカル重合性単 量体を樹脂形成分の重量を基準として 2〜; 15重量%用い、メチルメタアタリレートを 樹脂形成分の重量を基準として 55〜70重量%用いて得られ、且つ、 1. 3〜2. 7m mol/gの中和されたカルボキシル基を含有する。 ε カルボキシポリ力プロラタトン( メタ)アタリレートの使用量が樹脂形成分の重量を基準として 2重量%よりも少ないァ クリル樹脂を用いると、分散安定性が不十分で沈降物や分離が生じる等の問題が生 じ、貯蔵安定性が不十分な活性エネルギー線硬化型水性樹脂組成物となることから 好ましくない。 ε—カルボキシポリ力プロラ外ン (メタ)アタリレートの使用量が樹脂形 成分の重量を基準として 15重量%よりも大きいアクリル樹脂を用いると、柔軟になり 耐摩耗性が不十分な硬化塗膜しか得られない活性エネルギー線硬化型樹脂組成物 となること力、ら好ましくない。本発明で用いるアクリル樹脂 (Α)は ε カルボキシポリ 力プロラタトン (メタ)アタリレートを樹脂形成分の重量を基準として 3〜; 10重量%用い て得られるアクリル樹脂が、貯蔵安定性の良!/、活性エネルギー線硬化型水性樹脂組 成物となることから好ましい。
[0022] また、メチルメタアタリレートを樹脂形成分の重量を基準として 55重量%よりも少な いアクリル樹脂を用いると分散安定性が不十分で沈降物や分離が生じる等の問題が 生じ、貯蔵安定性が不十分な活性エネルギー線硬化型水性樹脂組成物となることか ら好ましくない。メチルメタアタリレートの使用量が樹脂形成分の重量を基準として 70 重量%よりも大きいアクリル樹脂を用いると、アクリル樹脂の流動性が低下してレベリ ング性が低下することによる塗膜外観の悪化が生じ、得られるアクリル樹脂粘度が非 常に高くなるのでハンドリング困難な活性エネルギー線硬化型水性樹脂組成物とな ることから好ましくない。本発明で用いるアクリル樹脂 (A)はメチルメタアタリレートを 樹脂形成分の重量を基準として 55〜65重量%用いて得られるアクリル樹脂が、貯蔵 安定性が良好な活性エネルギー線硬化型水性樹脂組成物となり、更に得られる硬 化塗膜の外観と基材付着性に優れることから好ましい。
[0023] また、本発明で用いるアクリル樹脂 (A)は、中和されたカルボキシル基を 1. 3〜2.
7mmol/gの範囲で含有する。中和されたカルボキシル基の含有量が 1. 3mmol/ gよりも少な!/、アクリル樹脂を用いると本発明の活性エネルギー線硬化型樹脂組成物 や活性エネルギー線硬化型塗料の貯蔵安定性が不十分となる為、好ましくない。中 和されたカルボキシル基の含有量が 2. 7mmol/gよりも多いアクリル樹脂を用いると 本発明の活性エネルギー線硬化型樹脂組成物や活性エネルギー線硬化型塗料の 硬化塗膜の耐水性が低下することから好ましくない。本発明で用いるアクリル樹脂 (A )は中和されたカルボキシル基を 1. 5〜2. 2mmol/gの範囲で含有するアクリル樹 脂が保存安定性に優れる活性エネルギー線硬化型樹脂組成物や活性エネルギー 線硬化型塗料となり、且つ、耐水性に優れる硬化塗膜が得られることから好ましい。
[0024] 前記中和されたカルボキシル基の含有量 (モル量)は、中和に用いた塩基性化合 物のアミン価から算出される塩基性化合物のモル量と同じ(同モル量)であるとして求 めた。ここで、中和に用いた塩基性化合物のアミン価は、塩基性化合物試料 1. Ogを テトラヒドロフラン 5mlに溶解し、ブロムフエノールブルーを指示薬に用いて 0. 5mol /1塩酸溶液で中和滴定を行つて求めた。
[0025] 本発明で用いるアクリル樹脂 (A)は、例えば、前記一般式(1)で表されるラジカル 重合性単量体を樹脂形成分の重量を基準として 2〜; 15重量%用い、メチルメタアタリ レートを樹脂形成分の重量を基準として 55〜70重量%用いて得られ、且つカルボキ シル基を含有するアクリル樹脂 ωを合成した後、塩基性化合物でアクリル樹脂 ω 中のカルボキシル基を中和する事により得ることができる。
[0026] 本発明で用いるアクリル樹脂 (Α)は、前記の通り中和されたカルボキシル基を 1. 3 〜2. 7mmol/gの範囲で含有する。このようなアクリル樹脂 (A)を得るには、例えば 、アクリル樹脂(a)としてカルボキシル基を 1. 3〜2. 7mmol/gの範囲で含有するァ クリル樹脂を用い、該アクリル樹脂(a)のカルボキシル基を全て塩基性化合物で中和 する方法(中和率 100%)、アクリル樹脂(a)としてカルボキシル基を 2. 7mmol/g以 上含有するアクリル樹脂を用い、該アクリル樹脂(a)のカルボキシル基の一部を塩基 性化合物で中和する方法等により得ることができる。該カルボキシル基の一部を塩基 性化合物で中和する方法の具体例としては、例えば、酸価 100mgKOH/gのアタリ ル樹脂(a)中のカルボキシル基のうち一部、例えば 85%を中和して中和されたカル ボキシル基の含有量が該樹脂中に 1. 5mmol/gとなるように調製する、酸価 90のァ クリル樹脂(a)中のカルボキシル基の全部を中和して中和されたカルボキシル基の 含有量が該樹脂中に 1. 6mmol/gとなるように調製する等が挙げられる。
[0027] 本発明で用いるアクリル樹脂(A)は、カルボキシル基を 1. 3〜2. 7mmol/gの範 囲で含有するアクリル樹脂を用い、この樹脂のカルボキシル基を全て中和して得られ るアクリル樹脂が貯蔵安定性に優れる活性エネルギー線硬化型水性樹脂組成物や 活性エネルギー線硬化型塗料が得られることから好ましい。ゆえに、本発明で用いる アクリル樹脂 (A)の調製に用いるアクリル樹脂(a)もカルボキシル基を 1. 3〜2. 7m mol/gの範囲で含有するアクリル樹脂が好ましい。
[0028] 本発明においてカルボキシル基含有アクリル樹脂(a)等の酸価は、樹脂試料 1. Og をトルエン 1. 5mlとメタノール 3. 5mlの混合溶液に溶解し、フエノールフタレインを指 示薬に用いて 0. lmol/1水酸化カリウム/エタノール溶液で中和滴定を行って求め た。
[0029] カルボキシル基含有アクリル樹脂(a)は、例えば、前記一般式(1 )で表されるラジカ ル重合性単量体を樹脂形成分の重量を基準として 2〜; 15重量%、メチルメタアタリレ ートを樹脂形成分の重量を基準として 55〜70重量%及びカルボキシル基含有ェチ レン性不飽和単量体を必須成分とし、更に必要に応じてその他の重合性単量体を混 合した混合物を用い、該混合物を溶剤中で重合開始剤の存在下でラジカル重合反 応を行う溶液重合法等により合成することができる。この反応は、常圧下、高圧下の 何れで行ってもよぐまた、分子量の調整は、例えば、重合開始剤の仕込量を調整す ることにより fiうこと力 Sでさる。
[0030] 前記一般式(1 )で表されるラジカル重合性単量体としては、例えば、 ε —カルボキ シポリカプロラタトン (メタ)アタリレート等が挙げられる。具体的には、例えば、 ε—力 ート等が挙げられる。中でも市場に安定的に供給されており、入手が容易なことから
[0031] 前記 ε—カルボキシポリ力プロラタトン (メタ)アタリレートは、例えば、(メタ)アクリル 酸と ε—力プロラタトンとを、酸触媒の存在下で混合、攪拌し、 40〜150°Cで反応さ せる事により得られる。
[0032] 前記酸触媒としては、例えば、 p—トルエンスルホン酸、ベンゼンスルホン酸、塩化 アルミニウム、塩化第二錫等が挙げられる。酸触媒は (メタ)アクリル酸 100重量部に 対して、 1〜20重量部の範囲で使用するのが好ましい。
[0033] 前記カルボキシル基含有エチレン性不飽和単量体としては、例えば、(メタ)アタリ ル酸、クロトン酸、イソクロトン酸、 2—メタクリロキシェチルサクシニク酸、 2—メタクリロ キシェチルへキサハイドロフタル酸、 2—メタクリロキシェチルダルタレート;(無水)マ レイン酸,フマル酸, (無水)ィタコン酸の如きジカルボン酸及びその無水物;モノメチ
、モノメチルフマル酸、モノェチルフマル酸、モノブチルフマレイン酸、モノォクチルフ マノレ酸、モノメチルイタコン酸、モノェチルイタコン酸、モノブチルイタコン酸、モノオタ チルイタコン酸等のジカルボン酸のモノアルキルエステル等が挙げられる。カルボキ シル基含有エチレン性不飽和単量体としてはアクリル酸、メタクリル酸等の(メタ)ァク リル酸が好まし!/、。カルボキシル基含有エチレン性不飽和単量体は単独種で用いて も良いし、 2種以上を併用しても良い。カルボキシル基含有エチレン性不飽和単量体 の中でも、低粘度で分散性に優れるアクリル樹脂 (A)が得られることからアクリル酸が 好ましい。 [0034] 前記その他のエチレン性不飽和単量体としては、例えば、メチルアタリレート、ェチ ノレ(メタ)アタリレート、 n—プロピル(メタ)アタリレート、 iso—プロピル(メタ)アタリレート 、 n—ブチル(メタ)アタリレート、 iso—ブチル(メタ)アタリレート、 tert—ブチル(メタ) アタリレート、 2—ェチルへキシル (メタ)アタリレート、ラウリル (メタ)アタリレート、ォクタ デシル (メタ)アタリレート、ドコサニル (メタ)アタリレート、シクロペンチル (メタ)アタリレ ート、シクロへキシル(メタ)アタリレート、ボルニル(メタ)アタリレート、イソボルニル(メ タ)アタリレート、ジシクロペンタニル(メタ)アタリレート、シクロアルキル(メタ)アタリレ
[0035] ヒドロキシェチル(メタ)アタリレート、ヒドロキシプロピル(メタ)アタリレート、ヒドロキシブ チル(メタ)アタリレート等のヒドロキシアルキル(メタ)アタリレートやこれらの単量体へ の ε —力プロラタトンまたは γ —バレロラタトン等のラタトン類の付加物等の水酸基含 有エチレン性不飽和単量体;
[0036] スチレン、 p— tert—ブチルスチレン、 α—メチルスチレン、ビュルトルエン等の芳香 族ビュル化合物;
[0037] 2—メトキシェチル(メタ)アタリレート、 4—メトキシブチル(メタ)アタリレート等の ω—ァ ド基含有ビュル系単量体類;メトキシポリエチレングリコール (メタ)アタリレート、メトキ シポリプロピレンレンダリコール (メタ)アタリレート等のポリアルキレンオキサイド構造を 有するビュル単量体; η—メチロール(メタ)アクリルアミド、 η—メトキシメチル(メタ)ァ
ノレアミド;
[0038] η—メチルアミノエチル (メタ)アタリレート等の二級アミノ基含有ビュル系単量体;ビニ ルァセトアセテート、 2—ァセトァセトキシェチル(メタ)アタリレート等の活性メチレン基 を有するビュル単量体;ビュルトリメトキシシラン、 3— (メタ)アタリロイルォキシプロピ ルトリメトキシシラン等の加水分解性シリル基を有するビュル系単量体;
[0039] トリメチルシリル(メタ)アタリレート等のシリルエステル基を含有するビュル系単量体; 口へキシル(メタ)アタリレート、グリシジルビュルエーテル、ァリルグリシジルエーテル 等のエポキシ基を含有するビュル系単量体; 2—イソシアナートプロペン、 2—イソシ アナートェチノレビニノレエーテノレ、 2—イソシアナ一トェチノレメタアタリレート、 m イソ プロぺニルー α , aージメチルベンジルイソシァネート等のイソシァネート基を含有 するビュル系単量体等が挙げられる。これらは単独種で使用してもよいし、 2種以上 を併用しても良い。
[0040] 本発明で用いるアクリル樹脂 (A)は、硬化収縮を緩和して基材付着性に優れる硬 化塗膜が得られることから重合性不飽和結合を有さなレ、アクリル樹脂が好ましレ、。前 記一般式(1 )で表されるラジカル重合性単量体、メチルメタアタリレート、カルボキシ ル基含有エチレン性不飽和単量体及びその他の重合性単量体を原料として調製す る場合、重合性不飽和結合を有さないアクリル樹脂を調製するには、例えば、カルボ キシル基含有エチレン性不飽和単量体及びその他の重合性単量体として、エチレン 性不飽和単量体を一つ有する単量体を用いることにより得ることができる。
[0041] 本発明で用いるアクリル樹脂 (A)は側鎖にアルキル基を有するアクリル樹脂が付着 性に優れ、外観も良好な硬化塗膜が得られる活性エネルギー線硬化型水性樹脂組 成物や活性エネルギー線硬化型塗料が得られることから好ましレ、。前記アルキル基 の中でも付着性に優れ、外観も良好な硬化塗膜が得られ、且つ、保存安定性に優れ る活性エネルギー線硬化型樹脂組成物や活性エネルギー線硬化型塗料が得られる ことから、炭素原子数 2〜8のアルキル基がより好ましい。炭素原子数 2〜8のアルキ ル基としては、例えば、メチル基、ェチル基、 n プロピル基、 i プロピル基、 n ブ チノレ基、 i ブチル基、 t ブチル基、シクロへキシル基、 2—ェチルへキシル基等が あげられる。
[0042] アクリル樹脂 (A)として側鎖にアルキル基を有するアクリル樹脂を得るには、例えば 、アクリル樹脂(a)を合成する際にアルキル基を有するエチレン性不飽和単量体を併 用する事により得られる。アルキル基を有するエチレン性不飽和単量体としては、前 記アルキル (メタ)アタリレート類等が挙げられる。アクリル樹脂(a)を合成する際に用 いるアルキル基を有するエチレン性不飽和単量体の使用量としては、樹脂形成分の 重量を基準として;!〜 25重量%が貯蔵安定性に優れる活性エネルギー線硬化型水 性樹脂組成物や活性エネルギー線硬化型塗料となり、且つ得られる硬化塗膜も基材 と密着性が良好で、外観にも優れることから好ましぐ 3〜20重量%がより好ましい。 アルキル基を有するエチレン性不飽和単量体の中でも n—ブチル (メタ)アタリレート がより貯蔵安定性に優れる活性エネルギー線硬化型水性樹脂組成物や活性エネル ギ一線硬化型塗料となることから好ましレ、。
[0043] 本発明で用いるアクリル樹脂 (A)の中でも、水酸基を有するアクリル樹脂が貯蔵安 定性に優れ、且つ、得られる硬化塗膜の耐水性も良好な活性エネルギー線硬化型 水性樹脂組成物やな活性エネルギー線硬化型塗料が得られることから好ましい。水 酸基を有するアクリル樹脂の中でも水酸基価が 15〜; 100mgKOH/gのアクリル樹 脂が好ましぐ水酸基価が 25〜65mgKOH/gのアクリル樹脂がより好ましい。
[0044] アクリル樹脂 (A)の中でも水酸基を有するアクリル樹脂は、例えば、前記アクリル樹 脂(a)として前記一般式(1)で表されるラジカル重合性単量体を樹脂形成分の重量 を基準として 2〜; 15重量%、メチルメタアタリレートを樹脂形成分の重量を基準として 55〜70重量%、カルボキシル基含有エチレン性不飽和単量体及び水酸基含有ェ チレン性不飽和単量体を必須成分とし、更に必要に応じてその他の重合性単量体を 混合した混合物を用い、該混合物を溶剤中で重合開始剤の存在下でラジカル重合 反応を行う溶液重合法等によりアクリル樹脂を合成した後、塩基性化合物で該アタリ ル樹脂中のカルボキシル基を中和する事により得ることができる。
[0045] 前記水酸基含有エチレン性不飽和単量体としては、例えば、ヒドロキシェチル (メタ ト等が挙げられる。中でも、貯蔵安定性に優れる活性エネルギー線硬化型水性樹脂 組成物や活性エネルギー線硬化型塗料が得られることからヒドロキシェチル (メタ)ァ タリレートが好ましい。
[0046] また、アクリル樹脂 (A)等の水酸基価は、樹脂試料 10. Ogに無水酢酸/ピリジン溶 液(体積比 1/19) 25mlを加えて加熱して 1時間反応を行った後に、フエノールフタ レインを指示薬に用い 0. 5mol/l水酸化カリウム/エタノール溶液で中和滴定を行 つて求めた。
[0047] 前記アクリル樹脂(a)の合成の際に用いる溶剤としては、水と分離することなく混和 する水混和性有機溶剤が好ましぐ中でも水に対する溶解度(水 lOOgに溶解する有 機溶剤のグラム数)が 25°Cにお!/、て 3g以上の有機溶剤が好まし!/、。これら水混和性 有機溶剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のァ ルコール系溶剤;アセトン、メチルェチルケトン等のケトン系溶剤;エチレングリコール モノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノ ェチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、エチレングリコーノレモノプロ ピノレエーテノレ、エチレングリコーノレモノイソプロピノレエーテノレ、モノブチノレエーテノレ、 ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、 ジエチレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、 ジエチレングリコーノレモノイソプロピノレエーテノレ、ジエチレングリコ一ノレモノブチノレエ ーテノレ、トリエチレングリコーノレモノメチノレエーテノレ、トリエチレングリコーノレジメチノレエ ーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコーノレジメチノレエ一 テノレ、プロピレングリコーノレモノプロピノレエーテノレ、プロピレングリコーノレモノブチノレエ ーテノレ、ジプロピレングリコーノレモノメチノレエーテノレ、ジプロピレングリコーノレジメチノレ エーテル等のダリコールエーテル系溶剤などが挙げられる。これら水混和性有機溶 剤は、それぞれ単独で用いても良いし、 2種以上を併用しても良い。
[0048] 前記水混和性有機溶剤には、更に必要に応じて他の有機溶剤を併用することがで き、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤;へキサン、ヘプタン、ォ クタン、デカン等の脂肪族炭化水素系溶剤;酢酸メチル、酢酸ェチル、酢酸イソプロ ピル、酢酸ブチル、酢酸ァミル、ギ酸ェチル、プロピオン酸ブチル等のエステル系溶 剤などが挙げられる力 S、臭気等により作業環境が低下することからその使用は好まし くなぐ必要な場合においても水性樹脂組成物の総量に対して 1 %以下の使用が好 ましい。また、前記芳香族炭化水素系溶剤の中でも混合芳香族炭化水素系溶剤とし て、例えば、ソルべッソ # 100、ソルべッソ # 150等の市販品が挙げられる。
[0049] 前記溶液重合法等によるアクリル樹脂(a)の合成で使用できるラジカル重合開始剤 としては、例えば、 2, 2'—ァゾビス(イソブチロニトリル)、 2, 2'—ァゾビス(2—メチル ブチロニトリル)、ァゾビスシァノ吉草酸等のァゾ化合物; tert ブチルパーォキシピ ノ レート、 tert ブチルパーォキシベンゾエート、 tert ブチノレパーォキシ 2—ェ チルへキサノエート、ジー tert ブチルパーオキサイド、クメンハイド口パーオキサイド 、ベンゾィルパーオキサイド、 t ブチルハイド口パーオキサイド等の有機過酸化物; 過酸化水素、過硫酸アンモユウム、過硫酸カリウム、過硫酸ナトリウム等の無機過酸 化物が挙げられ、これらを単独又は 2種以上併用できる。前記ラジカル重合開始剤 は、アクリル樹脂を構成する成分の総量に対して、 0. ;!〜 10重量%の範囲内で使用 することが好ましい。
[0050] 前記溶液重合をする際の反応容器中の不揮発分は、 30〜90重量%であることが 好ましぐ 50〜80重量%であることがより好ましい。
[0051] アクリル樹脂(a)中のカルボキシル基を中和するのに用いる中和剤(塩基性化合物 )としては、例えば、モノメチルァミン、ジメチルァミン、トリメチルァミン、モノェチルアミ ン、ジェチルァミン、トリエチルァミン、モノプロピルルアミン、ジプロピルルアミントリプ ロピルルアミン等のアルキルァミン;モノエタノールァミン、ジエタノールァミン、モノィ ソプロパノールァミン、ジイソプロパノールァミン、 N メチルエタノールァミン、 N, N ジメチノレエタノーノレアミン、 N, N ジェチノレエタノーノレアミン、 2—アミノー 2—メチ ノレプロパノール、 2—(ジメチノレアミノ)ー2—メチルプロパノール、 N メチルジェタノ ールァミン等のアルカノールァミン;エチレンジァミン、ジエチレントリァミン、トリエチレ ンテトラミン、テトラエチレンペンタミン等の多価ァミン等の有機アミンゃアンモニア(水 )が挙げられる。塩基性化合物の中でも揮発性が高い為、硬化塗膜に残りにくぐ耐 水性に優れる硬化塗膜が得られることからアンモニア水、トリメチルァミンが好まし!/、。 中和剤 (塩基性化合物)は単独で使用してもよいし、 2種以上を併用してもよい。
[0052] 尚、例えば、カルボキシル基含有のアクリル樹脂に ε—力プロラタトン等を付加させ ることにより、一般式(1)で示される化合物の繰り返し単位とこれに直接結合する水素 原子からなる構造を有するアクリル樹脂をえることができる。
[0053] 本発明で用いるアクリル樹脂(a)の数平均分子量 (Μη)としては、貯蔵安定性に優 れ、且つ、粘度も上昇しすぎない活性エネルギー線硬化型水性樹脂組成物や活性 エネルギー線硬化型塗料が得られることから 5, 000-30, 000力 S好ましく、中でも 8 , 000—25, 000カより好ましレヽ。
[0054] 本発明で用いるアクリル樹脂(a)の重量平均分子量 (Mw)としては、貯蔵安定性に 優れ、且つ、粘度も上昇しすぎない活性エネルギー線硬化型水性樹脂組成物ゃ活 性エネルギー線硬化型塗料が得られることから 10, 000-100, 000であること力 s好 ましく、中でも 30, 000—80, 000カより好ましレヽ。
[0055] 本発明にお!/、てカルボキシル基含有アクリル樹脂(a)等の樹脂の数平均分子量と 重量平均分子量の測定は、ゲルパーミュエーシヨンクロマトグラフを用い、下記の条 件でポリスチレン換算により、分子量 1000以下の成分を除いて求めた。
測定装置 ; 東ソー株式会社製 HLC- 8220
カラム ; 東ソー株式会社製 ガードカラム HXL— H
+東ソー株式会社製 TSKgel G5000HXL
+東ソー株式会社製 TSKgel G4000HXL
+東ソー株式会社製 TSKgel G3000HXL
+東ソー株式会社製 TSKgel G2000HXL
検出器 ; RI (示差屈折計)
データ処理; 東ソー株式会社製 SC- 8010
測定条件 ; カラム温度 40°C
溶媒 テトラヒドロフラン
流速 1. Oml/分 試料 ; 樹脂固形分換算で 0. 4重量%のテトラヒドロフラン溶液
ルターでろ過したもの(100 μ 1)。
[0056] 本発明で用いるカルボキシル基含有アクリル樹脂(a)のガラス転移温度は、耐摩耗 性と基材付着性に優れる硬化塗膜が得られる活性エネルギー線硬化型水性樹脂組 成物が得られることから 30°C〜; 100°Cであることが好ましい。このためアクリル樹脂(a )の合成に際しては、ガラス転移温度が 30°C〜100°Cとなるように原料成分を適宜選 択し組み合わせることが好まし!/、。より耐摩耗性と基材付着性に優れる硬化塗膜が得 られることから 60°C〜90°Cがより好ましレ、。
[0057] アクリル樹脂(a)等の樹脂のガラス転移温度は JIS—K— 7121に準じて示差走査 熱量 (DSC)測定により求めた。 測定装置; TAインスツルメント製 DSCQ - 100
容器 ; アルミ製オープンセル
昇温速度; 20°C/分
[0058] 前記アクリル樹脂(a)等の樹脂のガラス転移温度はまた、下記の式で計算すること もできる。尚、下記式のガラス転移温度は絶対温度 (° Κ)である。
Tg_ 1 =∑Xi -Tg_ 1
[0059] ここで樹脂は、 i= l〜!!までの n個のモノマー成分が共重合しているとする。 Xiは i番 目のモノマーの重量分率で、 Tgiは i番目のモノマーの単独重合体のガラス転移温度 である。モノマーの単独重合体のガラス転移温度は、 Polymer Handbook (4th E dition)J. Brandrup, E. H. Immergut, E. A. Grulke^- (.Wiley Interscience; 記載の値を使用できる。
[0060] 尚、アクリル樹脂 (A)を調製するには、カルボキシル基含有アクリル樹脂(a)を合成 した後にカルボキシル基の全部または一部を塩基性化合物で中和するのが好ましい 1S 予めカルボキシル基含有アクリル樹脂(a)の合成に用いるカルボキシル基含有 エチレン性不飽和単量体の全部または一部を予め塩基性化合物で中和した単量体 を用いることで、アクリル樹脂(a)を経る事なぐ直接アクリル樹脂 (Α)を調製しても良 い。
[0061] 本発明で用いる化合物(Β)は、重合性不飽和二重結合を 8. 6- 10. 5mmol/g 有する必要がある。重合性不飽和二重結合の含有量が 8. 6mmol/gよりも小さいと 硬化塗膜の耐摩耗性と耐水性が、架橋不足により不十分な活性エネルギー線硬化 型水性樹脂組成物や活性エネルギー線硬化型塗料となることから好ましくな!/、。重 合性不飽和二重結合の含有量が 10. 5mmol/gよりも大きいと得られる硬化塗膜の 基材への付着性が低下することから好ましくない。化合物(B)は、耐摩耗性、耐水性 、付着性に優れる硬化塗膜が得られる活性エネルギー線硬化型水性樹脂組成物や 活性エネルギー線硬化型塗料となることから重合性不飽和二重結合を 9. 0- 10. 2 mmol/g有する化合物が好ましぐ重合性不飽和二重結合を 9. 0〜9. 8mmol/g 有する化合物がより好ましい。尚、本発明で用いる化合物(B)は 2種以上を併用して も良い。 2種以上を併用する場合は、化合物 (B)は平均の重合性不飽和二重結合が 8. 6~ 10. 5mmol/gとなっている必要がある。従って、重合性不飽和二重結合が 8. 6mmol/gよりも小さい化合物や重合性不飽和二重結合が 10. 5mmol/gよりも 大きい化合物も、併用する相手方の化合物を選択して重合性不飽和二重結合の平 均の濃度が 8. 6- 10. 5mmol/gとなるようにすれば化合物(B)を構成する原料と して用いること力 Sでさる。
[0062] 宜しくお願いします。
本発明で用いる重合性不飽和二重結合を 8. 6- 10. 5mmol/g有する化合物(B )としては、例えばイソボニル (メタ)アタリレート(重合性不飽和二重結合の含有量: 4 . 8mmol/g)、ジシクロペンタニル (メタ)アタリレート(重合性不飽和二重結合の含 有量: 4· 9mmol/g)等のモノ(メタ)アタリレート類;
[0063] トリプロピレングリコールジ (メタ)アタリレート(重合性不飽和二重結合の含有量: 6. 7 mmol/g)、 1 , 6 キサンジ (メタ)アタリレート(重合性不飽和二重結合の含有量:
8. 8mmol/g)、ビスフエノール Aジグリシジルエーテルジ(メタ)アタリレート(重合性 不飽和二重結合の含有量: 3. 3mmol/g)、ジエチレングリコールジ(メタ)アタリレー ト(重合性不飽和二重結合の含有量: 9. 3mmol/g)、ヒドロキシビバリン酸ネオペン チルダリコールジ (メタ)アタリレート(重合性不飽和二重結合の含有量: 6. 4mmol/ g)、ネオペンチルダリコールジ (メタ)アタリレート(重合性不飽和二重結合の含有量:
9. 4mmol/g)、 1 , 4 ブタンジオールジ(メタ)アタリレート(重合性不飽和二重結 合の含有量: 10. lmmol/g)、トリシクロデカンジメタノール(メタ)アタリレート(重合 性不飽和二重結合の含有量: 6. 6mmol/g)、ポリエチレングリコールジ (メタ)アタリ レート (例としてエチレンオキサイド繰り返し単位数 = 9の場合、重合性不飽和二重結 合の含有量: 3. 8mmol/g、エチレンオキサイド繰り返し単位数 = 13の場合、重合 性不飽和二重結合の含有量: 2. 9mmol/g)、ポリプロピレングリコールジ (メタ)ァク リレート(例としてプロピレンオキサイド繰り返し単位数 = 7の場合、重合性不飽和二 重結合の含有量: 3. 8mmol/g)等のジ (メタ)アタリレート類;
[0064] トリメチロールプロパントリ(メタ)アタリレート(重合性不飽和二重結合の含有量: 10. lmmol/g)、ペンタエリスリトールトリ(メタ)アタリレート(重合性不飽和二重結合の含 有量: 10· lmmol/g) ,トリス(2—(メタ)アタリロイルォキシェチル)イソシァヌレート( 重合性不飽和二重結合の含有量: 5. 6mmol/g)、エチレンオキサイド変性トリメチ ロールプロパントリ(メタ)アタリレート(例として 1分子当たりのエチレンオキサイド数 =
3の場合、重合性不飽和二重結合の含有量: 7. Ommol/g)等のトリ(メタ)アタリレー ト類;
n数に応じて変動しますか?
[0065] ジトリメチロールプロパンテトラ (メタ)アタリレート(重合性不飽和二重結合の含有量:
8. 6mmol/g)、ペンタエリスリトールテトラ(メタ)アタリレート(重合性不飽和二重結 合の含有量: 11 · 4mmol/g)、ジペンタエリスリトールペンタ(メタ)アタリレート(重合 性不飽和二重結合の含有量: 9. 5mmol/g)、ジペンタエリスリトールへキサ(メタ) アタリレート(重合性不飽和二重結合の含有量: 10. 4mmol/g)、力プロラタトン変 性ジペンタエリスリトールへキサ (メタ)アタリレート(重合性不飽和二重結合の含有量 : 6. 5mmol/g)等のポリ(メタ)アタリレート類やアタリロイルモルフォリン(重合性不 飽和二重結合の含有量: 7. lmmol/g)等が挙げられる。
n数に応じて変動しますか?なし
[0066] また、化合物(B)として、トリレンジイソシァネート、イソホロンジイソシァネート、へキ サメチレンジイソシァネート、ジシクロへキシノレメタンジイソシァネート、ノノレボノレナンジ イソシァネート等のジイソシァネート化合物、さらにはこれらジイソシァネート化合物と ポリオールから得られるイソシァネートプレポリマー、さらにはこれらジイソシァネート 化合物から得られるヌレート体ゃビュレット体であるトリイソシァネート化合物と、 2—ヒ ドロキシェチル(メタ)アタリレート、 2—ヒドロキシプロピル(メタ)アタリレート、ペンタエ リスリトールトリ(メタ)アタリレート、ジペンタエリスリトールペンタ(メタ)アタリレート等の 水酸基を有する(メタ)アタリレートとの反応生成物であるウレタン (メタ)アタリレート等 や、多塩基酸とヒドロキシアルキル (メタ)アタリレートとのモノー、ジー、トリーまたはそ れ以上のポリエステル、あるいはビスフエノール A型エポキシアタリレート、ノポラック 型エポキシアタリレートの如き、重合性不飽和二重結合を有するオリゴマ一類もしくは プレボリマー類等が挙げられる。これらは重合性不飽和二重結合が 8. 6- 10. 5m mol/gとなれば単独種で使用してもよいし、 2種以上を併用しても良い。また、これら の重合性不飽和二重結合を有する化合物で、重合性不飽和二重結合の含有量が 8 . 6mmol/gよりも少ない化合物や 10. 5mmol/gよりも多く有する化合物でも他の 重合性不飽和二重結合を有する化合物と併用し、平均の重合性不飽和二重結合が 8. 6-10. 5mmol/g有するようにすれば使用することができる。
[0067] 前記化合物(B)は、それぞれ単独で用いても良いし、 2種以上を併用しても良い。
[0068] 本発明で用いる化合物(B)としては、耐摩耗性に優れた硬化塗膜が得られる活性 エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型塗料となることか ら、ジペンタエリスリトールへキサ(メタ)アタリレートが好ましぐ更にジペンタエリスリト ールへキサ (メタ)アタリレートとウレタン (メタ)アタリレートを含有する混合物がより好ま しい。この混合物の中でも重合性不飽和二重結合を 5. 5〜9. 5mmol/g有するゥ レタン (メタ)アタリレートを含有する混合物が好ましい。更に、この混合物の平均の重 合性不飽和二重結合の濃度が 9. 0-10. 2mmol/gであることが好ましい。
[0069] 本発明の活性エネルギー線硬化型水性樹脂組成物は前記アクリル樹脂 (A)と化 合物(B)とを、含有量の比〔(B) / (A)〕が重量換算で 1 · 5〜6となる範囲である必要 がある。含有量の比〔(B) / (A)〕が 1. 5より小さいと硬化塗膜の耐磨耗性と耐水性 が不足することから好ましくな!/、。含有量の比〔(B) / (A)〕が 6より大き!/、と貯蔵安定 性が不足することから好ましくない。含有量の比〔(B) / (A)〕は 1. 8〜4が好ましぐ 中でも 2〜3. 5が好ましい。
[0070] 本発明の活性エネルギー線硬化型水性樹脂組成物の製造方法は、特に限定され ないが、例えば以下の方法等が挙げられる。
[0071] (1)アクリル樹脂(a)中のカルボキシル基を中和してなる樹脂 (Α)と化合物(Β)を、 水混和性有機溶剤に溶解させて溶液とした後、水と混合して、水混和性有機溶剤を 含有する水性媒体中への樹脂 (Α)の溶解と樹脂 (Α)が溶解した水性媒体 (樹脂水 溶液)中に化合物 (Β)を分散させる方法。
[0072] (2)アクリル樹脂(a)中のカルボキシル基を中和してなる樹脂 (Α)と化合物(Β)を、 水混和性有機溶剤を含有する水性媒体と混合し、水性媒体中への樹脂 (Α)の溶解 と樹脂 (Α)が溶解した水性媒体 (樹脂水溶液)中に化合物 (Β)を分散させる方法。
[0073] (3)アクリル樹脂(a)と化合物(Β)を水混和性有機溶剤に溶解させて溶液とした後 、該溶液と塩基性化合物とを混合してアクリル樹脂(a)中のカルボキシル基の中和を 行レ、アクリル樹脂 (A)を得た後、該アクリル樹脂 (A)と重合性不飽和二重結合を有 する化合物 (B)を含有する水混和性有機溶剤溶液と水と混合して、水性媒体中への 樹脂 (A)の溶解とアクリル樹脂 (A)が溶解した水性媒体 (樹脂水溶液)中に化合物( B)を分散させる方法。
[0074] (4)アクリル樹脂(a)と化合物(Β)を水混和性有機溶剤に溶解させて溶液とした後 、該溶液と塩基性化合物を含有する水とを混合して、塩基性化合物によりアクリル樹 脂(a)中のカルボキシル基の中和を行い、水性媒体中への樹脂 (Α)の溶解と樹脂( Α)が溶解した水性媒体 (樹脂水溶液)中に化合物 (Β)を分散させる方法。
[0075] 前記に述べた方法の中でも、前記(1)や(3)の方法が簡便に活性エネルギー線硬 化型水性樹脂組成物が得られることから好ましい。なお、アクリル樹脂 ωやアタリノレ 樹脂 (Α)と化合物(Β)の水混和性有機溶剤への溶解は、同時に行う必要はなぐ例 えば、アクリル樹脂 ωやアクリル樹脂 (A)を水混和性有機溶剤に溶解した後、化合 物(Β)と混合して化合物(Β)を分散させる方法であっても良い。さらに、このようにし てアクリル樹脂 ω中のカルボキシル基を中和してなるアクリル樹脂 (A)を水中に溶 解させた樹脂溶液中に化合物 (Β)を分散してなる活性エネルギー線硬化型水性樹 脂組成物を得た後、必要に応じて水混和性有機溶剤の一部乃至全部を除去しても よいが、本発明の活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬 化型塗料は有機溶剤をあえて除去ぜすとも有機溶剤の含有量が従来のスプレー塗 装条件に比べ 1/10以下とすることができる。従って、作業環境を悪化させる、揮発 した有機溶剤による大気汚染が引き起こされる等の問題を極めて生じにくい。
[0076] 本発明の活性エネルギー線硬化型水性樹脂組成物には通常光(重合)開始剤を 含有させる。光(重合)開始剤としては、種々のものを使用できる。例えば、ァセトフエ ノン類、ベンゾフエノン誘導体、ミヒラーズケトン、ベンジン、ベンジル誘導体、ベンゾィ ン誘導体、ベンゾインメチルエーテル類、 α —ァシロキシムエステル、チォキサントン 類、アンスラキノン類およびそれらの各種誘導体などで、例えば 4ージメチルァミノ安 息香酸、 4ージメチルァミノ安息香酸エステル、アルコキシァセトフエノン、ベンジルジ メチルケタール、ベンゾフエノン、ベンゾィル安息香酸アルキル、ビス(4ージアルキル ァミノフエ二ノレ)ケトン、ベンジノレ、ベンゾイン、ベンゾインべンゾエート、ベンゾインァ ノレキルエーテル、 2—ヒドロキシー2—メチルプロピオフエノン、 1ーヒドロキシシクロへ キシルフェニルケトン、 4一(2 ヒドロキシエトキシ)フエ二ルー 2 ヒドロキシー2 プ 口ピルケトン、 2—ヒドロキシー 2—メチルー 1 フエ二ループロパン 1 オン、チォ キサントン、 2, 4, 6 トリメチルベンゾィルジフエノィルフォスフィンォキシド、 2 メチ ノレ一 1— [4— (メチルチオ)フエ二ル]— 2—モルホリノプロパン一 1—オン、 2—ベン ジルー 2 ジメチルアミノー 1一(4 モルホリノフエニル)ーブタノン 1 オン等が挙 げられる。これらは単独で使用してもよいし、は 2種以上を併用して用いてもよい。尚 、光 (重合)開始剤は通常油性だが、開始剤も水中で安定的に分散した状態となる。
[0077] 光(重合)開始剤は、本発明の活性エネルギー線硬化型水性樹脂組成物の固形分 に対して、 0. 05〜20重量%、好ましくは、 0. 5〜; 10重量%の範囲内で添加される。
[0078] また、光(重合)開始剤加えて種々の光増感剤をも併用することができる。光増感剤 としては、例えば、アミン類、尿素類、含硫黄化合物、含燐化合物、含塩素化合物ま たは二トリル類もしくはその他の含窒素化合物などが挙げられる。
[0079] 本発明の活性エネルギー線硬化型水性樹脂組成物はアクリル樹脂 (A)を水中に 溶解させた樹脂溶液中に化合物(B)を分散してなる活性エネルギー線硬化型水性 樹脂組成物であり、該アクリル樹脂 (A)と該化合物 (B)との含有量の比〔 (B) / (A)〕 が重量換算で 1. 5〜6であれば良ぐアクリル樹脂 (A)の一部が水に溶解した状態と なって!/、ても良レ、し、化合物(B)の一部が水に溶解した状態となって!/、ても良!/、。
[0080] 本発明の活性エネルギー線硬化型水性樹脂組成物は必要に応じて本発明の硬化 を損なわない範囲で乳化剤を使用してもよい。乳化剤を使用することによりアクリル樹 脂 (A)と化合物(B)の水中での分散安定性を向上させることができる。
[0081] 前記乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシェ チレンアルキルフエニルエーテルなどのノニオン系乳化剤、アルキル硫酸エステル塩 、アルキルベンゼンスルホン酸塩、ポリオキシエチレンアルキルエーテル硫酸エステ ル塩などのァニオン系乳化剤、 4級アンモニゥム塩等のカチオン系乳化剤などが挙 げられる。乳化剤を使用する際は硬化塗膜の耐水性を低下させないためにも、でき るだけ少量が好ましぐ使用しないのがより好ましい。
[0082] 前記本発明の活性エネルギー線硬化型水性樹脂組成物の製造でアクリル樹脂(a )、アクリル樹脂 (A)、化合物 (B)を水混和性有機溶剤等に溶解、分散させる機械的 手段としては種々の手段を用いることができる。例えば、例えば撹拌翼にタービン翼 、マックスブレンド翼、 Hi— Fミキサー等を用いて混合溶解および/または分散させる 方法や、ホモジナイザー、ソノレーター、デイスパー、ミキサー等により混合溶解およ び/または分散させる方法が用いられる。
[0083] 本発明の活性エネルギー線硬化型塗料は本発明の活性エネルギー線硬化型樹 脂組成物を含有する。本発明の活性エネルギー線硬化型塗料は、例えば、本発明 の活性エネルギー線硬化型樹脂組成物と、光開始剤と、必要に応じてレべリング剤、 消泡剤、レオロジーコントロール剤等を混合する事により得られる。
[0084] 前記レべリング剤としては、例えば、ポリエーテル変性ポリジメチルシロキサン、ァク リロイル基を有するポリエーテル変性ポリジメチルシロキサン等のシリコン系レべリング 剤、アクリル系レべリング剤等が挙げられる。前記消泡剤としては、例えば、シリコン系 消泡剤、ミネラルオイル系消泡剤、ポリマー系消泡剤等が挙げられる。前記レオロジ 一コントロール剤としては、例えば、アルカリ膨潤型レオロジーコントロール剤、アル力 リ膨潤会合型レオロジーコントロール剤、ウレタン会合型レオロジーコントロール剤等 が挙げられる。これらは必要に応じて適宜選択して用いることができる。
[0085] 更に、本発明の活性エネルギー線硬化型塗料には必要に応じて前記重合性不飽 和二重結合を有する化合物の乳化物や、ウレタン樹脂やエポキシ樹脂等の乳化物 や自己乳化物もしくは水溶性樹脂等も配合することができる。
[0086] 本発明の硬化塗膜の形成方法は本発明の活性エネルギー線硬化型塗料を基材 に塗布した後、活性エネルギー線を照射して塗布した活性エネルギー線硬化型塗 料を硬化させることを特徴とする。塗布は、例えば、グラビアコート法、ロールコート法 、スプレーコート法、リップコート法、コンマコート法、スピンコート法、デイツビング法な どのコート法、グラビア印刷法、スクリーン印刷法などの印刷法等により行う事ができ る。基材としては、例えば、プラスチック、金属もしくは金属蒸着面、ガラス、木材、紙 等が挙げられる。
[0087] 前記プラスチックとしては、例えば、アクリルーブチレン一スチレン共重合体 (ABS) 、ポリカーボネート(PC)、ポリメチルメタタリレート(PMMA)、ポリエチレンテレフタレ ート(PET)、ポリブチレンテレフタレート(PBT)、セノレローストリアセテート(TAC)等 もしくはこれらの複合体等力 S挙げられる。前記金属としては、例えば、アルミ、ステンレ ス、錫、ブリキ等が挙げられる。
[0088] 前記これらの基材は予め本発明の活性エネルギー線硬化型塗料を塗布した後、活 性エネルギー線を照射して塗布した活性エネルギー線硬化型塗料を硬化させた硬 化塗膜を有する基材であってもよ!/、し、予め本発明の活性エネルギー線硬化型塗料 以外の塗料を塗布し、必要に応じて乾燥させた後、硬化させた硬化塗膜を有する基 材であってもよいし、
[0089] また、基材は種々の形状を有していても良い。例えば、厚みのある形状やシート状 、フィルム状であってもよい。更に基材表面に凹凸等の意匠が施されていても良い。
[0090] 本発明の硬化塗膜の形成方法は、例えば、以下の工程からなる形成方法等が挙 げられる。まず、本発明の活性エネルギー線硬化型塗料を基材に塗布する。その後 、予備乾燥させる。予備乾燥は、例えば、塗布後の基材を 50〜100°Cの環境下に 1 〜30分静置する事により行われる。その後、活性エネルギー線を照射する。例えば、 基材がプラスチックの場合、予備乾燥は 70°C5分程度である。
[0091] 活性エネルギー線としては、例えば、電子線、紫外線、ガンマ線などを挙げることが できる。活性エネルギー線の照射条件は、用いる活性エネルギー線硬化型塗料の組 成に応じて定められる力 通常積算光量が 50〜5000mj/cm2となるように照射する のが好ましぐ積算光量が 200〜3000mj/cm2となるように照射するのがより好まし い。
[0092] 本発明の硬化塗膜の形成方法により住宅の床の補修を行うには、例えば、本発明 の活性エネルギー線硬化型塗料を床に塗布して扇風機で乾燥した後、ハンディータ イブの紫外線照射機を用いて紫外線を照射し、塗膜を硬化させればょレ、。
[0093] 本発明の活性エネルギー線硬化型水性樹脂組成物や活性エネルギー線硬化型 塗料にはスプレー塗装などの塗工性能に応じて水混和性有機溶剤を適宜含ませて も良い。また、本発明の活性エネルギー線硬化型水性樹脂組成物や活性エネルギ 一線硬化型塗料中のアクリル樹脂 (A)と化合物 (B)との合計の固形分含有率として は、粘度が適当でコーティング剤としての取扱いが容易なことから、 10〜70重量% であること力 S好ましく、 20〜50重量%であることがより好ましい。
本発明の活性エネルギー線硬化型塗料の硬化塗膜が配置してなる物品は、耐摩 耗性、耐水性に優れる硬化塗膜を有する。この硬化塗膜は物品の表面に配置してい ても良いし、基礎塗装 (ベースコート)や中塗り塗装として物品上に配置していても良 い。基礎塗装 (ベースコート)や中塗り塗装として物品上に配置していても、表面の硬 化塗膜の耐擦傷性や耐水性を補い、物品の寿命を延ばすことができる。また、ベー スコートを基材上に形成しておくことでは次の工程までに発生する基材の傷つきを防 止することあでさる。
実施例
[0095] 以下に、合成例、実施例および比較例を示して本発明を具体的に説明する。各例 中の部おょび%は断りの無い限り重量基準である。
[0096] 合成例 1〔アクリル樹脂 (A)の合成〕
還流冷却器、撹拌機および窒素導入管を具備した 1リットルの反応容器に、プロピ レンダリコールモノプロピルエーテル 280gを仕込んで撹拌を開始し、 120°Cまで昇 温した。ここに窒素気流下で、メチルメタアタリレート 434g、ブチルメタアタリレート 21 g、アタリノレ酸 84g、ヒドロキシェチノレメタアタリレート 105g、ァロニックス M— 5300〔東 亜合成株式会社製、 ω—カルボキシポリ力プロラタトンアタリレート〕 35. Ogからなる 単量体混合物と、 tert ブチルパーォキシ 2 ェチルへキサノエート 12· 6gをプ ロピレンダリコールモノプロピルエーテル 20gで溶解した開始剤溶液とを 4時間かけ て併行添加した。同温度で更に重合反応を続け 8時間後に反応を終了しアクリル樹 脂(a— 1)の溶液を得た。該アクリル樹脂(a— 1)の樹脂固形分の酸価は 102mgKO H/g、水酸基価は 64mgKOH/g、数平均分子量は 15, 000、重量平均分子量は 45, 000、ガラス転移温度は 72°Cであった。次いで、この溶液にトリェチルァミン 38 . 9g、 25%アンモニア水 61. lgを加えて中和を行い、プロピレングリコールモノプロ ピルエーテルで調整を行レ、アクリル樹脂 (A— 1)の溶液を得た。このアクリル樹脂 (A 1)の溶液の不揮発分は 70%、中和されたカルボキシル基の量は 1. 83mmol/g であったアクリル樹脂 (A— 1)の特性値をアクリル樹脂(a— 1)の物性値とともに第 1 表に併せて示す。 [0097] 合成例 2〜9 (同上)
合成例 1の方法に従い、表 1に示した単量体混合物及び重合開始剤の使用量にて アクリル樹脂 (A— 2)の溶液及びアクリル樹脂 (A— 9)の溶液を得た。アクリル樹脂( A— 2)及びアクリル樹脂 (A— 9)の特性値を、アクリル樹脂(a— 1)〜アクリル樹脂(a 9)の物性値とともに第 1表及び第 2表に併せて示す。
[0098] 合成例 10〜 15〔比較対照用アクリル樹脂(a)の合成〕
合成例 1の方法に従い、表 1に示した単量体混合物及び重合開始剤の使用量にて 比較対照用アクリル樹脂 (Α'— 1)の溶液〜比較対照用アクリル樹脂 (Α'— 1)の溶 液を得た。アクリル樹脂(a'— 1)及びアクリル樹脂(a'— 6)の特性値を第 3表に併せ
[0099] 合成例 16〔化合物(B)の合成〕
撹拌機を具備した 1リットルの反応容器に、へキサメチレンジイソシァネート 104g、 メトキノン 0. 2g、ジブチル錫ジラウリレート 0. 2gを仕込み撹拌を開始し 60°Cに昇温 した。同温度で、ァロニックス M305 (東亜合成株式会社製、ペンタエリスリトールトリ アタリレート/ペンタエリスリトールテトラアタリレート、水酸基価 110mgKOH/g) 64 5gを 10回に分けて 10分毎に仕込んだ。更に 10時間反応を継続して赤外線スぺタト ルで ZZSOcnT1のイソシァネート基の吸収が消失したことを確認して反応を終了しゥ レタンアタリレート(重合性不飽和二重結合の含有量: 7. 8mmol/g)とペンタエリス リトールテトラアタリレートの混合物である化合物(BB— 1)を得た。化合物(BB— 1) の重合性不飽和二重結合の濃度は 9. Ommol/gであった。
[0100] 合成例 17 (同上)
撹拌機を具備した 1リットルの反応容器に、イソホロンジイソシァネート 128g、メトキ ノン 0· 2g、ジブチル錫ジラウリレート 0· 2gを仕込み撹拌を開始し 60°Cに昇温した。 同温度で、ァロニックス M305 621gを 10回に分けて 10分毎に仕込んだ。更に 10 時間反応を継続して赤外線スペクトルで ZZSOcnT1のイソシァネート基の吸収が消 失したことを確認して反応を終了しウレタンアタリレート(重合性不飽和二重結合の含 有量: 7· 3mmol/g)とペンタエリスリトールテトラアタリレートの混合物である化合物 (BB— 2)を得た。化合物(BB— 2)の重合性不飽和二重結合の濃度は 8. 6mmol/ gであった。
[0101] 合成例 18〔化合物 (B)の合成〕
撹拌機を具備した 1リットルの反応容器に、ノレミキユア DPA600 (大日本インキ化学 工業株式会社製、ジペンタエリスリトールペンタアタリレート/ジペンタエリスリトール へキサアタリレート、水酸基価 50mgKOH/g) 250g、ノレミキユア DTA400 (大日本 インキ化学工業株式会社製のジトリメチロールプロパンテトラアタリレート) 50g及び化 合物(BB l) 200gを仕込み、 40°Cで攪拌を行い化合物(B— 1)を得た。化合物(B 1)の重合性不飽和二重結合の濃度は 9. 5mmol/gであった。
[0102] 合成例 19 (同上)
撹拌機を具備した 1リットルの反応容器に、ルミキュア DPA600 450g及び化合物 (BB l) 50gを仕込み、 40°Cで攪拌を行い化合物(B— 2)を得た。化合物(B— 2) の重合性不飽和二重結合の濃度は 10. Ommol/gであつた。
[0103] 合成例 20 (同上)
撹拌機を具備した 1リットルの反応容器に、ノレミキユア DPA600 150g、ァロニック ス M350 (東亜合成株式会社製のエチレンオキサイド変性トリメチロールプロパントリ アタリレート) 75g及び化合物(BB— 2) 275gを仕込み、 40°Cで攪拌を行い化合物( B— 3)を得た。化合物(B— 3)の重合性不飽和二重結合の濃度は 8. 8mmol/gで あった。
[0104] 合成例 21 (同上)
撹拌機を具備した 1リットルの反応容器に、ノレミキユア DPA620 (大日本インキ化学 工業製、ジペンタエリスリトールペンタアタリレート/ジペンタエリスリトールへキサァク ジレー卜、水酸基価 25mgKOH/g) 225g、ァ ユックス M305 250g及びィ匕合物 ( BB l) 25gを仕込み、 40°Cで攪拌を行い化合物(B— 4)を得た。化合物(B— 4)の 重合性不飽和二重結合の濃度は 10. 4mmol/gであつた。
[0105] 合成例 22〔比較対照用化合物 (B)の合成〕
撹拌機を具備した 1リットルの反応容器に、ノレミキユア DPA600 75g、ァロニック ス M309 150g、化合物(BB— 2) 275gを仕込み、 40°Cで攪拌を行い化合物(b— 1)を得た。化合物(b— 1)の重合性不飽和二重結合の濃度は 8. 4mmol/gであつ た。
[0106] 合成例 23 (同上)
撹拌機を具備した 1リットルの反応容器に、ノレミキユア DPA620 75g及びァロニ ックス M305 425gを仕込み、 40°Cで攪拌を行い化合物(b 2)を得た。化合物(b 2)の重合性不飽和重結合の濃度は 10. 6mmol/gであった。
[0107] 実施例 1
撹拌機を具備した 1リットルの反応容器に合成例 1で得られたアクリル樹脂 (A—1) の溶液 97部、合成例 8で得られたウレタンアタリレート(B— 1) 147gを仕込んで撹拌 を開始し 70°Cに昇温して攪拌混合した。次!/、で 40°Cにて攪拌を行!/、ながらイオン交 換水 340gを 10回に分割して投入した。次にィルガキュア 500 (チバスぺシャリティケ ミカルズ製の光重合開始剤) 10. 5g、シリコーン系レべリング剤(BYK製、 BYK— 33 3) 2. lg添加混合し、イオン交換水で調整を行い不揮発分 35%、 PH7. 8の活性ェ ネルギ一線硬化型水性樹脂組成物 1を調整した。活性エネルギー線硬化型水性樹 脂組成物 1中の平均粒子径は 320nmであった。
[0108] なお、活性エネルギー線硬化型水性樹脂組成物 1中の平均粒子径は、 MICROT RAC社製 NANOTRAC 150を用いて測定した(以下同様)。
[0109] 活性エネルギー線硬化型水性樹脂組成物 1中の PHは、株式会社堀場製作所製 P Hメーター D— 51、電極型式 9621Cを用いて測定した(以下同様)。
[0110] 得られた活性エネルギー線硬化型水性樹脂組成物 1の貯蔵安定性と、硬化塗膜の 外観評価、耐摩耗性、鉛筆硬度、基材への付着性及び耐温水性を評価した。硬化 塗膜の作成方法と各試験の評価方法を下記に示す。
[0111] 硬化塗膜 (試験塗装板)の作成方法。
PMMA (ポリメチルメタアタリレート)板上に乾燥後膜厚が 10 mになるようにスプ レー塗装を行い、乾燥機中で 70°C10分間の予備乾燥後に 80W/cmの高圧水銀 ランプを用いて 1000mj/cm2の紫外線照射を行い、試験塗装板を作製した。なお 付着性試験、耐温水付着性試験、耐水性試験は、更に、 ABS (アクリルーブチレン 一スチレン共重合体)及び PC (ポリカーボネート)を基材とした試験塗装板も作成し、 これらを用いた試験も行った。 [0112] 貯蔵安定性試験: 200mlのガラス容器に密封した活性エネルギー線硬化型水性 樹脂組成物 1を 40°Cで静置して、外観評価を目視により判定した。
◎: 2ヶ月間以上分離沈降なし
〇: 1ヶ月間以上分離沈降なし
△: 1週間〜 1ヶ月未満で分離沈降
X : l週間未満に分離沈降
[0113] 外観評価:試験塗装板の外観を目視評価した。
◎:平滑でハジキも見られなレ、
〇:平滑だが、ハジキがわずかに確認できる
△:わずかに凹凸がみられる
X:大きな凹凸がみられる
[0114] 耐摩耗性試験: JIS— K5600— 5— 10に準じて試験塗装板の塗装面を # 0000の スチールウールに lKgの荷重をかけて 50回往復摩擦した後に、試験部の^ ^一ズ値 を測定することにより判定した。なお、ヘーズ値の測定にはスガ試験機株式会社製 D IGITAL HAZE COMPUTERを用いた。
◎ : 3. 5未満
0 : 3. 5以上〜 5. 0未満
△ : 5. 0以上〜 15. 0未満
X : 15. 0以上
[0115] 鉛筆硬度試験:試験塗装板の塗装面を JIS - S - 6006に規定された高級鉛筆を 用い、 JIS—K— 5400に準じて傷がつかな!/、硬さを調べた。
[0116] 付着性試験: JIS— K5600— 5— 6に準じて、試験塗装板(基材に PMMA、 ABS 及び PCを用いた試験塗装板)の塗装面に lmm幅で碁盤目の切り込みを行い 100 個のマスをつくり、セロハンテープを用いて剥離試験を行い残存した碁盤目の数で 判定を行った。
◎:全ての試験塗装板で 100個
〇:全ての試験塗装板で 80個以上で、且つ、一つまたは二つの試験塗装板で 1 00個 Δ:全ての試験塗装板で 80〜99個
X:いずれかの試験塗装板で 79個以下
[0117] 耐温水付着性:試験塗装板(基材に PMMA、 ABS及び PCを用いた試験塗装板) を 70°Cの温水中に 5時間浸漬した後に、前記付着性試験を行った。
◎:全ての試験塗装板で 100個
〇:全ての試験塗装板で 80個以上で、且つ、一つまたは二つの試験塗装板で 1 00個
△:全ての試験塗装板で 80〜99個
X:いずれかの試験塗装板で 79個以下
[0118] 耐水性試験:試験塗装板(基材に PMMA、 ABS及び PCを用いた試験塗装板)を 40°Cの温水中に 24時間浸漬した後に、塗装面の白化状態を目視で判定した。
◎:全ての試験塗装板で 72時間後に変化なし
〇:全ての試験塗装板で 24時間後は変化ないが、少なくとも一つの試験塗装板 で 72時間後に部分的に白化又はふくれがみられる
△:全ての試験塗装板で 24時間後に部分的に白化又はふくれがみられる X:全ての試験塗装板で 24時間後に全面に白化又はふくれがみられる [0119] 実施例 2〜4、比較例;!〜 10
実施例 1の方法に従!/ \第 2表に示した原料組成にて活性エネルギー線硬化型水 性樹脂組成物 2〜 10及び比較対照用活性エネルギー線硬化型水性樹脂組成物 1 ' 〜10 'を得た。実施例 1と同様にして各試験を行い、その評価結果を第 8表〜第 11 kに小 。
[0120] [表 1] 第 1 表
Figure imgf000030_0001
2] 第 2 表
Figure imgf000031_0001
3] 第 3 表
Figure imgf000032_0001
第 1表の脚注
MMA:メチルメタアタリレート BMA:ブチルメタアタリレート EA:ェチルアタリレート BA :ブチルアタリレート
2EHA: 2—ェチルへキシルアタリレート
AA:アクリル酸
MAA:メタアクリル酸
HEA:ヒドロキシェチルアタリレート
HEMA:ヒドロキシェチルメタアタリレート
M— 5300 :ァロニックス M— 5300〔東亜合成株式会社製、 ω—カルボキシポリ力 プロラタトンアタリレート〕
FM— 1:プラクセル FM— 1〔ダイセル化学工業(株)製、ヒドロキシェチルメタクリレ 一トのカプロラタトン lmol付加物〕
[0124] [表 4]
第 4 表
Figure imgf000033_0001
[0125] [表 5] 第 5 表
Figure imgf000034_0001
表 6]
第 6 表
Figure imgf000035_0001
[0127] [表 7]
第 7
Figure imgf000035_0002
[0128] 第 4表〜第 7表の脚注
ィルガキュア 500:チバスぺシャリティケミカノレズ製の光重合開始剤 シリコーン系レべリング剤: BYK製、 BYK— 333
[0129] [表 8] 第 8 表
Figure imgf000036_0001
[0130] [表 9]
第 9 表
Figure imgf000036_0002
[0131] [表 10] 第 1 0 表
Figure imgf000036_0003
[0132] [表 11] 第 1 1 表
比較例
6 7 8 9 10 組成物 6 ' 7 ' 8 ' 9' 10' 貯蔵安定性試験 ◎ © © ◎ X 外観評価 ◎ © 〇 ◎ 耐摩耗性試験 ◎ X © X © 鉛筆硬度試験 5H 3H 5H 3H 5H 付着性試験 ◎ 〇 Δ ◎ Δ 耐温水付着性試験 Δ 〇 Δ Δ Δ 耐水性試験 △ O △ △ △

Claims

請求の範囲
下記一般式(1 )で表されるラジカル重合性単量体を樹脂形成分の重量を基準として 2〜; 1 5重量%用い、メチルメタアタリレートを樹脂形成分の重量を基準として 55〜70 重量%用いて得られ、且つ、 1. 3〜2. 7mmol/gの中和されたカルボキシル基を含 有するアクリル樹脂 (A)を水中に溶解させた樹脂溶液または該アクリル樹脂 (A)を水 中に分散させた樹脂分散液中に、重合性不飽和二重結合を 8. 6〜10. 5mmol/g 有する化合物(B)を分散してなる活性エネルギー線硬化型水性樹脂組成物であり、 該アクリル樹脂 (A)と該化合物 (B)との含有量の比〔 (B) / (A)〕が重量換算で 1 · 5 〜6であることを特徴とする活性エネルギー線硬化型水性樹脂組成物。
Figure imgf000038_0001
(R1は水素原子またはメチル基であり、 R2は炭素原子数 2〜8のアルキレン基であり 、 nは;!〜 10の整数である。 )
[2] 前記一般式(1 )で表されるラジカル重合性単量体が ε カルボキシポリ力プロラタ トン (メタ)アタリレートである請求項 1記載の活性エネルギー線硬化型水性樹脂組成 物。
[3] 前記アクリル樹脂 (Α)が ε—カルボキシポリ力プロラ外ン (メタ)アタリレートを樹脂形 成分の重量を基準として 3. 0- 10. 0重量%用いて得られ、メチルメタアタリレートを 樹脂形成分の重量を基準として 55〜65重量%用いて得られ、且つ、 1. 6〜2. 2m mol/gの中和されたカルボキシル基を含有するアクリル樹脂である請求項 2記載の 活性エネルギー線硬化型水性樹脂組成物。
[4] 前記アクリル樹脂 (A)が更に炭素原子数 2〜8のアルキル基を含有するアクリル樹脂 である請求項 1記載の活性エネルギー線硬化型水性樹脂組成物。
[5] 前記アクリル樹脂 (A)が水酸基価 15〜100mgKOH/gのアクリル樹脂である請求 項 1記載の活性エネルギー線硬化型水性樹脂組成物。
[6] 前記アクリル樹脂 (A)が ε—カルボキシポリ力プロラ外ン (メタ)アタリレートを樹脂形 成分の重量を基準として 3〜; 10重量%、メチルメタアタリレートを樹脂形成分の重量 を基準として 55〜65重量%、ヒドロキシェチル (メタ)アタリレートを樹脂形成分の重 量を基準として 3〜20重量%、プチル (メタ)アタリレートを樹脂形成分の重量を基準 として;!〜 25重量%およびアクリル酸を樹脂形成分の重量を基準として 10〜; 15重量 %用いて得られるものである請求項 1記載の活性エネルギー線硬化型水性樹脂組 成物。
[7] 前記アクリル樹脂 (A)が重合性不飽和二重結合を含有しな!/、アクリル樹脂である請 求項 1記載の活性エネルギー線硬化型水性樹脂組成物。
[8] 前記アクリル樹脂 (A)が数平均分子量が 5, 000〜30, 000で、重量平均分子量が
10, 000—100, 000で、酸価 75〜; 150mgKOH/gのカノレポキシノレ基含有アタリ ル樹脂を中和して得られるアクリル樹脂である請求項 1記載の活性エネルギー線硬 化型水性樹脂組成物。
[9] 前記アクリル樹脂(A)が中和されたカルボキシル基を 1 · 5〜2· 2mmol/g含有する 樹脂である請求項 1記載の活性エネルギー線硬化型水性樹脂組成物。
[10] 前記化合物(B)が重合性不飽和二重結合を 9. 0- 10. 2mmol/g有する化合物で ある請求項 1記載の活性エネルギー線硬化型水性樹脂組成物。
[11] 重合性不飽和二重結合を 9· 0- 10. 2mmol/g有する化合物がジペンタエリスリト ールへキサアタリレートとジペンタエリスリトールペンタアタリレートの混合物である請 求項 9記載の活性エネルギー線硬化型水性樹脂組成物。
[12] 前記化合物(B)が更に、重合性不飽和二重結合を 5. 5〜9. 5mmol/g有するウレ タン (メタ)アタリレートを含有する混合物で、該混合物の平均の重合性不飽和二重結 合の濃度が 9. 0- 10. 2mmol/gである請求項 11記載の活性エネルギー線硬化 型水性樹脂組成物。
[13] 前記ウレタン (メタ)アタリレートがジイソシァネート化合物とペンタエリスリトールトリ(メ タ)アタリレートとの反応生成物であるウレタン (メタ)アタリレートである請求項 12記載 の活性エネルギー線硬化型水性樹脂組成物。
[14] 前記アクリル樹脂 (A)と化合物 (B)との含有量の比〔 (B) / (A)〕が 2〜3· 5である請 求項 1記載の活性エネルギー線硬化型水性樹脂組成物。
[15] 請求項 1〜; 14のいずれ力、 1項記載の活性エネルギー線硬化型水性樹脂組成物を含 有することを特徴とする活性エネルギー線硬化型塗料。
[16] 請求項 15記載の活性エネルギー線硬化型塗料を基材に塗布した後、活性エネルギ 一線を照射して塗布した活性エネルギー線硬化型塗料を硬化させることを特徴とす る硬化塗膜の形成方法
[17] 請求項 15記載の活性エネルギー線硬化型塗料の硬化塗膜が配置してなることを特 徴とする物品。
PCT/JP2007/071110 2006-11-09 2007-10-30 Composition de résine à base aqueuse durcissable par un rayonnement d'énergie actinique, matière de revêtement durcissable par rayonnement d'énergie actinique, procédé de formation d'un film de revêtement durci et article correspondant WO2008056569A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE602007010820T DE602007010820D1 (de) 2006-11-09 2007-10-30 Mit aktiver strahlung härtbare wasserbasierte harzzusammensetzung, mit aktiver strahlung härtbare beschichtungsmasse, verfahren zur bildung eines gehärteten beschichtungsfilms und gegenstand
US12/514,140 US20100010162A1 (en) 2006-11-09 2007-10-30 Active energy-ray-curable water- based resin composition, active energy-ray-curable coating material, method of forming cured coating film, and article
EP07830844A EP2090594B1 (en) 2006-11-09 2007-10-30 Active-energy-ray-curable water-based resin composition, active-energy-ray-curable coating material, method of forming cured coating film, and article
CN200780041680XA CN101535347B (zh) 2006-11-09 2007-10-30 活性能量射线固化型水性树脂组合物、活性能量射线固化型涂料、固化涂膜的形成方法及物品
AT07830844T ATE489406T1 (de) 2006-11-09 2007-10-30 Mit aktiver strahlung härtbare wasserbasierte harzzusammensetzung, mit aktiver strahlung härtbare beschichtungsmasse, verfahren zur bildung eines gehärteten beschichtungsfilms und gegenstand
KR1020097006173A KR101432689B1 (ko) 2006-11-09 2007-10-30 활성 에너지선 경화형 수성 수지 조성물, 활성 에너지선 경화형 도료, 경화 도막의 형성 방법 및 물품
JP2008521068A JP4229214B2 (ja) 2006-11-09 2007-10-30 活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型塗料、硬化塗膜の形成方法及び物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-303891 2006-11-09
JP2006303891 2006-11-09

Publications (1)

Publication Number Publication Date
WO2008056569A1 true WO2008056569A1 (fr) 2008-05-15

Family

ID=39364389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071110 WO2008056569A1 (fr) 2006-11-09 2007-10-30 Composition de résine à base aqueuse durcissable par un rayonnement d'énergie actinique, matière de revêtement durcissable par rayonnement d'énergie actinique, procédé de formation d'un film de revêtement durci et article correspondant

Country Status (9)

Country Link
US (1) US20100010162A1 (ja)
EP (1) EP2090594B1 (ja)
JP (1) JP4229214B2 (ja)
KR (1) KR101432689B1 (ja)
CN (1) CN101535347B (ja)
AT (1) ATE489406T1 (ja)
DE (1) DE602007010820D1 (ja)
TW (1) TWI454491B (ja)
WO (1) WO2008056569A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082287A (ja) * 2010-10-08 2012-04-26 Aica Kogyo Co Ltd 樹脂組成物および成型物
WO2013108707A1 (ja) 2012-01-17 2013-07-25 Dic株式会社 活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型水性塗料、及び該塗料で塗装された物品
JP2014529639A (ja) * 2011-08-09 2014-11-13 オルネクス ベルギウム ソシエテ アノニム 水性放射線硬化性コーティング組成物
JP2020019827A (ja) * 2018-07-30 2020-02-06 荒川化学工業株式会社 アンダーコート剤及びフィルム
WO2021182021A1 (ja) * 2020-03-10 2021-09-16 三菱ケミカル株式会社 活性エネルギー線硬化性樹脂組成物及びその硬化物
CN115197596A (zh) * 2021-09-14 2022-10-18 广东硕成科技股份有限公司 一种高平整性的载板用硬化薄膜及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133760A1 (ja) * 2008-04-30 2009-11-05 Dic株式会社 活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型塗料、硬化塗膜の形成方法及び物品
KR101802215B1 (ko) * 2010-03-31 2017-11-28 디아이씨 가부시끼가이샤 활성 에너지선 경화형 수지 조성물, 그 경화물 및 필름
JP5035652B2 (ja) * 2010-12-22 2012-09-26 Dic株式会社 分散体の製造方法、分散体、塗料、塗膜、及びフィルム
CN103497669B (zh) * 2013-09-23 2015-02-25 迪爱生合成树脂(中山)有限公司 活性能量射线固化型水性树脂组合物
JP5676734B1 (ja) * 2013-12-27 2015-02-25 株式会社Dnpファインケミカル インクジェット記録用インク組成物、インクジェット記録方法、及び印刷物の製造方法
JPWO2016002335A1 (ja) * 2014-07-02 2017-04-27 横浜ゴム株式会社 反応性ホットメルト接着剤組成物
CN104130613A (zh) * 2014-07-30 2014-11-05 苏州聚康新材料科技有限公司 一种塑料板用高附着力涂料及其制备方法
US10259010B2 (en) 2014-08-29 2019-04-16 Carmax Business Services, Llc Devices, systems, and methods for curing a coating
AU2016328952B2 (en) * 2015-09-25 2020-09-03 Teijin Limited Polymer substrate with hardcoat layer, and manufacturing method for same
CN107960085B (zh) * 2016-03-31 2019-03-26 哈利玛化成株式会社 金属微粒分散液和固化膜
KR101953367B1 (ko) * 2017-12-07 2019-05-24 삼성디스플레이 주식회사 광경화성 수지 조성물 및 이를 이용한 윈도우 부재의 제조 방법
JP7106324B2 (ja) * 2018-03-30 2022-07-26 ダイセル・オルネクス株式会社 硬化性樹脂組成物
JP7403463B2 (ja) * 2018-09-27 2023-12-22 株式会社カネカ 硬化性エポキシ樹脂組成物、及びそれを用いた積層体
KR102141297B1 (ko) * 2019-02-19 2020-08-04 김형필 다종 기재의 다층막 코팅 방법 및 이에 의하여 얻어진 유리 코팅체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311398A (ja) * 1995-05-24 1996-11-26 Nippon Oil & Fats Co Ltd 塗料組成物
JPH09302266A (ja) 1996-05-13 1997-11-25 Toyo Ink Mfg Co Ltd 水性感光性コーティング組成物
JP2004010779A (ja) 2002-06-07 2004-01-15 Nippon Paint Co Ltd 紫外線硬化型水性塗料組成物
JP2004331865A (ja) * 2003-05-09 2004-11-25 Dainippon Ink & Chem Inc 水溶性樹脂組成物
JP2004339310A (ja) * 2003-05-14 2004-12-02 Dainippon Ink & Chem Inc 熱硬化性缶用水性コーティング剤および該コーティング剤が塗装された金属缶

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3150118A (en) * 1960-10-12 1964-09-22 Rohm & Haas Novel monomers, polymers, lacquers, and coated articles
JPS6056727B2 (ja) * 1976-01-16 1985-12-11 三菱レイヨン株式会社 熱硬化性粉末状アクリル樹脂およびその製造方法
DE3914411A1 (de) * 1989-04-29 1990-11-15 Basf Lacke & Farben Fluessige, strahlenhaertbare ueberzugsmasse fuer die beschichtung von glasoberflaechen
US6620857B2 (en) * 1996-07-02 2003-09-16 Ciba Specialty Chemicals Corporation Process for curing a polymerizable composition
JP3679976B2 (ja) * 2000-05-31 2005-08-03 株式会社巴川製紙所 ディスプレイ用貼着フィルム
JP2003119207A (ja) * 2001-10-11 2003-04-23 Jsr Corp 光硬化性組成物、その硬化物、及び積層体
KR100579007B1 (ko) * 2003-08-13 2006-05-12 주식회사 루밴틱스 대전 방지 특성을 가진 광섬유 코팅용 광경화형 고분자수지 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311398A (ja) * 1995-05-24 1996-11-26 Nippon Oil & Fats Co Ltd 塗料組成物
JPH09302266A (ja) 1996-05-13 1997-11-25 Toyo Ink Mfg Co Ltd 水性感光性コーティング組成物
JP2004010779A (ja) 2002-06-07 2004-01-15 Nippon Paint Co Ltd 紫外線硬化型水性塗料組成物
JP2004331865A (ja) * 2003-05-09 2004-11-25 Dainippon Ink & Chem Inc 水溶性樹脂組成物
JP2004339310A (ja) * 2003-05-14 2004-12-02 Dainippon Ink & Chem Inc 熱硬化性缶用水性コーティング剤および該コーティング剤が塗装された金属缶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. BRANDRUP; E. H. IMMERGUT; E. A. GRULKE: "Polymer Handbook", WILEY INTERSCIENCE

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082287A (ja) * 2010-10-08 2012-04-26 Aica Kogyo Co Ltd 樹脂組成物および成型物
JP2014529639A (ja) * 2011-08-09 2014-11-13 オルネクス ベルギウム ソシエテ アノニム 水性放射線硬化性コーティング組成物
WO2013108707A1 (ja) 2012-01-17 2013-07-25 Dic株式会社 活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型水性塗料、及び該塗料で塗装された物品
US9605174B2 (en) 2012-01-17 2017-03-28 Dic Corporation Active energy ray curable aqueous resin composition, active energy ray curable aqueous coating material, and article coated with the coating material
JP2020019827A (ja) * 2018-07-30 2020-02-06 荒川化学工業株式会社 アンダーコート剤及びフィルム
JP7205100B2 (ja) 2018-07-30 2023-01-17 荒川化学工業株式会社 アンダーコート剤及びフィルム
WO2021182021A1 (ja) * 2020-03-10 2021-09-16 三菱ケミカル株式会社 活性エネルギー線硬化性樹脂組成物及びその硬化物
CN115197596A (zh) * 2021-09-14 2022-10-18 广东硕成科技股份有限公司 一种高平整性的载板用硬化薄膜及其制备方法

Also Published As

Publication number Publication date
TW200833718A (en) 2008-08-16
EP2090594A4 (en) 2009-10-21
KR101432689B1 (ko) 2014-08-21
EP2090594A1 (en) 2009-08-19
CN101535347A (zh) 2009-09-16
EP2090594B1 (en) 2010-11-24
KR20090086515A (ko) 2009-08-13
JPWO2008056569A1 (ja) 2010-02-25
DE602007010820D1 (de) 2011-01-05
TWI454491B (zh) 2014-10-01
CN101535347B (zh) 2012-06-13
ATE489406T1 (de) 2010-12-15
US20100010162A1 (en) 2010-01-14
JP4229214B2 (ja) 2009-02-25

Similar Documents

Publication Publication Date Title
WO2008056569A1 (fr) Composition de résine à base aqueuse durcissable par un rayonnement d'énergie actinique, matière de revêtement durcissable par rayonnement d'énergie actinique, procédé de formation d'un film de revêtement durci et article correspondant
EP1756035B1 (en) Radiation-curable coatings for metal substrates from multifunctional acrylate oligomers
WO2009133760A1 (ja) 活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型塗料、硬化塗膜の形成方法及び物品
JP3990426B2 (ja) 紫外線硬化型水性塗料組成物
WO2009123275A1 (ja) 水分散体及び水性塗料組成物、並びに塗膜形成方法
JP2016121350A (ja) シリカ分散体、および、活性エネルギー線硬化性樹脂組成物
JP5635799B2 (ja) エマルション樹脂系塗料
JP5762212B2 (ja) 活性エネルギー線硬化性組成物、上記組成物の製造方法
JP5043391B2 (ja) 硬化型水性樹脂組成物
JP2016172835A (ja) シリカ分散体、および、活性エネルギー線硬化性樹脂組成物
JP2007297491A (ja) 硬化型水性樹脂組成物
JP2006037027A (ja) 水性樹脂組成物
JP5635798B2 (ja) エマルション樹脂系塗料
JP2002285062A (ja) 活性エネルギー線硬化型印刷用インキ組成物
JP2011236334A (ja) 活性エネルギー線硬化型水性樹脂組成物、活性エネルギー線硬化型水性樹脂組成物の製造方法及び活性エネルギー線硬化型塗料
JP4608259B2 (ja) 水性樹脂組成物
JP4740661B2 (ja) エチレン系樹脂用光硬化型プライマー
JP4058734B2 (ja) 酸化硬化型シリコーン変性ビニル共重合体、これを用いた一液型塗料および酸化硬化型シリコーン変性ビニル共重合体の製造方法
WO2024135370A1 (ja) 水性エマルジョン、水性感光性樹脂組成物、及び硬化物付き基材
JP2000234045A (ja) 反応性共重合体の水性組成物
KR20070022061A (ko) 다관능성 아크릴레이트 올리고머로부터의 금속 기판용방사선 경화성 코팅
JP2017179081A (ja) 硬化性組成物、硬化物及び積層体
JPH06279508A (ja) 非水ディスパージョン樹脂の製造方法ならびに該樹脂を含んで成る塗料用樹脂組成物
JP2000336234A (ja) 水性粉体スラリー組成物、活性エネルギー線硬化型塗料、および、これらの硬化方法
JP2004010772A (ja) 光硬化型樹脂、該樹脂を含む樹脂組成物及び塗料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041680.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008521068

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830844

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020097006173

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007830844

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12514140

Country of ref document: US