WO2007094508A1 - 半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置 - Google Patents

半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置 Download PDF

Info

Publication number
WO2007094508A1
WO2007094508A1 PCT/JP2007/053130 JP2007053130W WO2007094508A1 WO 2007094508 A1 WO2007094508 A1 WO 2007094508A1 JP 2007053130 W JP2007053130 W JP 2007053130W WO 2007094508 A1 WO2007094508 A1 WO 2007094508A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
semiconductor module
power supply
switching elements
electrode layer
Prior art date
Application number
PCT/JP2007/053130
Other languages
English (en)
French (fr)
Inventor
Tadafumi Yoshida
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to DE112007000378T priority Critical patent/DE112007000378T5/de
Priority to CN2007800058388A priority patent/CN101385142B/zh
Priority to US12/223,606 priority patent/US7932624B2/en
Publication of WO2007094508A1 publication Critical patent/WO2007094508A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a semiconductor module and a driving device for a hybrid vehicle including the semiconductor module, and more particularly to a semiconductor module constituting an inverter and a converter and a driving device for a hybrid vehicle including the semiconductor module.
  • a hybrid vehicle is a vehicle that uses a motor driven by a DC power source via an inverter in addition to a conventional engine as a power source.
  • a power source is obtained by driving the engine, a DC voltage from a DC power source is converted into an AC voltage by an inverter, and a motor is rotated by the converted AC voltage to obtain a power source.
  • An electric vehicle is a vehicle whose power source is a motor driven by a DC power source via an inverter.
  • An intelligent power module (IPM) installed in such a hybrid vehicle or electric vehicle can be switched from a DC power source by switching semiconductor switching elements (power semiconductor elements) such as IGBTs (Insulated Gate Bipolar Transistors) at high speed.
  • the supplied DC power is converted into AC power to drive the motor (for example, Japanese Patent Laid-Open Nos. 2 0 0 3- 9 5 0 7 and 2 0 0 5-3 3 8 8 2 No. 1, JP-A-11-299056, and JP-A-11-187 542).
  • a switching circuit having a bus bar as a conductor for connecting a switching element to a power supply or a load, a plurality of different bus bars are fastened with an insulator interposed therebetween.
  • a switching circuit characterized by being fixed on a base in a state.
  • a bus bar made of a metal member is applied as a conductor having a sufficiently large cross-sectional area for allowing a current to flow between a power supply or load and a switching circuit.
  • the power supply positive side bus bar connected to the power supply positive electrode and the power supply negative electrode side bus bar connected to the power supply negative electrode are fixed so as to be integrally fastened with an insulator sandwiched on the base.
  • the bus bars each made of a metal member are arranged so as to overlap with the normal direction of the base with the insulator interposed therebetween, so that there is a problem of increasing the length in the normal direction of the base. For this reason, there is a limit to miniaturization in the direction of the legal fountain, as IPM strongly requires miniaturization.
  • the above switching circuit discloses the connection relationship between the switching element and the power supply side bus bar and between the switching element and the load side bus bar (U-phase side bus bar, V-phase side pass bar, w-phase bus bar).
  • U-phase side bus bar V-phase side pass bar
  • w-phase bus bar the connection relationship between the switching element and the power supply side bus bar and between the switching element and the load side bus bar.
  • signal line outlets for inputting a signal for controlling the switching operation to each switching element. Therefore, sufficient consideration must be given to the layout of signal line outlets in order to reduce the size of IPM.
  • an object of the present invention is to provide a semiconductor module that can be reduced in size and a drive device for a hybrid vehicle including the semiconductor module. Disclosure of the invention
  • the semiconductor module includes a first power supply line connected to one pole of the power supply, a second power supply line connected to the other pole of the power supply, and between the first power supply line and the second power supply line. And first and second switching elements connected to each other, and an insulating substrate on which the first and second switching elements are mounted.
  • the first power supply line is composed of a bus bar coupled to the first electrode layer of the first switching element
  • the second power supply line is disposed on the insulating substrate, and the second electrode of the second switching element It consists of a wiring layer bonded to the layer.
  • one of the first and second power supply lines both of which are conventionally constituted by a bus bar made of a metal member, is incorporated into the insulating substrate as a wiring layer.
  • a heat dissipation path from the wiring layer to the insulating substrate is secured.
  • the wiring layer can be thinned, and the semiconductor module can be downsized in the direction perpendicular to the substrate.
  • the semiconductor module is disposed on the insulating substrate, and includes a signal line layer for inputting a control signal to the control electrodes of the first and second switching elements, a first power line, the first and second A first conductor member for conducting the switching element and the second power supply line; and a second conductor member for conducting the control electrode and the signal line layer of the first and second switching elements.
  • the signal line layer is arranged so that the extending directions of the first conductor member and the second conductor member are substantially perpendicular to each other.
  • the first electrode layer of one switching element and the second electrode layer of the other switching element which have been arranged with the signal line layer so far, can be arranged close to each other. .
  • the inductance distributed in the electrode layer can be reduced, and the induced voltage (flyback voltage) during switching can be reduced.
  • the switching element can be configured with a small element having a lower withstand voltage, the semiconductor module can be further reduced in size and cost.
  • the first electrode layer and the second electrode layer are arranged so that the passing currents of the switching elements flow in opposite directions.
  • the magnetic field generated around each electrode layer cancels out in opposite directions of rotation, so that the inductance distributed in the electrode layer can be reduced.
  • the semiconductor module further includes a heat dissipating member mounted on the lower surface of the insulating substrate.
  • the cooling efficiency of the wiring layer can be further increased.
  • the wiring layer can be made thinner and the miniaturization of the semiconductor module is promoted.
  • a drive device for a hybrid vehicle includes a damper to which a crankshaft of an internal combustion engine is coupled, a rotating shaft of the damper, and the rotating shaft thereof.
  • a rotating electrical machine disposed in a row, a power transmission mechanism that synthesizes the power generated by the rotating electrical machine with the power generated by the internal combustion engine and transmits the resultant power to the drive shaft, a damper, a dozen that accommodates the rotating electrical machine and the power transmission mechanism, And a power control unit that controls the rotating electrical machine.
  • the semiconductor module includes a first power supply line connected to one pole of the power supply, a second power supply line connected to the other pole of the power supply, and a first power supply connected between the first power supply line and the second power supply line.
  • the first power supply line is composed of a bus bar coupled to the first electrode layer of the first switching element
  • the second power supply line is disposed on the insulating substrate, and the second electrode of the second switching element It consists of a wiring layer that is bonded to the layer.
  • the power control unit is placed in the case so that when projected from the direction of the rotation axis, it fits in the horizontal dimensions when the vehicle is mounted on the projection part of the case that houses the damper, rotating electrical machine, and power transmission mechanism. Is done.
  • the semiconductor module is disposed on the insulating substrate, and includes a signal line layer for inputting a control signal to the control electrodes of the first and second switching elements, a first power line, the first and second It further includes a first conductor member for conducting the switching element and the second power supply line, and a second conductor member for conducting the control electrode of the first and second switching elements and the signal #spring layer.
  • the signal line layer is arranged so that the extending directions of the first conductor member and the second conductor member are substantially perpendicular to each other.
  • the semiconductor module can be further reduced in size and cost, so that a compact hybrid vehicle drive device is realized.
  • the first electrode layer and the second electrode layer are arranged so that the passing currents of the switching elements flow in opposite directions.
  • the semiconductor module can be further reduced in size and cost.
  • the semiconductor module further includes a heat dissipating member mounted on the lower surface of the insulating substrate. Prepare for.
  • a drive device for a hybrid vehicle includes a damper to which a crankshaft of an internal combustion engine is coupled, a rotating electric machine arranged so that the rotating shaft of the damper and the rotating shaft overlap, and an internal combustion engine A power transmission mechanism that synthesizes the power generated by the rotating electrical machine with the power generated by the engine and transmits it to the drive shaft, a damper, a case that houses the rotating electrical machine and the power transmission mechanism, and a semiconductor module, A power control unit to perform.
  • the semiconductor module includes a first power supply line connected to one pole of the power supply, a second power supply line connected to the other pole of the power supply, and a first power supply connected between the first power supply line and the second power supply line.
  • the first source line comprises a bus bar coupled to the first electrode layer of the first switching element
  • the second power source line is disposed on the insulating substrate
  • the second switching element second line It consists of a wiring layer coupled to the electrode layer.
  • the power control unit is placed in the case so that when projected from the direction of the rotation axis, it fits in the vertical dimension when the vehicle is mounted on the projection part of the case that houses the damper, rotating electric machine, and power transmission mechanism. Is done.
  • a hybrid vehicle drive device in which the inverter is integrated and miniaturized is realized.
  • the semiconductor module is disposed on the insulating substrate, and includes a signal line layer for inputting a control signal to the control electrodes of the first and second switching elements, a first power line, the first and second It further includes a first conductor member for conducting the switching element and the second power supply line, and a second conductor member for conducting the control electrode of the first and second switching elements and the signal line layer.
  • the signal line layer is arranged so that the extending directions of the first conductor member and the second conductor member are substantially perpendicular to each other.
  • the semiconductor module can be further reduced in size and cost, so that a compact hybrid vehicle drive device is realized.
  • the first electrode layer and the second electrode layer have a current passing through the switching element mutually. It is arranged to flow in the opposite direction.
  • the semiconductor module can be further reduced in size and cost.
  • the semiconductor module further includes a heat dissipating member mounted on the lower surface of the insulating substrate.
  • the miniaturization of the semiconductor module can be promoted, so that a compact drive device for a hybrid vehicle with a lid is realized.
  • the power control unit further includes a rear tuttle disposed on one side with respect to the rotation center axis of the rotating electrical machine, and a capacitor disposed on the other side with respect to the rotation center axis of the rotating electrical machine.
  • a compact hybrid vehicle drive device can be realized while keeping the height low. Furthermore, the center of gravity of the vehicle can be lowered, and the running stability can be increased.
  • the semiconductor module can be miniaturized in the normal direction by incorporating one of the first and second power supply lines connected to the power supply into the insulating substrate as a wiring layer.
  • the inductance distributed in the electrode layer can be reduced.
  • the switching element can be reduced in size, and the semiconductor module can be further reduced in size and cost.
  • FIG. 1 is a schematic block diagram of a motor driving apparatus equipped with a semiconductor module according to the present invention. '
  • FIG. 2 is a plan view showing the overall configuration of the semiconductor module according to the present invention.
  • FIG. 3 is a plan view showing a specific configuration of the three-phase arm of the inverter.
  • FIG. 4 is a cross-sectional view taken along the line I V—I V in FIG.
  • FIG. 5 is a cross-sectional view taken along the line V-V in FIG.
  • FIG. 6 is a plan view showing the main configuration of the semiconductor module according to the present invention.
  • FIG. 7 is a plan view showing another example of the configuration of the main part of the semiconductor module.
  • FIG. 8 is a circuit diagram showing a configuration relating to motor generator control of a hybrid vehicle according to the present invention.
  • FIG. 9 is a schematic diagram for explaining details of the power split mechanism and the speed reducer in FIG.
  • FIG. 10 is a perspective view showing the external appearance of the hybrid vehicle drive device according to the present invention.
  • FIG. 11 is a plan view of the drive device.
  • FIG. 12 is a side view of the drive device viewed from the X1 direction in FIG.
  • FIG. 13 is a cross-sectional view showing an oil circulation path in the drive device.
  • FIG. 14 is a partial cross-sectional view taken along the line X I V—X I V in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic block diagram of a motor driving device equipped with a semiconductor module according to the present invention.
  • motor drive device 100 includes battery B, capacitors C 1 and C 2, boost converter 12, inverters 14 and 3 1, and control device 30.
  • Motor generators MG 1 and MG 2 are three-phase AC rotating electrical machines. Although the motor generators MG 1 and MG 2 can function as both a generator and an electric motor, the motor generator MG 1 mainly operates as a generator, and the motor generator VI G 2 mainly operates as an electric motor.
  • Boost converter 1 2 includes reactor L 1, switching elements Q 1 and Q 2, Includes diodes Dl and D2.
  • One end of the reactor L 1 is connected to the power supply line LN1 of the battery B, and the other end is an intermediate point between the switching element Q 1 and the switching element Q 2, that is, the emitter of the switching element Q 1 and the switching element Q 2.
  • Switching elements Ql and Q2 are connected in series between power line LN 1 and ground line LN 2.
  • the collector of the switching element Q 1 is connected to the power supply line LN 1, and the emitter of the switching element Q 2 is connected to the earth line LN 2.
  • diodes Dl and D2 which flow current from the emitter side to the collector side, are connected between the collector and emitter of switching elements Ql and Q2, respectively.
  • Inverter 14 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17.
  • U-phase arm 15, V-phase arm 16, and W-phase arm 17 are provided in parallel between power supply line LN 1 and ground line LN 2.
  • U-phase arm 15 consists of switching elements Q3 and Q4 connected in series
  • V-phase arm 16 consists of switching elements Q5 and Q6 connected in series
  • W-phase arm 17 is connected in series Switching elements Q7 and Q8.
  • diodes D3 to D8 for passing a current from the emitter side to the collector side are connected between the collector and emitter of each switching element Q3 to Q8.
  • each phase arm is connected to each phase end of each phase coil of motor generator MG1.
  • motor generator MG 1 is configured by connecting the ends of three U, V, and W coils in common to the neutral point, and the other end of the U phase coil is the intermediate point between switching elements Q 3 and Q 4 The other end of the V-phase coil is the switching element Q5, Q
  • the other end of the W-phase coil is connected to the midpoint of switching elements Q7 and Q8, respectively.
  • the inverter 31 has the same configuration as the inverter 14. For example, a MOS transistor is applied to switching elements Q1 to Q8 included in boosting converter 12 and inverters 14 and 31.
  • Battery B is a high-voltage battery configured by connecting a number of secondary battery cells such as nickel metal hydride batteries and lithium ion batteries in series.
  • battery B can be a capacitor, a capacitor, or a fuel cell. You may comprise.
  • Capacitor C 1 smoothes the DC voltage supplied from battery B, and supplies the smoothed DC voltage to negative voltage comparator 12.
  • Boost converter 1.2 boosts the DC voltage supplied from capacitor C 1 and supplies the boosted voltage to capacitor C 2. More specifically, when boost converter 12 receives signal PWMC from controller 30, boost converter 12 boosts the DC voltage according to the period during which switching element Q 2 is turned on by signal P WMC and supplies it to capacitor C 2. To do.
  • boost converter 12 when boost converter 12 receives signal P WMC from control device 30, boost converter 12 decreases the DC voltage supplied from inverter 14 and / or inverter 3 1 through capacitor C 2, and supplies battery B. Charge.
  • Capacitor C 2 smoothes the DC voltage from boost converter 12 and supplies the smoothed DC voltage to inverters 14 and 31.
  • inverter 14 converts the DC voltage into an AC voltage based on signal P WM I 1 from control device 30, and generates motor generator MG 1 Drive. As a result, the motor generator MG 1 is driven so as to generate a torque according to the torque command value TR 1. Also, the inverter 14 is a hybrid vehicle equipped with a motor drive device 100.
  • regenerative braking refers to braking that involves regenerative power generation when the driver operating the hybrid vehicle operates the foot brake, or the foot pedal is turned off while driving, although the foot brake is not operated. This includes decelerating (or stopping acceleration) the vehicle while generating regenerative power.
  • inverter 31 converts DC voltage to an AC voltage based on signal PWM I 2 from control device 30 and drives motor generator MG 2. .
  • the motor generator M
  • Inverter 3 1 is a hybrid device equipped with motor drive unit 100. During regenerative braking of the vehicle, the AC voltage generated by the motor generator MG 2 is converted into a DC voltage based on the signal PWM I 2 from the controller 3 ⁇ and the converted DC voltage is boosted via the capacitor C 2 to the boost converter 1 Supply to 2.
  • inverters 14 and 3 1 and boost converter 12 are integrated to form a “semiconductor module” according to the present invention.
  • the reactor L 1 and the smoothing capacitor C 2 included in the step-up comparator 12 are relatively large components, and thus are separately arranged outside the semiconductor module.
  • FIG. 2 is a plan view showing the overall configuration of the semiconductor module according to the present invention.
  • the vertical direction in FIG. 2 will be described as the vertical direction
  • the horizontal direction will be described as the horizontal direction.
  • the semiconductor module 10 includes bus bars 40 P, 40 N, 4 2 P, 4 2 N and bus bars 40 P, 4 extending laterally on the insulating substrate 50. 0 With switching elements Q 1 to Q 8 placed above and below N.
  • the insulating substrate 50 is made of, for example, a polyimide.
  • the durability against the stress generated on the substrate due to thermal expansion or the like is improved compared to the case of using aluminum nitride, which is advantageous for increasing the area.
  • the bus bar 40 P constitutes the power supply line LN 1 connecting the boost converter 1 2—inverters 14 4 and 3 1 in FIG. 1, and the bus bar 4 ON is the boost converter 1 2—inverters 1 4 and 3 in FIG. Configure the ground line LN 2 that connects between the two.
  • the bus bar 40 P and the bus bar 4 ON are laminated in the normal direction (corresponding to a direction perpendicular to the paper surface) of the insulating substrate 50 with an insulating member (not shown) interposed therebetween.
  • bus bar 40 P is connected to the bus bar 4 '2 P via the switching element Q 1
  • the bus bar 4 ON is connected to the bus bar 4 2 N via the switching element Q 2.
  • Bus bars 4 2 P and 4 2 N are connected to a positive electrode and a negative electrode of battery B (not shown), respectively. That is, bus bar 40 P and bus bar 4 2 P are integrated. Therefore, the power line LN 1 in FIG. 1 is configured, and the bus bar 4 ON and the bus bar 42N are combined to form the ground line LN 2 in FIG.
  • Switching elements Q 3 to Q 8 arranged on the upper side of bus bars 40 P, 4 ON constitute inverter 31 in FIG.
  • the switching elements Q 3 to Q 8 arranged below the bus bars 40 P and 4 ON constitute the inverter 14 in FIG.
  • the switching elements Q 1 and Q 2 arranged above and below the bus bars 40 P and 4 ON constitute the boost converter 12 shown in FIG.
  • the U-phase arm 15 of the inverter 14, 3 1 switching element Q 3, Q4
  • the V-phase arm 16 of the inverter 14, 31 switching element Q 5, Q6
  • W phase arm 17 switching elements Q7, Q8
  • the switching elements Q3 to Q8 are each composed of two switching elements arranged in parallel, which prevents an excessive load on the switching element due to an increase in the passing current. It depends on.
  • Two switching elements connected in series with N are formed by connecting an electrode layer formed as a pattern on the insulating substrate 50 and each switching element with a wire.
  • FIG. 3 is a plan view showing a specific configuration of the three-phase arms 15 to 17 of the inverters 14 and 31. Since the three-phase arms 15 to 17 have a common configuration, FIG. 3 typically illustrates the configuration of the U-phase arm 15 of the inverters 14 and 31. 4 is a cross-sectional view taken along the line I V—I V in FIG.
  • U-phase arm 15 of inverter 3 1 is arranged above bus bars 40 P and 4 ON, switching elements Q 3 and Q 4, P electrode layer 3 1 PU, and intermediate electrode Including layer 31 U and N electrode layer 31 NU.
  • P electrode layer 31 PU, intermediate electrode layer 31 U, and N electrode layer 31 NU are all formed as a pattern on insulating substrate 50.
  • P electrode layer 31 PU has one end coupled to bus bar 40 P constituting power supply line LN 1.
  • N electrode layer 31NU is coupled at one end to bus bar 40N constituting earth line LN2.
  • Intermediate electrode layer 3 1 U corresponds to the midpoint of the U-phase arm 15 in FIG. 1, and is connected to the U-phase coil end of the motor generator MG 2 via a bus not shown.
  • Switching element Q 3 is fixed to intermediate electrode layer 3 1 U so that the collector conducts to intermediate electrode layer 3 1 U.
  • the emitter of the switching element Q 3 is connected to the P electrode layer 3 1 PU by the wire WL 1. .
  • the switching element Q 4 is fixed to the N electrode layer 3 1 NU so that the collector conducts to the N electrode layer 3 1 NU.
  • the emitter of the switching element Q 4 is connected to the intermediate electrode layer 3 1 U by the wire W L 1.
  • Switching elements Q 3 and Q 4 have the rectifying characteristics of diodes D 3 and D 4 and are therefore integrated with diodes D 3 and D 4 .
  • the lower surface of the insulating substrate 50 is fixed to the heat sink 60 by being bonded to the heat sink 60 by the solder 52.
  • the heat sink 60 is arranged on the heat sink 70 via the silicon grease 62.
  • the heat sink 70 has a plurality of grooves 72.
  • a water cooling system is adopted as a cooling system for the inverters 14 and 3 1
  • the cooling water supplied from a radiator (not shown) arranged outside the semiconductor module 10 is passed through the plurality of grooves 7 2 of the heat sink 70.
  • the switching elements Q 3 and Q 4 are cooled via the heat sink 60 and the insulating substrate 50 by flowing in the direction perpendicular to the paper surface. .
  • FIG. 5 is a cross-sectional view taken along the line V-V in FIG.
  • intermediate electrode layer 3 1 U in U-phase arm 15 of inverter 3 1 and intermediate electrode layer 14 U in U-phase arm 15 of inverter 1 4 are It is arranged in the direction (equivalent to the left-right direction on the page).
  • a switching element Q 3 is fixed to each of the intermediate electrode layer 3 1 U and the intermediate electrode layer 14 U.
  • bus bars 40 P and 4 ON are arranged between the intermediate electrode layer 3 1 U and the intermediate electrode layer 1 4 U.
  • the bus bar 40 P and the bus bar 4 ON are stacked in the normal direction of the insulating substrate 50 via the insulating member 80.
  • the bus bar 40 P located on the upper layer side of the laminated bus bars 40 P and 4 ON is made of a metal member, for example, copper.
  • the bus bar 4 0 The bus bar 40 ”positioned on the lower layer side of P and 4 ON is composed of a wiring layer formed on the insulating substrate 50.
  • the semiconductor module according to the present invention is characterized in that one of the bus bars 40 P and 4 ON constituting the power supply line L N 1 and the ground line L N 2 is a wiring layer.
  • the semiconductor module according to the present invention has the following effects as compared with the conventional semiconductor module in which the bus bars 40 P and 40 N are both formed of metal members.
  • bus bars 40 P and 4 ON serve as a power transfer medium performed between battery B and motor generators MG 1 and MG 2, and current flows in a direction perpendicular to the paper surface for each of them. At this time, heat proportional to the passing current and the internal resistance is generated in the bus bars 40 P and 4 ON. Therefore, in the conventional semiconductor module, in order to prevent the bus bars 40 P and 4 ON from overheating due to an increase in the passing current, each bus bar is made of a metal member having a large cross-sectional area to reduce internal resistance. I was planning. As a result, the semiconductor module has been lengthened by an amount corresponding to two metal members in the normal direction, which limits the downsizing in the legal and vertical directions.
  • the semiconductor module 10 has one bus bar 40 N as a wiring layer and is fixed to the insulating substrate 50, thereby ensuring the heat release of the bus bar 4 ON and in the normal direction. It is possible to achieve downsizing.
  • the bus bar 4 ON and forming a line layer the heat generated by the bus bar 4 ON is transferred to the cooling water through the insulating substrate 50, the heat sink 60, and the plurality of grooves 72 of the heat sink 70. Heat is dissipated. As a result, the heat dissipation of the bus bar 4ON is ensured, so that the bus bar 4ON can be formed of a wiring layer having a relatively small cross-sectional area. As a result, the length of the semiconductor module 10 in the normal direction (corresponding to h i in the figure) can be greatly reduced.
  • the semiconductor module according to the present invention achieves downsizing in the normal direction by the configuration using the wiring layer in the bus bar. Furthermore, the semiconductor module according to the present invention includes switching elements Q 1 and Q 2 and a switching element as described below. It has a feature in the arrangement structure of signal lines for inputting the signal PWMC or PWMI from the control device 30 to the gates of the etching elements Q3 to Q8.
  • FIG. 6 is a plan view showing the main configuration of the semiconductor module according to the present invention.
  • the configuration in Fig. 6 is a signal line layer for inputting signal PWMI to the gates of switching elements Q 3 and Q 4 compared to the configuration of U-phase arm 15 of inverters 14 and 3 1 shown in Fig. 3. 14G3, 14G4, 3 1 G3, 31 G 4 are added.
  • signal line layers 31 G 3 corresponding to switching element Q 3 in U-phase arm 15 of inverter 31 are arranged above and below intermediate electrode layer 31 U, respectively.
  • the signal line layer 31 G 3 below the intermediate electrode layer 31 U is arranged above the bus bar 40 P along the normal direction of the semiconductor module 10.
  • the signal layer 31 GS is connected to the gate of the switching element Q 3 by the wire WL 2.
  • signal line layers 31 G4 corresponding to switching element Q 4 in U-phase arm 15 of inverter 31 are arranged above and below N electrode layer 31NU, respectively.
  • the signal line layer 31G4 below the N electrode layer 31NU is disposed above the bus bar 40P along the normal direction of the semiconductor module 10.
  • the signal line layer 31 G 4 is connected to the gate of the switching element Q 4 by the wire WL 2.
  • the signal line layers 14 G 3 and 14 G 4 corresponding to the U-phase arm 15 of the inverter 14 have the same configuration as the signal line layers 31 G 3 and 3 1G4.
  • the signal line layers 14G3, 14G4, 31G3, and 31G4 are arranged upward along the normal direction of the semiconductor module 10 and are connected to a control board (not shown) on which the control device 30 is mounted. Then, with the U-phase arm 15 as a basic unit, the respective phase arms 15 to 17 are arranged along the lateral direction of the semiconductor module 10.
  • FIG. 7 Such a structure is shown in FIG. 7, in which the control signal input path is formed in the same direction as the current path. The following effects are exerted on the arrangement structure.
  • each phase arm 15 to 17 is arranged along the lateral direction of the semiconductor module with U-phase arm 15 as a basic unit. Therefore, at the boundary between the U-phase arm 15 and the V-phase arm 16, the signal line layer 31G6 corresponding to the V-phase arm 16 of the inverter 31 is connected to the P electrode layer 31 PU of the U-phase arm 15 and the N power of the V-phase arm 16. It is arranged between the extreme layer 31 NV.
  • the signal line layer 14G6 corresponding to the V-phase arm 16 of the inverter 14 is disposed between the P electrode layer 14 PU of the U-phase arm 15 and the N electrode layer 14NV of the V-phase arm 16.
  • the P electrode layer 3 1 PU (or 14 PU) of the U-phase arm 15 and the N electrode layer 31 NV (or 14NV) of the V-phase arm 16 are combined with the signal line layer 3 1 G 6 (or 14G6 ) Are arranged with an interval corresponding to the horizontal length.
  • the P electrode layer 31 PU (or 14 PU) of the U-phase arm 15 and the N electrode layer 3 1 NV (or 14NV) of the V-phase arm 16 are
  • the line layers 31 G 6 (or 14 G 6) can be arranged close to each other without intervening.
  • the semiconductor module 10 according to the present invention has an effect that the inductance distributed in each electrode layer can be reduced.
  • the directions of the currents are opposite to each other.
  • a current flows from bus bar 40 P to P electrode layer 3 1 PU, while a current flows from N electrode layer 31 NV to bus bar 4 ON.
  • the directions of the magnetic fields generated around the P electrode layer 31 PU and the N electrode layer 31 NV by these currents are opposite to each other. That is, with such a configuration, the inductance of the P electrode layer 31 PU and the N electrode layer 31NV can be reduced. As a result, the flyback voltage during switching caused by the inductance is reduced. Reduced flyback current achieves faster switching.
  • high withstand voltage so as to absorb the flyback voltage Inverters 14 and 3 1 that were configured with these switching elements can be configured with small switching elements with lower withstand voltage. Therefore, further downsizing and cost reduction of the semiconductor module 10 can be achieved.
  • each arm in boost converter 12 and inverters 14 and 31 is packaged as one semiconductor module.
  • the configuration of the semiconductor module is limited to this. Instead, for example, the upper and lower arms of the same phase, or the entire inverter and the entire boost converter may be packaged as one semiconductor module.
  • FIG. 8 is a circuit diagram showing a configuration relating to motor generator control of hybrid vehicle 200 according to the present invention.
  • the hybrid vehicle 200 shown in FIG. 8 is obtained by adding a power split mechanism PSD and a reduction gear RD to the motor drive device 100 shown in FIG. 1 and newly constructing a drive device 20 including them. It is.
  • vehicle 20 includes a battery B, a drive device 20, a control device 30, and an engine and wheels (not shown).
  • Drive device 20 includes motor generators MG 1 and MG 2, power split mechanism P SD, reduction gear R D, and power control unit 21 that controls motor generators MG 1 and MG 2.
  • the power split mechanism PSD is basically a mechanism that is coupled to the engine and the motor generators MG 1 and MG 2 and distributes the power between them.
  • the power split mechanism has three rotating shafts: sun gear, planetary carrier, and ring gear.
  • a planetary gear mechanism can be used.
  • the two rotary shafts of power split mechanism PSD are connected to the rotary shafts of engine and motor generator MG1, respectively, and the other rotary shaft is connected to reducer RD.
  • the rotation of motor generator MG 2 is decelerated by reduction gear RD integrated with power split mechanism P SD and transmitted to power split mechanism P SD.
  • the speed reducer 15-axis is connected to a wheel by a reduction gear or a differential gear (not shown).
  • Power control unit 21 includes inverters 14 and 31 provided corresponding to motor generators MG 1 and MG 2, respectively, and boost converter 12 provided in common with inverters 14 and 31.
  • the three-phase arms 15 to 17 of the inverters 14 and 31 and the arm portion of the boost converter 12 are integrated to constitute the semiconductor module 10. Since the semiconductor module 10 has the same configuration as that of the semiconductor module 10 mounted on the motor drive device 100 of FIG. 1 described above, detailed description thereof is omitted.
  • FIG. 9 is a schematic diagram for explaining the details of the power split mechanism P SD and the reduction gear R D in FIG.
  • this vehicle drive device rotates according to the rotation of motor generator MG 2, reduction gear RD connected to the rotation shaft of motor generator MG 2, and the rotation shaft decelerated by reduction gear RD.
  • An engine ENG, a motor generator MG 1, and a power split mechanism PSD that distributes power between the reduction gear RD, the engine ENG, and the motor generator MG 1.
  • Reducer RD has a reduction ratio from motor generator MG 2 to power split mechanism PSD, for example, more than twice.
  • Engine E NG crankshaft 500, motor generator MG 1 rotor 320 and motor generator MG 2 rotor 370 rotate about the same axis. '
  • the power split mechanism PSD is a planetary gear in the example shown in FIG. 9, and is supported so as to be rotatable coaxially with the crankshaft 500, a sun gear 510 connected to a hollow sun gear shaft that passes through the shaft center of the crankshaft 500, and Ring gear 5 2 0, the sun gear 5 1 0 and the ring gear 5 2 0 are arranged between the pinion gear 5 3 0 which revolves while rotating around the outer periphery of the sun gear 5 1 0 and the end of the crankshaft 5 0 0 And a planetary carrier 5 40 that supports the rotation shaft of each pinion gear 5 30.
  • the power split mechanism PSD is powered by a sun gear shaft coupled to the sun gear 5 10, a ring gear case coupled to the ring gear 5 20 and a crankshaft 5 0 0 coupled to the planetary carrier 5 4 0.
  • the input / output axis When the power input / output to / from any two of these three axes is determined, the power input / output to the remaining one axis is determined based on the power input / output to the other two axes.
  • a counter drive gear 700 for power extraction is provided outside the ring gear case, and rotates integrally with the ring gear 5 20.
  • the counter drive gear 700 is connected to the reduction gear RG. Power is transmitted between the counter drive gear 700 and the reduction gear RG.
  • the reduction gear R G drives the differential gear D E F. On the downhill, the wheel rotation is transmitted to the differential gear D E F, and the reduction gear R G is driven by the differential gear D E F.
  • Motor generator MG 1 includes a stator 3 10 that forms a rotating magnetic field, and a rotor 3 2 0 that is disposed inside stator 3 1 0 and has a plurality of permanent magnets embedded therein.
  • Stator 3 1 0 includes a stator core 3 3 0 and a three-phase coil 3 4 0 wound around stator core 3 3 0.
  • Rotor 3 20 is coupled to a sun gear shaft that rotates integrally with sun gear 5 10 of power split mechanism PSD.
  • Stator core 3 30 is formed by laminating thin magnetic steel sheets, and is fixed to a case (not shown).
  • Motor generator MG 1 operates as an electric motor that rotationally drives rotor 3 20 by the interaction between the magnetic field formed by the permanent magnet embedded in rotor 3 20 and the magnetic field formed by three-phase coil 3 40. Motor generator MG 1 also operates as a generator that generates an electromotive force at both ends of three-phase coil 3 40 due to the interaction between the magnetic field generated by the permanent magnet and the rotation of rotor 3 2.
  • Motor generator MG 2 includes a stator 3 6 0 that forms a rotating magnetic field, and a stay And a rotor 3 7 0 disposed inside the rotor 3 60 and embedded with a plurality of permanent magnets.
  • Stator 3 60 includes a stator core 3 80 and a three-phase coil 3 90 wound around stator core 3 80.
  • the rotor 37 0 is coupled to a ring gear case that rotates integrally with the ring gear 5 20 of the power split mechanism P SD by a reduction gear R D.
  • Stator core 3 80 is formed, for example, by laminating thin magnetic steel sheets, and is fixed to a case (not shown).
  • the motor generator MG 2 also operates as a generator that generates electromotive force at both ends of the three-phase coil 3 90 due to the interaction between the magnetic field generated by the permanent magnet and the rotation of the rotor 3 70.
  • Motor generator MG 2 operates as an electric motor that rotates rotor 37 0 by the interaction between the magnetic field generated by the permanent magnet and the magnetic field formed by three-phase coil 3 90.
  • the speed reducer R D performs speed reduction by a structure in which a planetary carrier 66 0 which is one of the rotating elements of the planetary gear is fixed to the case of the vehicle drive device. That is, the reduction gear RD includes a sun gear 6 2 0 coupled to the shaft of the rotor 3 70, a ring gear 6 8 0 that rotates integrally with the ring gear 5 2 0, a ring gear 6 80 and a sun gear 6 2 0. And a pinion gear 6 4 0 which transmits the rotation of the sun gear 6 2 0 to the ring gear 6 8 0.
  • the reduction ratio can be doubled or more.
  • FIG. 10 is a perspective view showing the appearance of a hybrid vehicle drive device 20 according to the present invention.
  • FIG. 11 is a plan view of the driving device 20.
  • case of drive device 20 is configured to be divided into case 1 0 4 and case 1 0 2.
  • Case 10 04 is a part that mainly accommodates motor generator MG 1
  • case 10 2 is a part that mainly accommodates motor generator MG 2 and power control unit 21.
  • Case 1 0 4 is formed with flange 1 0 6
  • Case 1 0 2 is formed with flange 1 0 5
  • flange 1 0 6 and flange 1 0 5 are fixed with bolts or the like
  • the case 1 0 4 and the case 1 0 2 are integrated.
  • Case 1 0 2 is provided with an opening 10 8 for assembling the power control unit 2 1.
  • Capacitor C 2 is accommodated in the left inner portion (vehicle traveling direction side) of opening 10 8, and semiconductor module 10 and terminal blocks 1 1 6 and 1 1 8 are accommodated in the central portion.
  • the part houses the rear tuttle L1.
  • the opening portion 108 is closed by a lid when the vehicle is mounted.
  • the capacitor C 2 may be accommodated in the inner right side portion of the opening 10 8 and the reactor 1 may be accommodated in the left side portion of the semiconductor module 10.
  • the reactor 1 is arranged on one side of the rotation shafts of the motor generators MG 1 and MG 2, and the capacitor C 2 is arranged on the other side of the rotation shaft.
  • a semiconductor module 10 is arranged in a region between the capacitor C 2 and the reactor 1. Below the semiconductor module 1 is a motor generator MG2.
  • the semiconductor module 10 has the same configuration as that described in FIG.
  • the switching elements Q 1 to Q 8 of the inverters 14 and 31 are arranged on the upper surface of the insulating substrate 50.
  • bus bars 40 P and 4 ON arranged in the normal direction of the insulating substrate 50 are provided. ing.
  • the bus bar 40 P arranged on the upper layer side of the laminated structure and constituting the power supply line L N 1 is made of a metal member.
  • the bus bar 4ON which is arranged on the lower layer side and constitutes the ground line LN2 consists of a wiring layer.
  • a heat sink 70 is provided on the lower surface of the insulating substrate 50 via a heat radiating plate 60 (both not shown).
  • the plurality of grooves 72 provided in the heat sink 70 constitute a water passage, and the cooling water inlet 1 1 4 and the cooling water outlet 1 1 2 to the water passage are provided in the case 1 0 2.
  • the inlet and the outlet are formed by driving a flange nut 10 6 and 10 5 through a case 100 2 and driving a union nut or the like.
  • the water flow path may be configured such that the cooling water flows directly through the lower surface of the heat radiating plate 60 without using the heat sink 70.
  • the length of the body module 10 in the normal direction can be further reduced.
  • one bus bar is provided from each of U-phase arm 15, V-phase arm 16 and W-phase arm 17 of inverter 14 toward terminal block 1 1 6 connected to the stator coil of motor generator MG 2. It has been. Similarly, three bus bars from the inverter 31 are provided toward the terminal block 1 18 connected to the stator coil of the motor generator MG 1.
  • FIG. 12 is a side view of the driving device 20 as viewed from the XI direction in FIG.
  • case 1 0 2 is provided with an opening 1 0 9 for assembling and maintaining the motor generator, and this opening 1 0 9 is closed by a lid when mounted on the vehicle. ing.
  • a motor generator MG 2 is arranged inside the opening 1 0 9.
  • a hollow shaft 6 0-0 is visible in the central part of the mouth 3 7 0.
  • the stator 3 60 of the motor generator MG 2 is greatly cut into the housing chamber that houses the power control unit 2 1 of the case 10 2.
  • a rear tuttle L 1 is arranged, and a capacitor C 2 is arranged on the other side to accommodate large parts efficiently.
  • a semiconductor module 10 is disposed above the stator 3600 of the motor generator MG2. .
  • the capacitor C 2, the semiconductor module 10, and the reactor 1 constituting the power control unit 21 have horizontal dimensions when the vehicle drive device is mounted on the vehicle. Arranged inside.
  • the horizontal dimension is determined by the projection of the part that houses the case damper 1 2 4, motor generator MG 2, reduction gear RG and differential gear D E F.
  • the semiconductor module ⁇ is the height of the projection portion of the case that accommodates the semiconductor module 10 when the vehicle is mounted, that is, the remaining case space, that is, the damper 1 2 4.Motor generator MG 2, reduction gear RG and differential gear DEF Arranged so as not to exceed.
  • the length of the normal direction of the semiconductor module 10 is greatly reduced by forming one of the power supply bus bars 40 P and 4 ON as a wiring layer.
  • the semiconductor module 10, the reactor L 1, and the capacitor C 2 constituting the power control unit 21 include the outer edge of the case portion that accommodates the differential gear DEF and the case that accommodates the damper 1 2 4. It can be seen that they are placed inside the vertical dimension determined by the outer edge of the one-piece part. Therefore, the center of gravity of the vehicle can be lowered and the running stability can be increased.
  • a general water cooling system is employed as a cooling system for the power control unit 21 including the semiconductor module 10.
  • an element capable of high-temperature operation such as SiC-MOS
  • SiC-MOS a switching element
  • it can be operated at a temperature comparable to the heat resistance temperature of the motor generator. Therefore, it is possible to eliminate the water cooling system dedicated to the power control unit 21 as the cooling system and adopt an oil cooling system common to the motor generator. As a result, the entire apparatus can be configured more compactly. Further, since cooling is possible without providing a coolant path in the semiconductor module 10, the center of gravity of the vehicle can be lowered to improve running stability.
  • the power control unit 2 1 including the semiconductor module 10 and the motor generators MG 1 and MG 2 are partly dissipated by radiation, etc., but they are cooled mainly by heat exchange with lubricating oil. Done.
  • FIG. 11 33 is a cross-sectional view showing a Euil circulation circulation path in the drive drive apparatus 2200. .
  • FIG. 11 33 refers to Fig. 33.
  • the storage room chamber for storing the motor generator MMGG 22 and the power control control unit 22 11 Boundary boundary between the storage chamber and the storage chamber and the speed reduction gear gear RR GG and D Each case portion partial sectional surface of the portion that accommodates and accommodates the FF is shown. .
  • FIG. 1144 is a partial cross-sectional view of the portion of XX II VV—XX II VV in FIG. .
  • the storage case chamber room for storing the power control control unit 22 11 is accommodated in the case 11 00 22.
  • partition wall that separates the two spaces between the storage space and the storage chamber that stores MMGG 22 Has been established.
  • the upper wall surface portion of the partition wall 22 11 00 is provided with an oil passage passage 11 22 22 for cooling and cooling the semiconductor module module 1100.
  • the oil passage 11 22 22 is installed in the oil tank storage 44 77 00 and the motor capacity storage capacity of the motor MGGG 22 Communicating with the chamber, the motor lubricator MMGG 22 is lubricated with lubricating oil.
  • the semi-conductor module module 11 00 is made up of the partition wall 22 11 00 and the liquid-liquid gagasuketto etc. It will be sushiruru. .
  • Lubricating lubricating oil is stored at the bottom of the case as it is. .
  • the bottom part of the case here corresponds to the oil papan. . It should be noted that it may be configured such that a separate oil papan can be provided separately at the bottom of the case case. .
  • the oil sump 47 0 is located upstream of the power control unit 21 including the semiconductor module 10 in the lubricating oil circulation path.
  • the oil sump 4 7 0 is provided with an oil outlet 4 7 2, and the oil outlet 4 7 2 has an oil inlet 4 7 4, 4 7 to the space below the semiconductor module 10 0 as shown in FIG. 6, 4 7 8 and 8.
  • Fins 4 90, 4 9 2, and 4 94 for dissipating heat are provided in the steel, and the heat of the switching element is radiated to the lubricating oil through these fins. Thereafter, the lubricating oil passes through oil outlets 4 8 0 and 4 8 3 4 8 4 provided in the partition wall 2 10, and is poured into the upper portion of the stator 3 60. Then, the lubricating oil flows along the outer periphery of the stator 360 and is returned to the bottom of the case again.
  • the semiconductor module 10 that is at a high temperature when the motor generator is driven is cooled by using the lubricating oil of the motor generator.
  • the heat of the lubricating oil circulating inside the motor generator is dissipated to the engine housing.
  • the force described by exemplarily illustrating the case where the semiconductor module is used in a motor drive device and a drive device of a hybrid vehicle is applicable to the semiconductor module according to the present invention.
  • the present invention can be applied to an alternator or a lighting device in which a semiconductor element is used in a vehicle system.
  • the present invention can be applied to a semiconductor module constituting an inverter / converter mounted on a motor drive device and a drive device of a hybrid vehicle including the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Connection Or Junction Boxes (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 バスバー(40P)は電源ラインを構成し、バスバー(40N)はアースラインを構成する。バスバー(40P,40N)は、絶縁部材を介して絶縁基板(50)の法線方向に積層される。このとき、上層側に位置するバスバー(40P)は金属部材で構成され、下層側に位置するバスバー(40N)は絶縁基板(50)上に形成された配線層で構成される。一方のバスバーを配線層として絶縁基板(50)に固着させたことで当該バスバーの放熱が確保される。これにより、当該バスバーを比較的断面積の小さい配線層とすることができるため、半導体モジュールを法線方向に小型化できる。半導体モジュールをハイブリッド車両の駆動装置に搭載することにより、車両搭載時の鉛直方向に小型化できるとともに、車両の重心位置を低くして走行安定性を向上することができる。

Description

明細書 半導体モジュールおよびそれを備えるハイプリッド車両の駆動装置 技術分野
この発明は、 半導体モジュールおよびそれを備えるハイプリ Vド車両の駆動装 置に関し、 より特定的には、 インバータゃコンバータを構成する半導体モジユー ルおよびそれを備えるハイプリッド車両の駆動装置に関する。 背景技術
最近、 環境に配慮した自動車として、 ハイプリッド自動車 (Hybrid Vehicle) および電気自動車 (Electric Vehicle) が注目されている。 ハイブリッド自動車 は、 従来のエンジンに加え、 インバータを介して直流電源により駆動されるモー タを動力源とする自動車である。 つまり、 エンジンを駆動することにより動力源 を得るとともに、 直流電源からの直流電圧をインバータによって交流電圧に変換 し、 その変換した交流電圧によりモータを回転することによつて動力源を得るも のである。 また、 電気自動車は、 インバータを介して直流電源によって駆動され るモータを動力源とする自動車である。
このようなハイプリッド自動車または電気自動車に搭載されるインテリジェン トパワーモジュール ( I P M ) は、 I G B T ( Insulated Gate Bipolar Transistor) 等の半導体スイッチング素子 (パワー半導体素子) を高速スィッチ ングすることにより、 直流電源から供給される直流電力を交流電力に変換してモ ータを駆動するものである (たとえば、 特開 2 0 0 3— 9 5 0 7号公報、 特開 2 0 0 5 - 3 3 8 8 2号公報、 特開平 1 1— 2 9 9 0 5 6号公報、 および特開平 1 1 - 1 8 7 5 4 2号公報参照) 。
たとえば特開 2 0 0 3— 9 5 0 7号公報は、 スィツチング素子を電源あるいは 負荷に接続する導体としてのバスバーを備えたスイッチング回路において、 異な る複数のバスバーが絶縁体を挟んで締結された状態で基台上に固定されることを 特徴とするスイッチング回路を開示する。 これによれば、 電源または負荷とスイッチング回路との間で電流を流すのに十 分な広い断面積を備えた導体として、 金属部材からなるバスバーが適用される。 そして、 電源正極に接続される電源正極側バスパーと電源負極に接続される電源 負極側バスバーとは、 基台上に絶縁体を挾んで一体的に締結された状態となるよ うに固定される。
しかしながら、 上記のスイッチング回路においては、 各々が金属部材からなる バスバーが絶縁体を挟んで基台の法線方向に重なって配置されるため、 基台の法 線方向に増長させるという問題がある。 そのため、 I P Mにおいて小型化が強く 要求されるところ、 法芽泉方向における小型化に限界が生じていた。
また、 上記のスイッチング回路は、 スイッチング素子と電源側バスバーとの間、 およびスイッチング素子と負荷側バスバー (U相側バスバー、 V相側パスバー、 w相バスバー) との間の接続関係について開示しているものの、 各スイッチング 素子にスィッチング動作を制御する信号を入力するための信号線の取出し口の配 置については開示していない。 したがって、 I P Mの小型化には、 信号線の取出 し口の配置についても十分な考慮が必要である。
それゆえ、 この発明は、 かかる問題を解決するためになされたものであり、 そ の目的は、 小型化が可能な半導体モジュールおよびそれを備えるハイプリッド車 両の駆動装置を提供することである。 発明の開示
この発明によれば、 半導体モジュールは、 電源の一方極に接続される第 1電源 線と、 電源の他方極に接続される第 2電源線と、 第 1電源線と第 2電源線との間 に接続される第 1および第 2のスィツチング素子と、 第 1および第 2のスィツチ ング素子が搭載された絶縁基板とを備える。 第 1電源線は、 第 1のスイッチング 素子の第 1電極層に結合されるバスバーからなり、 かつ、 第 2電源線は、 絶縁基 板上に配設され、 第 2のスィツチング素子の第 2電極層に結合される配線層から なる。
上記の半導体モジュールによれば、 従来、 共に金属部材からなるバスバーで構 成されていた第 1および第 2電源線の一方を配線層として絶縁基板に組込むこと により、 当該配線層から絶縁基板への放熱 路が確保される。 この結果、 配線層 の薄層化が可能となるため、 半導体モジュールを基板垂直方向において小型化す ることができる。
好ましくは、 半導体モジュールは、 絶縁基板上に配設され、 第 1および第 2の スイッチング素子の制御電極に制御信号を入力するための信号線層と、 第 1電源 線、 第 1および第 2のスィッチング素子および第 2電源線を導通するための第 1 導線部材と、 第 1および第 2のスィッチング素子の制御電極と信号線層とを導通 するための第 2導線部材とをさらに備える。 信号線層は、 第 1導線部材と第 2導 線部材との延在方向が互レ、に略垂直となるように配置される。
上記の半導体モジュールによれば、 これまで信号線層を介在して配置されてい た一方のスィツチング素子の第 1電極層と他方のスィツチング素子の第 2電極層 とを近接して配置することができる。 これにより、 電極層に分布するインダクタ ンスを低減できるため、 スイッチング時の誘起電圧 (フライバック電圧) を低減 することができる。 この結果、 スイッチング素子を耐圧がより低い小型の素子で 構成できるため、 半導体モジュールの更なる小型化および低コスト化を図ること ができる。
好ましくは、 第 1電極層と第 2電極層とは、 スイッチング素子の通過電流が互 いに逆方向に流れるように配置される。
上記の半導体モジュールによれば、,各々の電極層の周囲に生じる磁界が互いに 逆の回転方向となって相殺されることにより、 電極層に分布するインダクタンス を低減することができる。
好ましくは、 半導体モジュールは、 絶縁基板下面に装着された放熱部材をさら に備える。
上記の半導体モジュールによれば、 配線層から絶縁基板を介して放熱部材に伝 搬する放熱経路が形成されるため、 配線層の冷却効率をさらに高めることができ る。 この結果、 配線層をより薄層化することができ、 半導体モジュールの小型化 が促進される。
この発明の他の局面によれば、 ハイブリッド車両の駆動装置は、 内燃機関のク ランクシャフトが結合されるダンバと、 ダンバの回転軸とその回転軸が重なるよ うに配置される回転電機と、 内燃機関の発生した動力に回転電機の発生した動力 を合成して駆動軸に伝達する動力伝達機構と、 ダンバ、 回転電機および動力伝達 機構を収容するダースと、 半導体モジュールを含み、 回転電機の制御を行なうパ ヮー制御ユニットとを備える。 半導体モジュールは、 電源の一方極に接続される 第 1電源線と、 電源の他方極に接続される第 2電源線と、 第 1電源線と第 2電源 線との間に接続される第 1および第 2のスィツチング素子と、 第 1および第 2の スイッチング素子が搭載された絶縁基板とを含む。 第 1電源線は、 第 1のスイツ チング素子の第 1電極層に結合されるバスバーからなり、 かつ、 第 2電源線は、 絶縁基板上に配設され、 第 2のスィツチング素子の第 2電極層に結合される配線 層からなる。 パワー制御ユニットは、 回転軸方向から投影した場合に、 ケースの ダンバ、 回転電機、 および動力伝達機構を収容する部分の投影部の車両搭載時の 水平方向の寸法に収まるように、 ケース内に配置される。
上記のハイブリッド車両の駆動装置によれば、 コンパクトなハイブリッド車両 の駆動装置が実現される。
好ましくは、 半導体モジュールは、 絶縁基板上に配設され、 第 1および第 2の スィツチング素子の制御電極に制御信号を入力するための信号線層と、 第 1電源 線、 第 1および第 2のスィツチング素子および第 2電源線を導通するための第 1 導線部材と、 第 1および第 2のスィツチング素子の制御電極と信号 #泉層とを導通 するための第 2導線部材とをさらに含む。 信号線層は、 第 1導線部材と第 2導線 部材との延在方向が互いに略垂直となるように配置される。
上記のハイプリッド車両の駆動装置によれば、 半導体モジュールの更なる小型 化および低コスト化を図ることができるため、 コンパクトなハイブリッド車両の 駆動装置が実現される。
好ましくは、 第 1電極層と第 2電極層とは、 スイッチング素子の通過電流が互 いに逆方向に流れるように配置される。
上記のハイプリッド車両の駆動装置によれば、 電極層に分布するインダクタン スを低減できるため、 半導体モジュールの更なる小型化および低コスト化を図る ことができる。 '
好ましくは、 半導体モジュールは、 絶縁基板下面に装着された放熱部材をさら に備える。
上記のハイプリッド車両の駆動装置によれば、 半導体モジュールの小型化を促 進できるため、 コンパクトなハイプリッド車両の駆動装置が実現される。
この発明の他の局面によれば、 ハイブリッド車両の駆動装置は、 内燃機関のク ランクシャフトが結合されるダンパと、 ダンバの回転軸とその回転軸が重なるよ うに配置される回転電機と、 内燃機関の発生した動力に回転電機の発生した動力 を合成して駆動軸に伝達する動力伝達機構と、 ダンパ、 回転電機および動力伝達 機構を収容するケースと、 半導体モジュールを含み、 回転電機の制御を行なうパ ヮー制御ユニットとを備える。 半導体モジュールは、 電源の一方極に接続される 第 1電源線と、 電源の他方極に接続される第 2電源線と、 第 1電源線と第 2電源 線との間に接続される第 1および第 2のスイッチング素子と、 第 1および第 2の スイッチング素子が搭載された絶縁基板とを含む。 第 1 ®源線は、 第 1のスイツ チング素子の第 1電極層に結合されるバスバーからなり、 かつ、 第 2電源線は、 絶縁基板上に配設され、 第 2のスィツチング素子の第 2電極層に結合される配線 層からなる。 パワー制御ユニットは、 回転軸方向から投影した場合に、 ケースの ダンパ、 回転電機、 および動力伝達機構を収容する部分の投影部の車両搭載時の 鉛直方向の寸法に収まるように、 ケース内に配置される。
上記のハイプリッド車両の駆動装置によれば、 インバータが一体化され小型化 されたハイプリッド車両の駆動装置が実現される。
好ましくは、 半導体モジュールは、 絶縁基板上に配設され、 第 1および第 2の スィツチング素子の制御電極に制御信号を入力するための信号線層と、 第 1電源 線、 第 1および第 2のスィツチング素子および第 2電源線を導通するための第 1 導線部材と、 第 1および第 2のスィッチング素子の制御電極と信号線層とを導通 するための第 2導線部材とをさらに含む。 信号線層は、 第 1導線部材と第 2導線 部材との延在方向が互いに略垂直となるように配置される。
上記のハイプリッド車両の駆動装置によれば、 半導体モジュールの更なる小型 化および低コスト化を図ることができるため、 コンパクトなハイブリッド車両の 駆動装置が実現される。
好ましくは、 第 1電極層と第 2電極層とは、 スイッチング素子の通過電流が互 いに逆方向に流れるように配置される。
上記のハイプリッド車両の駆動装置によれば、 電極層に分布するインダクタン スを低減できるため、 半導体モジュールの更なる小型化および低コスト化を図る ことができる。
好ましくは、 半導体モジュールは、 絶縁基板下面に装着された放熱部材をさら に備える。
上記のハイプリッド車両の駆動装置によれば、 半導体モジュールの小型化を促 進できるため、 コンパクトなハイプ、リッド車両の駆動装置が実現される。
好ましくは、 パワー制御ユニットは、 回転電機の回転中心軸に対する一方側に 配置されるリアタトルと、 回転電機の回転中心軸に対する他方側に配置されるコ ンデンサとをさらに含む。
上記のハイプリッド車両の駆動装置によれば、 高さを低く抑えつつコンパクト なハイプリッド車両の駆動装置を実現することができる。 さらに、 車両の重心を 低くすることができ、 走行安定性を増すことができる。
この発明によれば、 電源に接続される第 1および第 2電源線の一方を配線層と して絶縁基板に組込むことにより、 半導体モジュールを法線方向に小型化するこ とができる。
また、 隣り合うスィツチング素子の第 1電極層と第 2電極層とを近接して配置 できるため、 電極層に分布するインダクタンスを低減することができる。 この結 果、 スイッチング素子を小型化することができ、 半導体モジュールの更なる小型 化および低コスト化を図ることができる。
さらに、 この発明による半導体モジュールをハイプリッド車両の駆動装置に搭 載することにより、 車両搭載時の鉛直方向に小型化することができる。 また、 車 両の重心位置を低くすることができ、 走行安定性を増すことができる。 図面の簡単な説明
図 1は、 この発明による半導体モジュールを搭載したモータ駆動装置の概略ブ 口ック図である。'
図 2は、 この発明による半導体モジュールの全体構成を示す平面図である。 図 3は、 インバータの 3相アームの具体的な構成を示す平面図である。
図 4は、 図 3の I V— I Vにおける断面図である。
図 5は、 図 3の V— Vにおける断面を示す図である。
図 6は、 この発明による半導体モジュ一ルの要部構成を示す平面図である。 図 7は、 半導体モジュールの要部構成の他の例を示す平面図である。
図 8は、 この発明によるハイプリッド車両のモータジェネレータ制御に関する 構成を示す回路図である。
図 9は、 図 8における動力分割機構および減速機の詳細を説明するための模式 図である。
図 1 0は、 この発明によるハイブリッド車両の駆動装置の外観を示す 視図で ある。
図 1 1は、 駆動装置の平面図である。
図 1 2は、 駆動装置を図 1 1の X 1方向から見た側面図である。
図 1 3は、 駆動装置におけるオイル循環経路を示した断面図である。
図 1 4は、 図 1 3の X I V— X I Vにおける部分断面図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について図面を参照しながら詳細に説明する。 なお、 図中同一または相当部分には同一符号を付してその説明は繰返さない。
図 1は、 この発.明による半導体モジュールを搭載したモータ駆動装置の概略ブ ロック図である。
図 1を参照して、 モータ駆動装置 1 0 0は、 バッテリ Bと、 コンデンサ C l, C 2と、 昇圧コンバータ 1 2と、 ィンバータ 1 4, 3 1と、 制御装置 3 0とを備 える。
モータジェネレータ MG 1, MG 2は、 三相交流回転電機である。 モータジェ ネレータ MG 1, MG 2は、 発電機としても電動機としても機能し得るが、 モー タジェネレータ MG 1は、 主として発電機として動作し、 モータジェネレータ] VI G 2は、 主として電動機として動作する。
昇圧コンバータ 1 2は、 リアク トル L 1と、 スィツチング素子 Q 1, Q 2と、 ダイオード D l, D 2とを含む。 リアク トル L 1の一方端はパッテリ Bの電源ラ イン LN1に接続され、 他方端はスイッチング素子 Q 1とスイッチング素子 Q 2 との中間点、 すなわち、 スイッチング素子 Q 1のェミッタとスイッチング素子 Q 2のコレクタとの間に接続される。 スイッチング素子 Ql, Q2は、 電源ライン LN 1とアースライン LN 2との間に直列に接続される。 そして、 スイッチング 素子 Q 1のコレクタは電源ライン LN 1に接続され、 スィツチング素子 Q 2のェ ミッタはアースライン LN2に接続される。 また、 スイッチング素子 Ql, Q 2 のコレクタ—ェミッタ間には、 ェミッタ側からコレクタ側へ電流を流すダイォー ド D l, D 2がそれぞれ接続されている。
インバータ 14は、 U相アーム 15と、 V相アーム 16と、 W相アーム 17と から成る。 U相アーム 15、 V相アーム 16、 および W相アーム 17は、 電源ラ イン LN 1とアースライン LN 2との間に並列に設けられる。
U相アーム 15は、 直列接続されたスイッチング素子 Q 3, Q4カ ら成り、 V 相アーム 16は、 直列接続されたスイッチング素子 Q 5, Q6力 ら成り、 W相ァ ーム 17は、 直列接続されたスイッチング素子 Q 7, Q8から成る。 また、 各ス ィツチング素子 Q 3〜Q 8のコレクターエミッタ間には、 エミッタ側からコレク タ側へ電流を流すダイォード D 3〜D 8がそれぞれ接続されている。
各相アームの中間点は、 モータジェネレータ MG 1の各相コイルの各相端に接 続されている。 すなわち、 モータジェネレータ MG 1は、 U, V, W相の 3つの コイルの 端が中性点に共通接続されて構成され、 U相コイルの他端がスィッチ ング素子 Q 3, Q 4の中間点に、 V相コイルの他端がスイッチング素子 Q 5, Q
6の中間点に、 W相コイルの他端がスイッチング素子 Q 7, Q 8の中間点にそれ ぞれ接続されている。
インバータ 31は、 インバ一タ 14と同様の構成から成る。 なお、 昇圧コンパ ータ 12およびインバータ 14, 31に含まれるスイッチング素子 Q1〜Q 8は、 たとえば MOSトランジスタが適用される。
バッテリ Bは、 たとえばニッケル水素電池やリチウムイオン電池などの 2次電 池セルを多数直列に接続して構成される高電圧のバッテリである。 なお、 バッテ リ Bを、 これらの 2次電池以外に、 キャパシタ、 コンデンサあるいは燃料電池な どで構成しても良い。
コンデンサ C 1は、 バッテリ Bから供給された直流電圧を平滑化し、 その平滑 化した直流電圧を畀圧コンパ タ 1 2へ供給する。
昇圧コンバータ 1 .2は、 コンデンサ C 1から供給された直流電圧を昇圧してコ ンデンサ C 2へ供給する。 より具体的には、 昇圧コンバータ 1 2は、 制御装置 3 0から信号 PWMCを受けると、 信号 P WMCによってスィツチング素子 Q 2が オンされた期間に応じて直流電圧を昇圧してコンデンサ C 2に供給する。
また、 昇圧コンバータ 1 2は、 制御装置 3 0から信号 P WMCを受けると、 コ ンデンサ C 2を介してインバータ 1 4および/またはィンバータ 3 1から供給さ れた直流電圧を降圧してバッテリ Bを充電する。
コンデンサ C 2は、 昇圧コンバータ 1 2からの直流電圧を平滑化し、 その平滑 化した直流電圧をインバータ 1 4 , 3 1へ供給する。
インバータ 1 4は、 コンデンサ C 2を介してバッテリ Bから直流電圧が供給さ れると、 制御装置 3 0からの信号 P WM I 1に基づいて直流電圧を交流電圧に変 換してモータジェネレータ MG 1を駆動する。 これにより、 モータジエネレ^ "タ MG 1は、 トルク指令値 T R 1に従ったトルクを発生するように駆動される。 また、 インバータ 1 4は、 モータ駆動装置 1 0 0が搭載されたハイプリッド自 ' 動車の回生制動時、 モータジェネレータ MG 1が発電した交流電圧を制御装置 3 0からの信号 PWM I 1に基づいて直流電圧に変換し、 その変換した直流電圧を コンデンサ C 2を介して昇圧コンバータ 1 2へ供給する。 なお、 ここで言う回生 制動とは、 ハイブリツド自動車を運転するドライバーによるフットブレーキ操作 があった場合の回生発電を伴う制動や、 フットブレーキを操作しないものの、 走 行中にァクセノレペダルをオフすることで回生発電をさせながら車両を減速 (また は加速の中止) させることを含む。
インバータ 3 1は、 コンデンサ C 2を介してバッテリ Bから直流電圧が供給さ れると制御装置 3 0からの信号 PWM I 2に基づいて直流電圧を交流電圧に変換 してモータジェネレータ MG 2を駆動する。 これにより、 モータジェネレータ M
G 2は、 トルク指令値 T R 2に従ったトルクを発生するように駆動される。 また、 インバータ 3 1は、 モータ駆動装置 1 0 0が搭載されたハイプリッド自 動車の回生制動時、 モータジェネレータ MG 2が発電した交流電圧を制御装置 3 ◦からの信号 PWM I 2に基づいて直流電圧に変換し、 その変換した直流電圧を コンデンサ C 2を介して昇圧コンバータ 1 2へ供給する。
以上の構成において、 インバータ 1 4, 3 1と昇圧コンバータ 1 2とは、 一体 化されてこの発明による 「半導体モジュール」 を構成する。 なお、 昇圧コンパ一 タ 1 2に含まれるリアク トル L 1および平滑用のコンデンサ C 2は、 比較的大き な部品であるため、 半導体モジュールの外部に別途配置される。
次に、 図 2を用いて、 この発明による半導体モジュールの具体的構成例を説明 する。
図 2は、 この発明による半導体モジュールの全体構成を示す平面図である。 な お、 以下の説明では、 便宜上、 図 2の上下方向を縦方向、 同左右方向を横方向と して説明する。
図 2を参照して、 半導体モジュール 1 0は、 絶縁基板 5 0上を横方向に延在す るバスバー 4 0 P , 4 0 N , 4 2 P , 4 2 Nと、 バスバー 4 0 P, 4 0 Nを挟ん でその上下に配置されるスィツチング素子 Q 1〜Q 8とを備える。
絶縁基板 5 0は、 たとえばポリミイドからなる。 なお、 絶縁基板 5 0をポリミ イドとした場合は、 窒化アルミニウムとした場合に対して熱膨張などにより基板 に発生する応力に対する耐久性が向上するため、 大面積化に有利である。
さらに、 絶縁基板 5 0の下面には、.放熱板 6 0が取り付けられている。 放熱板 6 0は、 後述するように半導体モジュール 1 0の冷却を行なうものである。 バスバー 4 0 Pは、 図 1の昇圧コンバータ 1 2—インバータ 1 4 , 3 1間を結 ぶ電源ライン L N 1を構成し、 バスバー 4 O Nは、 図 1の昇圧コンバータ 1 2— インバータ 1 4, 3 1間を結ぶアースライン L N 2を構成する。 バスバー 4 0 P とバスバー 4 O Nとは、 後述するように、 図示しない絶縁部材を介在して絶縁基 板 5 0の法線方向 (紙面垂直方向に相当) に積層されてなる。
さらに、 バスバー 4 0 Pはスィツチング素子 Q 1を介してバスバー 4 '2 Pに接 続され、 バスバー 4 O Nはスィツチング素子 Q 2を介してバスバー 4 2 Nに接続 される。 バスバー 4 2 P , 4 2 Nはそれぞれ、 図示しないバッテリ Bの正極およ び負極に接続される。 すなわち、 バスバー 4 0 Pとバスバー 4 2 Pとが一体とな つて図 1の電源ライン LN 1を構成し、 バスバー 4 ONとバスバー 42Nとが一 体となって図 1のアースライン LN 2を構成する。
そして、 バスバー 40 P, 4 ONの上側に配置されるスイッチング素子 Q 3〜 Q8は、 図 1のインバータ 31を構成する。 バスバー 40 P, 4 ONの下側に配 置されるスィッチング素子 Q 3〜Q 8は、 図 1のインバータ 14を構成する。 そ して、 バスバー 40 P, 4 ONの上下にそれぞれ配置されるスイッチング素子 Q 1, Q2は、 図 1の昇圧コンバータ 12を構成する。
たとえば図 2の例では、 紙面右側から左側に向けて順に、 ィンバータ 14, 3 1の U相アーム 15 (スイッチング素子 Q 3, Q4) 、 インバータ 14, 31の V相アーム 16 (スイッチング素子 Q 5, Q6) 、 およびインバータ 14, 3 1 の W相アーム 1 7 (スイッチング素子 Q 7, Q8) が配置される。 なお、 スイツ チング素子 Q 3〜Q 8は、 各々、 並列に配された 2個のスィツチング素子で構成 されるが、 これは、 通過電流の増大によってスイッチング素子に過大な負荷がか かるのを防止したことによる。
インバータ 14, 31の各相アームにおいて、 バスバー 40 Pとバスバー 40
Nとの間に直列接続される 2個のスィツチング素子は、 絶縁基板 50上にパター ンとして形成された電極層と各スィツチング素子とをワイヤによって接続するこ とにより形成される。
図 3は、 インバータ 14, 31の 3相アーム 15〜 1 7の具体的な構成を示す 平面図である。 なお、 3相アーム 15〜1 7はともに共通の構成からなるため、 図 3では代表的にィンバータ 14, 31の U相アーム 15の構成を説明する。 図 4は、 図 3の I V— I Vにおける断面図である。
図 3、 図 4を参照して、 インバータ 3 1の U相アーム 15は、 バスバー 40 P, 4 ONの上側に配置され、 スイッチング素子 Q 3, Q4と、 P電極層 3 1 PUと、 中間電極層 31 Uと、 N電極層 31 NUとを含む。
P電極層 31 PU、 中間電極層 31Uおよび N電極層 31NUはともに、 絶縁 基板 50上にパターンとして形成される。 P電極層 31 PUは、 一方端が電源ラ イン LN 1を構成するバスバー 40 Pに結合される。 N電極層 31NUは、 一方 端がアースライン LN 2を構成するバスバー 40Nに結合される。 中間電極層 3 1 Uは、 図 1の U相アーム 1 5の中間点に相当し、 図示しないバスパーを介して モータジエネレ^ "タ MG 2の U相コイル端に接続される。
スイッチング素子 Q 3は、 コレクタが中間電極層 3 1 Uに導通するように中間 電極層 3 1 Uに固着される。 スイッチング素子 Q 3のェミッタは、 ワイヤ WL 1 により P電極層 3 1 P Uに接続される。 .
スィツチング素子 Q 4は、 コレクタが N電極層 3 1 NUに導通するように N電 極層 3 1 N Uに固着される。 スイッチング素子 Q 4のェミッタは、 ワイヤ W L 1 により中間電極層 3 1 Uに接続される。
なお、 スイッチング素子 Q 3 , Q 4として MO Sトランジスタを適用した場合 スイッチング素子 Q 3, Q 4はダイオード D 3, D 4の整流特性をも兼ね備える ため、 ダイオード D 3, D 4と一体化される。
絶縁基板 5 0は、 下面が半田 5 2によって放熱板 6 0に接着されることによつ て放熱板 6 0に固着される。 放熱板 6 0は、 シリコングリス 6 2を介してヒート シンク 7 0上に配置される。
ヒートシンク 7 0は、 複数の溝 7 2を有する。 ィンバータ 1 4 , 3 1の冷却系 として水冷系を採用した場合、 半導体モジュール 1 0外部に配されたラジェータ (図示せず) から供給された冷却水は、 ヒートシンク 7 0の複数の溝 7 2を紙面 に垂直な方向に流れることによって放熱板 6 0および絶縁基板 5 0を介してスィ ツチング素子 Q 3, Q 4を冷却する。 . .
図 5は、 図 3の V— Vにおける断面を示す図である。
図 5を参照して、 インバータ 3 1の U相アーム 1 5における中間電極層 3 1 U と、 インバータ 1 4の U相アーム 1 5における中間電極層 1 4 Uとは、 絶縁基板 5 0の縦方向 (紙面に左右方向に相当) に配置される。 中間電極層 3 1 Uおよび 中間電極層 1 4 Uの各々には、 スイッチング素子 Q 3が固着されている。
そして、 中間電極層 3 1 Uと中間電極層 1 4 Uとの間には、 バスバー 4 0 P, 4 O Nが配置される。 バスバー 4 0 Pとバスバー 4 O Nとは、 絶縁部材 8 0を介 して絶縁基板 5 0の法線方向に積層されている。
ここで、 積層構造からなるバスバー 4 0 P, 4 O Nのうちの上層側に位置する バスバー 4 0 Pは、 金属部材、 たとえば銅からなる。 これに対し、 バスバー 4 0 P , 4 O Nのうちの下層側に位置するバスバ^" 4 0は、 絶縁基板 5 0上に形成さ れた配線層からなる。
この発明による半導体モジユーノレは、 このように、 電源ライン L N 1およぴァ - ースライン L N 2をそれぞれ構成するバスバー 4 0 P , 4 O Nの一方を配線層と することを特徴的な構成とする。
かかる構成により、 この発明による半導体モジュールは、 バスバー 4 0 P, 4 0 Nをともに金属部材で構成する従来の半導体モジュールと比較して、 以下のよ うな効果を奏する。
詳細には、 バスバー 4 0 P, 4 O Nは、 バッテリ Bとモータジェネレータ MG 1, MG 2との間で行なわれる電力授受の媒体となるため、 各々について紙面に 垂直な方向に電流が流れる。 このとき、 バスバー 4 0 P , 4 O Nには、 その通過 電流と内部抵抗とに比例した熱が発生する。 そこで、 従来の半導体モジュールで は、 通過電流の増大によってバスバー 4 0 P , 4 O Nが過熱するのを防止するた めに、 各バスバーに、 断面積が大きい金属部材を採用して内部抵抗の低減を図つ ていた。 そのため、 半導体モジュールは、 法線方向において 2つの金属部材相当 分だけ増長されたものとなってしまい、 法,锒方向における小型化に限界が生じて いた。
これに対して、 この発明による半導体モジュール 1 0は、 一方のバスバー 4 0 Nを配線層として、 絶縁基板 5 0に固着させたことにより、 バスバー 4 O Nの放 熱を確保しながら、 法線方向における小型化を実現することができる。
すなわち、 バスバー 4 O Nを配,線層としたことにより、 バスバー 4 O Nで生じ た熱は、 絶縁基板 5 0、 放熱板 6 0およびヒートシンク 7 0の複数の溝 7 2を介 して冷却水に放熱される。 これにより、 バスバー 4 O Nの放熱性が確保されるた め、 バスバー 4 O Nを比較的断面積の小さい配線層で構成することができる。 結 果として、 半導体モジュール 1 0の法線方向の長さ (図中の h iに相当) を大幅 に低減することができる。
以上のように、 この発明による半導体モジュールは、 バスバーに配線層を用い た構成により法線方向における小型化を実現する。 さらに、 この発明による半導 体モジュールは、 以下に述べるように、 スィツチング素子 Q 1, Q 2およびスィ ッチング素子 Q 3〜Q8のゲートに制御装置 30からの信号 P WM Cまたは P W M Iを入力するための信号線の配置構造に特徴を有する。
図 6は、 この発明による半導体モジュールの要部構成を示す平面図である。 な お、 図 6の構成は、 図 3に示したィンバータ 14, 3 1の U相アーム 15の構成 に対して、 スイッチング素子 Q 3, Q 4のゲートに信号 PWMIを入力するため の信号線層 14G3, 14G4, 3 1 G3, 31 G 4を付加したものである。 詳細には、 図 6を参照して、インバータ 31の U相アーム 15におけるスイツ チング素子 Q 3に対応する信号線層 31 G 3は、 中間電極層 31 Uの上下にそれ ぞれ配置される。 なお、 中間電極層 31 Uの下側にある信号線層 31 G 3につい ては、 半導体モジュール 10の法線方向に沿ってバスバー 40 Pよりも上方に配 置される。 信号,锒層 31 GSは、 ワイヤ WL 2によりスイッチング素子 Q 3のゲ ートに接続される。
同様に、 インバータ 3 1の U相アーム 15におけるスイッチング素子 Q 4に対 応する信号線層 31 G4は、 N電極層 31NUの上下にそれぞれ配置される。 な お、 N電極層 31NUの下側にある信号線層 31G4については、 半導体モジュ ール 10の法線方向に沿ってバスバー 40 Pよりも上方に配置される。 信号線層 31 G 4は、 ワイヤ WL 2によりスィツチング素子 Q 4のゲートに接続される。 なお、 ィンバータ 14の U相アーム 15に対応する信号線層 14 G 3, 14 G 4は、 信号線層 31 G 3, 3 1G4と同様の構成からなる。 そして、 信号線層 1 4G3, 14G4, 31G3, 31G4は、 半導体モジュール 10の法線方向に 沿って上方に配置され、 制御装置 30を搭载する制御基板 (図示せず) に接続さ れる。 そして、 U相アーム 1 5を基本単位として、 各相アーム 15〜17が半導 体モジユ^"ノレ 10の横方向に沿つて配列される。
各相アームに対応する信号線層を図 6のような配置構造としたことにより、 半 導体モジユー/レ 10の横方向に、 P電極層 31 PU〜スイッチング素子 Q 3〜中 間電極層 31U〜スイッチング素子 Q4〜N電極層 3 1NUに至る電流経路が形 成される。 そして、 半導体モジュール 10の縦方向、 すなわち、 当該電流経路と 略垂直な方向に制御信号 PWM I 2の入力経路が形成される。
かかる構造は、 制御信号の入力経路を電流経路と同方向に形成する図 7に示す 配置構造に対して、 以下のような効果を奏する。
詳細には、 図 7に示すように、 各相アーム 15〜1 7に対応する信号線層を、 他の電極層と同様に半導体モジュールの横方向に沿って配置した場合を考える。 図 7を参照して、 各相アーム 15〜1 7は、 U相アーム 1 5を基本単位として 半導体モジュールの横方向に沿って配列される。 そのため、 U相アーム 15と V 相アーム 16との境界において、 インバータ 31の V相アーム 16に対応する信 号線層 31G6は、 U相アーム 15の P電極層 31 PUと V相アーム 16の N電 極層 31 NVとの間に配置される。 また、 インバータ 14の V相アーム 16に対 応する信号線層 14G6は、 U相アーム 15の P電極層 14 PUと V相アーム 1 6の N電極層 14NVとの間に配置される。
すなわち、 U相アーム 15の P電極層 3 1 PU (または 14 PU) と、 V相ァ ーム 16の N電極層 31 NV (または 14NV) とは、 信号線層 3 1 G 6 (また は 14G6) の横方向長さに応じた間隔を持って配置されることになる。
これに対して、 図 6の配置構造によれば、 U相アーム 15の P電極層 31 PU (または 14 PU) と、 V相アーム 16の N電極層 3 1 NV (または 14NV) とは、 信号線層 31 G 6 (または 14 G 6 ) を介在せず、 近接して配置すること が可能となる。
このように P電極層と隣り合うアームの N電極層とを近接配置することにより、 この発明による半導体モジュール 10は、 各電極層に分布するインダクタンスを 低減できるという効果を奏する。
たとえば近接する P電極層 31 PUと N電極層 31NVとでは、 その電流の方 向が互いに逆方向となる。 本実施の形態では、 バスバー 40 Pから P電極層 3 1 PUへ電流が流れる一方、 N電極層 31 NVからバスバー 4 ONへ電流が流れる。 このため、 これらの電流により P電極層 31 PUおよび N電極層 31 NVの周罔 にそれぞれ生じる磁界の方向は、 互いに逆の回転方向となる。 すなわち、 このよ うな構成により、 P電極層 31 PUおよび N電極層 31NVのインダクタンスを 低減することができる。 この結果、 インダクタンスに起因して生じるスィッチン グ時のフライバック電圧が低減される。 フライバック電流の低減は、 より高速な スイッチングを実現する。 さらに、 フライバック電圧を吸収可能なように高耐圧 のスィツチング素子で構成されていたインバータ 1 4, 3 1を、 耐圧がより低い 小型のスイッチング素子で構成することが可能となる。 したがって、 半導体モジ ユーノレ 1 0の更なる小型化および低コスト化を図ることができる。
なお、 上記の実施の形態においては、 昇圧コンバータ 1 2およびインバータ 1 4 , 3 1における各アームが 1つの半導体モジュールとしてパッケージ化される 場合について説明したが、 半導体モジュールの構成は、 これに限られるものでは なく、 たとえば、 同相の上下アーム毎、 あるいはインバータ全体および昇圧コン バータ全体を 1つの半導体モジュールとしてパッケージ化してもよい。
[この発明による半導体モジュールの適用例]
最後に、 この発明による半導体モジュールの適用例として、 半導体モジュール を含むモータ駆動装置とモータとを 1つのケースに収めたハイプリッド車両の駆 動装置について説明する。
現状のハイプリッド車両の駆動装置においては、 モータケースの上にインバー タを構成する大きな箱型のケースを載せただけの構成が多く採られているところ、 以下に述べる本願発明によるハイブリッド車両の駆動装置は、 高さ方向に関し車 両に搭載した場合の車両重心位置の改善、 および搭載スペースの省スペース化を 実現するものである。
図 8は、 この発明によるハイプリッド車両 2 0 0のモータジェネレータ制御に 関する構成を示す回路図である。 なお、 図 8のハイブリッド車両 2 0 0は、 図 1 のモータ駆動装置 1 0 0に動力分割機構 P S Dおよび減速機 R Dを付加して、 こ れらを含む駆動装置 2 0を新たに構成したものである。
図 8を参照して、 車両 2 0 0は、 バッテリ Bと、 駆動装置 2 0と、 制御装置 3 0と、 図示しないエンジンおよび車輪とを含む。
駆動装置 2 0は、 モータジェネレータ MG 1, MG 2と、 動力分割機構 P S D と、 減速機 R Dと、 モータジェネレータ MG 1, MG 2の制御を行なうパワー制 御ュニット 2 1とを備える。
動力分割機構 P S Dは、 基本的には、 エンジンとモータジェネレータ MG 1 , M G 2に結合されてこれらの間で動力を分配する機構である。 たとえば動力分割 機構としてはサンギヤ、 プラネタリキヤリャ、 リングギヤの 3つの回転軸を有す る遊星歯車機構を用いることができる。
動力分割機構 P S Dの 2つの回転軸がエンジン、 モータジェネレータ MG1の 各回転軸にそれぞれ接続され、 他の 1つの回転軸は減速機 RDに接続される。 動 力分割機構 P SDと一体化された減速機 RDによってモータジェネレータ MG 2 の回転は減速されて動力分割機構 P SDに伝達される。
なお減速機の回 15軸は、 後に説明するように図示しない減速ギヤやディファレ ンシャルギヤによって車輪に結合されている。
パワー制御ユニット 21は、 モータジェネレータ MG 1 , MG2にそれぞれ対 応して設けられるインバータ 14, 31と、 インバータ 14, 31に共通して設 けられる昇圧コンバータ 12とを含む。
ここで、 パワー制御ユニット 21において、 インバータ 14, 31の 3相ァー ム 1 5〜17と昇圧コンバータ 1 2のアーム部とは、 一体化されて半導体モジュ ール 10を構成する。 半導体モジュール 10は、 上述した図 1のモータ駆動装置 100に搭載される半導体モジュール 10と同一の構成であるために、 その詳細 な説明は省略する。
図 9は、 図 8における動力分割機構 P S Dおよび減速機 R Dの詳細を説明する ための模式図である。
図 9を参照して、 この車両駆動装置は、 モータジェネレータ MG 2と、 モータ ジェネレータ MG 2の回転軸に接続される減速機 RDと、 減速機 RDで減速され た回転軸の回転に応じて回転する車軸と、 エンジン ENGと、 モータジエネレー タ MG 1と、 減速機 RDとエンジン ENGとモータジェネレータ MG 1との間で 動力分配を行なう動力分割機構 P SDとを備える。 減速機 RDは、 モータジエネ レータ MG 2から動力分割機構 P SDへの減速比が、 たとえば 2倍以上である。 エンジン E NGのクランクシャフト 500とモータジェネレータ MG 1のロー タ 320とモータジェネレータ MG 2のロータ 370とは同じ軸を中心に回転す る。 '
動力分割機構 P S Dは、 図 9に示す例ではプラネタリギヤであり、 クランクシ ャフト 500に軸中心を貫通された中空のサンギヤ軸に結合されたサンギヤ 51 0と、 クランクシャフト 500と同軸上を回転可能に支持されているリングギヤ 5 2 0と、 サンギヤ 5 1 0とリングギヤ 5 2 0との間に配置され、 サンギヤ 5 1 0の外周を自転しながら公転するピニオンギヤ 5 3 0と、 クランクシャフト 5 0 0の端部に結合され各ピニオンギヤ 5 3 0の回転軸を支持するプラネタリキヤリ ャ 5 4 0とを含む。
動力分割機構 P S Dは、 サンギヤ 5 1 0に結合されたサンギヤ軸と、 リングギ ャ 5 2 0に結合されたリングギヤケースおよびプラネタリキヤリャ 5 4 0に結合 されたクランクシャフト 5 0 0の 3軸が動力の入出力軸とされる。 そしてこの 3 軸のうちいずれか 2軸へ入出力される動力が決定されると、 残りの 1軸に入出力 される動力は他の 2軸へ入出力される動力に基づいて定まる。
動力の取出用のカウンタドライブギヤ 7 0 0がリングギヤケースの外側に設け られ、 リングギヤ 5 2 0と一体的に回転する。 カウンタドライブギヤ 7 0 0は、 減速ギヤ R Gに接続されている。 そしてカウンタドライブギヤ 7 0 0と減速ギヤ R Gとの間で動力の伝達がなされる。 減速ギヤ R Gはディファレンシャルギヤ D E Fを駆動する。 また、 下り坂等では車輪の回転がディファレンシャルギヤ D E Fに伝達され、 減速ギヤ R Gはディファレンシャルギヤ D E Fによって駆動され る。
モータジェネレータ MG 1は、 回転磁界を形成するステータ 3 1 0と、 ステー タ 3 1 0内部に配置され複数個の永久磁石が埋め込まれているロータ 3 2 0とを 含む。 ステータ 3 1 0は、 ステータコア 3 3 0と、 ステータコア 3 3 0に卷回さ れる三相コイル 3 4 0とを含む。 ロータ 3 2 0は、 動力分割機構 P S Dのサンギ ャ 5 1 0と一体的に回転するサンギヤ軸に結合されている。 ステータコア 3 3 0 は、 電磁鋼板の薄板を積層して形成されており、 図示しないケースに固定されて いる。
モータジェネレータ MG 1は、 ロータ 3 2 0に埋め込まれた永久磁石による磁 界と三相コイル 3 4 0によって形成される磁界との相互作用によりロータ 3 2〇 を回転駆動する電動機として動作する。 またモータジェネレータ MG 1は、 永久 磁石による磁界とロータ 3 2 0の回転との相互作用により三相コイル 3 4 0の両 端に起電力を生じさせる発電機としても動作する。
モータジェネレータ MG 2は、 回転磁界を形成するステータ 3 6 0と、 ステー タ 3 6 0内部に配置され複数個の永久磁石が埋め込まれたロータ 3 7 0とを含む。 ステータ 3 6 0は、 ステータコア 3 8 0と、 ステータコア 3 8 0に卷回される三 相コイル 3 9 0とを含む。
ロータ 3 7 0は、 動力分割機構 P S Dのリングギヤ 5 2 0と一体的に回転する リングギヤケースに減速機 R Dによって結合されている。 ステータコア 3 8 0は、 たとえば電磁鋼板の薄板を積層して形成されており、 図示しないケースに固定さ れている。
モータジェネレータ MG 2は、 永久磁石による磁界とロータ 3 7 0の回転との 相互作用により三相コイル 3 9 0の両端に起電力を生じさせる発電機としても動 作する。 またモータジェネレータ MG 2は、 永久磁石による磁界と三相コイル 3 9 0によって形成される磁界との相互作用によりロータ 3 7 0を回転駆動する電 動機として動作する。
減速機 R Dは、 プラネタリギヤの回転要素の一つであるブラネタリキヤリャ 6 6 0が車両駆動装置のケースに固定された構造により減速を行なう。 すなわち、 減速機 R Dは、 ロータ 3 7 0のシャフトに結合されたサンギヤ 6 2 0と、 リング ギヤ 5 2 0と一体的に回転するリングギヤ 6 8 0と、 リングギヤ 6 8 0およびサ ンギヤ 6 2 0に嚙み合いサンギヤ 6 2 0の回転をリングギヤ 6 8 0に伝達するピ 二オンギヤ 6 4 0とを含む。
たとえば、 サンギヤ 6 2 0の歯数に対しリングギヤ 6 8 0の歯数を 2倍以上に することにより、 減速比を 2倍以上にすることができる。
図 1 0は、 この発明によるハイブリッド車両の駆動装置 2 0の外観を示す斜視 図である。
図 1 1は、 駆動装置 2 0の平面図である。
図 1 0、 図 1 1を参照して、 駆動装置 2 0のケースは、 ケース 1 0 4とケース 1 0 2とに分割可能に構成されている。 ケース 1 0 4は主としてモータジエネレ ータ MG 1を収容する部分であり、 ケース 1 0 2は、 主としてモータジエネレー タ MG 2およびパワー制御ュニット 2 1を収容する部分である。
ケース 1 0 4にはフランジ 1 0 6が形成され、 ケース 1 0 2にはフランジ 1 0 5が形成され、 フランジ 1 0 6とフランジ 1 0 5とがボルト等で固定されること により、 ケース 1 0 4とケース 1 0 2とが一体化される。
ケース 1 0 2にはパワー制御ュニット 2 1を組付けるための開口部 1 0 8が設 けられている。 この開口部 1 0 8の内部左側部分 (車両進行方向側) にはコンデ ンサ C 2が収容され、 中央部分には半導体モジュール 1 0と端子台 1 1 6 , 1 1 8とが収容され、 右側部分にはリアタトル L 1が収容されている。 なお、 この開 口部 1 0 8は車両搭載状態においては蓋により閉じられている。 また、 コンデン サ C 2を開口部 1 0 8の内部右側部分に収容し、 かつ、 リァク トル 1を半導体 モジュール 1 0の左側部分に収容するように入れ換えても良い。
つまり、 リアクトルし 1はモータジェネレータ MG 1および MG 2の回転軸の 一方側に配置され、 コンデンサ C 2は回転軸の他方側に配置される。 そしてコン デンサ C 2とリアク トルし 1との間の領域に半導体モジュール 1 0が配置されて いる。 半導体モジュール 1ひの下方にはモータジェネレータ MG 2が配置されて レ、る。
半導体モジュール 1 0は、 図 2で説明したものと同様の構成を有する。
具体的には、 絶縁基板 5 0の上面にはインバータ 1 4, 3 1のスィツチング素 子 Q 1〜Q 8が配置される。 そして、 インバ一タ 1 4とインバータ 3 1との間の 領域には、 絶縁基板 5 0の法線方向 (紙面垂直方向に相当) に重ねて配置された バスバー 4 0 P, 4 O Nが設けられている。
なお、 積層構造の上層側に配置され、 電源ライン L N 1を構成するバスバー 4 0 Pは、 金属部材からなる。 一方、 下層側に配置され、 アースライン L N 2を構 成するバスバー 4 O Nは、 配線層からなる。
そして、 絶縁基板 5 0の下面には、 放熱板 6 0を介してヒートシンク 7 0が設 けられる (ともに図示せず) 。 ヒートシンク 7 0に設けられた複数の溝 7 2は、 通水路を構成しており、 通水路への冷却水入口 1 1 4と冷却水出口 1 1 2とがケ ース 1 0 2に設けられている。 この入口や出口などは、 たとえば、 ケース 1 0 2 に対し、 フランジ部 1 0 6, 1 0 5を貫通させてユニオンナット等を打ち込んで 構成される。
なお、 通水路を、 ヒートシンク 7 0を介さずに放熱板 6 0の下面を直接的に冷 却水が通流するように構成しても良い。 このような構成とすることにより、 半導 体モジュール 1 0の法線方向の長さを更に低減することができる。
さらに、 インバータ 1 4の U相アーム 1 5、 V相アーム 1 6、 W相アーム 1 7 からはそれぞれ 1本ずつのバスバーがモータジェネレータ MG 2のステータコィ ルにつながる端子台 1 1 6に向けて設けられている。 同様にインバータ 3 1から も 3本のバスバーがモータジェネレータ MG 1のステータコイルにつながる端子 台 1 1 8に向けて設けられている。
図 1 2は、 駆動装置 2 0を図 1 1の X I方向から見た側面図である。
図 1 2を参照して、 ケース 1 0 2にはモータジェネレータ組付け用および保守 用の開口部 1 0 9が設けられており、 この開口部 1 0 9は車両搭載状態において は蓋により閉じられている。
開口部 1 0 9の内部にはモータジェネレータ MG 2が配置されている。 U, V: W相のバスバーが接続されるステータ 3 6 0の内部にロータ 3 7 0が配置されて いる。 口 ""タ 3 7 0の中央部分には中空のシャフト 6 0—0が見えている。
図 1 2に示すように、 ケース 1 0 2のパワー制御ュニット 2 1を収容する収容 室にはモータジェネレータ MG 2のステータ 3 6 0が大きく食い込んでいるので. モータジェネレータ MG 2の一方側にはリアタ トル L 1が配置され、 かつ、 他方 側にはコンデンサ C 2が配置され、 大型部品を効率良く収容している。 また、 モ ータジェネレータ MG 2のステータ 3 6 0の上方には、 半導体モジュール 1 0が 配置される。 .
このような配置構造とすることにより、 パワー制御ュ-ット 2 1を構成するコ ンデンサ C 2、 半導体モジュール 1 0およびリアクトル 1は、 車両駆動装置を 車両に搭載したときの水平方向の寸法の内側に配置される。 なお、 水平方向の寸 法は、 ケースのダンパ 1 2 4、 モータジェネレータ MG 2、 減速ギヤ R Gおよび ディファレンシャルギヤ D E Fを収容する部分の投影部によって定まる。 これに より、 コンパクトなハイプリッド車両の駆動装置が実現される。
また、 車両搭載時の鉛直方向において、 半導体モジユー θは、 ケースの半 導体モジュール 1 0を収容する部分の投影部の車両搭載時の高さが、 残りのケー スの空間、 すなわち、 ダンパ 1 2 4、 モータジェネレータ MG 2、 減速ギヤ R G およびディファレンシャルギヤ D E Fを収容する部分の車両搭載時の高さを少な くとも超えないように、 配置されている。 かかる配置は、 電源用のバスバー 4 0 P , 4 O Nの一方を配線層で形成したことによって、 半導体モジュール 1 0の法 線方向の長さが大幅に低減されたことに起因するものである。
これによれば、 パワー制御ュニット 2 1を構成する半導体モジュール 1 0、 リ ァク トル L 1およびコンデンサ C 2は、 ディファレンシャルギヤ D E Fを収容す るケース部分の外縁とダンパ 1 2 4を収容するケ一ス部分の外縁とで定まる鉛直 方向の寸法の内側に配置されていることがわかる。 したがって、 車両の重心を低 くすることができ、 走行安定性を増すことができる。
[変更例]
上述したハイプリッド車両の駆動装置においては、 半導体モジュール 1 0を含 むパワー制御ュニット 2 1の冷却系として、 一般的な水冷系を採用した。
ここで、 スィツチング素子としてたとえば S i C— MO Sなどの高温動作可能 な素子を利用すれば、 モータジエネレータの耐熱温度と同程度の温度で動作させ ることが可能となる。 したがって、 冷却系としてパワー制御ユニット 2 1専用の 水冷系を廃して、 モータジェネレータと共通の油冷系を採用することが可能とな る。 この結果、 装置全体をよりコンパク トな構成にすることができる。 また、 半 導体モジュール 1 0の部分に冷却水の経路を設けなくても冷却が可能となるため、 車両の重心をより低くして走行安定性を向上させることができる。
以下に、 この発明による半導体モジュールが適用されたハイプリッド車両の駆 動装置の変更例として、 パワー制御ュニット 2 1の冷却系に油冷系が採用された ハイプリッド車両の駆動装置について説明する ό
本変更例では、 半導体モジユーノレ 1 0を含むパワー制御ュニット 2 1およびモ —タジェネレータ MG 1, MG 2は、 一部が輻射等で放熱されるが、 主として潤 滑油との熱交換により冷却が行なわれる。
したがって、 ノヽ。ヮー制御ユニット 2 1およびモータジェネレータ MG 1 , MG 2において生じた熱は、 潤滑油によってモータジェネレータ MG 1のケースに伝 達され、 そのケースからエンジン E N Gのシリンダブ口ックにされに伝達される。 シリンダブ口ックは冷却水によつて冷却されるので、 温度上昇が抑制される、 こ の結果、 パワー制御ユニット 2 1およびモータジェネレータ MG 1 , MG 2の温 度度もも上上昇昇がが抑抑制制さされれるるここととににななるる。。
図図 11 33はは、、 駆駆動動装装置置 22 00ににおおけけるるオオイイルル循循環環経経路路をを示示ししたた断断面面図図ででああるる。。
図図 11 33をを参参照照ししてて、、 モモーータタジジェェネネレレーータタ MMGG 22をを収収容容すするる収収容容室室ととパパワワーー制制御御 ュュュュッットト 22 11をを収収容容すするる収収容容室室ととのの境境界界部部分分とと、、 減減速速ギギヤヤ RR GGおおよよびびデディィフファァレレ ンンシシャャルルギギヤヤ DD EE FFをを収収容容すするる部部分分のの各各ケケーースス部部分分断断面面がが示示さされれてていいるる。。
図図 11 44はは、、 図図 11 33のの XX II VV—— XX II VVににおおけけるる部部分分断断面面図図ででああるる。。
図図 11 33、、 図図 11 44をを参参照照ししてて、、 ケケーースス 11 00 22ににははパパワワーー制制御御ユユニニッットト 22 11をを収収容容 すするる収収容容室室ととモモーータタジジェェネネレレーータタ MMGG 22をを収収容容すするる収収容容室室ととのの 22つつのの空空間間をを仕仕切切 るる隔隔壁壁 22 11 00がが設設けけらられれてていいるる。。 ここのの隔隔壁壁 22 11 00のの上上面面部部分分ににはは、、 半半導導体体モモジジュュ ーールル 11 00をを冷冷却却すするるたためめののオオイイルル通通路路 11 22 22がが設設けけらられれ、、 ここののオオイイルル通通路路 11 22 22 はは、、 オオイイルル溜溜りり 44 77 00おおよよびびモモーータタジジエエネネレレ^^ ""タタ MMGG 22のの収収容容室室とと連連通通ししてていいるる,, モモーータタジジェェネネレレーータタ MMGG 22のの潤潤滑滑油油がが半半導導体体モモジジュューールル 11 00側側にに漏漏れれ出出なないいよようう にに半半導導体体モモジジュューールル 11 00はは、、 隔隔壁壁 22 11 00とと液液状状ガガススケケッットト等等ででシシーールルさされれるる。。 潤潤滑滑油油はは、、 ケケーースス底底部部ににオオイイルルレレベベルル OO LLままでで貯貯蔵蔵さされれてていいるる。。 ここののケケーースス底底 部部ははオオイイルルパパンンにに該該当当すするる。。 ななおお、、 ケケーースス底底部部にに別別途途オオイイルルパパンンをを設設けけるる構構成成とと ししててもも良良いい。。
ロローータタ 33 77 00のの回回転転等等にに応応じじてて図図 99ののカカウウンンタタドドラライイブブギギヤヤ 77 00 00がが回回転転さされれ るる。。 カカウウンンタタドドラライイブブギギヤヤ 77 00 00にによよっっててカカウウンンタタドドリリブブンンギギヤヤ 11 33 22がが回回転転ささ れれ、、 カカウウンンタタドドリリブブンンギギヤヤ 11 33 22のの回回転転にに応応
Figure imgf000025_0001
が回転する。
すると図 1 3の矢印に示すように、
Figure imgf000025_0002
を 跳ね上げる。 ケースの上部にはオイルキャッチ板 4 8 6が設けられており、 ディ ファレンシャルギヤ D E Fによって搔き揚げられたオイルはオイル溜り 4 7 0に 溜められる。 オイル溜り 4 7 0は、 潤滑油の循環経路において半導体モジュール 1 0を含むパワー制御ュニット 2 1の上流部に位置する。 オイル溜り 4 7 0には オイル出口 4 7 2が設けられており、 オイル出口 4 7 2は図 1 4に示すように半 導体モジュール 1 0の下部の空間へのオイル入口 4 7 4 , 4 7 6 , 4 7 8と通じ ている。
半導体モジュール 1 0のスイッチング素子の実装面と反対側の裏面には、 オイ ルに熱を放熱するためのフィン 4 9 0 , 4 9 2 , 4 9 4が設けられており、 スィ ツチング素子の熱はこれらフィンを介して潤滑油に放熱される。 その後潤滑油は 隔壁 2 1 0に設けられたオイル出口 4 8 0 , 4 8 3 4 8 4を通り、 ステータ 3 6 0の上部に注がれる。 そして、 潤滑油はステータ 3 6 0の外周に沿って流れ、 再びケース底部に戻される。
以上に説明したように、 モータジエネレータを駆動するときに高温となる半導 体モジュール 1 0は、 モータジェネレータの潤滑油を利用して冷却される。 そし て、 モータジェネレータの内部を循環する潤滑油の熱は、 エンジンのハウジング 側に放熱される。
これにより、 一体化したモータおよびインバータの部分に冷却水の経路を設け なくても冷却が可能となる。 そのため、 半導体モジュール 1 0においては、 水冷 系において通水路を構成していたヒートシンク 7 0が不要となる。 この結果、 半 導体モジュール 1 0の法線方向の長さを更に低減することができる。 したがって、 車両の重心をさらに低くできるとともに、 省スペース化さらには設計の自由度を 向上させることができる。
なお、 上記の実施の形態においては、 半導体モジュールがモータ駆動装置およ びハイブリッド車両の駆動装置に用いられる場合を代表的に例示して説明した力 この発明による半導体モジュールの適用範囲は、 これらに限られるものではなく、 たとえば車両システムにおいてパヮ 半導体素子が用いられるオルタネータや点 火装置においてもこの発明を適用することができる。
今回開示された実施の形態はすべての点で例示であつて制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。 産業上の利用可能性
この発明は、 モータ駆動装置に搭載されるインバータゃコンバータを構成する 半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置に適用するこ とができる。

Claims

請求の範囲
1. 電源 (B) の一方極に接続される第 1電源線 (LN1) と、
前記電源 (B) の他方極に接続される第 2電源線 (LN2) と、
5 前記第 1電源線 (LN1) と前記第 2電源線 (LN2) との間に接続される第 1および第 2のスイッチング素子 (Q3〜Q8) と、
前記第 1および第 2のスイッチング素子 (Q3〜Q8) が搭載された絶縁基板 (50) とを備え、
前記第 1電源線 (LN 1) は、 前記第 1のスイッチング素子 (Q3, Q5, Q 10 7) の第 1電極層に結合されるバスバー (40 P) からなり、
前記第 2電源線 (LN2) は、 前記絶縁基板 (50) 上に配設され、 前記第 2 のスィツチング素子 (Q4, Q6, Q 8) の第 2電極層に結合される配線層 (4 ON) からなる、 半導体モジユーノレ。
2. 前記絶縁基板 (50) 上に配設され、 前記第 1および第 2のスイッチング素 15 子 (Q3〜Q8) の制御電極に制御信号を入力するための信号線層と、
前記第 1電源線 (LN1) 、 前記第 1および第 2のスイッチング素子 (Q3〜 Q8) および前記第 2·電源線 (LN2) を導通するための第 1導線部材 (WL 1) と、
前記第 1および第 2のスイッチング素子 (Q3〜Q8) の制御電極と前記信号 20 線層とを導通するための第 2導線部材 (WL 2) とをさらに備え、
前記信号線層は、 前記第 1導線部材 (W L 1 ) と前記第 2導線部材 (W L 2 ) . との延在方向が互いに略垂直となるように配置される、 請求の範囲 1に記載の半 導体モジュ—ノレ。 ,
3. 前記第 1電極層と前記第 2電極層とは、 前記スイッチング素子の通過電流が 25 互いに逆方向に流れるように配置される、 請求の範囲 2に記載の半導体モジユー ル0 ,
,
4. 前記絶縁基板 (50) 下面に装着された放熱部材 (60) をさらに備える、 請求の範囲 1に記載の半導体モジュール。
5. 内燃機関 (ENG) のクランクシャフトが結合されるダンパ (124) と、 前記ダンパ (124) の回転軸とその回転軸が重なるように配置される回転電 機 (MG2) と、
前記内燃機関 (ENG) の発生した動力に前記回転電機 (MG2) の発生した 動力を合成して駆動軸に伝達する動力伝達機構 (P SD, RG, DEF) と、 5 前記ダンバ (1 24) 、 前記回転電機 (MG2) および前記動力伝達機構 (P SD, RG, DEF) を収容するケース (102, 104) と、
半導体モジュール (10) を含み、 前記回転電機 (MG2) の制御を行なうパ ヮー制御ユニット (21) とを備え、
前記半導体モジュール (10) は、
10 電源 (B) の一方極に接続される第 1電源線 (LN1) と、
前記電源 (B) の他方極に接続される第 2電源線 (LN2) と、
前記第 1電源線 (LN1) と前記第 2電源線 (LN2) との間に接続される第 1および第 2のスィツチング素子 (Q 3〜Q 8) と、
前記第 1および第 2のスイッチング素子 (Q3〜Q8) が搭載された絶縁基板 15 (50) とを含み、
前記第 1電源線 ( L N 1 ) は、 前記第 1のスィツチング素子 (Q 3, Q 5, Q 7) の第 1電極層に結合されるバスバー (40 P) からなり、 かつ、 前記第 2電 源線 (LN2) は、 前記絶 f彖基板 (50) 上に酉己設され、 前記第 2のスィッチン グ素子 (Q4, Q6, Q 8) の第 2電極層に結合される配線層 (4 ON) からな 20 り、
前記パワー制御ユニット (21) は、 前記回転軸方向から投影した場合に、 前 記ケース (102, 104) の前記ダンパ (124) 、 前記回転電機 (MG2) 、 および前記動力伝達機構 (P SD, RG, DEF) を収容する部分の投影部の車 両搭载時の水平方向の寸法に収まるように、 前記ケース (102, 104) 内に 25 配置される、 ハイブリッド車両の駆動装置。
6. 前記半導体モジュール (10) は、
, 前記絶縁基板 (50) 上に配設され、 前記第 1および第 2のスィッチング素子
(Q 3〜Q 8 ) の制御電極に制御信号を入力するための信号線層と、
前記第 1電源線 (LN 1) 、 前記第 1および第 2のスイッチング素子 (Q3〜 Q8) および前記第 2電源線 (LN2) を導通するための第 1導線部材 (WL 1) と、
前記第 1および第 2のスィッチング素子 ( Q 3〜 Q 8 ) の制御電極と前記信号 線層とを導通するための第 2導線部材 (WL2) とをさらに含み、
5 前記信号線層は、 前記第 1導線部材 (WL 1) と前記第 2導線部材 (WL 2) との延在方向が互いに略垂直となるように配置される、 請求の範囲 5に記載のハ イブリツド車両の駆動装置。
7. 前記第 1電極層と前記第 2電極層とは、 前記スイッチング素子の通過電流が 互いに逆方向に流れるように配置される、 請求の範囲 6に記載のハイプリッド車
10 両の駆動装置。
8. 前記半導体モジュール (10) は、 前記絶縁基板 (50) 下面に装着された 放熱部材 (60) をさらに含む、 ·請求の範囲 5に記載のハイブリッド車両の駆動 装置。
9. 内燃機関 (ENG) のクランクシャフトが結合されるダンパ (124) と、 15 前記ダンパ (124) の回転軸とその回転軸が重なるように配置される回転電 機 (MG 2) と、
前記内燃機関 (ENG) の発生した動力に前記回転電機 (MG2) の発生した 動力を合成して駆動軸に伝達する動力伝達機構 (PSD, RG, DEF) と、 前記ダンバ (1 24) 、 前記回転電機 (MG2) および前記動力伝達機構 (P 20 SD, RG, DEF) を収容するケース (102, 104) と、
半導体モジユーノレ (10) を含み、 前記回転電機 (MG2) の制御を行なうパ ヮー制御ユニット (21) とを備え、
前記半導体モジュール (10) は、
電源 (B) の一方極に接続される第 1電源線 (LN1) と、
25 前記電源 (B) の他方極に接続される第 2電源線 (LN2) と、
前記第 1電源線 (LN 1) と前記第 2電源線 (LN2) との間に接続される第 , 1および第 2のスイッチング素子 (Q3〜Q8) と、
前記第 1および第 2のスイッチング素子 (Q3〜Q8) が搭載された絶縁基板 (50) とを含み、 前記第 1電源線 (LN1) は、 前記第 1のスイッチング素子 (Q3, Q5, Q 7) の第 1電極層に結合されるバスバー (40 P) からなり、 かつ、 前記第 2電 源線 (LN2) は、 前記絶緣基板 (50) 上に配設され、 前記第 2のスィッチン グ素子 (Q4, Q6, Q8) の第 2電極層に結合される配線層 (4 ON) 力 らな 5 り、.
前記パワー制御ユニット (21) は、 前記回転軸方向から投影した場合に、 前 記ケース (102, 104) の前記ダンパ (124) 、 前記回転電機 (MG2) 、 および前記動力伝達機構 (PSD, RG, DEF) を収容する部分の投影部の車 両搭載時の鉛直方向の寸法に収まるように、 前記ケース (102, 104) 内に 10 配置される、 ハイブリッド車両の駆動装置。
10. 前記半導体モジュール (10) は、
前記絶縁基板 (50) 上に配設され、 前記第 1および第 2のスイッチング素子 (Q 3〜Q 8 ) の制御電極に制御信号を入力するための信号線層と、
前記第 1電源線 (LN1) 、 前記第 1および第 2のスイッチング素子 (Q3~ 15 Q8) および前記第 2電源線 (LN2) を導通するための第 1導線部材 (WL 1) と、
前記第 1および第 2のスイッチング素子 (Q3〜Q8) の制御電極と前記信号 線層とを導通するための第 2導線部材 (WL 2) とをさらに含み、
前記信号線層は、 前記第 1導線部材 (WL 1) と前記第 2導線部材 ' (W L 2 ) 20 との延在方向が互いに略垂直となるように配置される、 請求の範囲 9に記載のハ イブリツド車両の駆動装置。
1 1. 前記第 1電極層と前記第 2電極層とは、 前記スイツチング素子の通過電流 が互いに逆方向に流れるように配置される、 請求の範囲 10に記載のハイプリッ ド車両の駆動装置。
25 12. 前記半導体モジュール (10) は、 前記絶縁基板'(50) 下面に装着され た放熱部材 (60) をさらに含む、 請求の範囲 9に記載のハイプリッド車両の駆
, 動装置。
13. 前記パワー制御ュニット (21) は、
前記回転電機 (MG2) の回転中心軸に対する一方側に配置されるリアタ トル (L I) と、
前記回転電機 (MG2) の前記回転中心軸に対する他方側に配置されるコンデ ンサ (C2) とをさらに含む、 請求の範囲 5から請求の範囲 12のいずれか 1項
PCT/JP2007/053130 2006-02-17 2007-02-14 半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置 WO2007094508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112007000378T DE112007000378T5 (de) 2006-02-17 2007-02-14 Halbleitermodul und Hybridfahrzeugantriebsvorrichtung, die dieses umfasst
CN2007800058388A CN101385142B (zh) 2006-02-17 2007-02-14 半导体模组和具有半导体模组的混合动力车辆驱动装置
US12/223,606 US7932624B2 (en) 2006-02-17 2007-02-14 Semiconductor module, and hybrid vehicle drive device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-041145 2006-02-17
JP2006041145A JP2007220976A (ja) 2006-02-17 2006-02-17 半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置

Publications (1)

Publication Number Publication Date
WO2007094508A1 true WO2007094508A1 (ja) 2007-08-23

Family

ID=38371677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053130 WO2007094508A1 (ja) 2006-02-17 2007-02-14 半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置

Country Status (7)

Country Link
US (1) US7932624B2 (ja)
JP (1) JP2007220976A (ja)
KR (1) KR101022000B1 (ja)
CN (1) CN101385142B (ja)
DE (1) DE112007000378T5 (ja)
TW (1) TW200737636A (ja)
WO (1) WO2007094508A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081273A (ja) * 2007-09-26 2009-04-16 Rohm Co Ltd 半導体装置
EP2233337A1 (en) * 2007-12-05 2010-09-29 Toyota Jidosha Kabushiki Kaisha Drive device for vehicle

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191689B2 (ja) * 2005-02-25 2008-12-03 三菱重工業株式会社 インバータ装置
JP4297951B2 (ja) * 2007-05-25 2009-07-15 トヨタ自動車株式会社 車両の駆動システム
KR101482481B1 (ko) 2008-11-18 2015-01-15 스미도모쥬기가이고교 가부시키가이샤 작업기계
JP5329187B2 (ja) * 2008-11-19 2013-10-30 住友重機械工業株式会社 ハイブリッド型建設機械
JP5306786B2 (ja) * 2008-11-19 2013-10-02 住友重機械工業株式会社 サーボ制御システム及び作業機械
DE202009004186U1 (de) * 2009-03-25 2010-08-12 Liebherr-Elektronik Gmbh Spannungswandler
JP5407881B2 (ja) * 2010-01-13 2014-02-05 トヨタ自動車株式会社 パワーモジュール製造方法およびその方法により製造したパワーモジュール
JP2011192809A (ja) * 2010-03-15 2011-09-29 Omron Corp パワーコンディショナー装置およびこの装置に使用するモジュール基板構造
CN201708684U (zh) * 2010-06-07 2011-01-12 柳州五菱汽车有限责任公司 电动汽车驱动控制器散热***
US9822580B2 (en) * 2011-02-22 2017-11-21 Guardian Glass, LLC Localized heating techniques incorporating tunable infrared element(s) for vacuum insulating glass units, and/or apparatuses for same
JP5464159B2 (ja) 2011-03-08 2014-04-09 三菱電機株式会社 パワーモジュール
JP5517988B2 (ja) * 2011-04-22 2014-06-11 日立オートモティブシステムズ株式会社 エンジン始動装置
US11161403B2 (en) 2012-02-03 2021-11-02 Ge Hybrid Technologies, Llc Apparatus and method for delivering power in a hybrid vehicle
WO2013171996A1 (ja) 2012-05-16 2013-11-21 パナソニック株式会社 電力用半導体モジュール
US8981727B2 (en) 2012-05-21 2015-03-17 General Electric Company Method and apparatus for charging multiple energy storage devices
JP5862502B2 (ja) * 2012-07-27 2016-02-16 アイシン・エィ・ダブリュ株式会社 車両用駆動装置
US20140077611A1 (en) * 2012-09-14 2014-03-20 Henry Todd Young Capacitor bank, laminated bus, and power supply apparatus
JP5858309B2 (ja) * 2012-11-28 2016-02-10 富士電機株式会社 電力変換システム及びその制御方法
CN103847530B (zh) 2012-12-03 2017-04-12 通用电气公司 电驱动***及其能量管理方法
JP5862606B2 (ja) * 2013-05-17 2016-02-16 株式会社デンソー 電力変換装置
JP6102691B2 (ja) * 2013-11-15 2017-03-29 株式会社デンソー 電力変換装置
US9834098B2 (en) 2014-01-30 2017-12-05 General Electric Company Vehicle propulsion system with multi-channel DC bus and method of manufacturing same
JP6318657B2 (ja) * 2014-01-31 2018-05-09 トヨタ自動車株式会社 電力制御装置
CN103825479A (zh) * 2014-02-20 2014-05-28 华为技术有限公司 一种功率变换器
CN106489203B (zh) 2014-07-03 2018-09-18 日产自动车株式会社 半桥式功率半导体模块及其制造方法
CN107155372B (zh) * 2014-11-28 2019-10-01 日产自动车株式会社 半桥功率半导体模块及其制造方法
US9893646B2 (en) 2015-09-30 2018-02-13 General Electric Company System for a low profile, low inductance power switching module
US11025031B2 (en) 2016-11-29 2021-06-01 Leonardo Electronics Us Inc. Dual junction fiber-coupled laser diode and related methods
US11406004B2 (en) * 2018-08-13 2022-08-02 Leonardo Electronics Us Inc. Use of metal-core printed circuit board (PCB) for generation of ultra-narrow, high-current pulse driver
DE102019121924A1 (de) 2018-08-14 2020-02-20 Lasertel, Inc. Laserbaugruppe und zugehörige verfahren
US11223305B2 (en) * 2018-11-16 2022-01-11 Toyota Jidosha Kabushiki Kaisha Vehicle driving device
WO2020137054A1 (ja) * 2018-12-27 2020-07-02 本田技研工業株式会社 電動二輪車のモータ冷却構造
US11296481B2 (en) 2019-01-09 2022-04-05 Leonardo Electronics Us Inc. Divergence reshaping array
US11752571B1 (en) 2019-06-07 2023-09-12 Leonardo Electronics Us Inc. Coherent beam coupler
US10833596B1 (en) * 2019-06-10 2020-11-10 Ford Global Technologies, Llc Integrated power unit for a power supply device
CN113097154A (zh) * 2021-03-22 2021-07-09 西安交通大学 一种双向开关功率模块及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332688A (ja) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd 電力配線構造及び半導体装置
JP2002217364A (ja) * 2001-01-15 2002-08-02 Nissan Motor Co Ltd 半導体実装構造
JP2003197858A (ja) * 2001-12-25 2003-07-11 Mitsubishi Electric Corp 電力半導体装置及びその製造方法
JP2004014862A (ja) * 2002-06-07 2004-01-15 Nissan Motor Co Ltd 配線構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3380117B2 (ja) * 1995-07-24 2003-02-24 セイコーインスツルメンツ株式会社 半導体装置とその製造方法
JPH11187542A (ja) 1997-12-18 1999-07-09 Furukawa Electric Co Ltd:The バスバー配線板の製造方法
JPH11299056A (ja) 1998-04-15 1999-10-29 Harness Syst Tech Res Ltd 電気接続箱のバスバー構造
DE10049723A1 (de) 2000-09-29 2002-04-11 Daimler Chrysler Ag Anordnung von Leistungshalbleitern zum Steuern eines elektrischen Energieflusses
JP3809346B2 (ja) 2001-06-15 2006-08-16 トヨタ自動車株式会社 スイッチング回路
JP4523240B2 (ja) 2003-04-23 2010-08-11 三菱電機株式会社 車両用電動発電装置
JP2005033882A (ja) 2003-07-09 2005-02-03 Sumitomo Wiring Syst Ltd 電気接続箱の回路構造
JP4658481B2 (ja) * 2004-01-16 2011-03-23 ルネサスエレクトロニクス株式会社 半導体装置
US7298027B2 (en) * 2004-09-02 2007-11-20 International Rectifier Corporation SMT three phase inverter package and lead frame

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332688A (ja) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd 電力配線構造及び半導体装置
JP2002217364A (ja) * 2001-01-15 2002-08-02 Nissan Motor Co Ltd 半導体実装構造
JP2003197858A (ja) * 2001-12-25 2003-07-11 Mitsubishi Electric Corp 電力半導体装置及びその製造方法
JP2004014862A (ja) * 2002-06-07 2004-01-15 Nissan Motor Co Ltd 配線構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009081273A (ja) * 2007-09-26 2009-04-16 Rohm Co Ltd 半導体装置
EP2233337A1 (en) * 2007-12-05 2010-09-29 Toyota Jidosha Kabushiki Kaisha Drive device for vehicle
US20100283337A1 (en) * 2007-12-05 2010-11-11 Toyota Jidosha Kabushiki Kaisha Drive device for vehicle
EP2233337A4 (en) * 2007-12-05 2013-06-05 Toyota Motor Co Ltd DRIVING DEVICE FOR VEHICLE
US8643235B2 (en) * 2007-12-05 2014-02-04 Toyota Jidosha Kabushiki Kaisha Drive device for vehicle

Also Published As

Publication number Publication date
US20090015185A1 (en) 2009-01-15
TWI347057B (ja) 2011-08-11
KR101022000B1 (ko) 2011-03-16
TW200737636A (en) 2007-10-01
JP2007220976A (ja) 2007-08-30
US7932624B2 (en) 2011-04-26
DE112007000378T5 (de) 2008-12-24
CN101385142A (zh) 2009-03-11
CN101385142B (zh) 2011-07-06
KR20080098065A (ko) 2008-11-06

Similar Documents

Publication Publication Date Title
WO2007094508A1 (ja) 半導体モジュールおよびそれを備えるハイブリッド車両の駆動装置
JP4645602B2 (ja) 車両の駆動装置
JP4591428B2 (ja) 車両の駆動装置
JP4539531B2 (ja) 車両の駆動装置
JP4297951B2 (ja) 車両の駆動システム
JP5244876B2 (ja) 電力変換装置および電動車両
JP5155426B2 (ja) 電力変換装置
JP4692263B2 (ja) 車両の駆動装置
JP5856410B2 (ja) 電気自動車用の電力変換装置および電気自動車
JP5250442B2 (ja) 電力変換装置
JP4696885B2 (ja) 車両の駆動装置
JP4645415B2 (ja) 車両の駆動装置
JP2011177024A (ja) 電力変換装置
JP4997056B2 (ja) バスバー構造及びそれを用いた電力変換装置
JP3829757B2 (ja) 車輌用駆動装置および電力変換ユニット
JP2007131235A (ja) ハイブリッド車両の駆動装置
JP7276686B2 (ja) 車両駆動装置
JP7390277B2 (ja) 回転電機ユニット
WO2023054438A1 (ja) 車両駆動装置
JP2022094029A (ja) 冷却器
JP2005333782A (ja) インバータ一体型回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12223606

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780005838.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087022584

Country of ref document: KR

RET De translation (de og part 6b)

Ref document number: 112007000378

Country of ref document: DE

Date of ref document: 20081224

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07714630

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)