US20100239491A1 - Method of producing carbon nanotubes - Google Patents
Method of producing carbon nanotubes Download PDFInfo
- Publication number
- US20100239491A1 US20100239491A1 US11/475,919 US47591906A US2010239491A1 US 20100239491 A1 US20100239491 A1 US 20100239491A1 US 47591906 A US47591906 A US 47591906A US 2010239491 A1 US2010239491 A1 US 2010239491A1
- Authority
- US
- United States
- Prior art keywords
- carbon
- catalyst component
- cleaning
- cylindrical
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002041 carbon nanotube Substances 0.000 title description 16
- 229910021393 carbon nanotube Inorganic materials 0.000 title description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 230
- 239000003054 catalyst Substances 0.000 claims abstract description 178
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 122
- 239000002109 single walled nanotube Substances 0.000 claims abstract description 94
- 238000004140 cleaning Methods 0.000 claims abstract description 84
- 239000000758 substrate Substances 0.000 claims abstract description 44
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 50
- 239000011248 coating agent Substances 0.000 claims description 44
- 238000000576 coating method Methods 0.000 claims description 44
- 239000000203 mixture Substances 0.000 claims description 34
- 239000002105 nanoparticle Substances 0.000 claims description 28
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 26
- 229910052742 iron Inorganic materials 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 12
- 230000005670 electromagnetic radiation Effects 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 230000002829 reduced Effects 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 12
- 229910052803 cobalt Inorganic materials 0.000 claims description 10
- ZOKXTWBITQBERF-UHFFFAOYSA-N molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- 239000011733 molybdenum Substances 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 10
- 238000002230 thermal chemical vapour deposition Methods 0.000 claims description 10
- BJEYNNFDAPPGST-UHFFFAOYSA-N Oxirene Chemical group O1C=C1 BJEYNNFDAPPGST-UHFFFAOYSA-N 0.000 claims description 8
- 239000005092 Ruthenium Substances 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 8
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- IAYPIBMASNFSPL-UHFFFAOYSA-N oxane Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052707 ruthenium Inorganic materials 0.000 claims description 8
- 239000002048 multi walled nanotube Substances 0.000 claims description 6
- 239000002079 double walled nanotube Substances 0.000 claims description 4
- 239000002071 nanotube Substances 0.000 abstract description 52
- 238000000034 method Methods 0.000 abstract description 30
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 36
- 239000007789 gas Substances 0.000 description 26
- 229910052786 argon Inorganic materials 0.000 description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 238000000089 atomic force micrograph Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 12
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N AI2O3 Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229910052723 transition metal Inorganic materials 0.000 description 10
- 150000003624 transition metals Chemical class 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 229910000608 Fe(NO3)3.9H2O Inorganic materials 0.000 description 6
- 238000004630 atomic force microscopy Methods 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000010192 crystallographic characterization Methods 0.000 description 6
- 230000003247 decreasing Effects 0.000 description 6
- 239000001307 helium Substances 0.000 description 6
- 229910052734 helium Inorganic materials 0.000 description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium(0) Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 238000006722 reduction reaction Methods 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000004432 carbon atoms Chemical group C* 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N iso-propanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 238000000608 laser ablation Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 239000002923 metal particle Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000006011 modification reaction Methods 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910019614 (NH4)6 Mo7 O24.4H2 O Inorganic materials 0.000 description 2
- QGAVSDVURUSLQK-UHFFFAOYSA-N Ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 for example Chemical class 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008079 hexane Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 239000011943 nanocatalyst Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000644 propagated Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052904 quartz Inorganic materials 0.000 description 2
- 238000004574 scanning tunneling microscopy Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000002194 synthesizing Effects 0.000 description 2
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/85—Chromium, molybdenum or tungsten
- B01J23/88—Molybdenum
- B01J23/881—Molybdenum and iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/94—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
- B01J21/08—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/28—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0203—Impregnation the impregnation liquid containing organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0234—Impregnation and coating simultaneously
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/04—Nanotubes with a specific amount of walls
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/06—Multi-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Abstract
The present teachings are directed to methods of preparing cylindrical carbon structures, specifically single-walled carbon nanotubes, with a desired chirality. The methods include the steps of providing a catalyst component on a substrate and a carbon component, contacting the catalyst component and the carbon component to produce a cylindrical carbon structure. Then, no longer providing the carbon component and determining the chirality of the cylindrical carbon structure. The catalyst component is then cleaned and the process is repeated until the cylindrical carbon structure fulfills a desired characteristic, such as, length. The chirality of the single-walled carbon nanotube grown, after cleaning of the catalyst component, has the same chirality as the initially produced nanotube.
Description
- 1. Field of the Invention
- The present teachings relate to methods of producing carbon nanotubes from initially produced nanotubes so that the subsequently produced nanotubes have the same chirality as the initially produced nanotubes.
- 2. Discussion of the Related Art
- The desire to produce cylindrical carbon structures, specifically carbon nanotubes, and more specifically, single-walled carbon nanotubes (hereinafter “SWNT”), with a specific chirality has been an unfilled desire since it was realized that the chirality of the nanotube influences or controls numerous nanotube properties.
- Smalley et al. have described a method of “cloning” SWNT grown by a CVD based method by growing SWNT fibers with open ends, reductively docking nanosized transition metal particles to the open ends of the SWNT fibers and restarting growth of the SWNT on the exposed metal particles. The SWNT growth from the docked nanocatalysts is said to have the same diameter and chirality (n,m) as the base SWNT. See Nanoletters, Vol. 5, No. 6, June 2005, pp. 997-1002.
- The total amount of SWNT that could be grown by prior methods of growing SWNT using metal catalysts was limited by the build-up and coating of the metal catalyst with a layer composed of, among other compounds, amorphous carbon and metal carbides. Additionally, the methods of growing the SWNTs did not offer means of controlling the chirality of the SWNT produced.
- SWNTs have attracted attention because of their unique chemical and physical properties. A carbon nanotube can be described as a rolled-up graphite sheet in which hexagonal-shaped units of carbon atoms are bound to each other with very strong bonds between the carbon atoms. SWNTs have minimum diameters of about 0.4 nm with lengths ranging as long as several hundred micrometers with extremely small dimensional fluctuations. The electrical conductivity of carbon nanotubes range from a semiconductor to a metal depending upon the chirality of nanotube.
- Chirality of a nanotube is denoted by a double index (m,m) where n and m are integers that describe how a single strip of hexagonal “chicken-wire” graphite is cut so it forms a tube that wraps perfectly onto the surface of a cylinder. When the two indices are the same, that is n=m, the resultant tube is said to be of the “arm-chair” (or n,n) type, since when that type of tube is cut perpendicular to the tube axis, only the sides of the hexagons are exposed and their pattern around the periphery of the tube edge resembles the arm and seat of an arm chair repeated n times. Due to their metallic nature, with extremely high electrical and thermal conductivity, the arm-chair tubes are a preferred form of SWNT.
- Metallic nanotubes can exhibit ballistic conduction, conduction by non-scattered charge carriers. With ballistic conduction, the resistance value becomes independent of length, and the so-called quantum resistance (6.5 kΩ) is observed.
- Arc discharge, laser ablation, thermal chemical vapor deposition (hereinafter “CVD”) and plasma enhanced CVD are several of the known methods for manufacturing carbon nanotubes. Both SWNT and multi-walled nanotubes can be produced by the arc discharge and laser ablation methods.
- Catalysts supported on a variety of suitable supports can be utilized in the CVD methods to produce carbon nanotubes. A complete understanding of the effects of catalyst formulation, for instance, transition metals (Ni, Co, Fe, etc.), support material, catalyst/support interaction, synthesis temperature and hydrocarbon gas on the diameter and chirality of the carbon nanotubes produced by CVD methods is still being developed. See, for example, Harutyunyan et al, Nanoletters, Vol. 2, No. 5, 2002, pp. 525-530 and U.S. Patent Application Publication No. US 2003/0124717 A1.
- The present teachings satisfy the need for a method of producing cylindrical carbon structures from initially produced cylindrical carbon structures so that the subsequently produced cylindrical carbon structures have the same chirality as the initially produced cylindrical carbon structures.
- A method of preparing cylindrical carbon structures by providing a catalyst component on a substrate and a carbon component, and contacting the catalyst component and the carbon component to produce a first cylindrical carbon structure is taught by the present disclosure. The method further includes stopping providing the carbon component, cleaning the catalyst component, and then again providing the carbon component to produce more of the cylindrical carbon structure.
- The present teachings further provide single-walled carbon nanotubes prepared by a process including providing a catalyst component on a substrate, providing a carbon component and contacting the catalyst component and the carbon component to produce a first single-walled carbon nanotube having a chirality. Then stopping providing the carbon component, cleaning the catalyst components, and again providing the carbon component to produce a continued first single-walled carbon nanotube, such that the continued first single-walled carbon nanotube has the same chirality as the first single-walled carbon nanotube.
- Another method disclosed by the present teachings of preparing single-walled carbon nanotubes includes providing a catalyst component on a substrate, providing a carbon component, contacting the catalyst component and the carbon component to produce a first single-walled carbon nanotube having a chirality and stopping providing the carbon component. The catalyst component is then cleaned, and the carbon component is again provided to produce a continued first single-walled carbon nanotube with the same chirality as the first single-walled carbon nanotube. This procedure is repeated until the continued first single-walled carbon nanotube satisfies a desired characteristic, at which time, the single-walled carbon nanotube is removed from the catalyst component.
- The present teachings provide a method of preparing cylindrical carbon structures, specifically SWNT, by providing a catalyst component on a substrate, providing a carbon component, contacting the catalyst component and the carbon component to produce a first cylindrical carbon structure, and then stopping the provision of the carbon component. At this point in the method, the catalyst component can be cleaned, and after cleaning, the carbon component can be reintroduced to produce additional cylindrical carbon structure.
- The chirality of the first cylindrical carbon structure can be determined after the provision of the carbon component is stopped. The preparation can then be continued by repeating the steps of providing carbon component, contacting the catalyst and carbon components to produce a continued cylindrical carbon structure, stopping the provision of the carbon component, and cleaning the catalyst component, until the cylindrical carbon structure satisfies a desired characteristic.
- While it is not presently feasible to produce a cylindrical carbon structure, or SWNT, with a predetermined chirality, in the present disclosure, the chirality of the continued cylindrical carbon structure produced has the same chirality as the first cylindrical carbon structure. The presently disclosed process provides that where given an initial cylindrical carbon structure, preferably an SWNT, with a certain chirality, that cylindrical carbon structure can be, for instance, increased in length with the additional cylindrical carbon structure having the same chirality as the initial cylindrical carbon structure.
- The desired characteristic can include, for example, at least one member selected from the group consisting of length, electrical conductivity, thermal conductivity, metallic character, semi-conductor character and non-metallic character. Upon satisfying the desired characteristic the cylindrical carbon structure can be removed from the catalyst component. Alternatively, the production process can be ceased when the efficiency of the process decreases due to build-up of a coating on the catalyst component as described in more detail herein.
- The catalyst component can include nanoparticles containing at least one member selected from the group consisting of transition metals, such as, for example, iron, nickel, cobalt, molybdenum, ruthenium and combinations thereof. Of particular interest are catalyst formulations of transition metals and combinations thereof which exhibit resistance to or decreased formation of coatings on the catalyst itself. Typically, the coatings are composed of amorphous carbon, multilayer carbon and metal carbides.
- The present method of producing cylindrical carbon structures can utilize either a plasma enhanced CVD method or a thermal CVD method to produce the carbon component as a carbon vapor produced from a carbon source, such as, for example, methane, ethylene, acetylene or carbon dioxide. In the present method, the catalyst component can be heated to a temperature ranging from about 60° C. to about 100° C.
- In the CVD methods that can be utilized according to the present disclosure, the catalyst nanoparticle utilized in the method can, after exposure for a period of time to a carbon source, develop a coating or layer of non-reactive material. Various cleaning processes are presented in the present disclosure which clean the catalyst component by reducing any coating present on the catalyst component.
- Cleaning the catalyst component refers to using a cleaning method sufficiently active to remove or deactivate, to the extent that cleaning allows subsequent continued production of the cylindrical carbon structure, any coating or build-up present on the catalyst component. Preferably, cleaning the catalyst component includes a cleaning method that does not react, or does not react substantially, with the cylindrical carbon structure.
- Oxidation, reduction, dissolution, radiative heating, chemical treatment, plasma treatment and combinations thereof are examples of suitable cleaning methods for removal of the coating on the catalyst component. Examples of chemical treatment include contacting the coating with, for example, water, peroxides and acids. Radiative heating includes exposing the catalyst component and coating to radiation of a wavelength capable of heating primarily the coating and/or the catalyst component to thereby induce oxidation of the coating. Preferably, the radiative heating does not adversely affect either of the catalyst component or the cylindrical carbon structure. Examples of suitable radiation methods include electromagnetic radiation, laser radiation and microwave radiation.
- The coating present on the catalyst component typically consists of amorphous carbon, multilayer carbon, metal carbide and combinations thereof. According to present theory, without being limited thereby, as the CVD process continues, non-nanotube forming carbon arrives at the catalyst component and can form, for example, amorphous carbon, multilayer carbon and metal carbide. Each of these formations results in decreased access to the catalyst component for the incoming carbon component and eventually leads to decreased or ceased nanotube growth. According to present theory, these coating components arise in a variety of ways, including incomplete combustion of the supplied hydrocarbon, incomplete formation of cylindrical carbon structures, formation of metal carbides with the metallic elements of the catalyst component, and layering of either or both of incompletely combusted hydrocarbons or incompletely formed cylindrical carbon structures.
- The catalyst component can also become less active through the formation of metal oxides on the catalyst. Reduction of the metal oxides back to the metallic state can also improve the catalyst performance, and can in some cases be accomplished during the cleaning of the catalyst component.
- The cylindrical carbon structures produced by the present methods can include single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes. Preferably, the present method produces single-walled carbon nanotubes.
- The substrate utilized in the presently disclosed methods is not generally restricted, and can include any commonly used substrate. Suitable examples of substrates include, without limitation, silicon substrates, glass substrates, alumina substrates and quartz substrates.
- According to the present disclosure, single-walled carbon nanotubes can be prepared by providing a catalyst component on a substrate, providing a carbon component and contacting the catalyst component and the carbon component to produce a first single-walled carbon nanotube having a chirality. After a sufficient amount of the initial SWNT is formed, the carbon component is no longer provided, and the catalyst component can be cleaned. After cleaning, the carbon component can again be provided to produce a continued single-walled carbon nanotube which has the same chirality as the first single-walled carbon nanotube.
- This process can further include determining the chirality of the first single-walled carbon nanotube at any point after the provision of the carbon component has ceased. The process can be repeated until single-walled carbon nanotubes satisfying a desired characteristic are produced, or until the catalyst component after cleaning can no produced the continued first single-walled carbon nanotube.
- The desired characteristic can be, for instance, length, electrical conductivity, thermal conductivity, metallic character, semi-conductor character and non-metallic character.
- The present disclosure further includes a process of preparing single-walled carbon nanotubes by providing a catalyst component on a substrate and a carbon component, then contacting the catalyst component and the carbon component to produce a first single-walled carbon nanotube having a chirality. Stopping the provision of the carbon component can be the next step and allows for the cleaning the catalyst component. Repeating the provision of the carbon component and contacting it with the catalyst component produces a continued first single-walled carbon nanotube with the same chirality as the first single-walled carbon nanotube. This process can be repeated until the continued first single-walled carbon nanotube satisfies a desired characteristic, and then removing the single-walled carbon nanotube from the catalyst component.
- The present process of preparing SWNT can utilize either a plasma enhanced CVD method or a thermal CVD method to produce the carbon component as a carbon vapor produced from a carbon source, such as, for example, methane, ethylene, acetylene or carbon dioxide. In the present process, the catalyst component can be heated to a temperature ranging from about 60° C. to about 100° C.
- The process can further include determining the chirality of the first produced single-walled carbon nanotube after the provision of the carbon component is ceased.
- The desired characteristic exhibited by the continued first SWNT can include, for example, length, electrical conductivity, thermal conductivity, metallic character, semi-conductor character and non-metallic character.
- The catalyst component utilized to produce the SWNT can include nanoparticles which contain transition metals, for instance, iron, nickel, cobalt, molybdenum, ruthenium and combinations thereof.
- Cleaning the catalyst component can be accomplished by reducing any coating present on the catalyst component. A cleaning method sufficiently active to remove, to the extent that cleaning allows production of the single-walled carbon nanotube, any coating present on the catalyst component is preferable. Furthermore, any cleaning method does not react, or at least does not substantially react, with the single-walled carbon nanotube.
- According to the present disclosure, oxidation, reduction, dissolution, radiative heating, chemical treatment, plasma treatment and combinations thereof can all be utilized as cleaning methods. Chemical treatment includes contacting the coating with at least one member selected from the group consisting of water, peroxides and acids. Radiative heating includes exposing the coating to, for example, electromagnetic radiation, laser radiation or microwave radiation.
- The chirality of the cylindrical carbon structures or SWNTs can be determined by a variety of methods including Raman characterization, micro Raman characterization, I-V (“current-voltage”) characterization, and STM (“scanning tunneling microscopy”) measurement.
- Electromagnetic radiation refers to radiation composed of oscillating electric and magnetic fields and propagated at the speed of light. Examples of electromagnetic radiation include, without limitation, gamma radiation, X-rays, ultraviolet, visible, infrared, microwave and radio waves.
- All publications, articles, papers, patents, patent publications, and other references cited herein are hereby incorporated herein in their entireties for all purposes.
- The foregoing detailed description of the various embodiments of the present teachings has been provided for the purposes of illustration and description. Many modifications and variations will be apparent to practitioners skilled in this art. The embodiments were chosen and described in order to best explain the principles of the present teachings and their practical application, thereby enabling others skilled in the art to understand the present teachings for various embodiments and with various modifications as are suited to the particular use contemplated. The specific techniques, conditions, materials and reported data set forth in the following examples to illustrate the principles of the present teachings are exemplary and should not be construed as exhaustive or limiting the scope of the present teachings. It is intended that the scope of the present teachings be defined by the following claims and their equivalents.
- Ferric nitrate (Fe(NO3)3.9H2O) can be dissolved in 2-propanol at an approximate concentration of 100 μg/mL, and stirred for 15 minutes. A previously prepared silicon dioxide substrate can then be immersed into the iron solution for 15 seconds, rinsed in hexane, and dried in air.
- The substrate with the catalyst can then be placed in a tube furnace and reduced under a helium/hydrogen (60/40) gas flow (200 sccm) at 500 C for one hour. The He/H2 gas mixture can then be replaced with Ar gas, and the temperature increased to 750 C. Once the higher temperature is reached, then methane gas can be added at a flow rate of 20 sccm for 15 minutes, after which time the furnace is cooled to room temperature under a flow of argon. An atomic force microscopy (“AFM”) image can be obtained of the nanotubes.
- The resulting supported iron nanoparticles with nanotubes can be cleaned by exposing the sample to a dry air flow (100 sccm) at a temperature of 200 C for thirty minutes.
- The tube furnace can then be reheated to 750 C under a flow (200 sccm) of an argon/hydrogen gas mixture. After the nanoparticles reach a steady state temperature, methane can be re-introduced into the tube furnace, at a flow rate of 20 sccm.
- After fifteen minutes, the methane flow can be stopped and the apparatus allowed to cool to room temperature under an argon gas flow. The supported iron nanoparticles with nanotubes can then be removed from the tube furnace.
- A second AFM image can be obtained. The second AFM image can show that the nanotubes have grown in length while maintaining the same chirality as the initial nanotube.
- Ferric nitrate (Fe(NO3)3.9H2O) and ammonium molybdate ((NH4)6Mo7O24.4H2O) at a 1:0.17 Fe:Mo molar ratio can be dissolved in methanol, and then mixed with a methanol suspension of alumina. The suspension can be deposited, drop wise, onto a previously prepared silicon dioxide substrate, and then dried in air.
- The substrate with the bimetallic catalyst can then be placed in a tube furnace and reduced under a helium/hydrogen (60/40) gas flow (200 sccm) at 500 C for one hour. The He/H2 gas mixture can then be replaced with Ar gas, and the temperature increased to 750 C. Once the higher temperature is reached, then methane gas can be added at a flow rate of 20 sccm for 15 minutes, after which time the furnace is cooled to room temperature under a flow of argon. An atomic force microscopy (“AFM”) image can be obtained of the nanotubes.
- The supported iron/molybdenum nanoparticles with nanotubes can be cleaned by exposing the sample to a dry air flow (100 sccm) at a temperature of 200 C for thirty minutes.
- The tube furnace can then be reheated to 750 C under a flow (200 sccm) of an argon/hydrogen gas mixture. After the nanoparticles reach a steady state temperature, methane can be re-introduced into the tube furnace, at a flow rate of 20 sccm.
- After fifteen minutes, the methane flow can be stopped and the apparatus allowed to cool to room temperature under an argon gas flow. The supported Fe/Mo nanoparticles with nanotubes can then be removed from the tube furnace.
- A second AFM image can be obtained. The second AFM image can show that the nanotubes have grown in length while maintaining the same chirality as the initial nanotube.
- Ferric nitrate (Fe(NO3)3.9H2O) can be dissolved in methanol at an approximate concentration of 150 μg/mL, and then mixed with a methanol suspension of alumina. The alumina can have a BET surface area of 150 m2/g. The iron and alumina suspension can be deposited, drop wise, onto a previously prepared silicon dioxide substrate, and then dried in air.
- The substrate with the catalyst can then be placed in a tube furnace and reduced under a helium/hydrogen (60/40) gas flow (200 sccm) at 500 C for one hour. The He/H2 gas mixture can then be replaced with Ar gas, and the temperature increased to 750 C. Once the higher temperature is reached, then methane gas can be added at a flow rate of 20 sccm for 15 minutes, after which time the furnace is cooled to room temperature under a flow of argon. An atomic force microscopy (“AFM”) image can be obtained of the nanotubes.
- The supported iron nanoparticles with nanotubes can be cleaned by exposing the sample to a dry air flow (100 sccm) at a temperature of 200 C for thirty minutes.
- The tube furnace can then be reheated to 750 C under a flow (200 sccm) of an argon/hydrogen gas mixture. After the nanoparticles reach a steady state temperature, methane can be re-introduced into the tube furnace, at a flow rate of 20 sccm.
- After fifteen minutes, the methane flow can be stopped and the apparatus allowed to cool to room temperature under an argon gas flow. The supported iron nanoparticles with nanotubes can then be removed from the tube furnace.
- A second AFM image can be obtained. The second AFM image can show that the nanotubes have grown in length while maintaining the same chirality as the initial nanotube.
Claims (31)
1. A method of preparing cylindrical carbon structures comprising:
a) providing a catalyst component on a substrate;
b) providing a carbon component;
c) contacting the catalyst component and the carbon component to produce a first cylindrical carbon structure;
d) stopping providing the carbon component;
e) cleaning the catalyst component;
f) repeating steps b) through e), and
g) producing continued first cylindrical carbon structure having the same chirality as the first cylindrical carbon structure.
2. The method according to claim 1 , further comprising:
determining the chirality of the first cylindrical carbon structure after step d).
3. The method according to claim 1 , further comprising:
repeating step f) until the cylindrical carbon structure satisfies a desired characteristic.
4. The method according to claim 3 , wherein the desired characteristic comprises at least one member selected from the group consisting of length, electrical conductivity, thermal conductivity, metallic character, semi-conductor character and non-metallic character.
5. The method according to claim 3 , further comprising:
removing the cylindrical carbon structure from the catalyst component.
6. The method according to claim 1 , wherein the catalyst component comprises nanoparticles containing at least one member selected from the group consisting of iron, nickel, cobalt, molybdenum, ruthenium and combinations thereof.
7. The method according to claim 1 , wherein the carbon component comprises carbon vapor produced by either a plasma enhanced chemical vapor deposition method or a thermal chemical vapor deposition method.
8. The method according to claim 7 , wherein the carbon vapor is produced from a carbon source comprising at least one element selected from the group consisting of methane, ethylene, acetylene and carbon dioxide.
9. The method according to claim 1 , wherein cleaning the catalyst component comprises heating the catalyst component to about 750° C. under a reductive atmosphere.
10. The method according to claim 9 , wherein cleaning the catalyst component comprises utilizing a method sufficiently active to remove, to the extent that cleaning allows production of the continued cylindrical carbon structure, any coating present on the catalyst component.
11. The method according to claim 9 , wherein cleaning the catalyst component comprises utilizing a cleaning method that does not react with the cylindrical carbon structure.
12-13. (canceled)
14. The method according to claim 9 , wherein heating comprises exposing the coating to at least one member selected from the group consisting of electromagnetic radiation, laser radiation and microwave radiation.
15. The method according to claim 10 , wherein the coating comprises at least one member selected from the group consisting of amorphous carbon, multilayer carbon, metal carbide and combinations thereof.
16. The method according to claim 1 , wherein the cylindrical carbon structure comprises at least one member selected from the group consisting of single-walled carbon nanotubes, double-walled carbon nanotubes and multi-walled carbon nanotubes.
17. The method according to claim 1 , wherein the cylindrical carbon structure comprises single-walled carbon nanotubes.
18. The method according to claim 1 , wherein the catalyst component is heated to a temperature ranging from about 600° to about 1000° C. during the contacting step.
19. (canceled)
20. A method of preparing single-walled carbon nanotubes comprising:
a) providing a catalyst component on a substrate;
b) providing a carbon component;
c) contacting the catalyst component and the carbon component to produce a first single-walled carbon nanotube having a chirality;
d) stopping providing the carbon component;
e) cleaning the catalyst component;
f) repeating steps b) through e) to produce a continued first single-walled carbon nanotube with the same chirality as the first single-walled carbon nanotube;
g) repeating step f) until the continued first single-walled carbon nanotube satisfies a desired characteristic; and
h) removing the single-walled carbon nanotube from the catalyst component,
wherein cleaning the catalyst component comprises heating the catalyst component in a reductive atmosphere.
21. The method according to claim 20 , further comprising:
determining the chirality of the first produced single-walled carbon nanotube after step d).
22. The method according to claim 20 , wherein the desired characteristic comprises at least one member selected from the group consisting of length, electrical conductivity, thermal conductivity, metallic character, semi-conductor character and non-metallic character.
23. The method according to claim 20 , wherein the catalyst component comprises nanoparticles containing at least one member selected from the group consisting of iron, nickel, cobalt, molybdenum, ruthenium and combinations thereof.
24. The method according to claim 20 , wherein the carbon component comprises carbon vapor produced by either a plasma enhanced chemical vapor deposition method or a thermal chemical vapor deposition method.
25. The method according to claim 24 , wherein the carbon vapor is produced from a carbon source comprising at least one element selected from the group consisting of methane, ethylene, acetylene and carbon dioxide.
26. The method according to claim 20 , wherein cleaning the catalyst component comprises heating the catalyst component to about 750° C.
27. The method according to claim 26 , wherein cleaning the catalyst component comprises utilizing a method sufficiently active to remove, to the extent that cleaning allows production of the continued single-walled carbon nanotube, any coating present on the catalyst component.
28. The method according to claim 26 , wherein cleaning the catalyst component comprises utilizing a cleaning method that does not react with the single-walled carbon nanotube.
29-30. (canceled)
31. The method according to claim 26 , wherein heating comprises exposing the coating to at least one member selected from the group consisting of electromagnetic radiation, laser radiation and microwave radiation under a reductive atmosphere.
32. The method according to claim 27 , wherein the coating comprises at least one member selected from the group consisting of amorphous carbon, multilayer carbon and metal carbide.
33. The method according to claim 20 , wherein the catalyst component is heated to a temperature ranging from about 600° to about 1000° C. during the contacting step.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/475,919 US20100239491A1 (en) | 2006-06-28 | 2006-06-28 | Method of producing carbon nanotubes |
JP2009518504A JP5358045B2 (en) | 2006-06-28 | 2007-06-26 | Method for producing carbon nanotube |
PCT/US2007/072098 WO2008100325A2 (en) | 2006-06-28 | 2007-06-26 | Method of producing carbon nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/475,919 US20100239491A1 (en) | 2006-06-28 | 2006-06-28 | Method of producing carbon nanotubes |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100239491A1 true US20100239491A1 (en) | 2010-09-23 |
Family
ID=39661384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/475,919 Abandoned US20100239491A1 (en) | 2006-06-28 | 2006-06-28 | Method of producing carbon nanotubes |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100239491A1 (en) |
JP (1) | JP5358045B2 (en) |
WO (1) | WO2008100325A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090274609A1 (en) * | 2008-05-01 | 2009-11-05 | Honda Motor Co., Ltd. | Synthesis Of High Quality Carbon Single-Walled Nanotubes |
US20090324484A1 (en) * | 2008-05-01 | 2009-12-31 | Honda Motor Co., Ltd. | Effect Of Hydrocarbon And Transport Gas Feedstock On Efficiency And Quality Of Grown Single-Walled Nanotubes |
US20100081568A1 (en) * | 2008-04-21 | 2010-04-01 | Lockheed Martin Corporation | Methods for producing carbon nanotubes with controlled chirality and diameter and products therefrom |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011014258A2 (en) | 2009-07-31 | 2011-02-03 | Massachusetts Institute Of Technology | Systems and methods related to the formation of carbon-based nanostructures |
FR2949075B1 (en) * | 2009-08-17 | 2013-02-01 | Arkema France | FE / MO SUPPORTED CATALYST, PROCESS FOR PREPARING THE SAME, AND USE IN THE MANUFACTURE OF NANOTUBES |
WO2011066288A2 (en) * | 2009-11-25 | 2011-06-03 | Massachusetts Institute Of Technology | Systems and methods for enhancing growth of carbon-based nanostructures |
WO2012091789A1 (en) | 2010-10-28 | 2012-07-05 | Massachusetts Institute Of Technology | Carbon-based nanostructure formation using large scale active growth structures |
JP6373284B2 (en) | 2013-02-28 | 2018-08-15 | エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. | Nano-structured film cartridge-based dispensing |
JP6039534B2 (en) | 2013-11-13 | 2016-12-07 | 東京エレクトロン株式会社 | Carbon nanotube generation method and wiring formation method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5037785A (en) * | 1989-11-17 | 1991-08-06 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources | Catalyst regeneration process using laser radiation |
US20020088938A1 (en) * | 1996-08-08 | 2002-07-11 | William Marsh Rice University | Method for forming an array of single-wall carbon nanotubes and compositions thereof |
US20020110513A1 (en) * | 1998-09-18 | 2002-08-15 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US20030042128A1 (en) * | 2001-06-15 | 2003-03-06 | Avetik Harutyunyan | Method of purifying nanotubes and nanofibers using electromagnetic radiation |
US20030124717A1 (en) * | 2001-11-26 | 2003-07-03 | Yuji Awano | Method of manufacturing carbon cylindrical structures and biopolymer detection device |
US6645455B2 (en) * | 1998-09-18 | 2003-11-11 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US20040101467A1 (en) * | 2002-11-26 | 2004-05-27 | Avetik Harutyunyan | Method for synthesis of carbon nanotubes |
US6869583B2 (en) * | 2001-04-12 | 2005-03-22 | The Penn State Research Foundation | Purification of carbon filaments and their use in storing hydrogen |
US20060057388A1 (en) * | 2004-09-10 | 2006-03-16 | Sungho Jin | Aligned and open-ended nanotube structure and method for making the same |
US20070009421A1 (en) * | 2004-12-01 | 2007-01-11 | William Marsh Rice University | Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3441923B2 (en) * | 1997-06-18 | 2003-09-02 | キヤノン株式会社 | Manufacturing method of carbon nanotube |
AUPP976499A0 (en) * | 1999-04-16 | 1999-05-06 | Commonwealth Scientific And Industrial Research Organisation | Multilayer carbon nanotube films |
WO2005033001A2 (en) * | 2003-09-03 | 2005-04-14 | Honda Motor Co., Ltd. | Methods for preparation of one-dimensional carbon nanostructures |
JP2005343744A (en) * | 2004-06-03 | 2005-12-15 | Matsushita Electric Ind Co Ltd | Method for producing carbon nanotube semiconductor and carbon nanotube semiconductor |
JP4868726B2 (en) * | 2004-09-14 | 2012-02-01 | 富士通株式会社 | Method for controlling the structure of carbon nanotubes |
JP4780546B2 (en) * | 2004-11-08 | 2011-09-28 | 学校法人 名城大学 | Method for producing carbon nanotube and method for producing current control element |
-
2006
- 2006-06-28 US US11/475,919 patent/US20100239491A1/en not_active Abandoned
-
2007
- 2007-06-26 WO PCT/US2007/072098 patent/WO2008100325A2/en active Application Filing
- 2007-06-26 JP JP2009518504A patent/JP5358045B2/en active Active
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5037785A (en) * | 1989-11-17 | 1991-08-06 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources | Catalyst regeneration process using laser radiation |
US6824755B2 (en) * | 1996-08-08 | 2004-11-30 | William Marsh Rice University | Method for producing a catalyst support and compositions thereof |
US20030106998A1 (en) * | 1996-08-08 | 2003-06-12 | William Marsh Rice University | Method for producing boron nitride coatings and fibers and compositions thereof |
US6756025B2 (en) * | 1996-08-08 | 2004-06-29 | William Marsh Rice University | Method for growing single-wall carbon nanotubes utilizing seed molecules |
US20020088938A1 (en) * | 1996-08-08 | 2002-07-11 | William Marsh Rice University | Method for forming an array of single-wall carbon nanotubes and compositions thereof |
US20030010910A1 (en) * | 1996-08-08 | 2003-01-16 | William Marsh Rice University | Continuous fiber of single-wall carbon nanotubes |
US7052666B2 (en) * | 1996-08-08 | 2006-05-30 | William Marsh Rice University | Method for cutting single-wall carbon nanotubes |
US20030066960A1 (en) * | 1996-08-08 | 2003-04-10 | William Marsh Rice University | Apparatus for growing continuous single-wall carbon nanotube fiber |
US20050244326A1 (en) * | 1996-08-08 | 2005-11-03 | William Marsh Rice University | Method for fractionating single-wall carbon nanotubes |
US7048903B2 (en) * | 1996-08-08 | 2006-05-23 | William Marsh Rice University | Macroscopically manipulable nanoscale devices made from nanotube assemblies |
US6939525B2 (en) * | 1996-08-08 | 2005-09-06 | William Marsh Rice University | Method of forming composite arrays of single-wall carbon nanotubes and compositions thereof |
US20020092984A1 (en) * | 1996-08-08 | 2002-07-18 | William Marsh Rice University | Method for purification of as-produced single-wall carbon nanotubes |
US6756026B2 (en) * | 1996-08-08 | 2004-06-29 | William Marsh Rice University | Method for growing continuous carbon fiber and compositions thereof |
US20020102201A1 (en) * | 1996-08-08 | 2002-08-01 | William Marsh Rice University | Method for forming an array of single-wall carbon nanotubes in an electric field and compositions thereof |
US20040265209A1 (en) * | 1996-08-08 | 2004-12-30 | William Marsh Rice University | Method for end-derivatizing single-wall carbon nanotubes and for introducing an endohedral group to single-wall carbon nanotubes |
US6875412B2 (en) * | 1998-09-18 | 2005-04-05 | William Marsh Rice University | Chemically modifying single wall carbon nanotubes to facilitate dispersal in solvents |
US6835366B1 (en) * | 1998-09-18 | 2004-12-28 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof, and use of derivatized nanotubes |
US6841139B2 (en) * | 1998-09-18 | 2005-01-11 | William Marsh Rice University | Methods of chemically derivatizing single-wall carbon nanotubes |
US6645455B2 (en) * | 1998-09-18 | 2003-11-11 | William Marsh Rice University | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US6827918B2 (en) * | 1998-09-18 | 2004-12-07 | William Marsh Rice University | Dispersions and solutions of fluorinated single-wall carbon nanotubes |
US20020110513A1 (en) * | 1998-09-18 | 2002-08-15 | Margrave John L. | Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers |
US6869583B2 (en) * | 2001-04-12 | 2005-03-22 | The Penn State Research Foundation | Purification of carbon filaments and their use in storing hydrogen |
US7014737B2 (en) * | 2001-06-15 | 2006-03-21 | Penn State Research Foundation | Method of purifying nanotubes and nanofibers using electromagnetic radiation |
US20030042128A1 (en) * | 2001-06-15 | 2003-03-06 | Avetik Harutyunyan | Method of purifying nanotubes and nanofibers using electromagnetic radiation |
US20030124717A1 (en) * | 2001-11-26 | 2003-07-03 | Yuji Awano | Method of manufacturing carbon cylindrical structures and biopolymer detection device |
US20040101467A1 (en) * | 2002-11-26 | 2004-05-27 | Avetik Harutyunyan | Method for synthesis of carbon nanotubes |
US20060057388A1 (en) * | 2004-09-10 | 2006-03-16 | Sungho Jin | Aligned and open-ended nanotube structure and method for making the same |
US20070009421A1 (en) * | 2004-12-01 | 2007-01-11 | William Marsh Rice University | Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100081568A1 (en) * | 2008-04-21 | 2010-04-01 | Lockheed Martin Corporation | Methods for producing carbon nanotubes with controlled chirality and diameter and products therefrom |
US20090274609A1 (en) * | 2008-05-01 | 2009-11-05 | Honda Motor Co., Ltd. | Synthesis Of High Quality Carbon Single-Walled Nanotubes |
US20090324484A1 (en) * | 2008-05-01 | 2009-12-31 | Honda Motor Co., Ltd. | Effect Of Hydrocarbon And Transport Gas Feedstock On Efficiency And Quality Of Grown Single-Walled Nanotubes |
US8591858B2 (en) | 2008-05-01 | 2013-11-26 | Honda Motor Co., Ltd. | Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes |
US9174847B2 (en) * | 2008-05-01 | 2015-11-03 | Honda Motor Co., Ltd. | Synthesis of high quality carbon single-walled nanotubes |
US10850984B2 (en) | 2008-05-01 | 2020-12-01 | Honda Motor Co., Ltd. | Synthesis of high quality carbon single-walled nanotubes |
Also Published As
Publication number | Publication date |
---|---|
JP5358045B2 (en) | 2013-12-04 |
JP2010503595A (en) | 2010-02-04 |
WO2008100325A2 (en) | 2008-08-21 |
WO2008100325A3 (en) | 2008-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100239491A1 (en) | Method of producing carbon nanotubes | |
Hong et al. | Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts | |
JP4584142B2 (en) | Method for forming catalytic metal fine particles for production of single-walled carbon nanotubes | |
US7235159B2 (en) | Methods for producing and using catalytic substrates for carbon nanotube growth | |
Shi et al. | Synthesis and microstructure of gallium phosphide nanowires | |
JP4834957B2 (en) | Catalyst structure and carbon nanotube production method using the same | |
JPWO2006025393A1 (en) | Manufacturing method of nano-scale low-dimensional quantum structure and manufacturing method of integrated circuit using the manufacturing method | |
US20050214197A1 (en) | Methods for producing and using catalytic substrates for carbon nanotube growth | |
WO2010014650A2 (en) | Preferential growth of single-walled carbon nanotubes with metallic conductivity | |
JP2007268319A (en) | Catalyst for synthesizing carbon nano-tube and its manufacturing method, catalyst dispersion and manufacturing method for carbon nanotube | |
JP6202359B2 (en) | Method for producing carbon nanotube | |
KR20160057393A (en) | Method for producing carbon nanostructure, and carbon nanotube | |
JP2007261839A (en) | Method for producing carbon nanotube | |
Rohmund et al. | Carbon nanotube films grown by laser-assisted chemical vapor deposition | |
JP5770166B2 (en) | New adjustable gas storage and gas sensing materials | |
US20080279752A1 (en) | Method for producing a single-wall carbon nanotube | |
JP2010077007A (en) | Base material for forming carbon nanotube, carbon nanotube orientedly grown on the base material and their production method | |
JP2021020828A (en) | Carbon nanotube, and method and apparatus for producing the same | |
JP2004083293A (en) | Method for manufacturing carbon nanotube using fullerene | |
JP6623512B2 (en) | Carbon nanostructure aggregate and method for producing the same | |
JP2012140268A (en) | Determination method of substrate for producing carbon nanotube, and production method of carbon nanotube | |
JP6171805B2 (en) | Method for producing carbon nanostructure | |
TWI246503B (en) | Method for producing a carbon nanotube array | |
US7799307B2 (en) | Method of growing single-walled carbon nanotubes | |
JP6458594B2 (en) | Method for producing carbon nanostructure including carbon nanotube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HONDA MOTOR CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARUTYUNYAN, AVETIK;REEL/FRAME:018240/0963 Effective date: 20060901 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |