WO2002092579A1 - 4-anilinoquinazoline derivatives - Google Patents

4-anilinoquinazoline derivatives Download PDF

Info

Publication number
WO2002092579A1
WO2002092579A1 PCT/GB2002/002128 GB0202128W WO02092579A1 WO 2002092579 A1 WO2002092579 A1 WO 2002092579A1 GB 0202128 W GB0202128 W GB 0202128W WO 02092579 A1 WO02092579 A1 WO 02092579A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxy
formula
methylpiperazin
piperazin
propoxy
Prior art date
Application number
PCT/GB2002/002128
Other languages
French (fr)
Inventor
Laurent Francois Andre Hennequin
Patrick Ple
Original Assignee
Astrazeneca Ab
Astrazeneca Uk Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astrazeneca Ab, Astrazeneca Uk Limited filed Critical Astrazeneca Ab
Publication of WO2002092579A1 publication Critical patent/WO2002092579A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/94Nitrogen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the invention concerns certain novel quinazoline derivatives, or pharmaceutically-acceptable salts thereof, which possess anti-tumour activity and are accordingly useful in methods of treatment of the human or animal body.
  • the invention also concerns processes for the manufacture of said quinazoline derivatives, to pharmaceutical compositions containing them and to their use in therapeutic methods, for example in the manufacture of medicaments for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such as man.
  • Many of the current treatment regimes for cell proliferation diseases such as psoriasis and cancer utilise compounds which inhibit DNA synthesis. Such compounds are toxic to cells generally but their toxic effect on rapidly dividing cells such as tumour cells can be beneficial.
  • Receptor tyrosine kinases are important in the transmission of biochemical signals which initiate cell replication. They are large enzymes which span the cell membrane and possess an extracellular binding domain for growth factors such as epidermal growth factor (EGF) and an intracellular portion which functions as a kinase to phosphorylate tyrosine amino acids in proteins and hence to influence cell proliferation.
  • EGF epidermal growth factor
  • Various classes of receptor tyrosine kinases are known (Wilks, Advances in Cancer Research, 1993, 60, 43-73) based on families of growth factors which bind to different receptor tyrosine kinases.
  • the classification includes Class I receptor tyrosine kinases comprising the EGF family of receptor tyrosine kinases such as the EGF, TGF , Neu and erbB receptors, Class II receptor tyrosine kinases comprising the insulin family of receptor tyrosine kinases such as the insulin and IGFI receptors and insulin-related receptor (IRR) and Class HI receptor tyrosine kinases comprising 5 the platelet-derived growth factor (PDGF) family of receptor tyrosine kinases such as the PDGF , PDGF ⁇ and colony-stimulating factor 1 (CSF1) receptors.
  • EGF EGF family of receptor tyrosine kinases
  • TGF TGF
  • Neu and erbB receptors Class II receptor tyrosine kinases comprising the insulin family of receptor tyrosine kinases such as the insulin and IGFI receptors and insulin-related receptor (IRR)
  • tyrosine kinases belong to the class of non-receptor tyrosine kinases which are located intracellularly and are involved in the transmission of biochemical signals such as those that influence tumour cell motility, dissemination and
  • Non-receptor tyrosine kinases include the Src family such as the Src, Lyn, Fyn and Yes tyrosine kinases, the Abl family such as Abl and Arg and the Jak family such as Jak 1 and Tyk 2.
  • Src family of non-receptor tyrosine kinases are highly regulated in normal cells and in the absence of extracellular stimuli are maintained in an inactive conformation.
  • some Src family members for example c-Src tyrosine kinase, is frequently significantly activated (when compared to normal cell levels) in common human cancers such as gastrointestinal cancer, for example colon, rectal and stomach cancer 5 (Cartwright et al, Proc. Natl. Acad. Sci. USA, 1990, 87, 558-562 and Mao et al, Oncogene, 1997, 15, 3083-3090), and breast cancer (Muthuswamy et al, Oncogene.
  • NSCLCs non-small cell lung cancers
  • adenocarcinomas and squamous cell cancer of the lung Mazurenko et al. European Journal 0 of Cancer, 1992, 28, 372-7)
  • bladder cancer Fanning et al, Cancer Research. 1992, 52, 1457- 62
  • oesophageal cancer Jankowski et al, Gut, 1992, 33, 1033-8
  • cancer of the prostate ovarian cancer
  • c-Src non-receptor tyrosine kinase is to regulate the assembly of focal adhesion complexes through interaction with a number of cytoplasmic proteins including, for example, focal adhesion kinase and paxillin.
  • cytoplasmic proteins including, for example, focal adhesion kinase and paxillin.
  • c-Src is coupled to signalling pathways that regulate the actin cytoskeleton which facilitates cell motility.
  • colon tumour progression from localised to disseminated, invasive metastatic disease has been correlated with c-Src non-receptor tyrosine kinase activity (Brunton et al, Oncogene, 1997, 14, 283-293, Fincham et al, EMBO J. 1998, 17, 81-92 and Nerbeek et al, Exp. Cell Research, 1999, 248, 531-537).
  • an inhibitor of such non-receptor tyrosine kinases should be of value as a selective inhibitor of the motility of tumour cells and as a selective inhibitor of the dissemination and invasiveness of mammalian cancer cells leading to inhibition of metastatic tumour growth.
  • an inhibitor of such non-receptor tyrosine kinases should be of value as an anti-invasive agent for use in the containment and/or treatment of solid tumour disease.
  • the compounds of the present invention provide an anti-tumour effect by way of inhibition of the Src family of non-receptor tyrosine kinases, for example by inhibition of one or more of c-Src, c-Yes and c-Fyn.
  • c-Src non-receptor tyrosine kinase enzyme is involved in the control of osteoclast-driven bone resorption (Soriano et al, Cell. 1991, 64, 693/702; Boyce et al, J. Clin. Invest.. 1992, 90, 1622-1627; Yoneda et al, J. Clin.
  • An inhibitor of c-Src non-receptor tyrosine kinase is therefore of value in the prevention and treatment of bone diseases such as osteoporosis, Paget's disease, metastatic disease in bone and tumour-induced hypercalcaemia.
  • the compounds of the present invention are also useful in inhibiting the uncontrolled cellular proliferation which arises from various non-malignant diseases such as inflammatory diseases (for example rheumatoid arthritis and inflammatory bowel disease), fibrotic diseases (for example hepatic cirrhosis and lung fibrosis), glomerulonephritis, multiple sclerosis, psoriasis, hypersensitivity reactions of the skin, blood vessel diseases (for example atherosclerosis and restenosis), allergic asthma, insulin-dependent diabetes, diabetic retinopathy and diabetic nephropathy.
  • inflammatory diseases for example rheumatoid arthritis and inflammatory bowel disease
  • fibrotic diseases for example hepatic cirrhosis and lung fibrosis
  • glomerulonephritis for example hepatic cirrhosis and lung fibrosis
  • multiple sclerosis for example herosclerosis and restenosis
  • allergic asthma insulin-dependent diabetes
  • diabetic retinopathy diabetic nephropathy
  • the compounds of the present invention possess potent inhibitory activity against the Src family of non-receptor tyrosine kinases, for example by inhibition of c-Src and/or c-Yes, whilst possessing less potent inhibitory ativity against other tyrosine kinase enzymes such as the receptor tyrosine kinases, for example EGF receptor tyrosine kinase and/or VEGF receptor tyrosine kinase.
  • the receptor tyrosine kinases for example EGF receptor tyrosine kinase and/or VEGF receptor tyrosine kinase.
  • certain compounds of the present invention possess substantially better potency against the Src family of non-receptor tyrosine kinases, for example c-Src and/or c-Yes, than against VEGF receptor tyrosine kinase.
  • Such compounds possess sufficient potency against the Src family of non-receptor tyrosine kinases, for example c-Src and/or c-Yes, that they may be used in an amount sufficient to inhibit, for example, c-Src and/or c-Yes whilst demonstrating little activity against VEGF receptor tyrosine kinase.
  • R 1 is hydrogen, hydroxy or (l-4C)alkoxy and R 2 is hydroxy-(2-4C)alkoxy, (l-4C)alkoxy-(2-4C)alkoxy, amino-(2-4C)alkoxy, (l-4C)alkylamino-(2-4C)alkoxy, di-[(l-4C)alkyl]amino-(2-4C)alkoxy, phenyl-(l-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-l-yl-(2-4C)alkoxy, 4-(l-4C)alkylpiperazin-l-yl- (2-4C)alkoxy, pyrrolidin-1-yl, piperidino, morpholino, pi ⁇ erazin-1-yl or 4-( 1 -4C)alkylpiperazin- 1 -yl, or R is hydrogen, hydroxy or (l-4C)alkoxy and R is hydroxy
  • R 3 is chloro, bromo or iodo; or a pharmaceutically-acceptable salt thereof.
  • alkyl includes both straight-chain and branched-chain alkyl groups such as propyl, isopropyl and tert-butyl.
  • references to individual alkyl groups such as "propyl” are specific for the straight-chain version only and references to individual branched-chain alkyl groups such as “isopropyl” are specific for the branched-chain version only.
  • (l-6C)alkoxy includes methoxy, ethoxy and isopropoxy
  • (l-6C)alkylamino includes methylamino, ethylamino and tert-butylamino
  • di-[(l-6Calkyl]amino includes dimethylamino and N-ethyl-N-methylamino.
  • optically active or racemic forms by virtue of one or more asymmetric carbon atoms
  • the invention includes in its definition any such optically active or racemic form which possesses the above-mentioned activity.
  • the synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form.
  • Suitable values for any of the 'R' groups (R 1 to R 3 ) include :- for (l-4C)alkoxy: methoxy, ethoxy, propoxy, isopropoxy and butoxy; for hydroxy-(2-4C)alkoxy: 2-hydroxyethoxy and 3-hydroxypropoxy; for (l-4C)alkoxy-(2-6C)alkoxy: 2-methoxyethoxy, 2-ethoxyethoxy and 3-methoxypropoxy; for amino-(l-4C)alkoxy: 2-aminoethoxy and 3-aminopropoxy; for (l-4C)alkylamino-(l-4C)alkoxy: 2-methylaminoethoxy, 2-ethylaminoethoxy and
  • a suitable pharmaceutically-acceptable salt of a compound of the Formula I is, for example, an acid-addition salt of a compound of the Formula I, for example an acid-addition salt with an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, trifluoroacetic, citric or maleic acid; or, for example, a salt of a compound of the Formula I which is sufficiently acidic, for example an alkali or alkaline earth metal salt such as a calcium or magnesium salt, or an ammonium salt, or a salt with an organic base such as methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • an acid-addition salt of a compound of the Formula I for example an acid-addition salt with an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, trifluoroacetic, citric or maleic acid
  • novel compounds of the invention include, for example, quinazoline derivatives of the Formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of R 1 , R 2 and R 3 has any of the meanings defined hereinbefore or in paragraphs (a) to (h) hereinafter :-
  • R 1 is hydrogen, hydroxy or methoxy and R 2 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl- N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-yl-
  • R 2 is hydrogen, hydroxy or methoxy and R 1 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl- N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-yl-
  • R 1 is methoxy and R 2 is 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl-N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin-l-ylpropoxy, 4-piperazin- 1 -ylbutoxy , 2- (4-methylpiperazin- 1 -yl)ethoxy , 3 - (4-methylpiperazin- 1 -yl)pro ⁇ oxy or 4-(4-methylpiperazin-l -yl)
  • R 1 is methoxy and R 2 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy,
  • R 2 is methoxy and R 1 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3 -piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy , 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy;
  • R 3 is chloro or bromo; and (h) R 3 is chloro.
  • a particular compound of the invention is a quinazoline derivative of the Formula I wherein :
  • R 1 is hydrogen or methoxy and R 2 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy,
  • R 3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinazoline derivative of the Formula I wherein : R is hydrogen or methoxy and R is 2-piperidinoethoxy, 3-piperidinopropoxy,
  • R 3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a particular compound of the invention is a quinazoline derivative of the Formula I wherein :
  • R 2 is methoxy and R 1 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl-N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin- 1 -ylethoxy , 3
  • R 3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a further particular compound of the invention is a quinazoline derivative of the Formula I wherein :
  • R 1 is methoxy and R 2 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3 -piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy; and R 3 is chloro; or a pharmaceutically-acceptable acid-addition salt thereof.
  • a particular compound of the invention is, for example, a quinazoline derivative of the Formula I selected from :-
  • a quinazoline derivative of the Formula I may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes, when used to prepare a quinazoline derivative of the Formula I are provided as a further feature of the invention and are illustrated
  • L is a displaceable group and R 1 and R 2 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with an aniline of the
  • R 3 has any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
  • a suitable displaceable group L is, for example, a halogeno, alkoxy, aryloxy or sulphonyloxy group, for example a chloro, bromo, methoxy, phenoxy, pentafluorophenoxy, methanesulphonyloxy or toluene-4-sulphonyloxy group.
  • a suitable base is, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide, or, for example, an alkali metal hydride, for example sodium hydride.
  • an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene
  • an alkali or alkaline earth metal carbonate or hydroxide for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide
  • the reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example an alcohol or ester such as methanol, ethanol, isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic solvent such as toluene, or a dipolar aprotic solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one or dimethylsulphoxide.
  • a suitable inert solvent or diluent for example an alcohol or ester such as methanol, ethanol, isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydr
  • the reaction is conveniently carried out at a temperature in the range, for example, 10 to 250°C, preferably in the range 40 to 80°C.
  • the quinazoline of the Formula II may be reacted with an aniline of the Formula III in the presence of a protic solvent such as isopropanol, conveniently in the presence of a suitable acid, for example hydrogen chloride gas in diethyl ether, or hydrochloric acid, and at a temperature in the range, for example, 0 to 150°C, preferably at or near the reflux temperature of the reaction solvent.
  • the quinazoline derivative of the Formula I may be obtained from this process in the form of the free base or alternatively it may be obtained in the form of a salt with the acid of the formula H-L wherein L has the meaning defined hereinbefore.
  • the salt may be treated with a suitable base, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide.
  • a suitable base for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or di
  • Protecting groups may in general be chosen from any of the groups described in the literature or known to the skilled chemist as appropriate for the protection of the group in question and may be introduced by conventional methods. Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
  • a carboxy protecting group may be the residue of an ester-forming aliphatic or arylaliphatic alcohol or of an ester-forming silanol (the said alcohol or silanol preferably containing 1-20 carbon atoms).
  • carboxy protecting groups include straight or branched chain (l-12C)alkyl groups (for example isopropyl, and tert-butyl); lower alkoxy- lower alkyl groups (for example methoxymethyl, ethoxymethyl and isobutoxymethyl); lower acyloxy-lower alkyl groups, (for example acetoxymethyl, propionyloxymethyl, butyryloxymethyl and pivaloyloxymethyl); lower alkoxycarbonyloxy-lower alkyl groups (for example 1-methoxycarbonyloxyethyl and 1-ethoxycarbonyloxyethyl); aryl-lower alkyl groups (for example benzyl, 4-methoxybenzyl, 2-nitrobenzyl, 4-nitrobenzyl, benzhydryl and phthalidyl); tri(lower alkyl)silyl groups (for example trimethylsilyl and tert-butyldimethylsilyl) ; tri(lower alkyl)silyl
  • hydroxy protecting groups include lower alkyl groups (for example tert-butyl), lower alkenyl groups (for example allyl); lower alkanoyl groups (for example acetyl); lower alkoxycarbonyl groups (for example tert-butoxycarbonyl) ; lower alkenyloxycarbonyl groups (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); tri (lower alkyl)silyl (for example trimethylsilyl and tert-butyldimethylsilyl) and aryl-lower alkyl (for example benzyl) groups.
  • lower alkyl groups for example tert-butyl
  • lower alkenyl groups for example allyl
  • lower alkoxycarbonyl groups for example tert-butoxycarbony
  • amino protecting groups include formyl, aryl-lower alkyl groups (for example benzyl and substituted benzyl, 4-methoxybenzyl, 2-nitrobenzyl and 2,4-dimethoxybenzyl, and triphenylmethyl); di-4-anisylmethyl and furylmethyl groups; lower alkoxycarbonyl (for example tert-butoxycarbonyl); lower alkenyloxycarbonyl (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); trialkylsilyl (for example trimethylsilyl and tert-butyldimethylsilyl); alkylidene (for example methylidene) and benzylidene and substituted benzylidene groups.
  • aryl-lower alkyl groups for example benzy
  • Methods appropriate for removal of hydroxy and amino protecting groups include, for example, acid-, base-, metal- or enzymically-catalysed hydrolysis for groups such as 2-nitrobenzyloxycarbonyl, hydrogenation for groups such as benzyl and photolytically for groups such as 2-nitrobenzyloxycarbonyl.
  • groups such as 2-nitrobenzyloxycarbonyl
  • hydrogenation for groups such as benzyl
  • photolytically for groups such as 2-nitrobenzyloxycarbonyl.
  • the reader is referred to Advanced Organic Chemistry, 4th Edition, by J. March, published by John Wiley & Sons 1992, for general guidance on reaction conditions and reagents and to Protective Groups in Organic Synthesis, 2 nd Edition, by T. Green et al, also published by John Wiley & Son, for general guidance on protecting groups.
  • R 1 and R 2 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, may be reacted with a halogenating agent such as thionyl chloride, phosphoryl chloride or a mixture of carbon tetrachloride and triphenylphosphine whereafter any protecting group that is present is removed by conventional means.
  • a halogenating agent such as thionyl chloride, phosphoryl chloride or a mixture of carbon tetrachloride and triphenylphosphine whereafter any protecting group that is present is removed by conventional means.
  • the 4-chloroquinazoline so obtained may be converted, if required, into a 4-pentafluorophenoxyquinazoline by reaction with pentafluorophenol in the presence of a suitable base such as potassium carbonate and in the presence of a suitable solvent such as N,N-dimethylformamide.
  • R 1 and R 3 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
  • a suitable dehydrating agent is, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide or l-(3-dimethylaminopropyl)-3-ethylcarbodiimide or a mixture of an azo compound such as diethyl or di-tert-butyl azodicarboxylate and a phosphine such as triphenylphosphine.
  • the reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.
  • the quinazoline of the Formula V may be obtained by conventional procedures.
  • a quinazoline of the Formula VI may be obtained by conventional procedures.
  • a quinazoline of the Formula VI may be obtained by conventional procedures.
  • L is a displaceable group as defined hereinbefore and R 1 has any of the meanings defined hereinbefore except that any functional group is protected if necessary, may be reacted with an aniline of the Formula IH as defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
  • R 2 and R 3 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
  • reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.
  • a suitable inert solvent or diluent for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride
  • the quinazoline of the Formula VII may be obtained by conventional procedures analogous to those described hereinbefore for the preparation of the quinazoline of the Formula V.
  • a pharmaceutically-acceptable salt of a quinazoline derivative of the Formula I When a pharmaceutically-acceptable salt of a quinazoline derivative of the Formula I is required, for example an acid-addition salt, it may be obtained by, for example, reaction of said quinazoline derivative with a suitable acid using a conventional procedure.
  • Biological Assays The following assays can be used to measure the effects of the compounds of the present invention as c-Src tyrosine kinase inhibitors, as inhibitors in vitro of the proliferation of c-Src transfected fibroblast cells, as inhibitors in vitro of the migration of A549 human lung tumour cells and as inhibitors in vivo of the growth in nude mice of xenografts of A549 tissue, (a) In Vitro Enzyme Assay The ability of test compounds to inhibit the phosphorylation of a tyrosine containing polypeptide substrate by the enzyme c-Src kinase was assessed using
  • a substrate solution [lOO ⁇ l of a 20 ⁇ g/ml solution of the polyamino acid Poly(Glu, Tyr) 4:1 (Sigma Catalogue No. P0275) in phosphate buffered saline (PBS) containing 0.2mg/ml of sodium azide] was added to each well of a number of Nunc 96-well immunoplates (Catalogue No. 439454) and the plates were sealed and stored at 4°C for 16 hours. The excess of substrate solution was discarded, and aliquots of Bovine Serum Albumin (BSA; 150 ⁇ l of a 5% solution in PBS) were transferred into each substrate-coated assay well and incubated for 1 hour at ambient temperature to block non specific binding.
  • BSA Bovine Serum Albumin
  • the assay plate wells were washed in turn with PBS containing 0.05% v/v Tween 20 (PBST) and with Hepes pH7.4 buffer (50mM, 300 ⁇ l/well) before being blotted dry.
  • PBST PBS containing 0.05% v/v Tween 20
  • Hepes pH7.4 buffer 50mM, 300 ⁇ l/well
  • Each test compound was dissolved in dimethyl sulphoxide and diluted with distilled water to give a series of dilutions (from lOO ⁇ M to O.OOl ⁇ M). Portions (25 ⁇ l) of each dilution of test compound were transferred to wells in the washed assay plates. "Total" control wells contained diluted DMSO instead of compound.
  • Active human c-Src kinase (recombinant enzyme expressed in Sf9 insect cells; obtained from Upstate Biotechnology Inc. product 14-117) was diluted immediately prior to use by a factor of 1 : 10,000 with an enzyme diluent which comprised lOOmM Hepes pH7.4 buffer, 0.2mM sodium orthovanadate, 2mM dithiothreitol and 0.02% BSA. To start the reactions, aliquots (50 ⁇ l) of freshly diluted enzyme were added to each well and the plates were incubated at ambient temperature for 20 minutes. The supernatant liquid in each well was discarded and the wells were washed twice with PBST. Mouse IgG anti-phosphotyrosine antibody (Upstate Biotechnology Inc.
  • HRP horse radish peroxidase
  • sheep anti-mouse Ig antibody (Amersham Catalogue No. NXA 931; lOO ⁇ l) was diluted by a factor of 1:500 with PBST containing 0.5% w/v BSA and added to each well. The plates were incubated for 1 hour at ambient temperature. The supernatant liquid was discarded and the wells were washed with PBST (x4).
  • HRP horse radish peroxidase
  • sheep anti-mouse Ig antibody (Amersham Catalogue No. NXA 931; lOO ⁇ l) was diluted by a factor of 1:500 with PBST containing 0.5% w/v BSA and added to each well. The plates were incubated for 1 hour at ambient temperature. The supernatant liquid was discarded and the wells were washed with PBST (x4).
  • PCSB capsule (Sigma Catalogue No. P4922) was dissolved in distilled water (100ml) to provide phosphate-citrate pH5 buffer (50mM) containing 0.03% sodium perborate. An aliquot (50ml) of this buffer was mixed with a 50mg tablet of
  • NTH National Institute of Health
  • NIH 3T3 cells were transfected with an activating mutant (Y530F) of human c-Src.
  • the resultant c-Src 3T3 cells were typically seeded at 1.5 x 10 4 cells per well into 96-well tissue- culture-treated clear assay plates (Costar) each containing an assay medium comprising Dulbecco's modified Eagle's medium (DMEM; Sigma) plus 0.5% foetal calf serum (FCS), 2mM glutamine, 100 units/ml penicillin and O.lmg/ml streptomycin in 0.9% aqueous sodium chloride solution.
  • DMEM Dulbecco's modified Eagle's medium
  • FCS foetal calf serum
  • 2mM glutamine 100 units/ml penicillin and O.lmg/ml streptomycin in 0.9% aqueous sodium chloride solution.
  • the plates were incubated overnight at 37°C in a humidified (7.5% CO 2 : 95% air) incubator.
  • Test compounds were solubilised in DMSO to form a lOmM stock solution. Aliquots of the stock solution were diluted with the DMEM medium described above and added to appropriate wells. Serial dilutions were made to give a range of test concentrations. Control wells to which test compound was not added were included on each plate. The plates were incubated overnight at 37°C in a humidified (7.5% CO 2 : 95% air) incubator.
  • BrdU labelling reagent (Boehringer Mannheim Catalogue No. 647 229) was diluted by a factor of 1:100 in DMEM medium containing 0.5% FCS and aliquots (20 ⁇ l) were added to each well to give a final concentration of lO ⁇ M). The plates were incubated at 37°C for 2 hours. The medium was decanted. A denaturating solution (FixDenat solution, Boehringer Mannheim Catalogue No. 647 229; 50 ⁇ l) was added to each well and the plates were placed on a plate shaker at ambient temperature for 45 minutes. The supernatant was decanted and the wells were washed with PBS (200 ⁇ l per well).
  • Anti-BrdU-Peroxidase solution (Boehringer Mannheim Catalogue No. 647 229) was diluted by a factor of 1:100 in PBS containing 1% BSA and 0.025% dried skimmed milk (Marvel (registered trade mark), Premier Beverages, Stafford, GB) and an aliquot (lOO ⁇ l) of the resultant solution was added to each well.
  • the plates were placed on a plate shaker at ambient temperature for 90 minutes. The wells were washed with PBS (x5) to ensure removal of non bound antibody conjugate.
  • the plates were blotted dry and tetramethylbenzidine substrate solution (Boehringer Mannheim Catalogue No. 647 229; lOO ⁇ l) was added to each well.
  • the plates were gently agitated on a plate shaker while the colour developed during a 10 to 20 minute period.
  • the absorbance of the wells was measured at 690nm.
  • the extent of inhibition of cellular proliferation at a range of concentrations of each test compound was determined and an anti-proliferative IC50 value was derived.
  • This assay determines the ability of a test compound to inhibit the migration of adherent mammalian cell lines, for example the human tumour cell line A549.
  • RPMI medium(Sigma) containing 10% FCS, 1% L-glutamine and 0.3% agarose (Difco Catalogue No. 0142-01) was warmed to 37°C in a water bath.
  • a stock 2% aqueous agar solution was autoclaved and stored at 42°C.
  • An aliquot (1.5 ml) of the agar solution was added to RPMI medium (10 ml) immediately prior to its use.
  • A549 cells (Accession No. ATCC CCL185) were suspended at a concentration of 2 x 10 7 cells/ml in the medium and maintained at a temperature of 37°C.
  • a droplet (2 ⁇ l) of the cell/agarose mixture was transferred by pipette into the centre of each well of a number of 96-well, flat bottomed non-tissue-culture-treated microtitre plate (Bibby Sterilin Catalogue No. 642000). The plates were placed briefly on ice to speed the gelling of the agarose-containing droplets. Aliquots (90 ⁇ l) of medium which had been cooled to 4°C were transferred into each well, taking care not to disturb the microdroplets. Test compounds were diluted from a lOmM stock solution in DMSO using RPMI medium as described above. Aliquots (lO ⁇ l) of the diluted test compounds were transferred to the wells, again taking care not to disturb the microdroplets. The plates were incubated at 37°Cin a humidified (7.5% CO 2 : 95% air) incubator for about 48 hours.
  • a migratory inhibitory IC5 0 was derived by plotting the mean migration measurement against test compound concentration.
  • a pharmaceutical composition which comprises a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
  • compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).
  • oral use for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixir
  • compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art.
  • compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.
  • a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 0.5 g of active agent (more suitably from 0.5 to 100 mg, for example from 1 to 30 mg) compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition.
  • active agent more suitably from 0.5 to 100 mg, for example from 1 to 30 mg
  • excipients which may vary from about 5 to about 98 percent by weight of the total composition.
  • Formula I will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine.
  • a daily dose in the range, for example, 0.1 mg/kg to
  • 75 mg/kg body weight is received, given if required in divided doses.
  • lower doses will be administered when a parenteral route is employed.
  • a dose in the range for example, 0.1 mg/kg to 30 mg/kg body weight will generally be used.
  • a dose in the range for example, 0.05 mg/kg to 25 mg/kg body weight will be used.
  • Oral administration is however preferred, particularly in tablet form.
  • unit dosage forms will contain about 0.5 mg to 0.5 g of a compound of this invention.
  • a quinazoline derivative of the Formula I or a pharmaceutically-acceptable salt thereof, as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
  • c-Src non-receptor tyrosine kinase the predominant role of c-Src non-receptor tyrosine kinase is to regulate cell motility which is necessarily required for a localised tumour to progress through the stages of dissemination into the blood stream, invasion of other tissues and initiation of metastatic tumour growth.
  • the quinazoline derivatives of the present invention possess potent anti-tumour activity which it is believed is obtained by way of inhibition of one or more of the non-receptor tyrosine-specific protein kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells.
  • the quinazoline derivatives of the present invention are of value as anti- tumour agents, in particular as selective inhibitors of the motility, dissemination and invasiveness of mammalian cancer cells leading to inhibition of metastatic tumour growth.
  • the quinazoline derivatives of the present invention are of value as anti-invasive agents in the containment and/or treatment of solid tumour disease.
  • the compounds of the present invention are expected to be useful in the prevention or treatment of those tumours which are sensitive to inhibition of one or more of the multiple non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells.
  • the compounds of the present invention are expected to be useful in the prevention or treatment of those tumours which are mediated alone or in part by inhibition of the enzyme c-Src, i.e. the compounds may be used to produce a c-Src enzyme inhibitory effect in a warm-blooded animal in need of such treatment.
  • the compounds of the present invention are expected to be useful in the prevention or treatment of solid tumour disease.
  • a method for producing an anti-invasive effect by the containment and/or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
  • a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such as man.
  • a method for the prevention or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
  • a quinazoline derivative of the Formula I or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the prevention or treatment of those tumours which are sensitive to inhibition of non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells.
  • tumours which are sensitive to inhibition of non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells
  • a method for the prevention or treatment of those tumours which are sensitive to inhibition of non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells which comprises administering to said animal an effective amount of a quinazoline derivative of the
  • a method for providing a c-Src kinase inhibitory effect which comprises administering to said animal an effective amount of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
  • the anti-invasive treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the quinazoline derivative of the invention, conventional surgery or radiotherapy or chemotherapy.
  • Such chemotherapy may include one or more of the following categories of anti-tumour agents :- (i) other anti-invasion agents (for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function);
  • antiproliferative/antineoplastic drugs and combinations thereof as used in medical oncology, such as alkylating agents (for example cis-platin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan and nitrosoureas); antimetabolites (for example antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside and hydroxyurea, or, for example, one of the preferred antimetabolites disclosed in European Patent Application No.
  • alkylating agents for example cis-platin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan and nitrosoureas
  • antimetabolites for example antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexe
  • 562734 such as (2S)-2- ⁇ o-fluoro-p-[N- ⁇ 2J-dimethyl-4-oxo-3,4-dihydroquinazolin-6-ylmethyl)- N-(prop-2-ynyl)amino]benzamido ⁇ -4-(tetrazol-5-yl)butyric acid); antitumour antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example vinca alkaloids like vincristine, vinblastine, vindesine and vinorelbine and taxoids like taxol and taxotere); and topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan and camptothecin
  • inhibitors of growth factor function include growth factor antibodies, growth factor receptor antibodies, tyrosine kinase inhibitors and serine/threonine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example the EGFR tyrosine kinase inhibitors N-(3-chloro-4-fluorophenyl)-7-methoxy- 6-(3-morpholinopropoxy)quinazolin-4-amine (ZD1839), N-(3-ethynylphenyl)- 6J-bis(2-methoxyethoxy)quinazolin-4-amine (CP 358774) and 6-acrylamido-N-(3-chloro- 4-fluorophenyl)-7-(3-morpholinopropoxy)quinazolin-4-amine (CI 1033)), for example inhibitors of the platelet-derived growth factor family and for example inhibitors of the hepatocyte growth factor family; and
  • antiangiogenic agents such as those which inhibit vascular endothelial growth factor such as the compounds disclosed in International Patent Applications WO 97/22596, WO 97/30035, WO 97/32856 and WO 98/13354 and those that work by other mechanisms (for example linomide, inhibitors of integrin ⁇ v ⁇ 3 function and angiostatin).
  • Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment.
  • Such combination products employ the compounds of this invention within the dosage range described hereinbefore and the other pharmaceutically-active agent within its approved dosage range.
  • a pharmaceutical product comprising a quinazoline derivative of the formula I as defined hereinbefore and an additional anti-tumour agent as defined hereinbefore for the conjoint treatment of cancer.
  • melting points are uncorrected and were determined using a Mettler SP62 automatic melting point apparatus or an oil-bath apparatus; melting points for the end-products of the Formula I were determined after crystallisation from a conventional organic solvent such as ethanol, methanol, acetone, ether or hexane, alone or in admixture; (viii) the following abbreviations have been used:-
  • Phenol (29.05 g) was dissolved in N-methylpyrrolidin-2-one (210 ml) and sodium hydride (60% dispersion in mineral oil; 11.025 g) was added in portions with cooling. The resultant mixture was stirred at ambient temperature for 3 hours. The resultant viscous suspension was diluted with N-methylpyrrolidin-2-one (180 ml) and stirred overnight. The above-mentioned solution of 7-benzyloxy-4-chloro-6-methoxyquinazoline was added and the resultant suspension was stirred and heated to 100°C for 2.5 hours. The mixture was allowed to cool to ambient temperature and poured into water (1.5 L) with vigorous stirring.
  • the 3-morpholinopropyl chloride used as a reagent was obtained as follows :- A mixture of morpholine (52.2 ml), l-bromo-3-chloropropane (30 ml) and toluene (180 ml) was heated to 70°C for 3 hours. The solid was removed by filtration and the filtrate was evaporated under vacuum. The resultant oil was decanted from the additional solid which was deposited and the oil was purified by vacuum distillation to yield 3-morpholinopropyl chloride (37.91 g); NMR Spectrum: (DMSOd 6 ) 1.85 (m, 2H), 2.3 (t, 4H), 2.38 (t, 2H), 3.53 (t, 4H), 3.65 (t, 2H).
  • the 2-bromo-5-methoxyaniline used as a starting material was obtained as follows ;-
  • 6-methoxyquinazoline used as a starting material was obtained as follows :- A mixture of 7-(3-bromopropoxy)-6-methoxy-3-pivaloyloxymethyl- 3,4-dihydroquinazolin-4-one (International Patent Application WO 00/47212, example 67; 4.5 g), tert-butyl piperazine-1-carboxylate (2.16 g), sodium iodide (0.079 g), potassium carbonate (2.9 g) and acetonitrile (150 ml) was stirred and heated to reflux for 8 hours. The resultant mixture was filtered and the filtrate was evaporated.
  • Diethyl azodicarboxylate (0.284 ml) was added dropwise to a stirred mixture of 4-(2-chloro-5-methoxyanilino)-7-hydroxy-6-methoxyquinazoline (0.3 g), l-(2-hydroxyethyl)morpholine (0.104 ml), triphenylphosphine (0.474 g) and methylene chloride (30 ml) and the reaction mixture was stirred at ambient temperature for 1 hour. The mixture was evaporated and the residue was purified by column chromatography on silica using a 19:1 mixture of methylene chloride and methanol as eluent.
  • the mixture was poured into water and solid sodium bicarbonate was added to basify the mixture to pH8.
  • the resultant precipitate was isolated, washed with water and dried under vacuum at 50°C for 48 hours.
  • the material so obtained was purified by column chromatography on silica using a 1 : 1 mixture of methylene chloride and ethyl acetate as eluent.
  • the above formulations may be obtained by conventional procedures well known in the pharmaceutical art.
  • the tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.
  • the aerosol formulations (h)-(k) may be used in conjunction with standard, metered dose aerosol dispensers, and the suspending agents sorbitan trioleate and soya lecithin may be replaced by an alternative suspending agent such as sorbitan monooleate, sorbitan sesquioleate, polysorbate 80, polyglycerol oleate or oleic acid.

Abstract

The invention concerns quinazoline derivatives of Formula (I) wherein each of R?1, R2 and R3¿ have any of the meanings defined in the description; processes for their preparation, pharmaceutical compositions containing them and their use in the manufacture of a medicament for use as an anti-invasive agent in the containment and/or treatment of solid tumour disease.

Description

4-ANILINOQUINAZOLINE DERIVATIVES
The invention concerns certain novel quinazoline derivatives, or pharmaceutically-acceptable salts thereof, which possess anti-tumour activity and are accordingly useful in methods of treatment of the human or animal body. The invention also concerns processes for the manufacture of said quinazoline derivatives, to pharmaceutical compositions containing them and to their use in therapeutic methods, for example in the manufacture of medicaments for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such as man. Many of the current treatment regimes for cell proliferation diseases such as psoriasis and cancer utilise compounds which inhibit DNA synthesis. Such compounds are toxic to cells generally but their toxic effect on rapidly dividing cells such as tumour cells can be beneficial. Alternative approaches to anti-tumour agents which act by mechanisms other than the inhibition of DNA synthesis have the potential to display enhanced selectivity of action. In recent years it has been discovered that a cell may become cancerous by virtue of the transformation of a portion of its DNA into an oncogene i.e. a gene which, on activation, leads to the formation of malignant tumour cells (Bradshaw, Mutagenesis, 1986, 1, 91). Several such oncogenes give rise to the production of peptides which are receptors for growth factors. Activation of the growth factor receptor complex subsequently leads to an increase in cell proliferation. It is known, for example, that several oncogenes encode tyrosine kinase enzymes and that certain growth factor receptors are also tyrosine kinase enzymes (Yarden et al., Ann. Rev. Biochem.. 1988, 57, 443; Larsen et al, Ann. Reports in Med. Chem, 1989, Chpt. 13). The first group of tyrosine kinases to be identified arose from such viral oncogenes, for example pp60v-Src tyrosine kinase (otherwise known as v-Src), and the corresponding tyrosine kinases in normal cells, for example pp60c"Src tyrosine kinase (otherwise known as c-Src).
Receptor tyrosine kinases are important in the transmission of biochemical signals which initiate cell replication. They are large enzymes which span the cell membrane and possess an extracellular binding domain for growth factors such as epidermal growth factor (EGF) and an intracellular portion which functions as a kinase to phosphorylate tyrosine amino acids in proteins and hence to influence cell proliferation. Various classes of receptor tyrosine kinases are known (Wilks, Advances in Cancer Research, 1993, 60, 43-73) based on families of growth factors which bind to different receptor tyrosine kinases. The classification includes Class I receptor tyrosine kinases comprising the EGF family of receptor tyrosine kinases such as the EGF, TGF , Neu and erbB receptors, Class II receptor tyrosine kinases comprising the insulin family of receptor tyrosine kinases such as the insulin and IGFI receptors and insulin-related receptor (IRR) and Class HI receptor tyrosine kinases comprising 5 the platelet-derived growth factor (PDGF) family of receptor tyrosine kinases such as the PDGF , PDGFβ and colony-stimulating factor 1 (CSF1) receptors.
It is also known that certain tyrosine kinases belong to the class of non-receptor tyrosine kinases which are located intracellularly and are involved in the transmission of biochemical signals such as those that influence tumour cell motility, dissemination and
10 invasiveness and subsequently metastatic tumour growth (Ullrich et al, Cell, 1990, 61, 203- 212, Bolen et al, FASEB J., 1992, 6, 3403-3409, Brickell et al, Critical Reviews in Oncogenesis, 1992, 3, 401-406, Bohlen et al, Oncogene. 1993, 8, 2025-2031, Courtneidge et al, Semin. Cancer Biol., 1994, 5, 239-246, Lauffenburger et al, Cell, 1996, 84. 359-369, Hanks et al, BioEssays, 1996, 19, 137-145, Parsons et al, Current Opinion in Cell Biology,
15 1997, 9, 187-192, Brown et al, Biochimica et Biophvsica Acta . 1996, 1287, 121-149 and Schlaepfer et al, Progress in Biophysics and Molecular Biology, 1999, 71, 435-478). Various classes of non-receptor tyrosine kinases are known including the Src family such as the Src, Lyn, Fyn and Yes tyrosine kinases, the Abl family such as Abl and Arg and the Jak family such as Jak 1 and Tyk 2.
20 It is known that the Src family of non-receptor tyrosine kinases are highly regulated in normal cells and in the absence of extracellular stimuli are maintained in an inactive conformation. However, some Src family members, for example c-Src tyrosine kinase, is frequently significantly activated (when compared to normal cell levels) in common human cancers such as gastrointestinal cancer, for example colon, rectal and stomach cancer 5 (Cartwright et al, Proc. Natl. Acad. Sci. USA, 1990, 87, 558-562 and Mao et al, Oncogene, 1997, 15, 3083-3090), and breast cancer (Muthuswamy et al, Oncogene. 1995, U, 1801- 1810). The Src family of non-receptor tyrosine kinases has also been located in other common human cancers such as non-small cell lung cancers (NSCLCs) including adenocarcinomas and squamous cell cancer of the lung (Mazurenko et al. European Journal 0 of Cancer, 1992, 28, 372-7), bladder cancer (Fanning et al, Cancer Research. 1992, 52, 1457- 62), oesophageal cancer (Jankowski et al, Gut, 1992, 33, 1033-8), cancer of the prostate, ovarian cancer (Wiener et al, Clin. Cancer Research, 1999, 5, 2164-70) and pancreatic cancer (Lutz et al, Biochem. and Biophys. Res. Comm., 1998, 243, 503-8). As further human tumour tissues are tested for the Src family of non-receptor tyrosine kinases it is expected that its widespread prevalence will be established.
It is further known that the predominant role of c-Src non-receptor tyrosine kinase is to regulate the assembly of focal adhesion complexes through interaction with a number of cytoplasmic proteins including, for example, focal adhesion kinase and paxillin. In addition c-Src is coupled to signalling pathways that regulate the actin cytoskeleton which facilitates cell motility. Likewise, important roles are played by the c-Src, c-Yes and c-Fyn non-receptor tyrosine kinases in integrin mediated signalling and in disrupting cadherin-dependent cell-cell junctions (Owens et al, Molecular Biology of the Cell, 2000, 11, 51-64 and Klinghoffer et al, EMBO Journal, 1999, 18, 2459-2471). Cellular motility is necessarily required for a localised tumour to progress through the stages of dissemination into the blood stream, invasion of other tissues and initiation of metastatic tumour growth. For example, colon tumour progression from localised to disseminated, invasive metastatic disease has been correlated with c-Src non-receptor tyrosine kinase activity (Brunton et al, Oncogene, 1997, 14, 283-293, Fincham et al, EMBO J. 1998, 17, 81-92 and Nerbeek et al, Exp. Cell Research, 1999, 248, 531-537).
Accordingly it has been recognised that an inhibitor of such non-receptor tyrosine kinases should be of value as a selective inhibitor of the motility of tumour cells and as a selective inhibitor of the dissemination and invasiveness of mammalian cancer cells leading to inhibition of metastatic tumour growth. In particular an inhibitor of such non-receptor tyrosine kinases should be of value as an anti-invasive agent for use in the containment and/or treatment of solid tumour disease.
We have now found that surprisingly certain quinazoline derivatives possess potent anti-tumour activity. Without wishing to imply that the compounds disclosed in the present invention possess pharmacological activity only by virtue of an effect on a single biological process, it is believed that the compounds provide an anti-tumour effect by way of inhibition of one or more of the non-receptor tyrosine-specific protein kinases that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells. In particular, it is believed that the compounds of the present invention provide an anti-tumour effect by way of inhibition of the Src family of non-receptor tyrosine kinases, for example by inhibition of one or more of c-Src, c-Yes and c-Fyn. It is also known that c-Src non-receptor tyrosine kinase enzyme is involved in the control of osteoclast-driven bone resorption (Soriano et al, Cell. 1991, 64, 693/702; Boyce et al, J. Clin. Invest.. 1992, 90, 1622-1627; Yoneda et al, J. Clin. Invest., 1993, 91, 2791-2795 and Missbach et al, Bone, 1999, 24 , 437-49). An inhibitor of c-Src non-receptor tyrosine kinase is therefore of value in the prevention and treatment of bone diseases such as osteoporosis, Paget's disease, metastatic disease in bone and tumour-induced hypercalcaemia.
The compounds of the present invention are also useful in inhibiting the uncontrolled cellular proliferation which arises from various non-malignant diseases such as inflammatory diseases (for example rheumatoid arthritis and inflammatory bowel disease), fibrotic diseases (for example hepatic cirrhosis and lung fibrosis), glomerulonephritis, multiple sclerosis, psoriasis, hypersensitivity reactions of the skin, blood vessel diseases (for example atherosclerosis and restenosis), allergic asthma, insulin-dependent diabetes, diabetic retinopathy and diabetic nephropathy. Generally the compounds of the present invention possess potent inhibitory activity against the Src family of non-receptor tyrosine kinases, for example by inhibition of c-Src and/or c-Yes, whilst possessing less potent inhibitory ativity against other tyrosine kinase enzymes such as the receptor tyrosine kinases, for example EGF receptor tyrosine kinase and/or VEGF receptor tyrosine kinase. Furthermore, certain compounds of the present invention possess substantially better potency against the Src family of non-receptor tyrosine kinases, for example c-Src and/or c-Yes, than against VEGF receptor tyrosine kinase. Such compounds possess sufficient potency against the Src family of non-receptor tyrosine kinases, for example c-Src and/or c-Yes, that they may be used in an amount sufficient to inhibit, for example, c-Src and/or c-Yes whilst demonstrating little activity against VEGF receptor tyrosine kinase.
According to one aspect of the invention there is provided a quinazoline derivative of the Formula I
Figure imgf000006_0001
wherein :-
R1 is hydrogen, hydroxy or (l-4C)alkoxy and R2 is hydroxy-(2-4C)alkoxy, (l-4C)alkoxy-(2-4C)alkoxy, amino-(2-4C)alkoxy, (l-4C)alkylamino-(2-4C)alkoxy, di-[(l-4C)alkyl]amino-(2-4C)alkoxy, phenyl-(l-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-l-yl-(2-4C)alkoxy, 4-(l-4C)alkylpiperazin-l-yl- (2-4C)alkoxy, pyrrolidin-1-yl, piperidino, morpholino, piρerazin-1-yl or 4-( 1 -4C)alkylpiperazin- 1 -yl, or R is hydrogen, hydroxy or (l-4C)alkoxy and R is hydroxy-(2-4C)alkoxy, (l-4C)alkoxy-(2-4C)alkoxy, amino-(2-4C)alkoxy, (l-4C)alkylamino-(2-4C)alkoxy, di-[( 1 -4C)alkyl] amino-(2-4C)alkoxy, phenyl-( 1 -4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-l-yl-(2-4C)alkoxy or 4-(l-4C)alkylpiperazin-l-yl- (2-4C)alkoxy; and
R3 is chloro, bromo or iodo; or a pharmaceutically-acceptable salt thereof.
In this specification the generic term "alkyl" includes both straight-chain and branched-chain alkyl groups such as propyl, isopropyl and tert-butyl. However references to individual alkyl groups such as "propyl" are specific for the straight-chain version only and references to individual branched-chain alkyl groups such as "isopropyl" are specific for the branched-chain version only. An analogous convention applies to other generic terms, for example (l-6C)alkoxy includes methoxy, ethoxy and isopropoxy, (l-6C)alkylamino includes methylamino, ethylamino and tert-butylamino and di-[(l-6Calkyl]amino includes dimethylamino and N-ethyl-N-methylamino.
It is to be understood that, insofar as certain of the compounds of Formula I defined above may exist in optically active or racemic forms by virtue of one or more asymmetric carbon atoms, the invention includes in its definition any such optically active or racemic form which possesses the above-mentioned activity. The synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form.
Similarly, the above-mentioned activity may be evaluated using the standard laboratory techniques referred to hereinafter. Suitable values for the generic radicals referred to above include those set out below.
Suitable values for any of the 'R' groups (R1 to R3) include :- for (l-4C)alkoxy: methoxy, ethoxy, propoxy, isopropoxy and butoxy; for hydroxy-(2-4C)alkoxy: 2-hydroxyethoxy and 3-hydroxypropoxy; for (l-4C)alkoxy-(2-6C)alkoxy: 2-methoxyethoxy, 2-ethoxyethoxy and 3-methoxypropoxy; for amino-(l-4C)alkoxy: 2-aminoethoxy and 3-aminopropoxy; for (l-4C)alkylamino-(l-4C)alkoxy: 2-methylaminoethoxy, 2-ethylaminoethoxy and
3 -methylaminopropoxy; for di-[(l-4C)alkyl]amino-(l-4C)alkoxy: 2-dimethylaminoethoxy and 3-dimethylaminopropoxy; for phenyl-(l-4C)alkoxy: benzyloxy, and 2-phenylethoxy; for piperidino-(2-4C)alkoxy: 2-piperidinoethoxy and 3-piperidinopropoxy; for morpholino-(2-4C)alkoxy: 2-morpholinoethoxy and 3-morpholinopropoxy; for piperazin-l-yl-(2-4C)alkoxy: 2-piperazin-l-ylethoxy and 3-piperazin-l-ylpropoxy; for 4-( 1 -4C)alkylpiperazin- 1 -yl-(2-4C)alkoxy: 2-(4-methylpiperazin- 1 -yl)ethoxy and
3-(4-methylpiperazin-l-yl)propoxy; for 4-(l-4C)alkylpiperazin-l-yl: 4-methylpiperazin-l-yl and 4-ethylpiperazin-l-yl.
A suitable pharmaceutically-acceptable salt of a compound of the Formula I is, for example, an acid-addition salt of a compound of the Formula I, for example an acid-addition salt with an inorganic or organic acid such as hydrochloric, hydrobromic, sulphuric, trifluoroacetic, citric or maleic acid; or, for example, a salt of a compound of the Formula I which is sufficiently acidic, for example an alkali or alkaline earth metal salt such as a calcium or magnesium salt, or an ammonium salt, or a salt with an organic base such as methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
Particular novel compounds of the invention include, for example, quinazoline derivatives of the Formula I, or pharmaceutically-acceptable salts thereof, wherein, unless otherwise stated, each of R1, R2 and R3 has any of the meanings defined hereinbefore or in paragraphs (a) to (h) hereinafter :-
(a) R1 is hydrogen, hydroxy or methoxy and R2 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl- N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin-l-ylpropoxy, 4-piperazin- 1-ylbutoxy, 2-(4-methylpiperazin-l-yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy;
(b) R2 is hydrogen, hydroxy or methoxy and R1 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl- N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin-l-ylpropoxy, 4-piperazin- 1-ylbutoxy, 2-(4-methylpiperazin-l-yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylρiperazin- 1 -yl)butoxy;
(c) R1 is methoxy and R2 is 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl-N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin-l-ylpropoxy, 4-piperazin- 1 -ylbutoxy , 2- (4-methylpiperazin- 1 -yl)ethoxy , 3 - (4-methylpiperazin- 1 -yl)proρoxy or 4-(4-methylpiperazin-l -yl)butoxy; (d) R2 is methoxy and R1 is 2-dimethylaminoethoxy, 2-diethylaminoethoxy,
3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl-N-isopropylamino)propoxy, 3-(N-isoproρyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin-l-ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy , 3 -(4-methylpiperazin- 1 -yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy;
(e) R1 is methoxy and R2 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy,
3-piperazin- 1 -ylpropoxy, 4-piperazin-l-ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy;
(f) R2 is methoxy and R1 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3 -piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy , 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy;
(g) R3 is chloro or bromo; and (h) R3 is chloro.
A particular compound of the invention is a quinazoline derivative of the Formula I wherein :
R1 is hydrogen or methoxy and R2 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy,
3-(N-ethyl-N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin-l-ylpropoxy, 4-piperazin-l-ylbutoxy, 2-(4-methylpiperazin-l-yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy; and R3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
A further particular compound of the invention is a quinazoline derivative of the Formula I wherein : R is hydrogen or methoxy and R is 2-piperidinoethoxy, 3-piperidinopropoxy,
4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin- 1 -ylethoxy, 3-piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy, 3 -(4-methylpiperazin- 1 -yl)propoxy or
4-(4-methylpiperazin- 1 -yl)butoxy; and
R3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof. A particular compound of the invention is a quinazoline derivative of the Formula I wherein :
R2 is methoxy and R1 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl-N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin- 1 -ylethoxy , 3 -piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin-l-yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin- 1 -yl)butoxy ; and
R3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
A further particular compound of the invention is a quinazoline derivative of the Formula I wherein :
R1 is methoxy and R2 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3 -piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy; and R3 is chloro; or a pharmaceutically-acceptable acid-addition salt thereof.
A particular compound of the invention is, for example, a quinazoline derivative of the Formula I selected from :-
4-(2-chloro-5-methoxyanilino)-6-methoxy-7-[3-(4-methylpiperazin-l-yl)propoxy]quinazoline, 4-(2-chloro-5-methoxyanilino)-6-methoxy-7-(2-piperidinoethoxy)quinazoline and 4-(2-chloro-5-methoxyanilino)-6-methoxy-7-(2-morpholinoethoxy)quinazoline and 4-(2-bromo-5-methoxyanilino)-6-methoxy-7-[3-(4-methylpiperazin-l-yl)propoxy]quinazoline or a pharmaceutically-acceptable acid-addition salt thereof.
A quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Such processes, when used to prepare a quinazoline derivative of the Formula I are provided as a further feature of the invention and are illustrated
1 9 by the following representative process variants in which, unless otherwise stated, R , R and R3 have any of the meanings defined hereinbefore. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described in conjunction with the following representative process variants and within the accompanying Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.
(a) The reaction, conveniently in the presence of a suitable acid or base, of a quinazoline of the Formula II
Figure imgf000011_0001
wherein L is a displaceable group and R1 and R2 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, with an aniline of the
Formula III
Figure imgf000011_0002
wherein R3 has any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
A suitable displaceable group L is, for example, a halogeno, alkoxy, aryloxy or sulphonyloxy group, for example a chloro, bromo, methoxy, phenoxy, pentafluorophenoxy, methanesulphonyloxy or toluene-4-sulphonyloxy group.
A suitable base is, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide, or, for example, an alkali metal hydride, for example sodium hydride.
The reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example an alcohol or ester such as methanol, ethanol, isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic solvent such as toluene, or a dipolar aprotic solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidin-2-one or dimethylsulphoxide. The reaction is conveniently carried out at a temperature in the range, for example, 10 to 250°C, preferably in the range 40 to 80°C. Typically, the quinazoline of the Formula II may be reacted with an aniline of the Formula III in the presence of a protic solvent such as isopropanol, conveniently in the presence of a suitable acid, for example hydrogen chloride gas in diethyl ether, or hydrochloric acid, and at a temperature in the range, for example, 0 to 150°C, preferably at or near the reflux temperature of the reaction solvent.
The quinazoline derivative of the Formula I may be obtained from this process in the form of the free base or alternatively it may be obtained in the form of a salt with the acid of the formula H-L wherein L has the meaning defined hereinbefore. When it is desired to obtain the free base from the salt, the salt may be treated with a suitable base, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, N-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide. Protecting groups may in general be chosen from any of the groups described in the literature or known to the skilled chemist as appropriate for the protection of the group in question and may be introduced by conventional methods. Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
Specific examples of protecting groups are given below for the sake of convenience, in which "lower", as in, for example, lower alkyl, signifies that the group to which it is applied preferably has 1-4 carbon atoms. It will be understood that these examples are not exhaustive. Where specific examples of methods for the removal of protecting groups are given below these are similarly not exhaustive. The use of protecting groups and methods of deprotection not specifically mentioned are, of course, within the scope of the invention. A carboxy protecting group may be the residue of an ester-forming aliphatic or arylaliphatic alcohol or of an ester-forming silanol (the said alcohol or silanol preferably containing 1-20 carbon atoms). Examples of carboxy protecting groups include straight or branched chain (l-12C)alkyl groups (for example isopropyl, and tert-butyl); lower alkoxy- lower alkyl groups (for example methoxymethyl, ethoxymethyl and isobutoxymethyl); lower acyloxy-lower alkyl groups, (for example acetoxymethyl, propionyloxymethyl, butyryloxymethyl and pivaloyloxymethyl); lower alkoxycarbonyloxy-lower alkyl groups (for example 1-methoxycarbonyloxyethyl and 1-ethoxycarbonyloxyethyl); aryl-lower alkyl groups (for example benzyl, 4-methoxybenzyl, 2-nitrobenzyl, 4-nitrobenzyl, benzhydryl and phthalidyl); tri(lower alkyl)silyl groups (for example trimethylsilyl and tert-butyldimethylsilyl) ; tri(lower alkyl)silyl-lower alkyl groups (for example trimethylsilylethyl); and (2-6C)alkenyl groups (for example allyl). Methods particularly appropriate for the removal of carboxyl protecting groups include for example acid-, base-, metal- or enzymically-catalysed cleavage.
Examples of hydroxy protecting groups include lower alkyl groups (for example tert-butyl), lower alkenyl groups (for example allyl); lower alkanoyl groups (for example acetyl); lower alkoxycarbonyl groups (for example tert-butoxycarbonyl) ; lower alkenyloxycarbonyl groups (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); tri (lower alkyl)silyl (for example trimethylsilyl and tert-butyldimethylsilyl) and aryl-lower alkyl (for example benzyl) groups. Examples of amino protecting groups include formyl, aryl-lower alkyl groups (for example benzyl and substituted benzyl, 4-methoxybenzyl, 2-nitrobenzyl and 2,4-dimethoxybenzyl, and triphenylmethyl); di-4-anisylmethyl and furylmethyl groups; lower alkoxycarbonyl (for example tert-butoxycarbonyl); lower alkenyloxycarbonyl (for example allyloxycarbonyl); aryl-lower alkoxycarbonyl groups (for example benzyloxycarbonyl, 4-methoxybenzyloxycarbonyl, 2-nitrobenzyloxycarbonyl and 4-nitrobenzyloxycarbonyl); trialkylsilyl (for example trimethylsilyl and tert-butyldimethylsilyl); alkylidene (for example methylidene) and benzylidene and substituted benzylidene groups. Methods appropriate for removal of hydroxy and amino protecting groups include, for example, acid-, base-, metal- or enzymically-catalysed hydrolysis for groups such as 2-nitrobenzyloxycarbonyl, hydrogenation for groups such as benzyl and photolytically for groups such as 2-nitrobenzyloxycarbonyl. The reader is referred to Advanced Organic Chemistry, 4th Edition, by J. March, published by John Wiley & Sons 1992, for general guidance on reaction conditions and reagents and to Protective Groups in Organic Synthesis, 2nd Edition, by T. Green et al, also published by John Wiley & Son, for general guidance on protecting groups.
Quinazoline starting materials of the Formula E may be obtained by conventional procedures. For example, a 3,4-dihydroquinazolin-4-one of Formula IV
Figure imgf000014_0001
wherein R1 and R2 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, may be reacted with a halogenating agent such as thionyl chloride, phosphoryl chloride or a mixture of carbon tetrachloride and triphenylphosphine whereafter any protecting group that is present is removed by conventional means. The 4-chloroquinazoline so obtained may be converted, if required, into a 4-pentafluorophenoxyquinazoline by reaction with pentafluorophenol in the presence of a suitable base such as potassium carbonate and in the presence of a suitable solvent such as N,N-dimethylformamide. (b) For the production of those compounds of the Formula I wherein R2 is (l-4C)alkoxy or a substituted (2-4C)alkoxy group, the coupling, conveniently in the presence of a suitable dehydrating agent, of an appropriate alcohol, wherein any functional group is protected if necessary, with a quinazoline of the Formula V
Figure imgf000014_0002
wherein R1 and R3 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
A suitable dehydrating agent is, for example, a carbodiimide reagent such as dicyclohexylcarbodiimide or l-(3-dimethylaminopropyl)-3-ethylcarbodiimide or a mixture of an azo compound such as diethyl or di-tert-butyl azodicarboxylate and a phosphine such as triphenylphosphine. The reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.
The quinazoline of the Formula V may be obtained by conventional procedures. For example, a quinazoline of the Formula VI
Figure imgf000015_0001
wherein L is a displaceable group as defined hereinbefore and R1 has any of the meanings defined hereinbefore except that any functional group is protected if necessary, may be reacted with an aniline of the Formula IH as defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
(c) For the production of those compounds of the Formula I wherein R1 is (l-4C)alkoxy or a substituted (2-4C)alkoxy group, the coupling, conveniently in the presence of a suitable dehydrating agent as defined hereinbefore, of an appropriate alcohol, wherein any functional group is protected if necessary, with a quinazoline of the Formula VII
Figure imgf000015_0002
wherein R2 and R3 have any of the meanings defined hereinbefore except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means.
The reaction is conveniently carried out in the presence of a suitable inert solvent or diluent, for example a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride and at a temperature in the range, for example, 10 to 150°C, preferably at or near ambient temperature.
The quinazoline of the Formula VII may be obtained by conventional procedures analogous to those described hereinbefore for the preparation of the quinazoline of the Formula V.
When a pharmaceutically-acceptable salt of a quinazoline derivative of the Formula I is required, for example an acid-addition salt, it may be obtained by, for example, reaction of said quinazoline derivative with a suitable acid using a conventional procedure. Biological Assays The following assays can be used to measure the effects of the compounds of the present invention as c-Src tyrosine kinase inhibitors, as inhibitors in vitro of the proliferation of c-Src transfected fibroblast cells, as inhibitors in vitro of the migration of A549 human lung tumour cells and as inhibitors in vivo of the growth in nude mice of xenografts of A549 tissue, (a) In Vitro Enzyme Assay The ability of test compounds to inhibit the phosphorylation of a tyrosine containing polypeptide substrate by the enzyme c-Src kinase was assessed using a conventional Elisa assay.
A substrate solution [lOOμl of a 20μg/ml solution of the polyamino acid Poly(Glu, Tyr) 4:1 (Sigma Catalogue No. P0275) in phosphate buffered saline (PBS) containing 0.2mg/ml of sodium azide] was added to each well of a number of Nunc 96-well immunoplates (Catalogue No. 439454) and the plates were sealed and stored at 4°C for 16 hours. The excess of substrate solution was discarded, and aliquots of Bovine Serum Albumin (BSA; 150μl of a 5% solution in PBS) were transferred into each substrate-coated assay well and incubated for 1 hour at ambient temperature to block non specific binding. The assay plate wells were washed in turn with PBS containing 0.05% v/v Tween 20 (PBST) and with Hepes pH7.4 buffer (50mM, 300μl/well) before being blotted dry. Each test compound was dissolved in dimethyl sulphoxide and diluted with distilled water to give a series of dilutions (from lOOμM to O.OOlμM). Portions (25μl) of each dilution of test compound were transferred to wells in the washed assay plates. "Total" control wells contained diluted DMSO instead of compound. Aliquots (25μl) of an aqueous magnesium chloride solution (80mM) containing adenosine-5'-triphosphate (ATP; 40μM) was added to all test wells except the "blank" control wells which contained magnesium chloride without ATP.
Active human c-Src kinase (recombinant enzyme expressed in Sf9 insect cells; obtained from Upstate Biotechnology Inc. product 14-117) was diluted immediately prior to use by a factor of 1 : 10,000 with an enzyme diluent which comprised lOOmM Hepes pH7.4 buffer, 0.2mM sodium orthovanadate, 2mM dithiothreitol and 0.02% BSA. To start the reactions, aliquots (50μl) of freshly diluted enzyme were added to each well and the plates were incubated at ambient temperature for 20 minutes. The supernatant liquid in each well was discarded and the wells were washed twice with PBST. Mouse IgG anti-phosphotyrosine antibody (Upstate Biotechnology Inc. product 05-321; lOOμl) was diluted by a factor of 1:6000 with PBST containing 0.5% w/v BSA and added to each well. The plates were incubated for 1 hour at ambient temperature. The supernatant liquid was discarded and each well was washed with PBST (x4). Horse radish peroxidase (HRP)-linked sheep anti-mouse Ig antibody (Amersham Catalogue No. NXA 931; lOOμl) was diluted by a factor of 1:500 with PBST containing 0.5% w/v BSA and added to each well. The plates were incubated for 1 hour at ambient temperature. The supernatant liquid was discarded and the wells were washed with PBST (x4).
A PCSB capsule (Sigma Catalogue No. P4922) was dissolved in distilled water (100ml) to provide phosphate-citrate pH5 buffer (50mM) containing 0.03% sodium perborate. An aliquot (50ml) of this buffer was mixed with a 50mg tablet of
2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS; Boehringer Catalogue No. 1204 521). Aliquots (lOOμl) of the resultant solution were added to each well. The plates were incubated for 20 to 60 minutes at ambient temperature until the optical density value of the "total" control wells, measured at 405nm using a plate reading spectrophotometer, was approximately 1.0. "Blank" (no ATP) and "total" (no compound) control values were used to determine the dilution range of test compound which gave 50% inhibition of enzyme activity, (b) In Vitro c-Src transfected NTH 3T3 (c-src 3T3) Fibroblast Proliferation Assay This assay determined the ability of a test compound to inhibit the proliferation of
National Institute of Health (NTH) mouse 3T3 fibroblast cells that had been stably-transfected with an activating mutant (Y530F) of human c-Src.
Using a similar procedure to that described by Shalloway et al, Cell, 1987, 49, 65-73, NIH 3T3 cells were transfected with an activating mutant (Y530F) of human c-Src. The resultant c-Src 3T3 cells were typically seeded at 1.5 x 104 cells per well into 96-well tissue- culture-treated clear assay plates (Costar) each containing an assay medium comprising Dulbecco's modified Eagle's medium (DMEM; Sigma) plus 0.5% foetal calf serum (FCS), 2mM glutamine, 100 units/ml penicillin and O.lmg/ml streptomycin in 0.9% aqueous sodium chloride solution. The plates were incubated overnight at 37°C in a humidified (7.5% CO2 : 95% air) incubator.
Test compounds were solubilised in DMSO to form a lOmM stock solution. Aliquots of the stock solution were diluted with the DMEM medium described above and added to appropriate wells. Serial dilutions were made to give a range of test concentrations. Control wells to which test compound was not added were included on each plate. The plates were incubated overnight at 37°C in a humidified (7.5% CO2 : 95% air) incubator.
BrdU labelling reagent (Boehringer Mannheim Catalogue No. 647 229) was diluted by a factor of 1:100 in DMEM medium containing 0.5% FCS and aliquots (20μl) were added to each well to give a final concentration of lOμM). The plates were incubated at 37°C for 2 hours. The medium was decanted. A denaturating solution (FixDenat solution, Boehringer Mannheim Catalogue No. 647 229; 50μl) was added to each well and the plates were placed on a plate shaker at ambient temperature for 45 minutes. The supernatant was decanted and the wells were washed with PBS (200μl per well). Anti-BrdU-Peroxidase solution (Boehringer Mannheim Catalogue No. 647 229) was diluted by a factor of 1:100 in PBS containing 1% BSA and 0.025% dried skimmed milk (Marvel (registered trade mark), Premier Beverages, Stafford, GB) and an aliquot (lOOμl) of the resultant solution was added to each well. The plates were placed on a plate shaker at ambient temperature for 90 minutes. The wells were washed with PBS (x5) to ensure removal of non bound antibody conjugate. The plates were blotted dry and tetramethylbenzidine substrate solution (Boehringer Mannheim Catalogue No. 647 229; lOOμl) was added to each well. The plates were gently agitated on a plate shaker while the colour developed during a 10 to 20 minute period. The absorbance of the wells was measured at 690nm. The extent of inhibition of cellular proliferation at a range of concentrations of each test compound was determined and an anti-proliferative IC50 value was derived.
(c) In Vitro Microdroplet Migration Assay
This assay determines the ability of a test compound to inhibit the migration of adherent mammalian cell lines, for example the human tumour cell line A549.
RPMI medium(Sigma) containing 10% FCS, 1% L-glutamine and 0.3% agarose (Difco Catalogue No. 0142-01) was warmed to 37°C in a water bath. A stock 2% aqueous agar solution was autoclaved and stored at 42°C. An aliquot (1.5 ml) of the agar solution was added to RPMI medium (10 ml) immediately prior to its use. A549 cells (Accession No. ATCC CCL185) were suspended at a concentration of 2 x 107 cells/ml in the medium and maintained at a temperature of 37°C.
A droplet (2μl) of the cell/agarose mixture was transferred by pipette into the centre of each well of a number of 96-well, flat bottomed non-tissue-culture-treated microtitre plate (Bibby Sterilin Catalogue No. 642000). The plates were placed briefly on ice to speed the gelling of the agarose-containing droplets. Aliquots (90μl) of medium which had been cooled to 4°C were transferred into each well, taking care not to disturb the microdroplets. Test compounds were diluted from a lOmM stock solution in DMSO using RPMI medium as described above. Aliquots (lOμl) of the diluted test compounds were transferred to the wells, again taking care not to disturb the microdroplets. The plates were incubated at 37°Cin a humidified (7.5% CO2 : 95% air) incubator for about 48 hours.
Migration was assessed visually and the distance of migration was measured back to the edge of the agar droplet. A migratory inhibitory IC50 was derived by plotting the mean migration measurement against test compound concentration.
(d) In Vivo A549 Xenograft Growth Assay This test measures the ability of compounds to inhibit the growth of the A549 human carcinoma grown as a tumour in athymic nude mice (Alderley Park nu/nu strain). A total of about 5 x 106 A549 cells in matrigel (Beckton Dickinson Catalogue No. 40234) were injected subcutaneously into the left flank of each test mouse and the resultant tumours were allowed to grow for about 14 days. Tumour size was measured twice weekly using callipers and a theoretical volume was calculated. Animals were selected to provide control and treatment groups of approximately equal average tumour volume. Test compounds were prepared as a ball-milled suspension in 1% polysorbate vehicle and dosed orally once daily for a period of about 28 days. The effect on tumour growth was assessed.
Although the pharmacological properties of the compounds of the Formula I vary with structural change as expected, in general activity possessed by compounds of the Formula I, may be demonstrated at the following concentrations or doses in one or more of the above tests (a), (b), (c) and (d):-
Test (a):- IC50 in the range, for example, 0.001 - 10 μM;
Test (b):- IC50 in the range, for example, 0.01 - 20 μM;
Test (c):- activity in the range, for example, 0.01-25 μM; Test (d):- activity in the range, for example, 1-200 mg/kg/day.
No physiologically-unacceptable toxicity was observed in Test (d) at the effective dose for compounds tested of the present invention. Accordingly no untoward toxicological effects are expected when a compound of Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore is administered at the dosage ranges defined hereinafter. According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
The compositions of the invention may be in a form suitable for oral use (for example as tablets, lozenges, hard or soft capsules, aqueous or oily suspensions, emulsions, dispersible powders or granules, syrups or elixirs), for topical use (for example as creams, ointments, gels, or aqueous or oily solutions or suspensions), for administration by inhalation (for example as a finely divided powder or a liquid aerosol), for administration by insufflation (for example as a finely divided powder) or for parenteral administration (for example as a sterile aqueous or oily solution for intravenous, subcutaneous, intramuscular or intramuscular dosing or as a suppository for rectal dosing).
The compositions of the invention may be obtained by conventional procedures using conventional pharmaceutical excipients, well known in the art. Thus, compositions intended for oral use may contain, for example, one or more colouring, sweetening, flavouring and/or preservative agents.
The amount of active ingredient that is combined with one or more excipients to produce a single dosage form will necessarily vary depending upon the host treated and the particular route of administration. For example, a formulation intended for oral administration to humans will generally contain, for example, from 0.5 mg to 0.5 g of active agent (more suitably from 0.5 to 100 mg, for example from 1 to 30 mg) compounded with an appropriate and convenient amount of excipients which may vary from about 5 to about 98 percent by weight of the total composition. The size of the dose for therapeutic or prophylactic purposes of a compound of the
Formula I will naturally vary according to the nature and severity of the conditions, the age and sex of the animal or patient and the route of administration, according to well known principles of medicine.
In using a compound of the Formula I for therapeutic or prophylactic purposes it will generally be administered so that a daily dose in the range, for example, 0.1 mg/kg to
75 mg/kg body weight is received, given if required in divided doses. In general lower doses will be administered when a parenteral route is employed. Thus, for example, for intravenous administration, a dose in the range, for example, 0.1 mg/kg to 30 mg/kg body weight will generally be used. Similarly, for administration by inhalation, a dose in the range, for example, 0.05 mg/kg to 25 mg/kg body weight will be used. Oral administration is however preferred, particularly in tablet form. Typically, unit dosage forms will contain about 0.5 mg to 0.5 g of a compound of this invention.
According to a further aspect of the invention there is provided a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
As stated above, it is known that the predominant role of c-Src non-receptor tyrosine kinase is to regulate cell motility which is necessarily required for a localised tumour to progress through the stages of dissemination into the blood stream, invasion of other tissues and initiation of metastatic tumour growth. We have found that the quinazoline derivatives of the present invention possess potent anti-tumour activity which it is believed is obtained by way of inhibition of one or more of the non-receptor tyrosine-specific protein kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells.
Accordingly the quinazoline derivatives of the present invention are of value as anti- tumour agents, in particular as selective inhibitors of the motility, dissemination and invasiveness of mammalian cancer cells leading to inhibition of metastatic tumour growth. Particularly, the quinazoline derivatives of the present invention are of value as anti-invasive agents in the containment and/or treatment of solid tumour disease. Particularly, the compounds of the present invention are expected to be useful in the prevention or treatment of those tumours which are sensitive to inhibition of one or more of the multiple non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells. Further, the compounds of the present invention are expected to be useful in the prevention or treatment of those tumours which are mediated alone or in part by inhibition of the enzyme c-Src, i.e. the compounds may be used to produce a c-Src enzyme inhibitory effect in a warm-blooded animal in need of such treatment. Specifically, the compounds of the present invention are expected to be useful in the prevention or treatment of solid tumour disease. Thus according to this aspect of the invention there is provided the use of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use as an anti-invasive agent in the containment and or treatment of solid tumour disease.
According to a further feature of this aspect of the invention there is provided a method for producing an anti-invasive effect by the containment and/or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore. According to a further aspect of the invention there is provided the use of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the prevention or treatment of solid tumour disease in a warm-blooded animal such as man.
According to a further feature of this aspect of the invention there is provided a method for the prevention or treatment of solid tumour disease in a warm-blooded animal, such as man, in need of such treatment which comprises administering to said animal an effective amount of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
According to a further aspect of the invention there is provided the use of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the prevention or treatment of those tumours which are sensitive to inhibition of non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells. According to a further feature of this aspect of the invention there is provided a method for the prevention or treatment of those tumours which are sensitive to inhibition of non-receptor tyrosine kinases such as c-Src kinase that are involved in the signal transduction steps which lead to the invasiveness and migratory ability of metastasising tumour cells which comprises administering to said animal an effective amount of a quinazoline derivative of the
Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore.
According to a further aspect of the invention there is provided the use of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in providing a c-Src kinase inhibitory effect.
According to a further feature of this aspect of the invention there is provided a method for providing a c-Src kinase inhibitory effect which comprises administering to said animal an effective amount of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore. The anti-invasive treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the quinazoline derivative of the invention, conventional surgery or radiotherapy or chemotherapy. Such chemotherapy may include one or more of the following categories of anti-tumour agents :- (i) other anti-invasion agents (for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function);
(ii) antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology, such as alkylating agents (for example cis-platin, carboplatin, cyclophosphamide, nitrogen mustard, melphalan, chlorambucil, busulphan and nitrosoureas); antimetabolites (for example antifolates such as fluoropyrimidines like 5-fluorouracil and tegafur, raltitrexed, methotrexate, cytosine arabinoside and hydroxyurea, or, for example, one of the preferred antimetabolites disclosed in European Patent Application No. 562734 such as (2S)-2-{o-fluoro-p-[N-{2J-dimethyl-4-oxo-3,4-dihydroquinazolin-6-ylmethyl)- N-(prop-2-ynyl)amino]benzamido}-4-(tetrazol-5-yl)butyric acid); antitumour antibiotics (for example anthracyclines like adriamycin, bleomycin, doxorubicin, daunomycin, epirubicin, idarubicin, mitomycin-C, dactinomycin and mithramycin); antimitotic agents (for example vinca alkaloids like vincristine, vinblastine, vindesine and vinorelbine and taxoids like taxol and taxotere); and topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan and camptothecin); (iii) cytostatic agents such as antioestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene and iodoxyfene), antiandrogens (for example bicalutamide, flutamide, nilutamide and cyproterone acetate), LHRH antagonists or LHRH agonists (for example goserelin, leuprorelin and buserelin), progestogens (for example megestrol acetate), aromatase inhibitors (for example as anastrozole, letrazole, vorazole and exemestane) and inhibitors of 5 -reductase such as finasteride;
(iv) inhibitors of growth factor function, for example such inhibitors include growth factor antibodies, growth factor receptor antibodies, tyrosine kinase inhibitors and serine/threonine kinase inhibitors, for example inhibitors of the epidermal growth factor family (for example the EGFR tyrosine kinase inhibitors N-(3-chloro-4-fluorophenyl)-7-methoxy- 6-(3-morpholinopropoxy)quinazolin-4-amine (ZD1839), N-(3-ethynylphenyl)- 6J-bis(2-methoxyethoxy)quinazolin-4-amine (CP 358774) and 6-acrylamido-N-(3-chloro- 4-fluorophenyl)-7-(3-morpholinopropoxy)quinazolin-4-amine (CI 1033)), for example inhibitors of the platelet-derived growth factor family and for example inhibitors of the hepatocyte growth factor family; and
(v) antiangiogenic agents such as those which inhibit vascular endothelial growth factor such as the compounds disclosed in International Patent Applications WO 97/22596, WO 97/30035, WO 97/32856 and WO 98/13354 and those that work by other mechanisms (for example linomide, inhibitors of integrin αvβ3 function and angiostatin). Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment. Such combination products employ the compounds of this invention within the dosage range described hereinbefore and the other pharmaceutically-active agent within its approved dosage range.
According to this aspect of the invention there is provided a pharmaceutical product comprising a quinazoline derivative of the formula I as defined hereinbefore and an additional anti-tumour agent as defined hereinbefore for the conjoint treatment of cancer.
Although the compounds of the Formula I are primarily of value as therapeutic agents for use in warm-blooded animals (including man), they are also useful whenever it is required to inhibit the effects of c-Src. Thus, they are useful as pharmacological standards for use in the development of new biological tests and in the search for new pharmacological agents. The invention will now be illustrated in the following Examples in which, generally : (i) operations were carried out at ambient temperature, i.e. in the range 17 to 25 °C and under an atmosphere of an inert gas such as argon unless otherwise stated;
(ii) evaporations were carried out by rotary evaporation in vacuo and work-up procedures were carried out after removal of residual solids by filtration; (iii) column chromatography (by the flash procedure) and medium pressure liquid chromatography (MPLC) were performed on Merck Kieselgel silica (Art. 9385) or Merck Lichroprep RP-18 (Art. 9303) reversed-phase silica obtained from E. Merck, Darmstadt, Germany or high pressure liquid chromatography (HPLC) was performed on C18 reverse phase silica, for example on a Dynamax C-18 60 A preparative reversed-phase column; (iv) yields, where present, are not necessarily the maximum attainable;
(v) in general, the end-products of the Formula I have satisfactory microanalyses and their structures were confirmed by nuclear magnetic resonance (NMR) and/or mass spectral techniques; fast-atom bombardment (FAB) mass spectral data were obtained using a Platform spectrometer and, where appropriate, either positive ion data or negative ion data were collected; NMR chemical shift values were measured on the delta scale [proton magnetic resonance spectra were determined using a Jeol JNM EX 400 spectrometer operating at a field strength of 400MHz, Varian Gemini 2000 spectrometer operating at a field strength of 300MHz or a Bruker AM300 spectrometer operating at a field strength of 300MHz]; the following abbreviations have been used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad;
(vi) intermediates were not generally fully characterised and purity was assessed by thin layer chromatographic, HPLC, infra-red (IR) and or NMR analysis;
(vii) melting points are uncorrected and were determined using a Mettler SP62 automatic melting point apparatus or an oil-bath apparatus; melting points for the end-products of the Formula I were determined after crystallisation from a conventional organic solvent such as ethanol, methanol, acetone, ether or hexane, alone or in admixture; (viii) the following abbreviations have been used:-
DMF N,N-dimethylformamide
DMSO dimethylsulphoxide Example 1 4-(2-chloro-5-methoxyanilino)-6-methoxy-7-[3-(4-methylpiperazin- l-yl)propoxy]quinazoline dihydrochloride salt
A mixture of 4-chloro-7-[3-(4-methylpiperazin-l-yl)propoxy]-6-methoxyquinazoline (0.1 g), 2-chloro-5-methoxyaniline (0.072 g), a 0.1M solution of hydrogen chloride in isopropanol (4 ml) and isopropanol (5 ml) was stirred and heated to 80°C for 2 hours. The mixture was cooled to ambient temperature and diethyl ether was added. The resultant solid was isolated, washed with diethyl ether and dried under vacuum. There was thus obtained the title compound (0.108 g); NMR Spectrum: (DMSOdβ and CFsCO-aD) 2.35 (m, 2H), 2.9 (s, 3H), 3.4-4.0 (m, 10H), 3.8 (s, 3H), 4.0 (s, 3H), 4.35 (m, 2H), 7.05 (m, 1H), 7.15 (d, 1H), 7.4 (s, 1H), 7.55 (d, 1H), 8.2 (s, 1H), 8.8 (s, 1H); Mass Spectrum: M+i 472 and 474.
The 4-chloro-7-[3-(4-methylpiperazin-l-yl)propoxy]-6-methoxyquinazoline used as a starting material was prepared as follows :-
A mixture of 3-bromopropanol (20 ml), N-methylpiperazine (29 ml), potassium carbonate (83 g) and ethanol (200 ml)was stirred and heated to reflux for 20 hours. The mixture was cooled to ambient temperature and filtered. The filtrate was evaporated and the residue was triturated under diethyl ether. The resultant mixture was filtered and the filtrate was evaporated. The residue was purified by distillation at about 60-70°C under about 0.2 mm Hg to give l-(3-hydroxypropyl)-4-methylpiperazine (17 g); NMR Spectrum: (CDC13) 1.72 (m, 2H), 2.3 (s, 3H), 2.2-2.8 (m, 8H), 2.6 (t, 2H), 3.8 (t, 2H), 5.3 (br s, 1H). 4-Toluenesulphonyl chloride (3.2 g) was added to a stirred mixture of l-(3-hydroxypropyl)-4-methylpiperazine (2.4 g), triethylamine (4.6 ml) and methylene chloride (60 ml) and the resultant mixture was stirred at ambient temperature for 2 hours. The solution was washed in turn with a saturated aqueous sodium bicarbonate solution and with water and filtered through phase separating paper. The organic filtrate was evaporated to give 3-(4-methylpiperazin-l-yl)propyl 4-toluenesulphonate as an oil which crystallised on standing (3.7 g); Mass Spectrum: M+H+ 313.
A mixture of 2-amino-4-benzyloxy-5-methoxybenzamide (J. Med. Chem., 1977, 20, 146-149; 10 g), (3-dimethylamino-2-azaprop-2-en-l-ylidene)dimethylammonium chloride (Gold's reagent, 7.4 g) and dioxane (100 ml) was stirred and heated to reflux for 24 hours. Sodium acetate (3.02 g) and acetic acid (1.65 ml) were added and the reaction mixture was heated for a further 3 hours. The mixture was evaporated and water was added to the residue. The resultant solid was collected by filtration, washed with water and dried. The material was recrystallised from acetic acid to give 7-benzyloxy-6-methoxy-3,4-dihydroquinazolin-4-one
(8.7 g).
After repetition of the reaction so described, a mixture of 7-benzyloxy-6-methoxy- 3,4-dihydroquinazolin-4-one (20.3 g), thionyl chloride (440 ml) and DMF (1J5 ml) was heated to reflux for 4 hours. The thionyl chloride was evaporated under vacuum and the residue was azeotroped with toluene three times to give 7-benzyloxy-4-chloro- 6-methoxyquinazoline.
A mixture of the 7-benzyloxy-4-chloro-6-methoxyquinazoline so obtained, potassium carbonate (50 g) and 4-chloro-2-fluorophenol (8.8 ml) and DMF (500 ml) was stirred and heated to 100°C for 5 hours. The mixture was allowed to cool to ambient temperature, poured into water (2 L) and stirred at ambient temperature for a few minutes. The resultant solid was isolated and washed with water. The solid was dissolved in methylene chloride and the solution was filtered and treated with decolourising charcoal. The resultant solution was filtered and evaporated to give a solid which was triturated under diethyl ether. There was thus obtained 7-benzyloxy-4-(4-chloro-2-fluorophenoxy)-6-methoxyquinazoline (23.2 g); NMR Spectrum: (DMSOde) 3.98 (s, 3H), 5.34 (s, 2H), 7.42 (m, 9H), 7.69 (m, 1H), 8.55 (s, 1H).
A mixture of the material so obtained and trifluoroacetic acid (15 ml) was heated to reflux for 3 hours. The reaction mixture was allowed to cool, toluene was added and the mixture was evaporated. The residue was triturated under diethyl ether and then under acetone. The resultant precipitate was isolated and dried to give 4-(4-chloro- 2-fluorophenoxy)-7-hydroxy-6-methoxyquinazoline trifluoroacetate salt (21.8 g) which was used without further purification.
A mixture of the trifluoroacetic acid salt of 4-(4-chloro-2-fluorophenoxy)-7-hydroxy- 6-methoxyquinazoline (3.2 g), 3-(4-methylpiperazin-l-yl)propyl 4-toluenesulphonate (3.0 g), potassium carbonate (6.1 g) and DMF (60 ml) was stirred at 90°C for 5 hours. The resultant mixture was cooled to ambient temperature, poured into water (700 ml) and extracted with ethyl acetate (5 times). The combined extracts were washed in turn with water, a saturated aqueous sodium bicarbonate solution, water and brine. The ethyl acetate solution was dried over magnesium sulphate and evaporated. The residue was purified by column chromatography on silica using a 100: 8:1 mixture of methylene chloride, methanol and a concentrated aqueous ammonium hydroxide solution (0.880 g/ml) as eluent. The material so obtained was triturated under diethyl ether. There was thus obtained 4-(4-chloro- 2-fluorophenoxy)-6-methoxy-7-[3-(4-methylpiperazin-l-yl)propoxy]quinazoline (1.64 g);
NMR Spectrum: (DMSOd6) 1.95 (m, 2H), 2.14 (s, 3H), 2.35 (m, 8H), 2.44 (t, 2H), 3.96 (s,
3H), 4.22 (t, 2H), 7.38 (s, 1H), 7.4 (m, 1H), 7.54 (m, 2H), 7.68 (m, 1H), 8.55 (s, 1H).
After repetition of the previous reaction, a mixture of 4-(4-chloro-2-fluorophenoxy)- 6-methoxy-7-[3-(4-methylpiperazin-l-yl)propoxy]quinazoline (2.6 g) and 2N aqueous hydrochloric acid solution (45 ml) was stirred and heated to 95°C for 2 hours. The mixture was cooled to ambient temperature and basified by the addition of solid sodium bicarbonate
The mixture was evaporated and the residue was purified by column chromatography on silica using a 50: 8:1 mixture of methylene chloride, methanol and a concentrated aqueous ammonium hydroxide solution (0.880 g/ml) as eluent. There was thus obtained 6-methoxy- 7-[3-(4-methylpiperazin-l-yl)propoxy]-3,4-dihydroquinazolin-4-one (1.8 g); Mass Spectrum: M+lT 333.
After repetition of the previous reaction, a mixture of 6-methoxy- 7-[3-(4-methylpiperazin-l-yl)propoxy]-3,4-dihydroquinazolin-4-one (2.15 g), thionyl chloride (25 ml) and DMF (0.18 ml) was stirred and heated to reflux for 2 hours. The thionyl chloride was evaporated under vacuum and the residue azeotroped twice with toluene. The residue was taken up in water, basified by the addition of a saturated aqueous sodium bicarbonate solution and extracted with methylene chloride (4 times). The combined extracts were washed in turn with water and brine and filtered through phase separating paper. The filtrate was evaporated under vacuum and the residue was purified by column chromatography on silica using a 100: 8:1 mixture of methylene chloride, methanol and a concentrated aqueous ammonium hydroxide solution (0.880 g ml) as eluent. The solid so obtained was triturated under acetone, filtered and dried to give 4-chloro-6-methoxy-7-[3-(4-methylpiperazin- l-yl)propoxy]quinazoline (1.2 g); Mass Spectrum: M+H+ 351.
Example 2
Using an analogous procedure to that described in Example 1, the appropriate 4-chloroquinazoline was reacted with the appropriate aniline to give the compounds described in Table I. Unless otherwise stated, each compound described in Table I was obtained as a dihydrochloride salt. Table l
Figure imgf000029_0001
Figure imgf000029_0002
Notes
[1] The product gave the following characterising data: NMR Spectrum: (DMSOd6) 1.4 (m, IH), 1.65-1.9 (m, 5H), 3.1 (m, 2H), 3.6 (m, 4H), 3.8 (s, 3H), 4.05 (s, 3H), 4.7 (m, 2H), 7.05 (m, IH), 7.15 (d, IH), 7.5 (s, IH), 7.55 (d, IH), 8.3 (s, IH), 8.85 (s, IH); Mass Spectrum: M+Εf 443 and 445.
The 4-chloro-6-methoxy-7-(2-piperidinoethoxy)quinazoline used as a starting material is described in International Patent Application WO 00/47212, example 180. [2] The product gave the following characterising data: NMR Spectrum: (DMSOdg and CF3CO2D) 2.35 (m, 2H), 3.15 (m, 2H), 3.35 (m, 2H), 3.55 (m, 2H), 3J5 (m, 2H), 3.8 (s, 3H), 4.0 (m, 5H), 4.35 (m, 2H), 7.0 (m, IH), 7.15 (d, IH), 7.4 (s, IH), 7.7 (d, IH), 8.2 (s, IH), 8.8 (s, IH); Mass Spectrum: M+H+ 503 and 505.
The 4-chloro-6-methoxy-7-(3-morpholinopropoxy)quinazoline used as a starting material was prepared as follows :-
A mixture of 7-benzyloxy-6-methoxy-3,4-dihydroquinazolin-4-one (35 g), thionyl chloride (440 ml) and DMF (1.75 ml) was heated to reflux for 4 hours. The thionyl chloride was evaporated under vacuum and the residue was azeotroped with toluene three times. The residue was dissolved in N-methylpyrrolidin-2-one (250 ml) to give a solution of
7-benzyloxy-4-chloro-6-methoxyquinazoline.
Phenol (29.05 g) was dissolved in N-methylpyrrolidin-2-one (210 ml) and sodium hydride (60% dispersion in mineral oil; 11.025 g) was added in portions with cooling. The resultant mixture was stirred at ambient temperature for 3 hours. The resultant viscous suspension was diluted with N-methylpyrrolidin-2-one (180 ml) and stirred overnight. The above-mentioned solution of 7-benzyloxy-4-chloro-6-methoxyquinazoline was added and the resultant suspension was stirred and heated to 100°C for 2.5 hours. The mixture was allowed to cool to ambient temperature and poured into water (1.5 L) with vigorous stirring. The precipitate was collected by filtration, washed with water and dried under vacuum. The material so obtained was dissolved in methylene chloride and the solution was washed with brine and filtered through phase separating paper. The solution was evaporated under vacuum and the resultant residue was triturated under diethyl ether. There was thus obtained 7-benzyloxy-6-methoxy-4-phenoxyquinazoline (87.8 g); NMR Spectrum: (CDC13) 4.09 (s, 3H), 5.34 (s, 2H), 7.42 (m, 12H), 7.63 (s, IH).
A mixture of a portion (36.95 g) of the material so obtained and trifluoroacetic acid (420 ml) was heated to reflux for 3 hours. The reaction mixture was allowed to cool and evaporated under vacuum. The residue was stirred mechanically under water, basified by the addition of a saturated aqueous sodium bicarbonate solution and stirred overnight. The water was decanted and the residual solid was suspended in acetone. After stirring, the white solid was collected by filtration, washed with acetone and dried to give 7-hydroxy-6-methoxy- 4-phenoxyquinazoline (26.61 g); NMR Spectrum: (DMSOd6) 3.97 (s, 3H), 7.22 (s, IH), 7.3 ( , 3H), 7.47 (t, 2H), 7.56 (s, IH), 8.47 (s, IH), 10.7 (s, IH).
A mixture of 7-hydroxy-6-methoxy-4-phenoxyquinazoline (25.27 g), 3-morpholinopropyl chloride (18.48 g), potassium carbonate (39.1 g) and DMF (750 ml) was stirred and heated to 90°C for 3 hours. The mixture was allowed to cool to ambient temperature and filtered. The filtrate was evaporated and the residue was triturated under ethyl acetate. There was thus obtained 6-methoxy-7-(3-morpholinopropoxy)- 4-ρhenoxyquinazoline (31.4 g); NMR Spectrum: (DMSOd6) 1.97 (m, 2H), 2.39 (t, 4H), 2.47 (t, 2H), 3.58 (t, 4H), 3.95 (s, 3H), 4.23 (t, 2H), 7.31 (m, 3H), 7.36 (s, IH), 7.49 (t, 2H), 7.55 (s, IH), 8.52 (s, IH).
A mixture of the material so obtained and 6N aqueous hydrochloric acid solution (800 ml) was stirred and heated to reflux for 1.5 hours. The reaction mixture was decanted and concentrated to a volume of 250 ml. The mixture was basified to pH9 by the addition of a saturated aqueous sodium bicarbonate solution and extracted with methylene chloride (4x400 ml). The combined extracts were filtered through phase separating paper and the filtrate was evaporated. The resultant solid was triturated under ethyl acetate to give 6-methoxy-7-(3-morpholinopropoxy)-3,4-dihydroquinazolin-4-one (23.9 g); NMR Spectrum: (DMSOd6) 1.91 (m, 2H), 2.34 (t, 4H), 2.42 (t, 2H), 3.56 (t, 4H), 3.85 (s, 3H), 4.12 (t, 2H), 7.11 (s, IH), 7.42 (s, IH), 7.96 (s, IH), 12.01 (s, IH).
A mixture of the material so obtained, thionyl chloride (210 ml) and DMF (1.8 ml) was heated to reflux for 1.5 hours. The thionyl chloride was removed by evaporation under vacuum and the residue was azeotroped with toluene three times. The residue was taken up in water and basified to pH8 by the addition of a saturated aqueous sodium bicarbonate solution. The resultant aqueous layer was extracted with methylene chloride (4x400 ml). The combined extracts were washed with water and with brine and dried over magnesium sulphate. The solution was filtered and evaporated. The resultant solid was triturated under ethyl acetate to give 4-chloro-6-methoxy-7-(3-morpholinopropoxy)quinazoline (17.39 g); NMR Spectrum: (CDC13) 2.1-2.16 (m, 2H), 2.48 (br s, 4H), 2.57 (t, 2H), 3J3 (t, 4H), 4.05 (s, 3H), 4.29 (t, 2H), 7.36 (s, IH), 7.39 (s, IH), 8.86 (s, IH).
The 3-morpholinopropyl chloride used as a reagent was obtained as follows :- A mixture of morpholine (52.2 ml), l-bromo-3-chloropropane (30 ml) and toluene (180 ml) was heated to 70°C for 3 hours. The solid was removed by filtration and the filtrate was evaporated under vacuum. The resultant oil was decanted from the additional solid which was deposited and the oil was purified by vacuum distillation to yield 3-morpholinopropyl chloride (37.91 g); NMR Spectrum: (DMSOd6) 1.85 (m, 2H), 2.3 (t, 4H), 2.38 (t, 2H), 3.53 (t, 4H), 3.65 (t, 2H). The 2-bromo-5-methoxyaniline used as a starting material was obtained as follows ;-
A mixture of hydrazine hydrate (1 ml), Raney nickel (0.13 g) and methanol was stirred and heated to reflux and a solution of 2-bromo-5-methoxy-l-nitrobenzene (1 g) in methanol (18 ml) was added dropwise. The resultant mixture was heated to reflux for a further 15 minutes. The reaction mixture was cooled to ambient temperature, filtered and evaporated. The residue was partitioned between methylene chloride and water. The organic phase was dried over magnesium sulphate and evaporated to give 2-bromo-5-methoxyaniline (0.8 g); NMR Spectrum: (DMSOd6) 3.65 (s, 3H), 5.25 (br s, 2H), 6.1 (m, IH), 6.4 (d, IH), 7.2 (d, IH). [3] The product gave the following characterising data: NMR Spectrum: (DMSOdβ and
CF3CO2D) 2.35 (m, 2H), 3.1 (m, 2H), 3.3 (m, 2H), 3.5 (m, 2H), 3.8 (s, 3H), 3.9 (m, 2H), 3.95 (m, 2H), 4.05 (s, 3H), 4.35 (m, 2H), 7.05 (m, IH), 7.15 (d, IH), 7.45 (s, IH), 7.55 (d, IH), 8.3 (s, IH), 8.8 (s, IH); Mass Spectrum: M+H* 459 and 461. [4] 7-[3-(4-tert-Butoxycarbonylpiperazin-l-yl)propoxy]-4-chloro-6-methoxyquinazoline was used as the appropriate 4-chloroquinazoline. The product gave the following characterising data: NMR Spectrum: (DMSOdg and CF3CO2D) 2.4 (m, 2H), 3.4-3.9 (br m, 10H), 3.8 (s, 3H), 4.05 (s, 3H), 4.4 (m, 2H), 7.1 (m, IH), 7.2 (d, IH), 7.4 (s, IH), 7.6 (d, IH), 8.2 (s, IH), 8.9 (s, IH); Mass Spectrum: M-H" 456 and 458. The 7-[3-(4-tert-butoxycarbonylpiperazin-l-yl)propoxy]-4-chloro-
6-methoxyquinazoline used as a starting material was obtained as follows :- A mixture of 7-(3-bromopropoxy)-6-methoxy-3-pivaloyloxymethyl- 3,4-dihydroquinazolin-4-one (International Patent Application WO 00/47212, example 67; 4.5 g), tert-butyl piperazine-1-carboxylate (2.16 g), sodium iodide (0.079 g), potassium carbonate (2.9 g) and acetonitrile (150 ml) was stirred and heated to reflux for 8 hours. The resultant mixture was filtered and the filtrate was evaporated. The residue was purified by column chromatography on silica using a 19:1 mixture of methylene chloride and methanol as eluent. There was thus obtained l-\3 -(4-tert-butoxycarbonylpiperazin- 1 -yDpropoxyl - 6-methoxy-3-pivaloyloxymethyl-3,4-dihydroquinazolin-4-one (5.2 g); NMR Spectrum: (DMSOde) 1.9 (s, 9H), 1.4 (s, 9H), 1.95 (m, 2H), 2.32 (m, 4H), 2.45 (m, 2H), 3.3 (m, 4H), 3.9 (s, 3H), 4.2 (m, 2H), 5.9 (s, 2H), 7.18 (s, IH), 7.5 (s, IH), 8.35 (s, IH); Mass Spectrum: M+ET" 533.
A mixture of the material so obtained and a saturated methanolic ammonia solution (160 ml) was stirred at ambient temperature for 1.5 days. The mixture was evaporated and the residue was triturated under diethyl ether. The resultant solid was isolated, washed with diethyl ether and dried under vacuum. There was thus obtained
7- [3-(4-tert-butoxycarbonylpiperazin- 1 -yl)propoxy] -6-methoxy-3 ,4-dihydroquinazolin-4-one (3.6 g); NMR Spectrum: (DMSOd6) 1.4 (s, 9H), 1.98 (m, 2H), 2.3 (m, 4H), 2.45 (m, 2H), 3.25-3.35 (m, 4H), 3.88 (s, 3H), 4.15 (m, 2H), 7.1 (s, IH), 7.45 (s, IH), 7.98 (s, IH); Mass Spectrum: M+H+ 419.
A mixture of the material so obtained, carbon tetrachloride (2.4 ml), triphenylphosphine (4.39 g) and 1,2-dichloroethane (160 ml) was stirred and heated to 70°C . for 2 hours. The mixture was evaporated and the residue was purified by column chromatography on silica using a 5:4:1 mixture of methylene chloride, ethyl acetate and methanol as eluent. There was thus obtained 7-[3-(4-tert-butoxycarbonylpiperazin- l-yl)propoxy]-4-chloro-6-methoxyquinazoline (3.33 g); NMR Spectrum: (DMSOdg) 1.4 (s, 9H), 2.0 (m, 2H), 2.35 (m, 4H), 2.48 (m, 2H), 3.35 (m, 4H), 4.02 (s, 3H), 4.3 (m, 2H), 7.4 (s, IH), 7.5 (s, IH), 8.9 (s, IH); Mass Spectrum: M+H1" 437 and 439.
[5] 7-[3-(4-tert-Butoxycarbonylρiperazin-l-yl)propoxy]-4-chloro-6-methoxyquinazoline was used as the appropriate 4-chloroquinazoline. The product gave the following characterising data: NMR Spectrum: (DMSOd6 and CF3CO2D) 2.35 (m, 2H), 3.3-3.9 (br m, 10H), 3.8 (s, 3H), 4.05 (s, 3H), 4.35 (m, 2H), 7.05 (m, IH), 7.2 (d, IH), 7.4 (s, IH), 7.7 (d, IH), 8.2 (s, IH), 8.85 (s, IH); Mass Spectrum: M+H" 502 and 504.
Example 3 4-(2-chloro-5-methoxyaniIino)-6-methoxy- 7-(2-morpholinoethoxy)quinazoline
Diethyl azodicarboxylate (0.284 ml) was added dropwise to a stirred mixture of 4-(2-chloro-5-methoxyanilino)-7-hydroxy-6-methoxyquinazoline (0.3 g), l-(2-hydroxyethyl)morpholine (0.104 ml), triphenylphosphine (0.474 g) and methylene chloride (30 ml) and the reaction mixture was stirred at ambient temperature for 1 hour. The mixture was evaporated and the residue was purified by column chromatography on silica using a 19:1 mixture of methylene chloride and methanol as eluent. There was thus obtained the title compound (0.299 g); NMR Spectrum: (CDC13) 2.65 (m, 4H), 2.95 (t, 2H), 3.75 (m, 4H), 3.9 (s, 3H), 4.05 (s, 3H), 4.35 (t, 2H), 6.6 (m, IH), 7.05 (s, IH), 7.3 (s, IH), 7.35 (d, IH), 7.8 (s, IH), 8.55 (s, IH), 8.75 (s, IH); Mass Spectrum: M+H" 445 and 447.
The 4-(2-chloro-5-methoxyanilino)-7-hydroxy-6-methoxyquinazoline used as a starting material was obtained as follows :- A mixture of 7-benzyloxy-4-chloro-6-methoxyquinazoline (4.3 g), 2-chloro-
5-methoxyaniline (2J g), a 6.2M solution of hydrogen chloride in isopropanol (0.225 ml) and isopropanol (200 ml) was stirred and heated to 80°C for 2.5 hours. The mixture was cooled to 0°C and the precipitate was isolated, washed with in turn with isopropanol and diethyl ether and dried under vacuum. There was thus obtained 7-benzyloxy-4-(2-chloro- 5-methoxyanilino)-6-methoxyquinazoline (4.73 g); NMR Spectrum: (DMSOdg) 3.8 (s, 3H), 4.03 (s, 3H), 5.36 (s, 2H), 7.06 (m, IH), 7.18 (d, IH), 7.4-7.6 (m, 7H), 8.2 (s, IH), 8.77 (s, IH), 11.5 (br s, IH); Mass Spectrum: M+H1" 422 and 424. A mixture of the material so obtained and trifluoroacetic acid (40 ml) was stirred and heated to 80°C for 4 hours. The mixture was poured into water and solid sodium bicarbonate was added to basify the mixture to pH8. The resultant precipitate was isolated, washed with water and dried under vacuum at 50°C for 48 hours. The material so obtained was purified by column chromatography on silica using a 1 : 1 mixture of methylene chloride and ethyl acetate as eluent. There was thus obtained 4-(2-chloro-5-methoxyanilino)-7-hydroxy- 6-methoxyquinazoline (2.9 g); NMR Spectrum: (DMSOd6) 3.8 (s, 3H), 4.0 (s, 3H), 6.95 (m, IH), 7.1 (s, IH), 7.15 (s, IH), 7.5 (d, IH), 7.8 (s, IH), 8.3 (s, IH), 9.5 (br s, IH), 10.4 (br s, IH).
Example 4 4- (2-bromo-5-methoxyanilino)-6-methoxy- 7-[3-(4-methylpiperazin-l-yl)propoxy]quinazoline
Sodium hydride (60% in mineral oil; 0.034 g) was added to a stirred solution of 2-bromo-5-methoxyaniline (0.712 g) in DMF (3 ml) and the mixture was stirred at ambient temperature for 20 minutes. 4-Chloro-6-methoxy-7-[3-(4-methylpiperazin-l- yl)propoxy]quinazoline (0.15 g) was added and the reaction mixture was stirred at ambient temperature for 48 hours. The mixture was evaporated and the residue was partitioned between ethyl acetate and water. The organic phase was washed with water and with brine, dried over magnesium sulphate and evaporated. The material so btained was purified by column chromatography on silica using a 19:1 mixture of methylene chloride and a saturated methanolic ammonia solution as eluent. There was thus obtained the title compound (0.06 g); NMR Spectrum: (DMSOdό and CF3CO2D) 2.3 (m, 2H), 2.9 (s, 3H), 3.25-4.0 (m, 10H), 3.8 (s, 3H), 4.0 (s, 3H), 4.3 (m, 2H), 7.05 (m, IH), 7.2 (d, IH), 7.35 (s, IH), 7J5 (d, IH), 8.15 (s, IH), 8.85 (s, IH), Mass Spectrum: M+H" 516 and 518.
Example 5
Pharmaceutical compositions
The following illustrate representative pharmaceutical dosage forms of the invention as defined herein (the active ingredient being termed "Compound X"), for therapeutic or prophylactic use in humans: (a) Tablet I mg/tablet
Compound X 100
Lactose Ph.Eur 182.75
Croscarmellose sodium 12.0 Maize starch paste (5% w/v paste) 2.25
Magnesium stearate 3.0
(b) Tablet H mg/tablet Compound X 50 Lactose Ph.Eur 223.75
Croscarmellose sodium 6.0
Maize starch 15.0
Polyvinylpyrrolidone (5% w/v paste) 2.25
Magnesium stearate 3.0
(c) Tablet III mg/tablet
Compound X 1.0
Lactose Ph.Eur 93.25
Croscarmellose sodium 4.0 Maize starch paste (5% w/v paste) 0J5
Magnesium stearate 1.0
(d) Capsule mg/capsule Compound X 10 Lactose Ph.Eur 488.5
Magnesium 1.5
(e) Injection I (50 mg/ml) Compound X 5.0% w/v 1M Sodium hydroxide solution 15.0% v/v
0.1M Hydrochloric acid (to adjust pH to 7.6)
Polyethylene glycol 400 4.5% w/v
Water for injection to 100% (f) Injection E (10 mg/ml)
Compound X 1.0% w/v
Sodium phosphate BP 3.6% w/v
0.1M Sodium hydroxide solution 15.0% v/v Water for injection to 100%
(g) Injection III (lmg/ml, buffered to pH6)
Compound X 0.1% w/v
Sodium phosphate BP 2.26% w/v Citric acid 0.38%) w/v
Polyethylene glycol 400 3.5% w/v
Water for injection to 100%
(h) Aerosol I mg/ml Compound X 10.0
Sorbitan trioleate 13.5
Trichlorofluoromethane 910.0
Dichlorodifluoromethane 490.0
(i) Aerosol II mg/ml
Compound X 0.2
Sorbitan trioleate 0.27
Trichlorofluoromethane 70.0
Dichlorodifluoromethane 280.0 Dichlorotetrafluoroethane 1094.0
(j) Aerosol HI mg/ml
Compound X 2.5
Sorbitan trioleate 3.38 Trichlorofluoromethane 67.5
Dichlorodifluoromethane 1086.0
Dichlorotetrafluoroethane 191.6 (k) Aerosol IV mg/ml
Compound X 2.5
Soya lecithin 2.1
Trichlorofluoromethane 67.5 Dichlorodifluoromethane 1086.0
Dichlorotetrafluoroethane 191.6
(1) Ointment ml
Compound X 40 mg Ethanol 300 μl
Water 300 μl
1 -Dodecylazacycloheptan-2-one 50 μl
Propylene glycol to 1 ml
Note
The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. The tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate. The aerosol formulations (h)-(k) may be used in conjunction with standard, metered dose aerosol dispensers, and the suspending agents sorbitan trioleate and soya lecithin may be replaced by an alternative suspending agent such as sorbitan monooleate, sorbitan sesquioleate, polysorbate 80, polyglycerol oleate or oleic acid.

Claims

1. A quinazoline derivative of the Formula I
Figure imgf000038_0001
wherein :-
R1 is hydrogen, hydroxy or (l-4C)alkoxy and R2 is hydroxy-(2-4C)alkoxy, (l-4C)alkoxy-(2-4C)alkoxy, amino-(2-4C)alkoxy, (l-4C)alkylamino-(2-4C)alkoxy, di-[(l-4C)alkyl]amino-(2-4C)alkoxy, phenyl-(l-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-l-yl-(2-4C)alkoxy, 4-(l-4C)alkylpiperazin-l-yl- (2-4C)alkoxy, pyrrolidin-1-yl, piperidino, morpholino, piperazin- 1-yl or 4-(l-4C)alkylpiperazin-l-yl, or R is hydrogen, hydroxy or (l-4C)alkoxy and R is hydroxy-(2-4C)alkoxy, (l-4C)alkoxy-(2-4C)alkoxy, amino-(2-4C)alkoxy, (l-4C)alkylamino-(2-4C)alkoxy, di-[(l-4C)alkyl]amino-(2-4C)alkoxy, phenyl-(l-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin- l-yl-(2-4C)alkoxy or 4-(l-4C)alkylpiperazin-l-yl- (2-4C)alkoxy; and
R is chloro, bromo or iodo; or a pharmaceutically-acceptable salt thereof.
2. A quinazoline derivative of the Formula I according to claim 1 wherein :
R1 is hydrogen or methoxy and R2 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy,
3-(N-ethyl-N-isopropylamino)propoxy, 3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin-l-ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- l-yl)ethoxy, 3-(4-methylpiperazin- 1 -yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy; and
R3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
3. A quinazoline derivative of the Formula I according to claim 1 wherein :
R1 is hydrogen or methoxy and R2 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-ρiρerazin- 1 -ylethoxy, 3 -piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin-l-yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l -yl)butoxy; and
R3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
4. A quinazoline derivative of the Formula I according to claim 1 wherein :
R2 is methoxy and R1 is 2-hydroxyethoxy, 3-hydroxypropoxy, 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy, 2-methylaminoethoxy, 2-ethylaminoethoxy, 3-methylaminopropoxy, 3-ethylaminopropoxy, 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(N-ethyl-N-methylamino)propoxy, 3-(N-ethyl-N-isopropylamino)propoxy,
3-(N-isopropyl-N-methylamino)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin- 1 -ylethoxy, 3 -piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy, 3-(4-methylpiperazin- 1 -yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy; and R3 is chloro or bromo; or a pharmaceutically-acceptable acid-addition salt thereof.
5. A quinazoline derivative of the Formula I according to claim 1 wherein : R1 is methoxy and R2 is 2-piperidinoethoxy, 3-piperidinopropoxy, 4-piperidinobutoxy,
2-morpholinoethoxy, 3-morpholinopropoxy, 4-morpholinobutoxy, 2-piperazin-l-ylethoxy, 3-piperazin- 1 -ylpropoxy, 4-piperazin- 1 -ylbutoxy, 2-(4-methylpiperazin- 1 -yl)ethoxy, 3-(4-methylpiperazin-l-yl)propoxy or 4-(4-methylpiperazin-l-yl)butoxy; and
R3 is chloro; or a pharmaceutically-acceptable acid-addition salt thereof.
6. A quinazoline derivative of the Formula I according to claim 1 selected from :
4-(2-chloro-5-methoxyanilino)-6-methoxy-7-[3-(4-methylpiperazin-l-yl)propoxy]quinazoline, 4-(2-chloro-5-methoxyanilino)-6-methoxy-7-(2-piperidinoethoxy)quinazoline and 4-(2-chloro-5-methoxyanilino)-6-methoxy-7-(2-morpholinoethoxy)quinazoline and 4-(2-bromo-5-methoxyanilino)-6-methoxy-7-[3-(4-methylpiperazin-l-yl)propoxy]quinazoline or a pharmaceutically-acceptable acid-addition salt thereof.
7. A process for the preparation of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, according to claim 1 which comprises :- (a) the reaction of a quinazoline of the Formula II
Figure imgf000040_0001
wherein L is a displaceable group and R and R have any of the meanings defined in claim 1 except that any functional group is protected if necessary, with an aniline of the Formula in
Figure imgf000040_0002
wherein R3 has any of the meanings defined in claim 1 except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means;
(b) for the production of those compounds of the Formula I wherein R2 is (l-4C)alkoxy or a substituted (2-4C)alkoxy group, the coupling of an appropriate alcohol, wherein any functional group is protected if necessary, with a quinazoline of the Formula V
Figure imgf000041_0001
wherein R1 and R3 have any of the meanings defined in claim 1 except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means; or (c) for the production of those compounds of the Formula I wherein R1 is (l-4C)alkoxy or a substituted (2-4C)alkoxy group, the coupling of an appropriate alcohol, wherein any functional group is protected if necessary, with a quinazoline of the Formula VII
Figure imgf000041_0002
wherein R2 and R3 have any of the meanings defined in claim 1 except that any functional group is protected if necessary, whereafter any protecting group that is present is removed by conventional means; and when a pharmaceutically-acceptable salt of a quinazoline derivative of the Formula I is required, it may be obtained using a conventional procedure.
8. A pharmaceutical composition which comprises a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, according to claim 1 in association with a pharmaceutically-acceptable diluent or carrier.
9. A quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, according to claim 1 for use in a method of treatment of the human or animal body by therapy.
10. The use of a quinazoline derivative of the Formula I, or a pharmaceutically-acceptable salt thereof, according to claim 1 in the manufacture of a medicament for use as an anti-invasive agent in the containment and/or treatment of solid tumour disease.
PCT/GB2002/002128 2001-05-14 2002-05-08 4-anilinoquinazoline derivatives WO2002092579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP01401221 2001-05-14
EP01401221.5 2001-05-14

Publications (1)

Publication Number Publication Date
WO2002092579A1 true WO2002092579A1 (en) 2002-11-21

Family

ID=8182724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2002/002128 WO2002092579A1 (en) 2001-05-14 2002-05-08 4-anilinoquinazoline derivatives

Country Status (1)

Country Link
WO (1) WO2002092579A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004056801A1 (en) * 2002-12-23 2004-07-08 Astrazeneca Ab Quinazoline derivatives
WO2004056812A1 (en) * 2002-12-23 2004-07-08 Astrazeneca Ab 4- (pyridin-4-ylamino) -quinazoline derivatives as anti-tumor agents
WO2004081000A1 (en) * 2003-03-10 2004-09-23 Astrazeneca Ab Quinazoline derivatives
WO2004098604A1 (en) * 2003-05-07 2004-11-18 Astrazeneca Ab Therapeutic agents comprising an anti-angiogenic agent in combination with an src-inhibitor and their therapeutic use
US6849625B2 (en) 2000-10-13 2005-02-01 Astrazeneca Ab Quinazoline derivatives with anti-tumour activity
US6939866B2 (en) 2000-10-13 2005-09-06 Astrazeneca Ab Quinazoline derivatives
US7141577B2 (en) 2001-04-19 2006-11-28 Astrazeneca Ab Quinazoline derivatives
US7148230B2 (en) 2003-07-29 2006-12-12 Astrazeneca Ab Quinazoline derivatives
US7462623B2 (en) 2002-11-04 2008-12-09 Astrazeneca Ab Quinazoline derivatives as Src tyrosine kinase inhibitors
DE102008009609A1 (en) 2008-02-18 2009-08-20 Freie Universität Berlin Substituted 4- (indol-3-yl) quinazolines and their use and preparation
US7709640B2 (en) 2000-11-01 2010-05-04 Millennium Pharmaceuticals, Inc. Nitrogenous heterocyclic compounds and process for making nitrogenous heterocyclic compounds and intermediates thereof
US7910731B2 (en) 2002-03-30 2011-03-22 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them
US7998949B2 (en) 2007-02-06 2011-08-16 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, drugs containing said compounds, use thereof, and method for production thereof
US8088782B2 (en) 2008-05-13 2012-01-03 Astrazeneca Ab Crystalline 4-(3-chloro-2-fluoroanilino)-7 methoxy-6-{[1-(N-methylcarbamoylmethyl)piperidin-4-yl]oxy}quinazoline difumarate form A
US8399461B2 (en) 2006-11-10 2013-03-19 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, medicaments containing said compounds, use thereof, and method for production of same
CN103058938A (en) * 2011-10-18 2013-04-24 南京大学 4-aniline quinazoline compound substituting cinnamic acid, and preparation method and application thereof
US8497369B2 (en) 2008-02-07 2013-07-30 Boehringer Ingelheim International Gmbh Spirocyclic heterocycles medicaments containing said compounds, use thereof and method for their production
US8648191B2 (en) 2008-08-08 2014-02-11 Boehringer Ingelheim International Gmbh Cyclohexyloxy substituted heterocycles, pharmaceutical compositions containing these compounds and processes for preparing them
US8877776B2 (en) 2009-01-16 2014-11-04 Exelixis, Inc. (L)-malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
WO2016016894A1 (en) 2014-07-30 2016-02-04 Yeda Research And Development Co. Ltd. Media for culturing pluripotent stem cells
US9359332B2 (en) 2002-07-15 2016-06-07 Symphony Evolution, Inc. Processes for the preparation of substituted quinazolines
US10214511B2 (en) 2009-09-03 2019-02-26 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
WO2020152686A1 (en) 2019-01-23 2020-07-30 Yeda Research And Development Co. Ltd. Culture media for pluripotent stem cells
US10736886B2 (en) 2009-08-07 2020-08-11 Exelixis, Inc. Methods of using c-Met modulators
US11124482B2 (en) 2003-09-26 2021-09-21 Exelixis, Inc. C-met modulators and methods of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030035A1 (en) * 1996-02-13 1997-08-21 Zeneca Limited Quinazoline derivatives as vegf inhibitors
WO1997032856A1 (en) * 1996-03-05 1997-09-12 Zeneca Limited 4-anilinoquinazoline derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030035A1 (en) * 1996-02-13 1997-08-21 Zeneca Limited Quinazoline derivatives as vegf inhibitors
WO1997032856A1 (en) * 1996-03-05 1997-09-12 Zeneca Limited 4-anilinoquinazoline derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HENNEQUIN, L. ET AL: "Design and structure - Activity relationship of a new class of potent VEGF receptor tyrosine kinase inhibitors", JOURNAL OF MEDICINAL CHEMISTRY, vol. 42, no. 26, - 1999, pages 5369 - 5389, XP002207369 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849625B2 (en) 2000-10-13 2005-02-01 Astrazeneca Ab Quinazoline derivatives with anti-tumour activity
US6939866B2 (en) 2000-10-13 2005-09-06 Astrazeneca Ab Quinazoline derivatives
US7709640B2 (en) 2000-11-01 2010-05-04 Millennium Pharmaceuticals, Inc. Nitrogenous heterocyclic compounds and process for making nitrogenous heterocyclic compounds and intermediates thereof
US8536184B2 (en) 2000-11-01 2013-09-17 Millennium Pharmaceuticals, Inc. Nitrogenous heterocyclic compounds and process for making nitrogenous heterocyclic compounds and intermediates thereof
USRE43098E1 (en) 2000-11-01 2012-01-10 Millennium Pharmaceuticals, Inc. Nitrogenous heterocyclic compounds and process for making nitrogenous heterocyclic compounds and intermediates thereof
US7141577B2 (en) 2001-04-19 2006-11-28 Astrazeneca Ab Quinazoline derivatives
US8343982B2 (en) 2002-03-30 2013-01-01 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bicyclic heterocyclic compounds pharmaceutical compositions containing these compounds, their use and process for preparing the same
US7910731B2 (en) 2002-03-30 2011-03-22 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them
US10266518B2 (en) 2002-07-15 2019-04-23 Symphony Evolution, Inc. Solid dosage formulations of substituted quinazoline receptor-type kinase modulators and methods of use thereof
US9796704B2 (en) 2002-07-15 2017-10-24 Symphony Evolution, Inc. Substituted quinazolines as receptor-type kinase inhibitors
US9359332B2 (en) 2002-07-15 2016-06-07 Symphony Evolution, Inc. Processes for the preparation of substituted quinazolines
US7462623B2 (en) 2002-11-04 2008-12-09 Astrazeneca Ab Quinazoline derivatives as Src tyrosine kinase inhibitors
WO2004056801A1 (en) * 2002-12-23 2004-07-08 Astrazeneca Ab Quinazoline derivatives
WO2004056812A1 (en) * 2002-12-23 2004-07-08 Astrazeneca Ab 4- (pyridin-4-ylamino) -quinazoline derivatives as anti-tumor agents
WO2004081000A1 (en) * 2003-03-10 2004-09-23 Astrazeneca Ab Quinazoline derivatives
AU2004237132B2 (en) * 2003-05-07 2007-10-18 Astrazeneca Ab Therapeutic agents comprising an anti-angiogenic agent in combination with an Src-inhibitor and their therapeutic use
CN100418531C (en) * 2003-05-07 2008-09-17 阿斯利康(瑞典)有限公司 Therapeutic agents comprising an anti-angiogenic agent in combination with an src-inhibitor and their therapeutic use
WO2004098604A1 (en) * 2003-05-07 2004-11-18 Astrazeneca Ab Therapeutic agents comprising an anti-angiogenic agent in combination with an src-inhibitor and their therapeutic use
US7148230B2 (en) 2003-07-29 2006-12-12 Astrazeneca Ab Quinazoline derivatives
US11124482B2 (en) 2003-09-26 2021-09-21 Exelixis, Inc. C-met modulators and methods of use
US8399461B2 (en) 2006-11-10 2013-03-19 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, medicaments containing said compounds, use thereof, and method for production of same
US7998949B2 (en) 2007-02-06 2011-08-16 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, drugs containing said compounds, use thereof, and method for production thereof
US8497369B2 (en) 2008-02-07 2013-07-30 Boehringer Ingelheim International Gmbh Spirocyclic heterocycles medicaments containing said compounds, use thereof and method for their production
US8772298B2 (en) 2008-02-07 2014-07-08 Boehringer Ingelheim International Gmbh Spirocyclic heterocycles medicaments containing said compounds, use thereof and method for their production
DE102008009609A1 (en) 2008-02-18 2009-08-20 Freie Universität Berlin Substituted 4- (indol-3-yl) quinazolines and their use and preparation
US8088782B2 (en) 2008-05-13 2012-01-03 Astrazeneca Ab Crystalline 4-(3-chloro-2-fluoroanilino)-7 methoxy-6-{[1-(N-methylcarbamoylmethyl)piperidin-4-yl]oxy}quinazoline difumarate form A
US8648191B2 (en) 2008-08-08 2014-02-11 Boehringer Ingelheim International Gmbh Cyclohexyloxy substituted heterocycles, pharmaceutical compositions containing these compounds and processes for preparing them
US8877776B2 (en) 2009-01-16 2014-11-04 Exelixis, Inc. (L)-malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide
US9809549B2 (en) 2009-01-16 2017-11-07 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy)quinolin-4-yl]oxy}phenyl)-N′(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms therof for the treatment of cancer
US11091440B2 (en) 2009-01-16 2021-08-17 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)- N′-(4-fluorophenyl)cyclopropane-1,1 -dicarboxamide, and crystalline forms thereof for the treatment of cancer
US11098015B2 (en) 2009-01-16 2021-08-24 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms thereof for the treatment of cancer
US11091439B2 (en) 2009-01-16 2021-08-17 Exelixis, Inc. Malate salt of N-(4-{[6,7-bis(methyloxy) quinolin-4-yl]oxy}phenyl)-N′-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms therof for the treatment of cancer
US10736886B2 (en) 2009-08-07 2020-08-11 Exelixis, Inc. Methods of using c-Met modulators
US11433064B2 (en) 2009-08-07 2022-09-06 Exelixis, Inc. Methods of using c-Met modulators
US11008306B2 (en) 2009-09-03 2021-05-18 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US10676460B2 (en) 2009-09-03 2020-06-09 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
US10214511B2 (en) 2009-09-03 2019-02-26 Bristol-Myers Squibb Company Quinazolines as potassium ion channel inhibitors
CN103058938A (en) * 2011-10-18 2013-04-24 南京大学 4-aniline quinazoline compound substituting cinnamic acid, and preparation method and application thereof
WO2016016894A1 (en) 2014-07-30 2016-02-04 Yeda Research And Development Co. Ltd. Media for culturing pluripotent stem cells
WO2020152686A1 (en) 2019-01-23 2020-07-30 Yeda Research And Development Co. Ltd. Culture media for pluripotent stem cells

Similar Documents

Publication Publication Date Title
EP1292594B1 (en) Quinazoline derivatives for the treatment of tumours
US6849625B2 (en) Quinazoline derivatives with anti-tumour activity
WO2002092579A1 (en) 4-anilinoquinazoline derivatives
EP1381599B1 (en) Quinazoline derivatives
US20040063733A1 (en) Quinazoline derivatives
WO2002092578A1 (en) Quinazoline derivatives
PL202812B1 (en) Quinazoline derivatives
US20070191346A1 (en) 3-Cyano-quinoline derivatives
US6939866B2 (en) Quinazoline derivatives
WO2003008409A1 (en) Quinoline derivatives and their use as tyrosine kinase inhibitors
WO2002092577A1 (en) Quinazoline derivatives
WO2003048159A1 (en) Quinoline derivatives
EP1528925B1 (en) Quinazoline derivatives for use in the treatment of cancer
WO2003047584A1 (en) Quinoline derivatives
WO2004108704A1 (en) Pyrimidin-4-yl 3-cyanoquinoline derivatives for use in the treatment of tumours
WO2004056812A1 (en) 4- (pyridin-4-ylamino) -quinazoline derivatives as anti-tumor agents
WO2004108711A1 (en) Pyrazinil quinazoline derivatives for use in the treatment of tumours
WO2004108703A1 (en) Pyrazinyl 3-cyanoquinoline derivatives for use in the treatment of tumours
WO2004108707A1 (en) Pyridazinil quinazoline derivatives for use in the treatment of tumours
WO2004069249A1 (en) 3-cyano-quinoline derivatives as non-receptor tyrosine kinase inhibitors
WO2004056801A1 (en) Quinazoline derivatives
WO2004108710A1 (en) 4-pyrimidinyl quinazoline derivatives for use in the treatment of tumours
WO2004069827A1 (en) Quinoline derivatives and use thereof as antitumor agents

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP