US20120282179A1 - Methods of Using C-Met Modulators - Google Patents

Methods of Using C-Met Modulators Download PDF

Info

Publication number
US20120282179A1
US20120282179A1 US13/389,266 US201013389266A US2012282179A1 US 20120282179 A1 US20120282179 A1 US 20120282179A1 US 201013389266 A US201013389266 A US 201013389266A US 2012282179 A1 US2012282179 A1 US 2012282179A1
Authority
US
United States
Prior art keywords
administered
cyclopropane
phenyl
dicarboxamide
methyloxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/389,266
Other languages
English (en)
Inventor
Dana T. Aftab
Thomas Mueller
Aaron Weitzman
Jaymes Holland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exelixis Inc
Original Assignee
Exelixis Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exelixis Inc filed Critical Exelixis Inc
Priority to US13/389,266 priority Critical patent/US20120282179A1/en
Assigned to EXELIXIS, INC. reassignment EXELIXIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AFTAB, DANA T., WEITZMAN, AARON, HOLLAND, JAYMES, MUELLER, THOMAS
Publication of US20120282179A1 publication Critical patent/US20120282179A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/22Oxygen atoms attached in position 2 or 4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41881,3-Diazoles condensed with other heterocyclic ring systems, e.g. biotin, sorbinil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/47064-Aminoquinolines; 8-Aminoquinolines, e.g. chloroquine, primaquine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/01Hydrocarbons
    • A61K31/015Hydrocarbons carbocyclic

Definitions

  • This invention relates to methods of using c-Met modulators, and specifically c-Met modulators in combination with other anti-cancer agents and/or radiation, which can be useful for the modulation of various cellular activities and for the treatment of various diseases as described in the specification.
  • Protein kinase signal transduction is of particular relevance in, for example, thyroid, gastric, head and neck, lung, breast, prostate, and colorectal cancers, as well as in the growth and proliferation of brain tumor cells.
  • Protein kinases can be categorized as receptor type or non-receptor type.
  • Receptor-type tyrosine kinases are comprised of a large number of transmembrane receptors with diverse biological activity.
  • receptor-type tyrosine kinases see Plowman et al., DN&P 7(6): 334-339, 1994. Since protein kinases and their ligands play critical roles in various cellular activities, deregulation of protein kinase enzymatic activity can lead to altered cellular properties, such as uncontrolled cell growth associated with cancer.
  • protein kinases are attractive targets for small molecule drug discovery. Particularly attractive targets for small-molecule modulation with respect to antiangiogenic and antiproliferative activity include receptor type tyrosine kinases Ret, c-Met, and VEGFR2.
  • the kinase c-Met is the prototypic member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) which include Met, Ron and Sea.
  • RTKs heterodimeric receptor tyrosine kinases
  • the endogenous ligand for c-Met is the hepatocyte growth factor (HGF), a potent inducer of angiogenisis. Binding of HGF to c-Met induces activation of the receptor via autophosphorylation resulting in an increase of receptor dependent signaling, which promotes cell growth and invasion.
  • Anti-HGF antibodies or HGF antagonists have been shown to inhibit tumor metastasis in vivo (See: Maulik et al Cytokine & Growth Factor Reviews 2002 13, 41-59).
  • c-Met, VEGFR2 and/or Ret overexpression has been demonstrated on a wide variety of tumor types including breast, colon, renal, lung, squamous cell myeloid leukemia, hemangiomas, melanomas, astrocytomas, and glioblastomas.
  • the Ret protein is a transmembrane receptor with tyrosine kinase activity. Ret is mutated in most familial forms of medullary thyroid cancer. These mutations activate the kinase function of Ret and covert it into an oncogene product.
  • Kinase KDR refers to kinase insert domain receptor tyrosine kinase
  • flt-4 fms-like tyrosine kinase-4
  • VEGF vascular endothelial growth factor
  • Glioblastoma is the most aggressive form of primary brain tumor, with an incidence of 2.3 per 100,000 persons per year in the United Sates. The median survival time following diagnosis is 12-15 months with current standard of care involving surgery followed by radiation. It has been reported that targeting the MET pathway potentiates GBM response to gamma-radiation (Lal et al, 2005). It has also been report that MET expression correlate with high grade GBM tumors (Hirose et al, 1998) and expression of HGF and MET correlate with malignancy (Koochekpour et al, 1995; Abounader et al, 2001, Uchinokura et al, 2006). It has also been reported that the glioma derived stem cell factor induces angiogenesis within the brain. SCF and VEGF may have complementary roles in the robust angiogenic response in GBM (Sun et al, 2006).
  • small-molecule compounds that specifically inhibit, regulate and/or modulate the signal transduction of kinases, particularly including Ret, c-Met and VEGFR2 described above, are particularly desirable as a means to treat or prevent disease states associated with abnormal cell proliferation and angiogenesis.
  • One such small-molecule is N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, which has the chemical structure:
  • WO 2005/030140 describes the synthesis of N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide (Examples 25, 37, 38, and 48) and also discloses the therapeutic activity of this molecule to inhibit, regulate and/or modulate the signal transduction of kinases, (Assays, Table 4, entry 289).
  • Compound (I) has been measured to have an c-Met IC 50 value of 1.3 nanomolar (nM) and a Ret IC 50 value of 5.2 nanomolar (nM).
  • One aspect of this disclosure relates to methods of treating diseases, as defined in the detailed description herein below.
  • These methods of treatment include administering a Compound of Formula I, wherein the compound of Formula I is as define in the detailed description of the invention, to a patient in need of the treatment, in combination with either temozolomide (TMZ) and/or radiation therapy (RT) and optionally one or more additional treatment(s), wherein the one or more additional treatment(s) are as described in the detailed description of the invention.
  • TMZ temozolomide
  • RT radiation therapy
  • Aspect (I) of this disclosure relates to a method of treating a disease comprising administering to a patient in need of the treatment a compound of Formula I:
  • temozolomide TMZ
  • R′ is halo
  • R 2 is halo
  • Q is CH or N.
  • Aspect (II) of this disclosure relates to a method of treating a disease comprising administering to a patient in need of the treatment a compound of Formula I:
  • R 1 is halo
  • R 2 is halo
  • Q is CH or N.
  • the compound of Formula I is a pharmaceutical composition which further comprises a pharmaceutically acceptable carrier, excipient, or diluent.
  • the method further comprises administereing to the patient one or more additional treatment(s), wherein the one or more treatment(s) are selected from (1) surgery, (2) one or more additional chemotherapeutic agent(s), (3) one or more hormone therapy(s), (4) one or more antibody(s), and (5) one or more immunotherapy(ies), (6) radioactive iodine therapy, and (7) radiation.
  • the one or more treatment(s) are selected from (1) surgery, (2) one or more additional chemotherapeutic agent(s), (3) one or more hormone therapy(s), (4) one or more antibody(s), and (5) one or more immunotherapy(ies), (6) radioactive iodine therapy, and (7) radiation.
  • the method further comprises administereing to the patient one or more additional treatment(s), wherein the one or more treatment(s) are selected from (1) surgery, (2) one or more additional chemotherapeutic agent(s), (3) one or more hormone therapy(s), (4) one or more antibody(s), and (5) one or more immunotherapy(ies).
  • the compound of Formula I in any of the above embodiments is the following compound:
  • the compound of Formula I in any of the above embodiments is the following compound:
  • the compound of Formula (I), and all of the embodiments of the compound of Formula (I) as described herein, includes both the recited compounds as well as individual isomers and mixtures of isomers.
  • the compound of Formula (I) includes the pharmaceutically acceptable salts, hydrates, and/or solvates of the recited compounds and any individual isomers or mixture of isomers thereof.
  • a substituent “R” may reside on any atom of the ring system, assuming replacement of a depicted, implied, or expressly defined hydrogen from one of the ring atoms, so long as a stable structure is formed.
  • a substituent “R” may reside on any atom of the fused ring system, assuming replacement of a depicted hydrogen (for example the —NH— in the formula above), implied hydrogen (for example as in the formula above, where the hydrogens are not shown but understood to be present), or expressly defined hydrogen (for example where in the formula above, “Z” equals ⁇ CH—) from one of the ring atoms, so long as a stable structure is formed.
  • the “R” group may reside on either the 5-membered or the 6-membered ring of the fused ring system.
  • Halogen or “halo” refers to fluorine, chlorine, bromine or iodine.
  • Yield for each of the reactions described herein is expressed as a percentage of the theoretical yield.
  • “Cancer” refers to cellular-proliferative disease states, including but not limited to: Cardiac: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma; Lung: bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar) carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hanlartoma, inesothelioma; Gastrointestinal: esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (
  • “Hormone therapy” or “hormonal therapy” includes, for example, treatment with one or more of the following: steroids (e.g. dexamethasone), finasteride, tamoxifen, and an aromatase inhibitor.
  • Patient for the purposes of the present invention includes humans and other animals, particularly mammals, and other organisms. Thus the methods are applicable to both human therapy and veterinary applications. In another embodiment the patient is a mammal, and in another embodiment the patient is human.
  • a “pharmaceutically acceptable salt” of a compound means a salt that is pharmaceutically acceptable and that possesses the desired pharmacological activity of the parent compound. It is understood that the pharmaceutically acceptable salts are non-toxic. Additional information on suitable pharmaceutically acceptable salts can be found in Remington's Pharmaceutical Sciences, 17 th ed., Mack Publishing Company, Easton, Pa., 1985, which is incorporated herein by reference or S. M. Berge, et al., “Pharmaceutical Salts,” J. Pharm. Sci., 1977; 66:1-19 both of which are incorporated herein by reference.
  • Examples of pharmaceutically acceptable acid addition salts include those formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; as well as organic acids such as acetic acid, trifluoroacetic acid, propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, 3-(4-hydroxybenzoyl)benzoic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzenesulfonic acid, 2-naphthalenesulfonic acid, 4-tol
  • Examples of a pharmaceutically acceptable base addition salts include those formed when an acidic proton present in the parent compound is replaced by a metal ion, such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Specific salts are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include, but are not limited to, salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins.
  • organic bases examples include isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, ethanolamine, 2-dimethylaminoethanol, 2-diethylaminoethanol, dicyclohexylamine, lysine, arginine, histidine, caffeine, procaine, hydrabamine, choline, betaine, ethylenediamine, glucosamine, methylglucamine, theobromine, purines, piperazine, piperidine, N-ethylpiperidine, tromethamine, N-methylglucamine, polyamine resins, and the like.
  • Exemplary organic bases are isopropylamine, diethylamine, ethanolamine, trimethylamine, dicyclohexylamine, choline, and caffeine.
  • Platinum(s),” and “platin-containing agent(s)” include, for example, cisplatin, carboplatin, and oxaliplatin.
  • “Prodrug” refers to compounds that are transformed (typically rapidly) in vivo to yield the parent compound of the above formulae, for example, by hydrolysis in blood. Common examples include, but are not limited to, ester and amide forms of a compound having an active form bearing a carboxylic acid moiety.
  • Examples of pharmaceutically acceptable esters of the compounds of this invention include, but are not limited to, alkyl esters (for example with between about one and about six carbons) the alkyl group is a straight or branched chain. Acceptable esters also include cycloalkyl esters and arylalkyl esters such as, but not limited to benzyl.
  • Examples of pharmaceutically acceptable amides of the compounds of this invention include, but are not limited to, primary amides, and secondary and tertiary alkyl amides (for example with between about one and about six carbons).
  • Amides and esters of the compounds of the present invention may be prepared according to conventional methods. A thorough discussion of prodrugs is provided in T. Higuchi and V. Stella, “Pro-drugs as Novel Delivery Systems,” Vol 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are incorporated herein by reference for all purposes.
  • Taxane(s) includes, for example, one or more of the following: Paclitaxel (Taxol®) and Docetaxel (Taxotere®).
  • “Therapeutically effective amount” is an amount of a compound of the invention, that when administered to a patient, ameliorates a symptom of the disease.
  • a therapeutically effective amount is intended to include an amount of a compound alone or in combination with other active ingredients effective to modulate Ret, c-Met, and/or VEGFR2, or effective to treat or prevent cancer.
  • the amount of a compound of the invention which constitutes a “therapeutically effective amount” will vary depending on the compound, the disease state and its severity, the age of the patient to be treated, and the like. The therapeutically effective amount can be determined routinely by one of ordinary skill in the art having regard to their knowledge and to this disclosure.
  • Topicisomerase inhibitor includes, for example, one or more of the following: amsacrine, camptothecin, etoposide, etoposide phosphate, exatecan, irinotecan, lurtotecan, and teniposide, and topotecan.
  • Treating” or “treatment” of a disease, disorder, or syndrome includes (i) preventing the disease, disorder, or syndrome from occurring in a human, i.e. causing the clinical symptoms of the disease, disorder, or syndrome not to develop in an animal that may be exposed to or predisposed to the disease, disorder, or syndrome but does not yet experience or display symptoms of the disease, disorder, or syndrome; (ii) inhibiting the disease, disorder, or syndrome, i.e., arresting its development; and (iii) relieving the disease, disorder, or syndrome, i.e., causing regression of the disease, disorder, or syndrome.
  • the disease being treated is selected from astocytoma, glioblastoma, giant cell glioblastoma, gliosarcoma, and glioblastoma with oligodendroglial components.
  • the method further comprises administering radiation therapy to the patient.
  • the disease is selected from astocytoma, glioblastoma, giant cell glioblastoma, gliosarcoma, and glioblastoma with oligodendrogilial components; and the method further comprises administering radiation therapy to the patient.
  • the disease is selected from astocytoma, glioblastoma, giant cell glioblastoma, gliosarcoma, and glioblastoma with oligodendrogilial components; and the method further comprises administering surgury to the patient.
  • the disease is selected from astocytoma, glioblastoma, giant cell glioblastoma, gliosarcoma, and glioblastoma with oligodendrogilial components; and the method further comprises administering radiation therapy and surgery to the patient.
  • Non-limiting examples of the additional chemotherapeutic agent(s) that can be used in any of the above embodiments include rapamycin, a rapamycin analogue, an alkylating agent(s), a taxane(s), and a platin(s).
  • chemotherapeutic agent(s) is selected from rapamycin, temozolomide, paclitaxel, docetaxel, carboplatin, cisplatin, oxaliplatin, gefitinib (Iressa®), erlotinib (Tarceva®), Zactima (ZD6474), HKI-272, pelitinib, canertinib, and lapatinib.
  • a non-limiting example of the antibody that can be used as the one or more additional treatments in Aspect (I) or Aspect (II) of this disclosure is panitumumab.
  • the one or more additional treatments is one or more hormone therapy(s).
  • hormone therapy(s) that can be used in this embodiment include tamoxifen, Toremifene (Fareston), Fulvestrant (Faslodex), Megestrol acetate (Megace), ovarian ablation, Raloxifene, a luteinizing hormone-releasing hormone (LHRH) analog (including goserelin and leuprolide), Megestrol acetate (Megace), and one or more aromatase inhibitor(s); in another embodiment, one or more of the aromatase inhibitor(s) is selected from letrozole (Femara), anastrozole (Arimidex), and exemestane (Aromasin). In another embodiment, one or more of the hormone therapy(s) is selected from tamoxifen and an aromatase inhibitor.
  • the disease is an astrocytic tumor selected from astocytoma, glioblastoma, giant cell glioblastoma, gliosarcoma, and glioblastoma with oligodendroglial components
  • the one or more treatment(s) are selected from (1) surgery, (2) radiation, (3) one or more additional chemotherapeutic agent(s), (4) one or more anti-seizure agent(s), and (5) one or more agent(s) to reduce swelling.
  • the radiation treatment that can be used in this embodiment include external beam radiation, interstitial radiotherapy, and stereotactic radiosurgery.
  • Non-limiting examples of the additional chemotherapeutic agent(s) that can be used in this embodiment include carmustine (BCNU), Erlotinib (Tarceva), bevacizumab, gefitinib (Iressa), rapamycin, cisplatin, BCNU, lomustine, procarbazine, and vincristine.
  • a non-limiting examples of the antiseizure agent(s) that can be used in this embodiment is diphenylhydantoin (Dilantin).
  • a non-limiting example of the agent that can be used to reduce swelling in this embodiment include dexamethasone (Decadron).
  • the one or more additional treatments are radiation and surgery.
  • the one or more additional treatments are radiation and one or more additional chemotherapeutic agent(s).
  • the one or more additional treatments are surgery and one or more additional chemotherapeutic agent(s).
  • treatment for patients with GB comprises a (1) “concurrent phase,” which is followed by a (2) “rest phase,” which is followed by a (3) “maintenance phase.”
  • the concurrent phase is followed by a (2) “rest phase which can range from about 2 weeks to about 8 weeks in duration.
  • the rest phase is meant to allow for recovery from delayed toxicity, if present.
  • the rest phase can range from about 3 weeks to about 6 weeks in duration.
  • the rest phase is about 4 weeks in duration.
  • the rest phase is followed by a (3) “maintenance phase,” during which patients receive active pharmaceutical ingredients for approximately twelve 28-day cycles, but can vary from about six to about twenty four 28-day cycles.
  • patients receive different amounts of the compound of Formula I at different times according to the phase of TMZ and radiation therapy.
  • the compound of Formula I in one embodiment, can be administered to the patient concurrently with RT and TMZ for 3-12 weeks, or 4-10 weeks, or 6-7 weeks.
  • the compound of Formula I will be administered to the patient concurrently with RT for 6-7 weeks in the concurrent phase.
  • the concurrent phase can range from about 3 weeks to about 12 weeks in duration.
  • the concurrent phase ranges from about 4 weeks to about 10 weeks in duration.
  • the concurrent phase ranges from about 6 weeks to about 8 weeks in duration.
  • the concurrent phase ranges from about 6 weeks to about 7 weeks in duration.
  • active pharmaceutical ingredients are given with (RT).
  • the active pharmaceutical ingredient(s) in the concurrent phase are TMZ and the compound of Formula I.
  • the active pharmaceutical ingredient in the concurrent phase is TMZ provided that the compound of Formula I is at least one of the active pharmaceutical ingredients in the maintenance phase.
  • the active pharmaceutical ingredient in the concurrent phase is the compound of Formula I.
  • the rest phase no RT, compounds of Formula I, or TMZ is administered to the patient.
  • the rest phase can range from about 2 weeks to about 12 weeks. In another embodiment, the rest phase can range from about 3 weeks to about 6 weeks in duration. In another embodiment, the rest phase range is about 4 weeks in duration.
  • temozolomide and the compound of Formula I are each administered to the patient for about 7 months. In another embodiment of the maintenance phase, temozolomide and the compound of Formula I are each administered to the patient for about 8 months. In another embodiment of the maintenance phase, temozolomide and the compound of Formula I are each administered to the patient for about 9 months. In another embodiment of the maintenance phase, temozolomide and the compound of Formula I are each administered to the patient for about 10 months. In another embodiment of the maintenance phase, the compound of Formula I is administered to the patient for period of time ranging from about 4 months to about 10 months. In another embodiment of the maintenance phase, the compound of Formula I is administered for about 4 months.
  • the compound of Formula I is administered for about 5 months. In another embodiment of the maintenance phase, the compound of Formula I is administered for about 6 months. In another embodiment of the maintenance phase, the compound of Formula I is administered for about 7 months. In another embodiment of the maintenance phase, the compound of Formula I is administered for about 8 months. In another embodiment of the maintenance phase the compound of Formula I is administered for about 9 months. In another embodiment of the maintenance phase, the compound of Formula I is administered for 10 months.
  • TMZ can be administered in other modes in addition to capsules or tablets, which are meant to be only non-limiting examples of how the dosage amount can be administered.
  • the compound of Formula I can be administered in 5 mg, 10 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, 100 mg, 105 mg, 110 mg, 115 mg, 120 mg, 125 mg, 130 mg, 135 mg, 140 mg, 145 mg, 150 mg, 155 mg, 160 mg, 165 mg, 170 mg, 175 mg, 180 mg, 185 mg, 190 mg, 195 mg, and 200 mg dosages (which can be in capsules or tablets).
  • TMZ can be administered in 5 mg, 10 mg, 15 mg, 20 mg, 25 mg, 30 mg, 35 mg, 40 mg, 45 mg, 50 mg, 55 mg, 60 mg, 65 mg, 70 mg, 75 mg, 80 mg, 85 mg, 90 mg, 95 mg, 100 mg, 105 mg, 110 mg, 115 mg, 120 mg, 125 mg, 130 mg, 135 mg, 140 mg, 145 mg, 150 mg, 155 mg, 160 mg, 165 mg, 170 mg, 175 mg, 180 mg, 185 mg, 190 mg, 195 mg, 200 mg, 205 mg, 210 mg, 215 mg, 220 mg, 225 mg, 230 mg, 235 mg, 240 mg, 245 mg, 250 mg, 255 mg, 260 mg, 265 mg, 260 mg, 275 mg, 280 mg, 285 mg, 290 mg, 295 mg, and 300 mg dosages (which can be in capsules or tablets).
  • the concurrent phase comprises administereing radiation and the compound of Formula I to the patient; the rest phase comprises not administering the compound of Formula I or radiation to the patient; and the maintenance phase comprises administereing the compound of Formula I to the patient.
  • the concurrent phase can be 7-8 weeks in duration, the rest phase can be about 4 weeks in duration; and the maintenance phase is of a duration sufficient slow down the cancer growth.
  • the compound of Formula I is administered to the patient in 25-100 mg dosages, or 25-125 mg dosages, (which can be in capsules or tablets) daily during the concurrent phase;
  • TMZ is administered to the patient in 5-180 mg dosages (which can be in capsules or tablets) daily to the patient during the concurrent phase;
  • RT is administered to the patient during the concurrent phase using 1.8-2 Gy/fraction, daily for 5 days/week for a total dose of up to 60 Gy;
  • the compound of Formula I is administered to the patient in 25-100 mg dosages, or 25-125 mg dosages, (which can be in capsules or tablets) daily during the maintenance phase;
  • TMZ is administered to the patient in 5-180 mg dosages (which can be in capsules or tablets) for 5 consecutive days and repeated every 28 days until the cancer growth is slowed down.
  • the Compound of Formula I is the following compound:
  • the compound of Formula I is the (L)-malate salt form of N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide having the following structure:
  • the invention provides pharmaceutical compositions comprising a compound of Formula I as described above and a pharmaceutically acceptable carrier, excipient, or diluent.
  • administration is by the oral route.
  • Administration of the compound of Formula I, or their pharmaceutically acceptable salts, in pure form or in an appropriate pharmaceutical composition, can be carried out via any of the accepted modes of administration or agents for serving similar utilities.
  • administration can be, for example, orally, nasally, parenterally (intravenous, intramuscular, or subcutaneous), topically, transdermally, intravaginally, intravesically, intracistemally, or rectally, in the form of solid, semi-solid, lyophilized powder, or liquid dosage forms, such as for example, tablets, suppositories, pills, soft elastic and hard gelatin dosages (which can be in capsules or tablets), powders, solutions, suspensions, or aerosols, or the like, specifically in unit dosage forms suitable for simple administration of precise dosages.
  • compositions will include a conventional pharmaceutical carrier or excipient and a compound of Formula I as the/an active agent, and, in addition, may include carriers and adjuvants, etc.
  • Adjuvants include preserving, wetting, suspending, sweetening, flavoring, perfuming, emulsifying, and dispensing agents. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. It may also be desirable to include isotonic agents, for example sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin.
  • a pharmaceutical composition of the compound of Formula I may also contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, antioxidants, and the like, such as, for example, citric acid, sorbitan monolaurate, triethanolamine oleate, butylated hydroxytoluene, etc.
  • auxiliary substances such as wetting or emulsifying agents, pH buffering agents, antioxidants, and the like, such as, for example, citric acid, sorbitan monolaurate, triethanolamine oleate, butylated hydroxytoluene, etc.
  • formulation depends on various factors such as the mode of drug administration (e.g., for oral administration, formulations in the form of tablets, pills or capsules) and the bioavailability of the drug substance.
  • pharmaceutical formulations have been developed especially for drugs that show poor bioavailability based upon the principle that bioavailability can be increased by increasing the surface area i.e., decreasing particle size.
  • U.S. Pat. No. 4,107,288 describes a pharmaceutical formulation having particles in the size range from 10 to 1,000 nm in which the active material is supported on a crosslinked matrix of macromolecules.
  • 5,145,684 describes the production of a pharmaceutical formulation in which the drug substance is pulverized to nanoparticles (average particle size of 400 nm) in the presence of a surface modifier and then dispersed in a liquid medium to give a pharmaceutical formulation that exhibits remarkably high bioavailability.
  • compositions suitable for parenteral injection may comprise physiologically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
  • suitable aqueous and nonaqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols (propyleneglycol, polyethyleneglycol, glycerol, and the like), suitable mixtures thereof, vegetable oils (such as olive oil) and injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersions and by the use of surfactants.
  • One specific route of administration is oral, using a convenient daily dosage regimen that can be adjusted according to the degree of severity of the disease-state to be treated.
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
  • the active compound is admixed with at least one inert customary excipient (or carrier) such as sodium citrate or dicalcium phosphate or
  • fillers or extenders as for example, starches, lactose, sucrose, glucose, mannitol, and silicic acid
  • binders as for example, cellulose derivatives, starch, alignates, gelatin, polyvinylpyrrolidone, sucrose, and gum acacia
  • humectants as for example, glycerol
  • disintegrating agents as for example, agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, croscarmellose sodium, complex silicates, and sodium carbonate
  • solution retarders as for example paraffin
  • absorption accelerators as for example, quaternary
  • Solid dosage forms as described above can be prepared with coatings and shells, such as enteric coatings and others well known in the art. They may contain pacifying agents, and can also be of such composition that they release the active compound or compounds in a certain part of the intestinal tract in a delayed manner. Examples of embedded compositions that can be used are polymeric substances and waxes. The active compounds can also be in microencapsulated form, if appropriate, with one or more of the above-mentioned excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs. Such dosage forms are prepared, for example, by dissolving, dispersing, etc., the compound of Formula I, or a pharmaceutically acceptable salt thereof, and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, ethanol and the like; solubilizing agents and emulsifiers, as for example, ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propyleneglycol, 1,3-butyleneglycol, dimethylformamide; oils, in particular, cottonseed oil, groundnut oil, corn germ oil, olive oil, castor oil and sesame oil, glycerol, tetrahydrofurfuryl alcohol, polyethyleneglycols
  • Suspensions in addition to the active compounds, may contain suspending agents, as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.
  • suspending agents as for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, or mixtures of these substances, and the like.
  • compositions for rectal administrations are, for example, suppositories that can be prepared by mixing the compound of Formula I with, for example, suitable non-irritating excipients or carriers such as cocoa butter, polyethyleneglycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and therefore, melt while in a suitable body cavity and release the active component therein.
  • suitable non-irritating excipients or carriers such as cocoa butter, polyethyleneglycol or a suppository wax, which are solid at ordinary temperatures but liquid at body temperature and therefore, melt while in a suitable body cavity and release the active component therein.
  • Dosage forms for topical administration of the compound of Formula I include ointments, powders, sprays, and inhalants.
  • the active component is admixed under sterile conditions with a physiologically acceptable carrier and any preservatives, buffers, or propellants as may be required.
  • Ophthalmic formulations, eye ointments, powders, and solutions are also contemplated as being within the scope of this disclosure.
  • Compressed gases may be used to disperse the compound of Formula I in aerosol form.
  • Inert gases suitable for this purpose are nitrogen, carbon dioxide, etc.
  • the pharmaceutically acceptable compositions will contain about 1% to about 99% by weight of a compound(s) of Formula I, or a pharmaceutically acceptable salt thereof, and 99% to 1% by weight of a suitable pharmaceutical excipient.
  • the composition will be between about 5% and about 75% by weight of a compound(s) of Formula I, or a pharmaceutically acceptable salt thereof, with the rest being suitable pharmaceutical excipients.
  • composition to be administered will, in any event, contain a therapeutically effective amount of a compound of Formula I, or a pharmaceutically acceptable salt thereof, for treatment of a disease-state in accordance with the teachings of this disclosure.
  • the compounds of this disclosure are administered in a therapeutically effective amount which will vary depending upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of the compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular disease-states, and the host undergoing therapy.
  • the compound of Formula I can be administered to a patient at dosage levels in the range of about 0.1 to about 1,000 mg per day. For a normal human adult having a body weight of about 70 kilograms, a dosage in the range of about 0.01 to about 100 mg per kilogram of body weight per day is an example. The specific dosage used, however, can vary.
  • the dosage can depend on a number of factors including the requirements of the patient, the severity of the condition being treated, and the pharmacological activity of the compound being used.
  • the determination of optimum dosages for a particular patient is well known to one of ordinary skill in the art.
  • Such combination products employ the compound of Formula I within the dosage range described above and the other pharmaceutically active agent(s) within its approved dosage range.
  • Compounds of Formula I may alternatively be used sequentially with known pharmaceutically acceptable agent(s) when a combination formulation is inappropriate.
  • FIG. 1 A synthetic route that has been used for the preparation of N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide and the (L)-malate salt thereof is depicted in FIG. 1:
  • a reactor was charged sequentially with 6,7-dimethoxy-quinoline-4-ol (10.0 kg) and acetonitrile (64.0 L). The resulting mixture was heated to approximately 65° C. and phosphorus oxychloride (POCl 3 , 50.0 kg) was added. After the addition of POCl 3 , the temperature of the reaction mixture was raised to approximately 80° C. The reaction was deemed complete (approximately 9.0 hours) when ⁇ 2% of the starting material remained (in process high-performance liquid chromotography [HPLC] analysis). The reaction mixture was cooled to approximately 10° C.
  • phosphorus oxychloride POCl 3 , 50.0 kg
  • a reactor was sequentially charged with 4-chloro-6,7-dimethoxy-quinoline (8.0 kg), 4 nitrophenol (7.0 kg), 4 dimethylaminopyridine (0.9 kg), and 2,6 lutidine (40.0 kg).
  • the reactor contents were heated to approximately 147° C.
  • the reaction was complete ( ⁇ 5% starting material remaining as determined by in process HPLC analysis, approximately 20 hours)
  • the reactor contents were allowed to cool to approximately 25° C.
  • Methanol (26.0 kg) was added, followed by potassium carbonate (3.0 kg) dissolved in water (50.0 kg).
  • the reactor contents were stirred for approximately 2 hours.
  • the resulting solid precipitate was filtered, washed with water (67.0 kg), and dried at 25° C. for approximately 12 hours to afford the title compound (4.0 kg).
  • Triethylamine (8.0 kg) was added to a cooled (approximately 4° C.) solution of commercially available cyclopropane-1,1-dicarboxylic acid (21, 10.0 kg) in THF (63.0 kg) at a rate such that the batch temperature did not exceed 10° C.
  • the solution was stirred for approximately 30 minutes, and then thionyl chloride (9.0 kg) was added, keeping the batch temperature below 10° C.
  • a solution of 4-fluoroaniline (9.0 kg) in THF (25.0 kg) was added at a rate such that the batch temperature did not exceed 10° C.
  • the mixture was stirred for approximately 4 hours and then diluted with isopropyl acetate (87.0 kg).
  • Oxalyl chloride (1.0 kg) was added to a solution of 1-(4-fluoro-phenylcarbamoyl)-cyclopropanecarboxylic acid (2.0 kg) in a mixture of THF (11 kg) and N,N-dimethylformamide (DMF; 0.02 kg) at a rate such that the batch temperature did not exceed 30° C. This solution was used in the next step without further processing.
  • FIG. 2 Another synthetic route that has been used for the preparation of N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide and the (L)-malate salt thereof is depicted in FIG. 2:
  • a reactor was charged sequentially with 6,7-dimethoxy-quinoline-4-ol (47.0 kg) and acetonitrile (318.8 kg). The resulting mixture was heated to approximately 60° C. and phosphorus oxychloride (POCl 3 , 130.6 kg) was added. After the addition of POCl 3 , the temperature of the reaction mixture was raised to approximately 77° C. The reaction was deemed complete (approximately 13 hours) when ⁇ 3% of the starting material remained (in-process high-performance liquid chromatography [HPLC] analysis). The reaction mixture was cooled to approximately 2-7° C.
  • POCl 3 phosphorus oxychloride
  • Triethylamine (19.5 kg) was added to a cooled (approximately 5 C) solution of cyclopropane-1,1-dicarboxylic acid (24.7 kg) in THF (89.6 kg) at a rate such that the batch temperature did not exceed 5° C.
  • the solution was stirred for approximately 1.3 h, and then thionyl chloride (23.1 kg) was added, keeping the batch temperature below 10 C. When the addition was complete, the solution was stirred for approximately 4 h keeping the temperature below 10° C.
  • a solution of 4-fluoroaniline (18.0 kg) in THF (33.1 kg) was then added at a rate such that the batch temperature did not exceed 10 C. The mixture was stirred for approximately 10 hours after which the reaction was deemed complete.
  • reaction mixture was then diluted with isopropyl acetate (218.1 kg). This solution was washed sequentially with aqueous sodium hydroxide (10.4 kg, 50% dissolved in 119 L of water) further diluted with water (415 L), then with water (100 L) and finally with aqueous sodium chloride (20.0 kg dissolved in 100 L of water). The organic solution was concentrated by vacuum distillation (100 L residual volume) below 40° C. followed by the addition of n-heptane (171.4 kg), which resulted in the precipitation of solid.
  • Oxalyl chloride (12.6 kg) was added to a solution of 1-(4-fluoro-phenylcarbamoyl)-cyclopropanecarboxylic acid (22.8 kg) in a mixture of THF (96.1 kg) and N,N-dimethylformamide (DMF; 0.23 kg) at a rate such that the batch temperature did not exceed 25 C. This solution was used in the next step without further processing.
  • the product was recovered by filtration, washed with a pre-made solution of THF (68.6 kg) and water (256 L), and dried first on a filter under nitrogen at approximately 25° C. and then at approximately 45 C under vacuum to afford the title compound (41.0 kg, 38.1 kg, calculated based on LOD).
  • Cyclopropane-1,1-dicarboxylic acid [4-(6,7-dimethoxy-quinoline-4-yloxy)-phenyl]-amide(4-fluoro-phenyl)-amide(1-5; 13.3 kg), L-malic acid (4.96 kg), methyl ethyl ketone (MEK; 188.6 kg) and water (37.3 kg) were charged to a reactor and the mixture was heated to reflux (approximately 74° C.) for approximately 2 h. The reactor temperature was reduced to 50 to 55° C. and the reactor contents were filtered.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 5, 20, 100, 250, 140 and 180 mg dosages (which can be in capsules or tablets).
  • the starting dose of TMZ is 75 mg/m 2 /day with concurrent RT for 6 weeks.
  • the term “m 2 ” refers to body surface area in patients measured in square meters. Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 50 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 75 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 50 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 75 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 50 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 75 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ -phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 50 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 75 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 50 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 75 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 250 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is initiated at the start of a 6-7 week concurrent phase of RT and TMZ.
  • Some patients that have a mutation in the MGMT promoter, wherein the mutated MGMT promoter is an unmethylated promoter, may not receive TMZ and instead receive N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide as a single agent in combination with RT.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 75 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 250 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 100 mg dosages (which can be in capsules or tablets).
  • the concurrent phase is followed by a rest phase that will last for about 4 weeks.
  • TMZ when given, is supplied as 250 mg dosages (which can be in capsules or tablets).
  • Patients receive RT consisting of fractional focal irradiation administered using a 1.8-2 Gy/fraction, daily for 5 days/week for 6-7 weeks, for a total dose of up to 60 Gy.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 5, 20, 100, 250, 140, 180, and 200 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • TMZ is administered in the amount of 200 mg/m 2 /day given for 5 consecutive days and repeated every 28 days.
  • the term m2 is meant to mean body surface area in patients measured in square meters.
  • Example 3A The maintenance phase in Example 3A can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3B The maintenance phase in Example 3B can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 50 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3C The maintenance phase in Example 3C can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 75 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3D The maintenance phase in Example 3D can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 5 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3E The maintenance phase in Example 3E can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3F The maintenance phase in Example 3F can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 50 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3G The maintenance phase in Example 3G can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 82AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 75 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3H The maintenance phase in Example 3H can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 20 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3I The maintenance phase in Example 3I can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 50 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3K The maintenance phase in Example 3K can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 75 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3L The maintenance phase in Example 3L can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 100 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3N The maintenance phase in Example 3N can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 50 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 30 The maintenance phase in Example 30 can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 75 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3P The maintenance phase in Example 3P can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 140 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3Q The maintenance phase in Example 3Q can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3R The maintenance phase in Example 3R can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 50 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3S can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 75 mg dosages (which can be in a capsule or tablet).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3T The maintenance phase in Example 3T can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 180 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3U The maintenance phase in Example 3U can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied in doses of 200 mg/m 2 /day given for 5 consecutive days and repeated every 28 days.
  • Example 3V The maintenance phase in Example 3V can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 50 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied in doses of 200 mg/m 2 /day given for 5 consecutive days and repeated every 28 days.
  • Example 3W The maintenance phase in Example 3W can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 75 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied in doses of 200 mg/m 2 /day given for 5 consecutive days and repeated every 28 days.
  • Example 3X The maintenance phase in Example 3X can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied in doses of 200 mg/m 2 /day given for 5 consecutive days and repeated every 28 days.
  • Example 3Y can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 25 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 250 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3Z can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 50 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 250 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3AA The maintenance phase in Example 3AA can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 75 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied in doses of 200 mg/m 2 /day given for 5 consecutive days and repeated every 28 days.
  • Example 3AB The maintenance phase in Example 3AB can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as 100 mg dosages (which can be in capsules or tablets).
  • N-(4- ⁇ [6,7-bis(methyloxy)quinolin-4-yl]oxy ⁇ phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide is administered as a single oral agent supplied as 25 mg and 100 mg dosages (which can be in capsules or tablets).
  • TMZ when given, is supplied as 250 mg dosages (which can be in capsules or tablets) given for 5 consecutive days and repeated every 28 days.
  • Example 3AC The maintenance phase in Example 3AC can be combined with the concurrent phase of any of Examples 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J, 2K, 2L, 2M, 2N, 2O, 2P, 2Q, 2R, 2S, 2T, 2U, 2V, 2W, 2X, 2Y, 2Z, 2AA, 2AB, 2AC and 2AD.
US13/389,266 2009-08-07 2010-08-06 Methods of Using C-Met Modulators Abandoned US20120282179A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/389,266 US20120282179A1 (en) 2009-08-07 2010-08-06 Methods of Using C-Met Modulators

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US23238209P 2009-08-07 2009-08-07
PCT/US2010/044749 WO2011017639A1 (en) 2009-08-07 2010-08-06 Methods of using c-met modulators
US13/389,266 US20120282179A1 (en) 2009-08-07 2010-08-06 Methods of Using C-Met Modulators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/044749 A-371-Of-International WO2011017639A1 (en) 2009-08-07 2010-08-06 Methods of using c-met modulators

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/699,683 Continuation US20160000772A1 (en) 2009-08-07 2015-04-29 Methods of Using C-Met Modulators

Publications (1)

Publication Number Publication Date
US20120282179A1 true US20120282179A1 (en) 2012-11-08

Family

ID=42668075

Family Applications (5)

Application Number Title Priority Date Filing Date
US13/389,266 Abandoned US20120282179A1 (en) 2009-08-07 2010-08-06 Methods of Using C-Met Modulators
US14/699,683 Abandoned US20160000772A1 (en) 2009-08-07 2015-04-29 Methods of Using C-Met Modulators
US16/251,617 Active US10736886B2 (en) 2009-08-07 2019-01-18 Methods of using c-Met modulators
US16/919,562 Active US11433064B2 (en) 2009-08-07 2020-07-02 Methods of using c-Met modulators
US17/873,918 Pending US20230181559A1 (en) 2009-08-07 2022-07-26 Methods of Using C-Met Modulators

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/699,683 Abandoned US20160000772A1 (en) 2009-08-07 2015-04-29 Methods of Using C-Met Modulators
US16/251,617 Active US10736886B2 (en) 2009-08-07 2019-01-18 Methods of using c-Met modulators
US16/919,562 Active US11433064B2 (en) 2009-08-07 2020-07-02 Methods of using c-Met modulators
US17/873,918 Pending US20230181559A1 (en) 2009-08-07 2022-07-26 Methods of Using C-Met Modulators

Country Status (17)

Country Link
US (5) US20120282179A1 (uk)
EP (1) EP2461810A1 (uk)
JP (3) JP5933435B2 (uk)
KR (2) KR101954322B1 (uk)
CN (2) CN107325048A (uk)
AU (2) AU2010279234B2 (uk)
BR (1) BR112012002759A2 (uk)
CA (2) CA2770100C (uk)
EA (2) EA029585B1 (uk)
GE (2) GEP20156310B (uk)
HK (1) HK1246291A1 (uk)
IL (2) IL217889A (uk)
MX (2) MX2012001654A (uk)
NZ (2) NZ598055A (uk)
UA (2) UA108618C2 (uk)
WO (1) WO2011017639A1 (uk)
ZA (1) ZA201200842B (uk)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877776B2 (en) 2009-01-16 2014-11-04 Exelixis, Inc. (L)-malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
WO2015153498A1 (en) 2014-03-31 2015-10-08 Epitherapeutics, Aps Inhibitors of histone demethylases
US9174947B2 (en) 2003-09-26 2015-11-03 Exelixus, Inc. c-Met modulators and methods of use
US9221801B2 (en) 2013-02-27 2015-12-29 Epitherapeutics Aps Inhibitors of histone demethylases
WO2016033169A1 (en) 2014-08-27 2016-03-03 Epitherapeutics Aps Compounds and methods for inhibiting histone demethylases
US9717720B2 (en) 2011-02-10 2017-08-01 Exelixis, Inc. Processes for preparing quinoline compounds and pharmaceutical compositions containing such compounds
US9724342B2 (en) 2010-07-16 2017-08-08 Exelixis, Inc. C-met modulator pharmaceutical compositions
US9861624B2 (en) 2012-05-02 2018-01-09 Exelixis, Inc. Method of treating cancer
US9969692B2 (en) 2011-10-20 2018-05-15 Exelixis, Inc. Process for preparing quinoline derivatives
US10159666B2 (en) 2014-03-17 2018-12-25 Exelixis, Inc. Dosing of cabozantinib formulations
US10166225B2 (en) 2011-09-22 2019-01-01 Exelixis, Inc. Method for treating osteoporosis
US10189787B2 (en) 2012-10-02 2019-01-29 Gilead Sciences, Inc. Inhibitors of histone demethylases
US10273211B2 (en) 2013-03-15 2019-04-30 Exelixis, Inc. Metabolites of N-{4-([6,7-bis(methyloxy)quinolin-4-yl]oxy}phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
US10501418B2 (en) 2014-02-14 2019-12-10 Exelixis, Inc. Crystalline solid forms of N-{4-[(6,7-dimethoxyquinolin-4-yl)oxy]phenyl}-N′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide, processes for making, and methods of use
US10736886B2 (en) 2009-08-07 2020-08-11 Exelixis, Inc. Methods of using c-Met modulators
US11065240B2 (en) 2014-08-05 2021-07-20 Exelixis, Inc. Drug combinations to treat multiple myeloma
US11116759B2 (en) 2011-04-04 2021-09-14 Exelixis, Inc. Method of treating cancer
US11124481B2 (en) 2014-07-31 2021-09-21 Exelixis, Inc. Method of preparing fluorine-18 labeled Cabozantinib and its analogs
US11141413B2 (en) 2016-04-15 2021-10-12 Exelixis, Inc. Method of treating renal cell carcinoma using N-(4-(6,7-dimethoxyquinolin-4-yloxy)phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, (2S)-hydroxybutanedioate
US11504363B2 (en) 2011-05-02 2022-11-22 Exelixis, Inc. Method of treating cancer and bone cancer pain
US11564915B2 (en) 2013-04-04 2023-01-31 Exelixis, Inc. Cabozantinib dosage form and use in the treatment of cancer
US11612597B2 (en) 2010-09-27 2023-03-28 Exelixis, Inc. Method of treating cancer
US11969419B2 (en) 2023-02-21 2024-04-30 Exelixis, Inc. Method of treating cancer

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293897B2 (en) 2008-10-14 2012-10-23 Ning Xi Compounds comprising a spiro-ring and methods of use
CA2752421C (en) 2009-03-21 2013-08-06 Ning Xi Amino ester derivatives, salts thereof and methods of use
CN102408411B (zh) * 2011-09-19 2014-10-22 北京康辰药业股份有限公司 一种含喹啉基的羟肟酸类化合物及其制备方法、以及含有该化合物的药物组合物及其应用
JP2014532766A (ja) * 2011-11-08 2014-12-08 エクセリクシス, インク. 癌を治療する、met及びvegfの二重阻害剤
CN103664776B (zh) * 2012-09-26 2016-05-04 正大天晴药业集团股份有限公司 一种酪氨酸激酶抑制剂及其中间体的制备方法
EP2983639A1 (en) * 2013-04-04 2016-02-17 Exelixis, Inc. Drug combinations to treat cancer
CN103664778B (zh) * 2013-11-27 2017-04-05 苏州摩尔医药有限公司 一种抗肿瘤治疗药物卡博替尼的合成方法
CN104788372B (zh) * 2014-07-25 2018-01-30 上海圣考医药科技有限公司 一种氘代卡博替尼衍生物、其制备方法、应用及其中间体
CN105747477B (zh) * 2016-02-25 2017-10-24 吴栢涛 一种反重力双肩背包
CN106831707B (zh) * 2016-12-28 2019-09-20 杭州市西溪医院 作为c-Met激酶抑制剂的苯并杂环类衍生物及其医疗用途
MX2019012505A (es) 2017-05-26 2019-12-19 Exelixis Inc Formas solidas cristalinas de sales de ciclopropano-1,1-dicarboxam ida de n-{4-[(6,7-dimetoxiquinolin-4-il)oxi]fenil}-n'-(4-fluorofen il), procesos para realizarlas y metodos de uso.
MA51679A (fr) 2018-01-26 2020-12-02 Exelixis Inc Composés destinés au traitement de troubles dépendant de la kinase
CA3088200A1 (en) 2018-01-26 2019-08-01 Exelixis, Inc. Compounds for the treatment of kinase-dependent disorders
SG11202006945PA (en) 2018-01-26 2020-08-28 Exelixis Inc Compounds for the treatment of kinase-dependent disorders
CN109988110B (zh) * 2019-01-22 2022-07-01 威海海洋生物医药产业技术研究院有限公司 4-苯氧基喹啉并磺酰脲类化合物、合成该化合物的中间体及其制备方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662783B2 (en) * 2003-02-20 2010-02-16 New York University CLK-peptide and SLK-peptide
US7999006B2 (en) * 2006-12-14 2011-08-16 Exelixis, Inc. Methods of using MEK inhibitors

Family Cites Families (189)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4107288A (en) 1974-09-18 1978-08-15 Pharmaceutical Society Of Victoria Injectable compositions, nanoparticles useful therein, and process of manufacturing same
GB2160201B (en) 1984-06-14 1988-05-11 Wyeth John & Brother Ltd Quinazoline and cinnoline derivatives
JPS646261A (en) 1987-03-31 1989-01-10 Nisshin Flour Milling Co 4-thioquinazoline derivative, its production and antiulcer agent containing said derivative as active component
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5034393A (en) 1989-07-27 1991-07-23 Dowelanco Fungicidal use of pyridopyrimidine, pteridine, pyrimidopyrimidine, pyrimidopyridazine, and pyrimido-1,2,4-triazine derivatives
US5145684A (en) 1991-01-25 1992-09-08 Sterling Drug Inc. Surface modified drug nanoparticles
US5238951A (en) 1991-02-01 1993-08-24 E. R. Squibb & Sons, Inc. Heterocyclic amido prostaglandin analogs
US5710158A (en) 1991-05-10 1998-01-20 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US5480883A (en) 1991-05-10 1996-01-02 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bis mono- and bicyclic aryl and heteroaryl compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
US6498144B1 (en) 1993-10-18 2002-12-24 North Shore - Long Island Jewish Research Institute Use of scatter factor to enhance angiogenesis
IL112249A (en) 1994-01-25 2001-11-25 Warner Lambert Co Pharmaceutical compositions containing di and tricyclic pyrimidine derivatives for inhibiting tyrosine kinases of the epidermal growth factor receptor family and some new such compounds
GB9510757D0 (en) 1994-09-19 1995-07-19 Wellcome Found Therapeuticaly active compounds
TW321649B (uk) 1994-11-12 1997-12-01 Zeneca Ltd
GB9508538D0 (en) 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivatives
US5747498A (en) 1996-05-28 1998-05-05 Pfizer Inc. Alkynyl and azido-substituted 4-anilinoquinazolines
US5650415A (en) 1995-06-07 1997-07-22 Sugen, Inc. Quinoline compounds
WO1996040142A1 (en) 1995-06-07 1996-12-19 Pfizer Inc. Heterocyclic ring-fused pyrimidine derivatives
CA2222545A1 (en) 1995-06-07 1996-12-19 Sugen, Inc. Quinazolines and pharmaceutical compositions
GB9514265D0 (en) 1995-07-13 1995-09-13 Wellcome Found Hetrocyclic compounds
WO1997017329A1 (fr) 1995-11-07 1997-05-15 Kirin Beer Kabushiki Kaisha Derives de quinoline et derives de quinazoline inhibant l'autophosphorylation d'un recepteur de facteur de croissance originaire de plaquettes, et compositions pharmaceutiques les contenant
GB9523675D0 (en) 1995-11-20 1996-01-24 Celltech Therapeutics Ltd Chemical compounds
GB9624482D0 (en) 1995-12-18 1997-01-15 Zeneca Phaema S A Chemical compounds
NZ325248A (en) 1995-12-23 1999-09-29 Pfizer Res & Dev Quinoline and quinazoline compounds useful in therapy
TR199801530T2 (xx) 1996-02-13 1998-11-23 Zeneca Limited VEGF �nhibit�rleri olarak kinazolin t�revleri.
GB9603095D0 (en) 1996-02-14 1996-04-10 Zeneca Ltd Quinazoline derivatives
JP4464466B2 (ja) 1996-03-05 2010-05-19 アストラゼネカ・ユーケイ・リミテッド 4―アニリノキナゾリン誘導体
EP0888310B1 (en) 1996-03-15 2005-09-07 AstraZeneca AB Cinnoline derivatives and use as medicine
US6107300A (en) 1996-03-27 2000-08-22 Dupont Pharmaceuticals Arylamino fused pyrimidines
PL190489B1 (pl) 1996-04-12 2005-12-30 Warner Lambert Co Nieodwracalne inhibitory kinaz tyrozyny, kompozycja farmaceutyczna je zawierająca i ich zastosowanie
HRP970371A2 (en) 1996-07-13 1998-08-31 Kathryn Jane Smith Heterocyclic compounds
ES2186908T3 (es) 1996-07-13 2003-05-16 Glaxo Group Ltd Compuestos heterociciclos condensados como inhibidores de pproteina-tirosina-quinasas.
GB9718972D0 (en) 1996-09-25 1997-11-12 Zeneca Ltd Chemical compounds
NZ334125A (en) 1996-09-25 2000-10-27 Zeneca Ltd Quinoline derivatives inhibiting the effect of growth factors such as VEGF
CA2239227C (en) 1996-10-01 2007-10-30 Kenji Matsuno Nitrogen-containing heterocyclic compounds
GB9700504D0 (en) 1997-01-11 1997-02-26 Pfizer Ltd Pharmaceutical compounds
GB9705361D0 (en) 1997-03-14 1997-04-30 Celltech Therapeutics Ltd Chemical compounds
UA73073C2 (uk) 1997-04-03 2005-06-15 Уайт Холдінгз Корпорейшн Заміщені 3-ціанохіноліни, спосіб їх одержання та фармацевтична композиція
EP0990647B1 (en) 1997-04-18 2003-07-02 Kirin Beer Kabushiki Kaisha Process for producing quinolone derivatives
AU7644698A (en) 1997-04-22 1998-11-13 Janssen Pharmaceutica N.V. Crf antagonistic quino- and quinazolines
GB9708917D0 (en) 1997-05-01 1997-06-25 Pfizer Ltd Compounds useful in therapy
AR012634A1 (es) 1997-05-02 2000-11-08 Sugen Inc Compuesto basado en quinazolina, composicion famaceutica que lo comprende, metodo para sintetizarlo, su uso, metodos de modulacion de la funcion deserina/treonina proteinaquinasa con dicho compuesto y metodo in vitro para identificar compuestos que modulan dicha funcion
ZA986732B (en) 1997-07-29 1999-02-02 Warner Lambert Co Irreversible inhibitiors of tyrosine kinases
ATE368665T1 (de) 1997-08-22 2007-08-15 Astrazeneca Ab Oxindolylchinazolinderivate als angiogenesehemmer
GB9800569D0 (en) 1998-01-12 1998-03-11 Glaxo Group Ltd Heterocyclic compounds
AU4317399A (en) 1998-05-28 1999-12-13 Parker Hughes Institute Quinazolines for treating brain tumor
ATE459616T1 (de) 1998-08-11 2010-03-15 Novartis Ag Isochinoline derivate mit angiogenesis-hemmender wirkung
WO2000010981A1 (en) 1998-08-21 2000-03-02 Parker Hughes Institute Quinazoline derivatives
US6184226B1 (en) 1998-08-28 2001-02-06 Scios Inc. Quinazoline derivatives as inhibitors of P-38 α
EP1143950B1 (de) 1998-09-10 2005-03-09 BioEqual AG Topisch anwendbare mittel gegen nagelpilzerkrankungen
BR9914167B1 (pt) 1998-09-29 2011-03-09 compostos e composições farmacêuticas compreendendo 3-ciano quinolinas substituìdas.
US6288082B1 (en) 1998-09-29 2001-09-11 American Cyanamid Company Substituted 3-cyanoquinolines
IL142257A0 (en) 1998-10-01 2002-03-10 Astrazeneca Ab Amide derivatives, process for their preparation, compositions containing them and use thereof in the manufacture of a medicament for the treatment of cytokine-mediated diseases
US7262201B1 (en) 1998-10-08 2007-08-28 Astrazeneca Ab Quinazoline derivatives
ES2188254T3 (es) 1998-11-19 2003-06-16 Warner Lambert Co N-(4-(3-chloro-4-fluoro-fenilamino)-7-(3-morfolin-4-il-propoxi)-quin azolin-6-il)-acrilamada, un inhibidor irreversible de tirosina quinasas.
ATE253051T1 (de) 1999-01-22 2003-11-15 Kirin Brewery Chinolinderivate und chinazolinderivate
CZ306810B6 (cs) 1999-02-10 2017-07-19 Astrazeneca Ab Použití chinazolinového derivátu jako inhibitoru angiogeneze
GB9904103D0 (en) 1999-02-24 1999-04-14 Zeneca Ltd Quinoline derivatives
US6080747A (en) 1999-03-05 2000-06-27 Hughes Institute JAK-3 inhibitors for treating allergic disorders
DE19911509A1 (de) 1999-03-15 2000-09-21 Boehringer Ingelheim Pharma Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
JP2002539262A (ja) 1999-03-19 2002-11-19 パーカー ヒューズ インスティテュート キナゾリン化合物製剤および治療におけるその使用
US6258820B1 (en) 1999-03-19 2001-07-10 Parker Hughes Institute Synthesis and anti-tumor activity of 6,7-dialkoxy-4-phenylamino-quinazolines
YU13200A (sh) 1999-03-31 2002-10-18 Pfizer Products Inc. Postupci i intermedijeri za dobijanje anti-kancernih jedinjenja
GB9910580D0 (en) 1999-05-08 1999-07-07 Zeneca Ltd Chemical compounds
GB9910577D0 (en) 1999-05-08 1999-07-07 Zeneca Ltd Chemical compounds
US6126917A (en) 1999-06-01 2000-10-03 Hadasit Medical Research Services And Development Ltd. Epidermal growth factor receptor binding compounds for positron emission tomography
YU90901A (sh) 1999-06-21 2004-07-15 Boehringer Ingelheim Pharma Gmbh. & Co.Kg. Biciklični heterocikli, lekovi koji sadrže ta jedinjenja, njihova primena i postupci za njihovo pripremanje
GB9922171D0 (en) 1999-09-21 1999-11-17 Zeneca Ltd Chemical compounds
RU2002110461A (ru) 1999-09-21 2004-03-10 Астразенека Аб (Se) Производные хиназолина и их применение в качестве фармацевтических веществ
US6759410B1 (en) 1999-11-23 2004-07-06 Smithline Beecham Corporation 3,4-dihydro-(1H)-quinazolin-2-ones and their use as CSBP/p38 kinase inhibitors
JP2003518023A (ja) 1999-11-30 2003-06-03 パーカー ヒューズ インスティテュート トロンビン誘導血小板凝集の阻害剤
US20020002169A1 (en) 1999-12-08 2002-01-03 Griffin John H. Protein kinase inhibitors
WO2001047890A1 (fr) 1999-12-24 2001-07-05 Kirin Beer Kabushiki Kaisha Quinoline, derives de la quinazoline et medicaments contenant ces substances
US6525046B1 (en) 2000-01-18 2003-02-25 Boehringer Ingelheim Pharmaceuticals, Inc. Aromatic heterocyclic compounds as antiinflammatory agents
WO2001055116A2 (en) 2000-01-28 2001-08-02 Astrazeneca Ab Quinoline derivatives and their use as aurora 2 kinase inhibitors
US6664390B2 (en) 2000-02-02 2003-12-16 Warner-Lambert Company Llc Method for the simplified production of (3-chloro-4-fluorophenyl)-[7-(3-morpholin-4-yl-propoxy)-6-nitro-quinazoline-4-yl]-amine or (3-chloro-4-fluorophenyl)-[7-(3-morpholin-4-yl-propoxy)-6-amino-quinazoline-4-yl]-amine
AU2001236698A1 (en) 2000-02-07 2001-08-14 Abbott Gesellschaft Mit Beschrankter Haftung & Company Kommanditgesellschaft 2-benzothiazolyl urea derivatives and their use as protein kinase inhibitors
JP2003526686A (ja) 2000-03-13 2003-09-09 アメリカン・サイアナミド・カンパニー 結腸ポリープの治療または阻害するためのシアノキノリンの使用
US6608048B2 (en) 2000-03-28 2003-08-19 Wyeth Holdings Tricyclic protein kinase inhibitors
US6521618B2 (en) 2000-03-28 2003-02-18 Wyeth 3-cyanoquinolines, 3-cyano-1,6-naphthyridines, and 3-cyano-1,7-naphthyridines as protein kinase inhibitors
US6627634B2 (en) 2000-04-08 2003-09-30 Boehringer Ingelheim Pharma Kg Bicyclic heterocycles, pharmaceutical compositions containing them, their use, and processes for preparing them
UA73993C2 (uk) 2000-06-06 2005-10-17 Астразенека Аб Хіназолінові похідні для лікування пухлин та фармацевтична композиція
CA2413424C (en) 2000-06-22 2007-10-02 Pfizer Products Inc. Substituted bicyclic derivatives for the treatment of abnormal cell growth
EP1174118A1 (de) 2000-06-28 2002-01-23 Cognis France S.A. Verwendung von Inulinen und Inulinderivaten
SK18102002A3 (sk) 2000-06-28 2003-07-01 Astrazeneca Ab Substituované chinazolínové deriváty, ich použitie a kompozícia obsahujúca tieto deriváty
FR2811658B1 (fr) 2000-07-17 2004-07-02 Cfpi Nufarm Reacteur biologique a lit fixe immerge et procede de traitement d'effluents liquides
US7427689B2 (en) 2000-07-28 2008-09-23 Georgetown University ErbB-2 selective small molecule kinase inhibitors
CZ2003486A3 (cs) 2000-08-21 2003-05-14 Astrazeneca Ab Chinazolinové deriváty, způsob jejich přípravy a farmaceutický prostředek, který je obsahuje
US6653305B2 (en) 2000-08-26 2003-11-25 Boehringer Ingelheim Pharma Kg Bicyclic heterocycles, pharmaceutical compositions containing them, their use, and processes for preparing them
US6617329B2 (en) 2000-08-26 2003-09-09 Boehringer Ingelheim Pharma Kg Aminoquinazolines and their use as medicaments
US6740651B2 (en) 2000-08-26 2004-05-25 Boehringer Ingelheim Pharma Kg Aminoquinazolines which inhibit signal transduction mediated by tyrosine kinases
DE10042058A1 (de) 2000-08-26 2002-03-07 Boehringer Ingelheim Pharma Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung
US6403580B1 (en) 2000-08-26 2002-06-11 Boehringer Ingelheim Pharma Kg Quinazolines, pharmaceutical compositions containing these compounds, their use and processes for preparing them
US6656946B2 (en) 2000-08-26 2003-12-02 Boehringer Ingelheim Pharma Kg Aminoquinazolines which inhibit signal transduction mediated by tyrosine kinases
US6939866B2 (en) 2000-10-13 2005-09-06 Astrazeneca Ab Quinazoline derivatives
JP2004511479A (ja) 2000-10-13 2004-04-15 アストラゼネカ アクチボラグ キナゾリン誘導体
ES2318649T3 (es) 2000-10-20 2009-05-01 EISAI R&D MANAGEMENT CO., LTD. Procedimiento de preparacion de derivados de 4-fenoxi quinolinas.
WO2002034744A1 (en) 2000-10-25 2002-05-02 Astrazeneca Ab Quinazoline derivatives
ATE383860T1 (de) 2000-11-02 2008-02-15 Nippon Shinyaku Co Ltd Chinazolinderivate und -arzneimittel
US7067532B2 (en) 2000-11-02 2006-06-27 Astrazeneca Substituted quinolines as antitumor agents
US7253184B2 (en) 2000-11-02 2007-08-07 Astrazeneca Ab 4-Substituted quinolines as antitumor agents
US7019012B2 (en) 2000-12-20 2006-03-28 Boehringer Ingelheim International Pharma Gmbh & Co. Kg Quinazoline derivatives and pharmaceutical compositions containing them
US6900220B2 (en) 2001-01-02 2005-05-31 Syntex (U.S.A.) Llc Quinazolone derivatives as alpha 1A/B adrenergic receptor antagonists
ES2312557T3 (es) 2001-04-19 2009-03-01 Astrazeneca Ab Derivados de quinazolina.
ES2256466T3 (es) 2001-04-27 2006-07-16 Kirin Beer Kabushiki Kaisha Derivado de quinolina que tienen grupo azolilo y derivados de quinazolina.
SE0101675D0 (sv) 2001-05-11 2001-05-11 Astrazeneca Ab Novel composition
WO2002092578A1 (en) 2001-05-14 2002-11-21 Astrazeneca Ab Quinazoline derivatives
WO2002092577A1 (en) 2001-05-14 2002-11-21 Astrazeneca Ab Quinazoline derivatives
WO2002092579A1 (en) 2001-05-14 2002-11-21 Astrazeneca Ab 4-anilinoquinazoline derivatives
US6734303B2 (en) 2001-05-18 2004-05-11 Pfizer Inc. Process for the production of quinazolines
DE10125432A1 (de) 2001-05-25 2002-11-28 Bayer Ag Substituierte Benzoylketone
AU2002350105A1 (en) 2001-06-21 2003-01-08 Ariad Pharmaceuticals, Inc. Novel quinazolines and uses thereof
CN100415720C (zh) 2001-06-22 2008-09-03 麒麟医药株式会社 喹啉衍生物和喹唑啉衍生物以及含有这些化合物的药物组合物
KR100397792B1 (ko) 2001-06-28 2003-09-13 한국과학기술연구원 4-(페닐아미노)-[1,4]디옥사노[2,3-g]퀴나졸린 유도체 및그의 제조방법
GB0118752D0 (en) 2001-08-01 2001-09-26 Pfizer Ltd Process for the production of quinazolines
US7229774B2 (en) 2001-08-02 2007-06-12 Regents Of The University Of Michigan Expression profile of prostate cancer
US20030066060A1 (en) 2001-09-28 2003-04-03 Ford Richard L. Cross profile guided optimization of program execution
JP4383870B2 (ja) 2001-10-17 2009-12-16 協和発酵キリン株式会社 線維芽細胞増殖因子受容体自己リン酸化を阻害するキノリン誘導体およびキナゾリン誘導体並びにそれらを含有する医薬組成物
US7169788B2 (en) 2001-10-30 2007-01-30 Merck & Co., Inc. Tyrosine kinase inhibitors
GB0126433D0 (en) 2001-11-03 2002-01-02 Astrazeneca Ab Compounds
GB0128108D0 (en) 2001-11-23 2002-01-16 Astrazeneca Ab Therapeutic use
PL370137A1 (en) 2001-11-27 2005-05-16 Wyeth Holdings Corporation 3-cyanoquinolines as inhibitors of egf-r and her2 kinases
AU2002347336A1 (en) 2001-12-05 2003-06-17 Astrazeneca Ab Quinoline derivatives
GB0129099D0 (en) 2001-12-05 2002-01-23 Astrazeneca Ab Chemical compounds
WO2003047584A1 (en) 2001-12-05 2003-06-12 Astrazeneca Ab Quinoline derivatives
CN1602195A (zh) 2001-12-12 2005-03-30 辉瑞产品公司 用于治疗异常细胞生长的喹唑啉衍生物
GEP20063872B (en) 2001-12-12 2006-07-10 Pfizer Prod Inc Salt forms of e-2-methoxy-n-(3-{4-[3-methyl-4-(6-methyl-pyridin-3-yloxy)-phenylamino]-quina-zolin-6-yl}-allyl)-acetamide and method of production
AU2002361846A1 (en) 2001-12-21 2003-07-15 Bayer Pharmaceuticals Corporation Quinazoline and quinoline derivative compounds as inhibitors of prolylpeptidase, inducers of apoptosis and cancer treatment agents
TW200301123A (en) 2001-12-21 2003-07-01 Astrazeneca Uk Ltd New use
HU229477B1 (en) 2001-12-24 2014-01-28 Astrazeneca Ab Substituted quinazoline derivatives as inhibitors of aurora kinases
WO2003064431A2 (en) 2002-01-29 2003-08-07 Glaxo Group Limited Aminopiperidine compounds, process for their preparation, and pharmaceutical compositions containing them
JP4445753B2 (ja) 2002-01-29 2010-04-07 グラクソ グループ リミテッド アミノピペリジン誘導体
US7268230B2 (en) 2002-02-01 2007-09-11 Astrazeneca Ab Quinazoline compounds
DE10204462A1 (de) 2002-02-05 2003-08-07 Boehringer Ingelheim Pharma Verwendung von Tyrosinkinase-Inhibitoren zur Behandlung inflammatorischer Prozesse
TW200813014A (en) 2002-03-28 2008-03-16 Astrazeneca Ab Quinazoline derivatives
DE10217689A1 (de) 2002-04-19 2003-11-13 Boehringer Ingelheim Pharma Bicyclische Heterocyclen, diese Verbindungen enthaltende Arzneimittel, ihre Verwendung und Verfahren zu ihrer Herstellung
US7598258B2 (en) 2002-05-01 2009-10-06 Kirin Beer Kabushiki Kaisha Quinoline derivatives and quinazoline derivatives inhibiting autophosphorylation of macrophage colony stimulating factor receptor
US7323479B2 (en) * 2002-05-17 2008-01-29 Celgene Corporation Methods for treatment and management of brain cancer using 1-oxo-2-(2,6-dioxopiperidin-3-yl)-4-methylisoindoline
EP1521747B1 (en) 2002-07-15 2018-09-05 Symphony Evolution, Inc. Receptor-type kinase modulators and methods of use
GB0219746D0 (en) 2002-08-23 2002-10-02 Inst Of Ex Botany Ascr Azapurine derivatives
AU2003257666A1 (en) 2002-08-23 2004-03-11 Kirin Beer Kabushiki Kaisha COMPOUND HAVING TGFss INHIBITORY ACTIVITY AND MEDICINAL COMPOSITION CONTAINING THE SAME
US7419984B2 (en) 2002-10-17 2008-09-02 Cell Therapeutics, Inc. Pyrimidines and uses thereof
PT1559715E (pt) 2002-10-21 2007-10-24 Kirin Pharma Kk Formas cristalinas de sais de n-[2-cloro-4-[6, 7-dimetoxi-4-quinolil)oxi]finil]-n'-(5-metil-3-isoxazolil) ureia
JPWO2004039782A1 (ja) 2002-10-29 2006-03-02 麒麟麦酒株式会社 Flt3自己リン酸化を阻害するキノリン誘導体およびキナゾリン誘導体並びにそれらを含有する医薬組成物
PT1562955E (pt) 2002-11-04 2008-05-05 Astrazeneca Ab Derivados de quinazolina como inibidores da scr tirosina-cinase
JP2006515846A (ja) 2002-12-13 2006-06-08 ニューロジェン・コーポレーション カプサイシン受容体モジュレーターとしての2−置換キナゾリン−4−イルアミン類似体
CA2510323A1 (en) 2002-12-18 2004-07-01 Pfizer Products Inc. 4-anilino quinazoline derivatives for the treatment of abnormal cell growth
US7238679B2 (en) 2002-12-23 2007-07-03 Ariad Pharmaceuticals, Inc. Heterocycles and uses thereof
AU2003292838A1 (en) 2002-12-27 2004-07-29 Kirin Beer Kabushiki Kaisha Therapeutic agent for wet age-related macular degeneration
US8176532B1 (en) 2003-03-17 2012-05-08 Sprint Communications Company L.P. Secure access point for scada devices
KR100559180B1 (ko) 2003-05-20 2006-03-14 김민서 조건부 거래에 따른 전자결제 방법 및 전자결제 서버
WO2005003140A1 (en) 2003-07-02 2005-01-13 Pharmacia & Upjohn Company Llc 4-oxo-4,7-dihydrothieno[2,3-b]pyridine-5-carboxamides as antiviral agents
WO2005005389A2 (en) 2003-07-07 2005-01-20 Merck Patent Gmbh Malonamide derivatives
EP2210607B1 (en) 2003-09-26 2011-08-17 Exelixis Inc. N-[3-fluoro-4-({6-(methyloxy)-7-[(3-morpholin-4-ylpropyl)oxy]quinolin-4-yl}oxy)phenyl]-N'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide for the treatment of cancer
TWI347940B (en) 2003-11-07 2011-09-01 Novartis Ag Methods for synthesizing quinolinone compounds
AU2005207946A1 (en) 2004-01-23 2005-08-11 Amgen Inc. Quinoline quinazoline pyridine and pyrimidine counds and their use in the treatment of inflammation angiogenesis and cancer
US20050288290A1 (en) 2004-06-28 2005-12-29 Borzilleri Robert M Fused heterocyclic kinase inhibitors
WO2006014325A2 (en) 2004-07-02 2006-02-09 Exelixis, Inc. C-met modulators and method of use
AU2005269974A1 (en) * 2004-07-06 2006-02-09 Angion Biomedica Corporation Quinazoline modulators of hepatocyte growth factor / c-Met activity for the treatment of cancer
WO2006108059A1 (en) 2005-04-06 2006-10-12 Exelixis, Inc. C-met modulators and methods of use
US20080298657A1 (en) 2005-11-23 2008-12-04 Junji Shiraishi Computer-Aided Method for Detection of Interval Changes in Successive Whole-Body Bone Scans and Related Computer Program Program Product and System
AU2006320580B2 (en) 2005-11-30 2011-06-23 Vertex Pharmaceuticals Incorporated Inhibitors of c-Met and uses thereof
AU2007224020A1 (en) 2006-03-07 2007-09-13 Array Biopharma Inc. Heterobicyclic pyrazole compounds and methods of use
CA2646048A1 (en) * 2006-03-30 2007-11-08 Novartis Ag Compositions and methods of use for antibodies of c-met
WO2008035209A2 (en) 2006-05-30 2008-03-27 Methylgene Inc. Inhibitors of protein tyrosine kinase activity
US8217177B2 (en) * 2006-07-14 2012-07-10 Amgen Inc. Fused heterocyclic derivatives and methods of use
JP5190365B2 (ja) 2006-08-23 2013-04-24 エーザイ・アール・アンド・ディー・マネジメント株式会社 フェノキシピリジン誘導体の塩またはその結晶およびそれらの製造方法
JPWO2009096435A1 (ja) * 2008-01-29 2011-05-26 武田薬品工業株式会社 縮合複素環誘導体およびその用途
UY31800A (es) 2008-05-05 2009-11-10 Smithkline Beckman Corp Metodo de tratamiento de cancer usando un inhibidor de cmet y axl y un inhibidor de erbb
WO2009136663A1 (en) * 2008-05-08 2009-11-12 Takeda Pharmaceutical Company Limited Fused heterocyclic derivatives and use thereof
AR075084A1 (es) 2008-09-26 2011-03-09 Smithkline Beecham Corp Metodo de preparacion de quinolinil -oxidifenil - ciclopropanodicarboxamidas e intermediarios correspondientes
EP2349328A1 (en) 2008-10-01 2011-08-03 Ludwig Institute For Cancer Research Methods for the treatment of cancer
WO2010056960A1 (en) 2008-11-13 2010-05-20 Exelixis Inc. Methods of preparing quinoline derivatives
JP2012511017A (ja) 2008-12-04 2012-05-17 エグゼリクシス, インコーポレイテッド キノリン誘導体の調製方法
KR20200137052A (ko) * 2009-01-16 2020-12-08 엑셀리시스, 인코포레이티드 암의 치료를 위한 n-(4-{〔6,7-비스(메틸옥시)퀴놀린-4-일〕옥시}페닐)-n'-(4-플루오로페닐)사이클로프로판-1,1-디카르복사미드의 말산염 및 그 결정형
KR20120051702A (ko) 2009-07-17 2012-05-22 엑셀리시스, 인코포레이티드 N-〔3-플루오로-4-({6-(메틸옥시)-7-〔(3-모르폴린-4-일프로필)옥시〕퀴놀린-4-일}옥시)페닐〕-n''-(4-플루오로페닐)시클로프로판-1,1-디카르복사미드의 결정형
UA108618C2 (uk) 2009-08-07 2015-05-25 Застосування c-met-модуляторів в комбінації з темозоломідом та/або променевою терапією для лікування раку
EP2475390A4 (en) 2009-09-09 2014-01-01 Quintiles Transnat Corp METHODS AND COMPOSITIONS FOR THE TREATMENT OF TYROSINE KINASE RECEPTOR MEDIATION DISEASES OR DISORDERS
SG184040A1 (en) 2010-03-12 2012-10-30 Exelixis Inc Hydrated crystalline forms of n-[3-fluoro-4-({6-(methyloxy)-7-[(3-morpholin-4-ylpropyl)oxy]-quinolin-4-yl}oxy)phenyl]-n'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
US20120070368A1 (en) 2010-04-16 2012-03-22 Exelixis, Inc. Methods of Using C-Met Modulators
SG10201609324UA (en) 2010-07-16 2017-01-27 Exelixis Inc C-met modulator pharmaceutical compositions
US20140186407A9 (en) 2010-07-16 2014-07-03 Exelixis Inc. C-Met Modulator Pharmaceutical Compositions
CN103327979A (zh) 2010-11-22 2013-09-25 葛兰素史密斯克莱知识产权(第2号)有限公司 治疗癌症的方法
US20120252840A1 (en) 2011-04-04 2012-10-04 Exelixis, Inc. Method of Treating Cancer
JP2014532766A (ja) 2011-11-08 2014-12-08 エクセリクシス, インク. 癌を治療する、met及びvegfの二重阻害剤
WO2013166296A1 (en) 2012-05-02 2013-11-07 Exelixis, Inc. A dual met - vegf modulator for treating osteolytic bone metastases
EP2892532B1 (en) 2012-09-07 2019-02-13 Exelixis, Inc. Inhibitors of met, vegfr and ret for use in the treatment of lung adenocarcinoma
EP2983639A1 (en) 2013-04-04 2016-02-17 Exelixis, Inc. Drug combinations to treat cancer
JP6666849B2 (ja) 2014-03-17 2020-03-18 エグゼリクシス, インコーポレイテッド カボザンチニブ製剤の投与
CA2957466C (en) 2014-08-05 2023-10-17 Exelixis, Inc. Drug combinations to treat multiple myeloma

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662783B2 (en) * 2003-02-20 2010-02-16 New York University CLK-peptide and SLK-peptide
US7999006B2 (en) * 2006-12-14 2011-08-16 Exelixis, Inc. Methods of using MEK inhibitors

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174947B2 (en) 2003-09-26 2015-11-03 Exelixus, Inc. c-Met modulators and methods of use
US11124482B2 (en) 2003-09-26 2021-09-21 Exelixis, Inc. C-met modulators and methods of use
US11098015B2 (en) 2009-01-16 2021-08-24 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms thereof for the treatment of cancer
US11091440B2 (en) 2009-01-16 2021-08-17 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)- N′-(4-fluorophenyl)cyclopropane-1,1 -dicarboxamide, and crystalline forms thereof for the treatment of cancer
US11091439B2 (en) 2009-01-16 2021-08-17 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms therof for the treatment of cancer
US9809549B2 (en) 2009-01-16 2017-11-07 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy)quinolin-4-yl]oxy}phenyl)-N′(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms therof for the treatment of cancer
US8877776B2 (en) 2009-01-16 2014-11-04 Exelixis, Inc. (L)-malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
US11433064B2 (en) 2009-08-07 2022-09-06 Exelixis, Inc. Methods of using c-Met modulators
US10736886B2 (en) 2009-08-07 2020-08-11 Exelixis, Inc. Methods of using c-Met modulators
US9724342B2 (en) 2010-07-16 2017-08-08 Exelixis, Inc. C-met modulator pharmaceutical compositions
US10548888B2 (en) 2010-07-16 2020-02-04 Exelixis C-Met modulator pharmaceutical compositions
US10034873B2 (en) 2010-07-16 2018-07-31 Exelixis, Inc. C-met modulator pharmaceutical compositions
US10039757B2 (en) 2010-07-16 2018-08-07 Exelixis, Inc. C-Met modulator pharmaceutical compositions
US11123338B2 (en) 2010-07-16 2021-09-21 Exelixis, Inc. C-met modulator pharmaceutical compositions
US11612597B2 (en) 2010-09-27 2023-03-28 Exelixis, Inc. Method of treating cancer
US10123999B2 (en) 2011-02-10 2018-11-13 Exelixis, Inc. Processes for preparing quinoline compounds and pharmaceutical compositions containing such compounds
US9717720B2 (en) 2011-02-10 2017-08-01 Exelixis, Inc. Processes for preparing quinoline compounds and pharmaceutical compositions containing such compounds
US11298349B2 (en) 2011-02-10 2022-04-12 Exelixis, Inc. Processes for preparing quinoline compounds and pharmaceutical compositions containing such compounds
US10543206B2 (en) 2011-02-10 2020-01-28 Exelixis, Inc. Processes for preparing quinoline compounds and pharmaceutical compositions containing such compounds
US11116759B2 (en) 2011-04-04 2021-09-14 Exelixis, Inc. Method of treating cancer
US11504363B2 (en) 2011-05-02 2022-11-22 Exelixis, Inc. Method of treating cancer and bone cancer pain
US10166225B2 (en) 2011-09-22 2019-01-01 Exelixis, Inc. Method for treating osteoporosis
US9969692B2 (en) 2011-10-20 2018-05-15 Exelixis, Inc. Process for preparing quinoline derivatives
US9861624B2 (en) 2012-05-02 2018-01-09 Exelixis, Inc. Method of treating cancer
US10221139B2 (en) 2012-10-02 2019-03-05 Gilead Sciences, Inc. Inhibitors of histone demethylases
US10189787B2 (en) 2012-10-02 2019-01-29 Gilead Sciences, Inc. Inhibitors of histone demethylases
US9650339B2 (en) 2013-02-27 2017-05-16 Gilead Sciences, Inc. Inhibitors of histone demethylases
US9221801B2 (en) 2013-02-27 2015-12-29 Epitherapeutics Aps Inhibitors of histone demethylases
US10273211B2 (en) 2013-03-15 2019-04-30 Exelixis, Inc. Metabolites of N-{4-([6,7-bis(methyloxy)quinolin-4-yl]oxy}phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
US11564915B2 (en) 2013-04-04 2023-01-31 Exelixis, Inc. Cabozantinib dosage form and use in the treatment of cancer
US10501418B2 (en) 2014-02-14 2019-12-10 Exelixis, Inc. Crystalline solid forms of N-{4-[(6,7-dimethoxyquinolin-4-yl)oxy]phenyl}-N′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide, processes for making, and methods of use
US10851061B2 (en) 2014-02-14 2020-12-01 Exelixis, Inc. Crystalline solid forms of N-{4-[(6,7-dimethoxyquinolin-4-yl)oxy]phenyl}-N′-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide, processes for making, and methods of use
US11724986B2 (en) 2014-02-14 2023-08-15 Exelixis, Inc. Crystalline solid forms of N-{4-[(6,7-dimethoxyquinolin-4-yl)oxy]phenyl}-N'-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide, processes for making, and methods of use
US11760726B2 (en) 2014-02-14 2023-09-19 Exelixis, Inc. Crystalline solid forms of N-{4-[(6,7-Dimethoxyquinolin-4-yl)oxy]phenyl} -n'-(4-fluorophenyl) cyclopropane-1,1-dicarboxamide, processes for making, and methods of use
US10159666B2 (en) 2014-03-17 2018-12-25 Exelixis, Inc. Dosing of cabozantinib formulations
WO2015153498A1 (en) 2014-03-31 2015-10-08 Epitherapeutics, Aps Inhibitors of histone demethylases
US11124481B2 (en) 2014-07-31 2021-09-21 Exelixis, Inc. Method of preparing fluorine-18 labeled Cabozantinib and its analogs
US11065240B2 (en) 2014-08-05 2021-07-20 Exelixis, Inc. Drug combinations to treat multiple myeloma
US9802941B2 (en) 2014-08-27 2017-10-31 Gilead Sciences, Inc. Compounds and methods for inhibiting histone demethylases
WO2016033169A1 (en) 2014-08-27 2016-03-03 Epitherapeutics Aps Compounds and methods for inhibiting histone demethylases
US11141413B2 (en) 2016-04-15 2021-10-12 Exelixis, Inc. Method of treating renal cell carcinoma using N-(4-(6,7-dimethoxyquinolin-4-yloxy)phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, (2S)-hydroxybutanedioate
US11969419B2 (en) 2023-02-21 2024-04-30 Exelixis, Inc. Method of treating cancer

Also Published As

Publication number Publication date
HK1246291A1 (zh) 2018-09-07
NZ624643A (en) 2015-11-27
US20160000772A1 (en) 2016-01-07
KR101761380B1 (ko) 2017-07-25
IL238849A0 (en) 2015-06-30
BR112012002759A2 (pt) 2019-09-24
CA2770100C (en) 2021-04-20
JP5933435B2 (ja) 2016-06-08
AU2017200269B2 (en) 2019-02-07
JP2017082007A (ja) 2017-05-18
NZ598055A (en) 2014-05-30
US11433064B2 (en) 2022-09-06
US20230181559A1 (en) 2023-06-15
EA029585B1 (ru) 2018-04-30
CA2770100A1 (en) 2011-02-10
WO2011017639A1 (en) 2011-02-10
EA201270247A1 (ru) 2012-11-30
CA3002945C (en) 2021-10-19
AU2010279234B2 (en) 2016-10-20
EA024563B1 (ru) 2016-09-30
CA3002945A1 (en) 2011-02-10
EP2461810A1 (en) 2012-06-13
AU2017200269A1 (en) 2017-02-02
JP2016106141A (ja) 2016-06-16
US10736886B2 (en) 2020-08-11
UA108618C2 (uk) 2015-05-25
EA201500300A1 (ru) 2015-10-30
IL217889A0 (en) 2012-03-29
CN102647985A (zh) 2012-08-22
KR20120059540A (ko) 2012-06-08
JP6317775B2 (ja) 2018-04-25
IL217889A (en) 2015-06-30
US20200330451A1 (en) 2020-10-22
MX356176B (es) 2018-05-17
AU2010279234A1 (en) 2012-03-01
ZA201200842B (en) 2012-11-28
IL238849A (en) 2017-11-30
GEP20156310B (en) 2015-07-10
KR101954322B1 (ko) 2019-03-05
UA119316C2 (uk) 2019-06-10
US20190151302A1 (en) 2019-05-23
GEP201606521B (en) 2016-08-10
JP2013501731A (ja) 2013-01-17
MX2012001654A (es) 2012-03-14
KR20170087966A (ko) 2017-07-31
CN107325048A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
US11433064B2 (en) Methods of using c-Met modulators
US11612597B2 (en) Method of treating cancer
US11504363B2 (en) Method of treating cancer and bone cancer pain
US11116759B2 (en) Method of treating cancer
US9861624B2 (en) Method of treating cancer
US20150202196A1 (en) Methods of Using C-Met Modulators
US11969419B2 (en) Method of treating cancer

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXELIXIS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AFTAB, DANA T.;MUELLER, THOMAS;WEITZMAN, AARON;AND OTHERS;SIGNING DATES FROM 20100715 TO 20100720;REEL/FRAME:027615/0386

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION