RU2232411C2 - Усовершенствованный генератор рисунков - Google Patents

Усовершенствованный генератор рисунков Download PDF

Info

Publication number
RU2232411C2
RU2232411C2 RU2000124871/28A RU2000124871A RU2232411C2 RU 2232411 C2 RU2232411 C2 RU 2232411C2 RU 2000124871/28 A RU2000124871/28 A RU 2000124871/28A RU 2000124871 A RU2000124871 A RU 2000124871A RU 2232411 C2 RU2232411 C2 RU 2232411C2
Authority
RU
Russia
Prior art keywords
modulator
pms
radiation
pattern
exposure
Prior art date
Application number
RU2000124871/28A
Other languages
English (en)
Other versions
RU2000124871A (ru
Inventor
Торбьерн САНДСТРЕМ (SE)
Торбьерн САНДСТРЕМ
Original Assignee
Микроник Лазер Системз Аб.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Микроник Лазер Системз Аб. filed Critical Микроник Лазер Системз Аб.
Publication of RU2000124871A publication Critical patent/RU2000124871A/ru
Application granted granted Critical
Publication of RU2232411C2 publication Critical patent/RU2232411C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/465Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using masks, e.g. light-switching masks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • G02B27/0043Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements in projection exposure systems, e.g. microlithographic systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2022Multi-step exposure, e.g. hybrid; backside exposure; blanket exposure, e.g. for image reversal; edge exposure, e.g. for edge bead removal; corrective exposure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • H04N1/19Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
    • H04N1/195Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a two-dimensional array or a combination of two-dimensional arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7458Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of deformable mirrors, e.g. digital micromirror device [DMD]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2201/00Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
    • H04N2201/04Scanning arrangements
    • H04N2201/0402Arrangements not specific to a particular one of the scanning methods covered by groups H04N1/04 - H04N1/207
    • H04N2201/0414Scanning an image in a series of overlapping zones

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
  • Image Processing (AREA)
  • Electron Beam Exposure (AREA)
  • Eye Examination Apparatus (AREA)
  • Gyroscopes (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Lubricants (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Details Of Garments (AREA)
  • Burglar Alarm Systems (AREA)
  • Soft Magnetic Materials (AREA)
  • Error Detection And Correction (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Использование: в печати рисунков с высокой точностью на фоточувствительных поверхностях, а также при непосредственной записи рисунков, и, кроме того, в других видах прецизионной печати. Технический результат изобретения: однородность изображения от пикселя к пикселю, повышение яркости и стабильности изображения. Сущность: настоящее изобретение относится к устройству для создания рисунка на заготовке, чувствительной к излучению, например, такой как фотошаблон, панель дисплея или микрооптический прибор. Устройство содержит источник излучения и пространственный модулятор света (ПМС), имеющий множество модулирующих элементов (пикселей). Оно также содержит электронную систему обработки и подачи данных, подающую возбуждающие сигналы в модулятор, прецизионную механическую систему для перемещения упомянутой заготовки и электронную систему управления, координирующую перемещение заготовки, подачу сигналов в модулятор и интенсивность излучения так, чтобы упомянутый рисунок сшивался из частичных изображений, созданных последовательностью частичных рисунков. Согласно изобретению возбуждающие сигналы могут устанавливать модулирующие элементы в число состояний, более двух. 36 з.п. ф-лы, 8 ил.

Description

Область изобретения
Настоящее изобретение относится к печати рисунков с чрезвычайно высокой точностью на фоточувствительных поверхностях, например фотошаблонах для полупроводниковых приборов и дисплеев. Оно также относится к непосредственной записи рисунков полупроводниковых приборов, панелей дисплеев, интегральных оптических приборов и электронных структур взаимосвязи. Более того, оно может иметь применение к другим типам прецизионной печати, таким как печатание денежных документов. Термин "печать" следует понимать в широком смысле, имея в виду экспонирование фоторезиста и фотоэмульсии, а также действие света на светочувствительные среды типа промокательной бумаги, абляцию или химические процессы, активизируемые под действием света или высокой температуры. Понятие света не ограничивается видимым светом, но подразумевает широкий диапазон длин волн от инфракрасной области (ИК) до крайнего УФ. Особую важность имеет ультрафиолетовая область от 370 нм (УФ) через далекий ультрафиолет (ДУФ), вакуумный ультрафиолет (ВУФ) и крайний ультрафиолет (КУФ) до длин волн нескольких нанометров. КУФ излучение в этом описании определяется как диапазон от 100 нм и ниже, до тех пор, пока излучение можно трактовать как свет. Типичная длина волны для КУФ составляет 13 нм. ИК область определяется как область от 780 нм до приблизительно 20 мкм.
В другом смысле, изобретение относится к технике и науке пространственных модуляторов света и проекционных дисплеев и принтеров, использующих такие модуляторы. В частности, оно улучшает яркостные свойства, стабильность изображения при наведении на резкость и однородность изображения, а также обработку данных для таких модуляторов посредством применения метода аналоговой модуляции. Наиболее важное использование аналоговой модуляции состоит в том, чтобы формировать изображение в высоко-контрастном материале, таком как фоторезист с адресной сеткой, то есть приращение, посредством которого определяется положение края в рисунке, которое является намного более тонким, чем сетка, создаваемая пикселями пространственного модулятора света.
Уровень техники, к которой относится изобретение
Из уровня техники известно построение прецизионных генераторов рисунков с использованием проектирования микрозеркальных пространственных модуляторов света (ПМС) типа микрозеркал (Nelson 1988, Kuck 1990). Использование ПМС модулятора в генераторе рисунков имеет ряд преимуществ по сравнению с более широко распространенным способом использования сканирования лазерных пятен: ПМС модулятор является устройством большой емкости, и количество пикселей, которые могут быть записаны в секунду, является чрезвычайно высоким. Оптическая система также более простая в том смысле, что освещение ПМС модулятора не является критическим, в то время как в лазерном сканере весь путь луча должен быть построен с высокой точностью. По сравнению с некоторыми типами сканеров, в частности электрооптическими и акустическими сканерами, микрозеркальный ПМС модулятор может использоваться на более коротких длинах волн, так как он является полностью отражающим устройством.
В обоих процитированных выше ссылках пространственный модулятор использует только амплитудную манипуляцию в каждом пикселе. Входные данные преобразуются в карту пикселей с глубиной один бит, то есть со значениями 0 и 1 в каждом пикселе. Преобразование может быть осуществлено с эффективным использованием графических процессоров или специальной логики с инструкциями закрашивания области.
В предыдущем описании этого же изобретения Sandstrom (Sandstrom и соавт. 1990) была описана способность использовать промежуточное значение экспозиции на границе элемента рисунка для точного регулирования положения края элемента в изображении, создаваемом лазерным сканером.
Из уровня техники также известно создание полутонового изображения, предпочтительно для проекционного дисплея видеоизображений и для печати, с помощью ПМС модулятора, посредством вариации времени, в течение которого пиксель включается, или посредством печати одного и того же пикселя несколько раз с включением пикселя изменяющееся число раз. Настоящее изобретение обеспечивает систему для непосредственной генерации полутоновой шкалы с помощью пространственного модулятора света, со специфическим подходом к генерации ультрапрецизионных рисунков. Важными аспектами в предпочтительных вариантах реализации являются однородность изображения от пикселя к пикселю и независимость точного расположения элемента рисунка относительно пикселей ПМС модулятора, а также стабильность, когда фокус изменяется либо заданно, либо случайно.
Сущность изобретения
Следовательно, задача настоящего изобретения состоит в том, чтобы обеспечить усовершенствованный генератор рисунков для печати прецизионных рисунков.
Эта задача достигается с помощью устройства согласно приложенной формуле изобретения, обеспечивающего аналоговую модуляцию пикселей в ПМС модуляторе.
Краткое описание чертежей
В дальнейшем изобретение поясняется описанием конкретных вариантов его реализации со ссылками на сопровождающие чертежи, на которых:
фиг.1 изображает принтер из известного уровня техники, ПМС модулятор состоящий из микрозеркал, которые отклоняют свет от зрачка линзы,
фиг.2 изображает набор конструкций пикселей с четырьмя верхними пикселями в выключенном состоянии и остальными пятью пикселями во включенном состоянии,
фиг.3 изображает матрицу пикселей, двигающихся вверх и вниз подобно поршням, таким образом создавая разность фаз, это - пример того, как можно точно позиционировать край с ПМС модулятором фазового типа,
фиг.4 изображает схематическое сравнение между ПМС модулятором с отклоняющимися зеркалами и ПМС модулятором с деформируемыми зеркалами,
фиг.5 изображает схему процесса способа передачи и ввода данных в ПМС модулятор,
фиг.6 изображает предпочтительный вариант реализации генератора рисунков согласно изобретению,
фиг.7 схематически изображает возможные комплексные амплитуды для различных типов ПМС модулятора, и
фиг.8 схематически изображает различные типы управления зеркалами ПМС модулятора.
Подробное описание предпочтительных вариантов реализации изобретения
Основу для понимания изобретения составляет характерная схема на фиг.1, которая изображает характерный проекционный принтер с ПМС модулятором. Пространственные модуляторы света, основанные на отражении, подразделяются на два класса: отклоняющего типа (Нельсон) и фазового типа (Kuck). В частном случае с микрозеркалами, разница между этими модуляторами кажется небольшой, но фазовый ПМС модулятор гасит луч в направлении зеркального отражения посредством ослабляющей интерференции, в то время как пиксель в ПМС модуляторе отклоняющего типа отклоняет зеркально отраженный луч геометрически в одну сторону так, чтобы он не попал в апертуру формирующей изображение линзы, как показано на фиг.1. Для ультрапрецизионной печати, как представлено в настоящем изобретении, система фазовой модуляции, как описано у Kuck 1990, превосходит систему отклоняющего типа. Во-первых, она имеет лучший контраст, поскольку все части поверхности, а также стойки и несущая рама, принимают участие в ослабляющей интерференции, и может быть достигнуто полное гашение. Во-вторых, систему, которая работает по принципу отклонения света в сторону, трудно сделать симметричной относительно оптической оси под промежуточными углами отклонения, создавая риск нестабильности элементов рисунка при изменении фокуса. В предпочтительных вариантах реализации используется фазовый тип, но если предположить или спроектировать асимметрию в системе отклоняющего типа, то ее также можно использовать. Это схематически иллюстрируется на фиг.4. На первой фиг. 4а, освещается неотклоненное микрозеркало 401, и отраженный свет не направляется в апертуру 402, и, следовательно, свет не достигает подложки 403. На фиг.46, наоборот, зеркало полностью отклонено, и весь отраженный свет направляется в апертуру. В промежуточном положении только часть отраженного света достигнет подложки, что показано на фиг.4в. Однако в этом случае свет не является симметричным относительно оптической оси линзы 404, и имеется отклоненное падение на подложку. В связи с этим расстояние между линзой и участком подложки становится очень критическим, и небольшие изменения, типа показанного пунктирной линией для участка, вызывают значительные смещения элементов рисунка на подложке. Путь решения этой проблемы показан на фиг.4г-е. Здесь, первая экспозиция осуществляется с первым углом отклонения для микрозеркала, и после этого вторая экспозиция, предпочтительно с той же самой дозой облучения, осуществляется для второго утла отклонения, являющегося комплементарным к первому углу. В связи с этим, комбинация первой и второй экспозиции является симметричной относительно оптической оси линзы. Другой способ решения проблемы состоит в том, чтобы использовать деформирующееся зеркало 401', типа показанного на фиг.4ж, посредством чего отраженный свет равномерно распределяется по апертуре. Эта последняя фигура могла бы схематично представлять два случая, ПМС модулятор фазового типа (описанный ниже) или ПМС модулятор отклоняющего типа, в котором свет отражается от различных частей зеркала.
Фазовый ПМС модулятор может быть построен либо с зеркалами, изготовленными механической микронной обработкой, так называемыми микрозеркалами, либо с использованием непрерывной поверхности зеркала на поддерживающей подложке, которую можно деформировать, используя электронный сигнал. В публикации Kuck 1990 используется вязкоупругий слой, управляемый электростатическим полем, но одинаково возможно, особенно для очень коротких длин волн, где достаточны деформации порядка нескольких нанометров, использовать пьезоэлектрический твердый диск, который деформируется электрическим полем, или другую электрически, магнитно или термически управляемую отражающую поверхность. В конце этого описания выбирается электростатически управляемая матрица микрозеркал (одно- или двухмерная), хотя возможны другие вышеописанные схемы, такие как пропускающие или отражающие ПМС модуляторы, механизм модуляции которых основан на жидких кристаллах или электрооптических материалах, или микромеханические ПМС модуляторы, использующие пьезоэлектрическиое или электрострикционное возбуждение.
Изобретение предпочтительно использует микрозеркало, в котором фазовая модуляция является варьируемой для получения переменного количества света, достигающего зрачка проекционной линзы. Фиг.2 изображает некоторые многоэлементные зеркала. Наклоны различных частей зеркал неважны. Фактически один элемент сам по себе мог бы направлять свет к линзе, в то время как другой мог бы направлять свет вне зрачка. Правильный подход понимания работы состоит в том, чтобы рассматривать комплексную амплитуду, достигающую центра зрачка из каждого бесконечно малого элемента участка зеркала, и интегрировать амплитуду по зеркалу. С подходящей формой зеркала возможно найти деформацию, при которой комплексные амплитуды складываются почти до нуля, что соответствует тому, что свет вообще не достигает зрачка. Это - состояние выключения микрозеркала, тогда как состояние релаксации, в котором поверхность зеркала является плоской и комплексные амплитуды складываются в фазе, является состоянием включения. Между состояниями включения и выключения количество света в направлении зеркального отражения является непрерывной и нелинейной функцией деформации.
Рисунок, который должен быть записан, обычно представляет собой двоичный рисунок, такой как рисунок фотошаблона в хроме на стеклянной подложке. В этом контексте термин "двоичный" означает, что нет никаких промежуточных участков: некоторая точка на поверхности фотошаблона является либо темной (покрытой хромом), либо светлой (без хрома). Рисунок экспонируется на фоторезисте посредством проектированного изображения из ПМС модулятора, и фоторезист проявляется. Современные фоторезисты имеют высокий контраст, означая что небольшое процентное изменение в экспозиции дает разницу между состоянием полного удаления фоторезиста в проявителе и состоянием почти совсем без удаления. Поэтому фоторезист имеет край, который обычно является почти перпендикулярным к поверхности подложки, даже несмотря на то, что изображение в воздухе имеет постепенный переход между светом и темнотой. Травление хрома дополнительно увеличивает контраст, так что результирующее изображение является совершенно двоичным: либо темным, либо светлым без промежуточных участков.
Входные данные находятся в цифровом формате, описывающем геометрию рисунка, который должен быть записан на поверхности. Входные данные часто задаются в очень маленькой адресной единице, например 1 нанометр, хотя установка пикселей в ПМС модуляторе либо в состояние включения, либо в состояние выключения дает более грубый рисунок. Если пиксель на ПМС модуляторе проектируется в пиксель 0.1 мкм в изображении, то линия может только иметь ширину, которая равна целому числу пикселей (n* 0.1 мкм, где n - целое число). До недавнего времени была достаточной адресная сетка с шагом 0.1 мкм, но появление так называемой коррекции оптического эффекта близости (КОЭБ) делает желательной сетку с шагом 1-5 нанометров. При КОЭБ коррекции размер элементов рисунка в шаблоне незначительно изменяется с целью компенсации прогнозированных погрешностей оптического изображения при использовании шаблона. Так, например, когда шаблон с четырьмя параллельными линиями шириной 0.8 мкм печатается в современном шаговом двигателе с 4Х редуктором (проекционный принтер для полупроводниковых кристаллических пластин), в типичном случае они будут напечатаны как линии шириной 0.187, 0.200, 0.200 и 0.187 мкм, хотя они должны были иметь одинаковую ширину. Это можно прогнозировать, моделируя формирование изображения, и пользователь шаблона может использовать КОЭБ коррекцию, чтобы осуществить компенсацию в шаблоне, следовательно, он хочет первую и последнюю линию в шаблоне сделать такими, чтобы получилось 4 * 0.213=0.852 мкм вместо 0.800 мкм. С адресной сеткой с шагом 0.1 мкм он не может сделать коррекцию, но с адресной сеткой с шагом 5 нм или меньше такая коррекция возможна.
На фиг. 5 изображена блок-схема способа обеспечения данных для ПМС модулятора. На первом шаге Ш1 данные рисунков для рисунков, подлежащих записи, должны делиться на отдельные поля рисунков. Данные рисунков предпочтительно принимаются в цифровой форме. После этого, на шаге Ш2 поля разбиваются на растры, и таким образом присваиваются различным значениям экспозиции. Затем эти значения корректируются на нелинейный отклик, на шаге Ш3, и на изменения от пикселя к пикселю, шаг 4. Наконец, значения пикселей преобразуются в возбуждающие сигналы и направляются в ПМС модулятор.
Изобретение предпочтительно использует промежуточные значения между состоянием выключения и состоянием включения для создания тонкой адресной сетки, например, составляющей 1/15, 1/25, 1/50 от размера пикселя. Напечатанный элемент рисунка состоит из пикселей в состоянии включения, но по краю он имеет пиксели, установленные на промежуточные значения. Это делается посредством возбуждения пикселей с напряжениями, отличными напряжений состояний включения и выключения. Поскольку имеется несколько взаимосвязанных нелинейных эффектов (положение края в зависимости от экспозиции на пикселях на границе, экспозиция в зависимости от деформации и деформации в зависимости от электрического поля), то необходимо нелинейное преобразование входных данных в электрическое поле. Кроме того, это преобразование эмпирически калибруется через периодические временные интервалы.
Фиг.3 изображает матрицу пикселей, двигающихся вверх и вниз подобно поршням, таким образом создавая разность фаз. Указанная фигура изображает, каким образом управляются пиксели для формирования отражательной способности во вставке. Яркие участки имеют пиксели с 0 фазой, в то время как темные участки формируются пикселями с чередованием фазы +90 и -90 градусов. Затемненные границы между яркими и темными участками формируются промежуточными значениями фазы. Это пример того, как край может быть точно позиционирован с ПМС модулятором фазового типа. Однако таким же образом могли бы использоваться ПМС модуляторы других типов с промежуточными значениями. Свойства формирования изображения с фазовым ПМС модулятором, возбуждаемым на промежуточные значения, являются сложными, и совсем не очевидно, что на фиг.3 край будет перемещаться. Однако в процессе обширных теоретических расчетов и экспериментов, проведенных изобретателем, было показано, что описанный эффект реален.
Для создания более тонкой адресной сетки электронная система обработки адаптируется для создания одного типа карты пикселей внутри элементов рисунка, другого типа карты пикселей вне элементов рисунка и промежуточных карт пикселей на границе, как показано на фиг.3, где промежуточная карта пикселей на границе производится в зависимости от размещения границы в сетке более тонкой, чем сетка пикселей ПМС модулятора, проектируемая на заготовке. ПМС модулятор и проекционная система формируют один уровень экспозиции внутри элементов рисунка, другой уровень экспозиции между элементами рисунка и промежуточный уровень экспозиции на границе. Промежуточный уровень экспозиции формируется с использованием способности ПМС модулятора осуществлять модуляцию на многие состояния. Отклик от возбуждающих сигналов определяется и корректируется до фактического положения границы. Эмпирически измеренная и калибровочная функции вычисляются и запоминаются в системе обработки и подачи данных.
Для того, чтобы дополнительно улучшить разрешение адреса, столик и ПМС модулятор адаптируются для сшивания полей экспозиции по направлению, не параллельному системе координат ПМС модулятора, обычно под углом 45 градусов. В частности, непрерывное движение столика или оптической системы происходит в направлении, не параллельном ПМС модулятору, но обычно под углом 45 градусов относительно системы координат ПМС модулятора. Также возможно использовать ПМС модулятор с неортогональными осями, когда выгодно иметь ось, не параллельную направлению движения. Кроме того, для подавления линейных погрешностей, происходящих из-за дефектов в приводах столбцов и строк ПМС модулятора и из-за линейных погрешностей в самой матрице, эффективно используются линии столбцов и строк под углом к направлению сшивания, то есть к вектору между центрами сшитых полей.
Дополнительное утоньшение адресной сетки создается посредством перекрытия по меньшей мере двух экспозиций с модифицированными данными так, чтобы интегральная экспозиция имела промежуточные значения, которые невозможно получить при одной экспозиции.
Конструкция ПМС модулятора фазового типа
Из уровня техники известна конструкция зеркала, имеющая форму клеверного листа, которая изображена на фиг.2в, указанную конструкцию можно возбуждать в промежуточные состояния между состояниями включения и выключения. Однако, когда чертится график интегральной комплексной амплитуды в качестве функции отклонения, видно, что она никогда полностью не сходится к нулю, но всегда находится только в окрестности нуля, имея, следовательно, отличный от нуля минимальный коэффициент отражения с изменяющимся фазовым углом. Это схематически показано линией 701 на фиг.7, где 703 показывает положение некоторого значения деформации, а φ является соответствующим фазовым углом. Тщательный анализ изображения с некоторыми пикселями, установленными в промежуточные состояния, показал, что положение краев в конечном изображении не устойчиво при прохождении через фокус, если интегральный фазовый угол пикселей края не равен нулю. Это - дифракционный эффект, аналогичный эффекту зеркального отражения, показанному на фиг.4.
В предпочтительном варианте реализации изобретения используется новый тип пикселей с элементами поворота. Примеры таких элементов показаны на фиг.2д-з. Когда элементы поворачивают зеркало, один конец перемещается к источнику света, а другой конец, дальний от него, таким образом сохраняет среднюю фазу, близкую к нулю. Это схематично показано пунктирной линией 702 на фиг.7. Кроме того, конструкция, имеющая форму клеверного листа, имеет недостаток встроенного напряжения, созданного во время изготовления. Это напряжение имеет тенденцию формировать частичную деформацию без приложенного электрического поля. Начальная деформация не является совершенно одинаковой в каждом пикселе, так как она зависит от дефектов структуры, возникающих при производстве. В конструкции, имеющей форму клеверного листа, эта разница от пикселя к пикселю создает вариацию коэффициента отражения первого порядка. С ячейками пикселей, построенных из элементов поворота, происходит тот же самый эффект, но только эффект второго порядка. Поэтому в спроектированном изображении однородность лучше.
Конструкция модулирующих элементов и способа экспозиции адаптируются с целью создания, для по-разному расположенных и/или по-разному ориентированных краев рисунка, симметрии в апертурной диафрагме проекционной системы. Собственная асимметрия между краями, расположенными в различных положениях относительно сетки пикселей, может быть уменьшена посредством перекрытия по меньшей мере двух изображений с различным размещением сетки пикселей относительно рисунка.
Для отклоняющего типа ПМС модулятора симметрия связана с распределением интенсивности в апертурной диафрагме. Лучше иметь модулирующие элементы, которые отклоняют свет симметрично относительно центра аперурной диафрагмы, или еще для создания симметрии могут быть использованы перекрывающиеся экспозиции с комплементарным отклонением. Имея модулирующие элементы с управляемым отклонением, можно создать постоянную геометрическую зависимость между отклонением на краевом пикселе и краем, то есть направляя его в направлении, перпендикулярном к краю, и внутрь элемента рисунка.
Имея ПМС модулятор дифракционного типа, симметрию можно создать посредством перекрытия экспозиций с картами противоположных фаз. Симметрия может поддерживаться, если комплексная амплитуда является действительной по всему ПМС модулятору, и пиксели могут быть сконструированы с интегральной комплексной амплитудой, являющейся по существу действительной со значениями в диапазоне от -1 до 1. В большинстве случаев этого достаточно при амплитудах, находящихся в диапазоне от -0.5 до 1. Это справедливо для случая квадратных поворотных элементов микрозеркал на фиг.2д, е, ж, з.
Имея доступ к маленькой отрицательной амплитуде, чтобы производить печать на участках фона, можно увеличивать разрешение. В более сложной схеме можно заставить группы смежных пикселей объединиться в изображении, а после фильтрации системой, формирующей изображение, задавать желательную действительную амплитуду.
Для сохранения симметрии выгодно иметь симметрию по меньшей мере 2-го порядка и предпочтительно 4-го порядка. Для пикселей, не имеющих собственную вращательную симметрию, симметрия может быть создана посредством многократно перекрывающихся экспозиций. Кроме того, для повышения разрешения можно использовать конструкцию пикселей или последовательность экспозиции, дающие управляемую действительную амплитуду. Темными линиями можно задавать дополнительный контраст, если поместить их между участками с противоположной фазой, а край элемента рисунка может быть улучшен посредством возбуждения смежных пикселей, находящихся внутри элементов рисунка, к более высоким положительным амплитудам или посредством возбуждения смежных пикселей, находящихся вне элементов рисунка, к отрицательным амплитудам.
Улучшение изображения
Поворотная конструкция имеет третье преимущество: форма клеверного листа не достигает полного гашения, но поворотной ячейке может быть легко придана геометрия, которая дает полное гашение интенсивности излучения или даже проходит через нулевое и возвращается к небольшому ненулевому отражению, но с реверсированной фазой. При лучшем гашении имеется большая свобода печатать накладывающиеся экспозиции, проектирование для маленького отрицательного значения 702 дает лучшую линейность, близкую к гашению. Печать на темных участках со слабой экспозицией, приблизительно 5%, с полностью реверсированной фазой может давать увеличенную четкость края на 15-30% и способность печатать меньшие элементы рисунка с данной линзой. Это аналогично так называемым ослабляющим фазосдвигающим шаблонам, которые используются в полупроводниковой промышленности. Связанный способ увеличения остроты края состоит в том, чтобы устанавливать пиксели, которые находятся внутри элемента рисунка, на более низкое значение, а пиксели, находящиеся вблизи края, на более высокое значение. Это дает новый тип улучшения изображения, невозможного при имеющемся в настоящее время проектировании рисунков из шаблонов, или при помощи проекторов согласно Нельсону и Kuck. Комбинация ненулевой отрицательной амплитуды на фоне и увеличенной экспозиции по краям необязательно должна противоречить с созданием тонкой адресной сетки посредством возбуждения краевых пикселей в промежуточные значения, так как эти эффекты являются аддитивными или по крайней мере вычисляемыми. Когда пиксели существенно меньше элемента рисунка, который должен быть напечатан, существует комбинация значений пикселя, которая создает все эффекты одновременно. Чтобы найти их, требуется больше вычислений, чем для самого по себе создания тонкой адресной сетки, но в некоторых применениях изобретения способность печатать меньшие элементы рисунка может иметь большое значение, что является вознаграждением за дополнительное усилие.
В случае непрерывного зеркала на вязкоупругом слое, имеется собственное балансирование средней фазы к нулю. Модулирование показало, что возбуждение в промежуточные значения для прецизионного позиционирования краев элемента рисунка также работает для непрерывного зеркала. При этом нелинейности меньше, чем в случае микрозеркал. Но для того, чтобы способ хорошо работал, минимальный элемент рисунка должен быть больше, чем с микрозеркалами, то есть должно быть большее число адресованных пикселей, приходящихся на разрешенный элемент рисунка. Последствия те, что устройство ПМС модулятора становится больше, и что для заданного рисунка количество данных больше. Поэтому в первом и во втором вариантах реализации изобретения были выбраны микрозеркала.
В изобретении пиксель с вращательно-симметричной деформацией (по меньшей мере симметрия второго порядка, в предпочтительном варианте реализации симметрия четвертого порядка) используется по двум причинам: чтобы дать симметричное освещение зрачка проекционной линзы и чтобы сформировать изображение нечувствительным к вращениям. Последнее важно для печати случайного логического рисунка на полупроводниковой кристаллической пластине. Если имеется х-у асимметрия, то транзисторы, размещенные по оси х, будут иметь задержку, отличную от тех, которые расположены по оси у, и схема может работать со сбоями или сможет использоваться только при более низкой тактовой частоте. Два требования инвариантности изображения при прохождении через фокус и симметрии между осями х и у делают очень важным создание и поддержание симметрии в оптической системе. Симметрия может быть либо собственной, либо она может быть создана посредством заданного балансирования асимметричных свойств, типа использования многократных экспозиций с комплементарными асимметричными свойствами. Однако, поскольку многократные экспозиции приводят к уменьшенной пропускной способности/ настоятельно рекомендуются собственно симметричные схемы.
Описание предпочтительных вариантов реализации изобретения
Первым предпочтительным вариантом реализации является генератор рисунков с использованием излучения далекого УФ диапазона для фотошаблонов, в котором используется ПМС модулятор из 2048 х 512 микрозеркал. Источником света является KrF - эксимерный лазер импульсного излучения на длине волны 248 нанометров, с длительностью импульсов приблизительно 10 нс и с частотой повторения 500 Гц. ПМС модулятор имеет алюминиевую поверхность, которая отражает более 90% света. ПМС модулятор освещается лазером через осветитель с кодированием интенсивности луча, и отраженный свет направляется в проекционную линзу и далее на фоточувствительную поверхность. Падающий луч от осветителя и луч, выходящий в линзу, отделяют полупрозрачным светоделительным зеркалом. Предпочтительно зеркало является поляризационно-избирательным, а осветитель использует поляризованный свет, направление поляризации которого переключается четверть волновой пластинкой, расположенной перед ПМС модулятором. Для обеспечения х- и у-симметрии при высокой числовой апертуре (NA) изображение должно быть симметрично поляризованным, и вторая четвертьволновая пластинка между делителем луча и проекционной линзой формирует изображение с круговой поляризацией. Более простая схема установки будет тогда, когда энергия лазерного импульса позволяет использовать не поляризующий делитель луча. После второго прохождения через делитель луча четвертьволновая пластинка также имеет преимущество, так как она создает конструкцию светоделительного покрытия менее чувствительной. Простейшая схема установки состоит в том, чтобы использовать наклонное падение на ПМС модулятор так, чтобы лучи от осветителя и на проекционную линзу были геометрически отделены, как показано на фиг.1.
Пиксели микрозеркал имеют размеры 20×20 мкм, а проекционная линза дает уменьшение 200Х, давая пиксель ПМС модулятора, соответствующий 0.1 мкм на изображении. Линзой является монохроматическая ДУФ линза с числовой апертурой NA=0.8, дающая функцию уширения точечного источника с FWHM=0.17 мкм (полная ширина фокального пятна на половине максимальной интенсивности). Минимальные линии, которые могут быть записаны с хорошим качеством, составляют 0.25 мкм.
Заготовка, например фотошаблон, перемещается под линзой на столике, управляемом интерферометром, и логические сигналы интерферометра подаются на лазер, чтобы производить вспышку. Поскольку вспышка длится только 10 нс, во время экспозиции перемещение столика замораживается и печатается изображение размерами 204.8×51.2 мкм, обеспеченное ПМС модулятором. Спустя 2 миллисекунды столик передвигается на 51.2 мкм, осуществляется новая вспышка, и печатается новое изображение, обеспеченное ПМС модулятором, впритык с первым изображением. Между экспозициями система ввода данных загружает в ПМС модулятор новое изображение так, чтобы из сшитых вспышек был составлен большой рисунок. Когда оказывается записанным полный столбец, столик продвигается в перпендикулярном направлении и начинается новая строка. Таким путем может быть записан рисунок любого размера, хотя в первом предпочтительном варианте реализации обычно записываются рисунки размером 125×125 мм. Чтобы записать этот размер рисунка требуется 50 минут плюс время для перемещения между последовательными столбцами.
Каждый пиксель может управляться в пределах 25 уровней (плюс ноль), таким образом интерполируя пиксель размером 0.1 мкм на 25 приращений по 4 нанометра каждое. Преобразование данных берет геометрическую спецификацию рисунков и переводит ее в карту пикселей, установленных в состояния включения и выключения или промежуточного отражения. Информационный канал должен подавать в ПМС модулятор данные со скоростью 2048*512*500 слов в секунду, практически 524 Мегабайта данных пикселя в секунду. В предпочтительном варианте реализации подлежащая записи площадь составляет максимально 230×230 мм, давая максимум 230/0.0512=4500 вспышек в столбце, а столбец записывается на 4500/500=9 секунд. Количество данных пикселей, необходимых в одном столбце, составляет 9×524=4800 Мбайт. Для уменьшения количества передаваемых и буферизованных данных используется сжатый формат, подобно описанному в публикации Sandstrom и соавт. 90, но с той разницей, что вместо сегментов сжимается карта элементов изображения (пикселей), с длиной и значением. Жизнеспособная альтернатива состоит в том, чтобы для уменьшения количества передаваемых и буферизованных данных сразу создавать карту пикселей и использовать коммерчески доступные процессоры аппаратных средств для уплотнения и декомпрессии.
Даже с уплотнением количество данных в полном шаблоне делает крайне непрактичным сохранение на диске предварительно разбитых данных, но данные пикселей должны формироваться, когда они используются. Матрица процессоров растеризует изображение параллельно в сжатый формат и передает сжатые данные в схему расширителя, снабжающую ПМС модулятор данными пикселей. В предпочтительном варианте реализации процессоры растеризуют различные части изображения и буферизуют результат перед его передачей в буфер ввода схемы расширителя.
Описание второго предпочтительного варианта реализации изобретения
Во втором предпочтительном варианте реализации лазером является ArF эксимерный лазер с длиной волны - 193 нм и частотой следования импульсов - 500 Гц. ПМС модулятор имеет 3072×1024 пикселей размером 20*20 мкм, а линза имеет уменьшение 333Х, дающее спроектированный пиксель размером 0.06 мкм. Имеется 60 промежуточных значений и адресная сетка с шагом 1 нанометр. Функция уширения точечного источника составляет - 0.13 мкм, а минимальная линия составляет 0.2 мкм. Скорость передачи данных - 1572 Мбайт/с, и объем данных в одном столбце длиной 230 мм составляет 11.8 Гб.
Третий предпочтительный вариант реализации изобретения идентичен второму, за исключением того, что матрица пикселей поворачивается на 45 градусов и сетка пикселей составляет 84 мкм, давая спроектированное разнесение пикселей по осям х и у, равное 0.06 мкм. Лазером является ArF эксимерный лазер, а линза имеет уменьшение 240. Из-за вращаемой матрицы плотность пикселей в матрице меньше, и объем данных составляет половину объема предыдущего варианта реализации, но с тем же самым адресным разрешением.
Вариации лазерного излучения от импульса к импульсу
Эксимерный лазер имеет два нежелательных свойства, 5% изменения энергии от импульса к импульсу и 100 нс нестабильность появления излучения (джиттер) во времени от импульса к импульсу. В предпочтительных вариантах реализации оба эффекта компенсируются аналогичным образом. Первая экспозиция осуществляется для всего рисунка с 90% мощностью. Регистрируется фактическая энергия вспышки и момент времени для каждой вспышки. Вторая экспозиция осуществляется с 10% от номинальной мощности экспозиции с использованием аналоговой модуляции для того, чтобы сделать вторую экспозицию в пределах 5-15% мощности в зависимости от фактического значения первой. Аналогично, заданный временной сдвиг во второй экспозиции может компенсировать нестабильность появления излучения в первой. Вторая экспозиция может полностью компенсировать ошибки в первой, но сама даст новые ошибки того же самого типа. Поскольку она составляет в среднем только 10% полной экспозиции, обе ошибки эффективно уменьшаются в десять раз. На практике лазер имеет нестабильность появления излучения, которая намного больше 100 нс, так как световой импульс появляется после задержки от запускающего импульса, и эта задержка варьируется на пару микросекунд от раза к разу. В пределах короткого промежутка времени задержка является более стабильной. Поэтому задержка непрерывно измеряется, и последние значения задержки, соответственно отфильтрованные, используются для того, чтобы прогнозировать следующую задержку импульса и выбирать положение запускающего импульса.
Можно таким же образом осуществлять коррекции для нестабильностей положения столика, а именно, если регистрируются ошибки положения столика, то столик перемещается с компенсирующим движением на второй экспозиции. Любые ошибки позиционирования, которые могут быть измерены, могут в принципе быть таким образом скорректированы частично или полностью. Необходимо иметь быстрый сервомотор, чтобы перемещать столик к вычисленным точкам в течение второй экспозиции. Известно, что в уровне техники ПМС модулятор непосредственно устанавливают на столике с малой длиной тактового хода и коротким временем отклика и используют его для точного позиционирования изображения. Другая такая же полезная схема состоит в том, чтобы использовать зеркало с пьезоэлектрическим управлением в оптической системе между ПМС модулятором и поверхностью изображения, выбор между ними двумя делается из практических соображений. Также возможно добавлять смещения положения к данным в поле экспозиции, и таким образом, впоследствии перемещать изображение.
Вторая экспозиция предпочтительно осуществляется с ослабляющим фильтром между лазером и ПМС модулятором так, чтобы полный динамический диапазон ПМС модулятора мог использоваться в пределах диапазона 0-15% от номинальной экспозиции. С 25 промежуточными уровнями можно регулировать экспозицию с шагом 15%*1/25=0.6%.
Отклик незначительно изменяется от пикселя к пикселю из-за погрешностей изготовления и, потенциально, также от старения. Результатом является нежелательная неоднородность в изображении. Где требования изображения очень высоки, может быть необходимо корректировать каждый пиксель посредством умножения на обратную функцию отклика пикселей, которая хранится в справочной памяти. Еще лучше применять полином с двумя, тремя или более членами для каждого пикселя. Это может быть осуществлено в аппаратных средствах в логике, которая управляет ПМС модулятором.
В более сложном предпочтительном варианте реализации несколько коррекций объединяются во вторую корректирующую экспозицию: изменения энергии от импульса к импульсу, нестабильность появления излучения и также известные различия в отклике между пикселями. Пока коррекции малы, то есть несколько процентов в каждом, они будут складываться приблизительно линейно, поэтому коррекции могут быть просто сложены прежде, чем они поступят в ПМС модулятор. Сумма умножается на значение желательной дозы экспозиции в этом пикселе.
Альтернативные источники освещения
Эксимерный лазер имеет ограниченную частоту повторения импульсов (prf) 500-1000 Гц в зависимости от длины волны и типа лазера. Это дает большие поля с краями сшивания в обоих направлениях х и у. В двух других предпочтительных вариантах реализации ПМС модулятор освещается импульсным лазером с намного большей частотой повторения, например преобразованным по частоте вверх излучением твердотельного лазера с модуляцией добротности, и с непрерывным лазерным источником, сканирующим по поверхности ПМС модулятора таким образом, чтобы одна часть ПМС модулятора загружалась новыми данными, в то время как другая часть печатается. В обоих случаях когеретные свойства лазеров отличаются от свойств эксимерного лазера, и требуется более расширенное управление кодированием луча и когерентностью, например многочисленные параллельные пути света с различными длинами путей. В некоторых реализациях изобретения является достаточным световой выход излучения от лампы-вспышки, и она может использоваться в качестве источника света. Преимуществами являются низкая стоимость и хорошие когерентные свойства.
В предпочтительном варианте реализации со сканирующим освещением решаются две проблемы: вариации от импульса к импульсу во времени и по энергии, поскольку сканирование осуществляется при полном контроле, предпочтительно с использованием электрооптического сканера, например акустооптического или электрооптического, а также многие непрерывные лазеры имеют меньшую флюктуацию мощности, чем импульсные лазеры. Кроме того, использование непрерывных лазеров дает различный выбор длин волн и непрерывные лазеры менее опасны для глаз, чем импульсные лазеры. Более важным, однако, является возможность достижения намного более высоких скоростей передачи данных с матрицей всего в несколько линий, поскольку сканирование не критично и может быть выполнено с частотой повторения 100 КГц или выше. Сканирование луча освещения также является способом создания очень равномерного освещения, которое в противном случае осуществить трудно.
В некоторых вариантах реализации можно и желательно в качестве источника освещения использовать лампу-вспышку.
КУФ излучение
Источники света для КУФ основаны на использовании излучения от ускорителя частиц, от установки с плазменным разрядом в магнитном поле или от нагревания маленькой капли вещества до чрезвычайно высоких температур мощным лазерным импульсом. В любом случае излучение является импульсным. КУФ излучение распространяется только в вакууме и может быть сфокусировано только посредством отражательной оптики. Типичный генератор рисунков, использующий ПМС модулятор, имеет маленькое поле экспозиции и умеренные требования к оптической мощности. Следовательно, с использованием КУФ излучения конструкция оптической системы упрощается по сравнению с таковой для шагового двигателя, позволяя использовать больше зеркал и доходить до более высоких значений числовой апертуры, чем в шаговом двигателе. Ожидается, что линза с высокой числовой апертурой будет иметь кольцеобразное поле экспозиции, и полностью возможно адаптировать форму ПМС модулятора к таковому полю. С длиной волны 13 нм и числовой апертурой NA=0.25 можно экспонировать линии, которые имеют ширину всего 25 нм, а используя увеличение изображения, как описано ниже, даже менее 20 нм. Никакая другая известная технология записи не может достичь такого разрешения, и в то же самое время такой скорости записи, которая становится возможной вследствие параллельного принципа работы ПМС модулятора.
Перекрытие краев
Поскольку двухмерное поле печатается для каждой вспышки и поля сшиваются впритык, сшивание является очень критическим. Смещение одного поля всего на несколько нанометров создает погрешности рисунка по тем краям, которые являются видимыми и потенциально вредными для функции электронной схемы, производимой из шаблона. Эффективный путь снижения нежелательных эффектов сшивания состоит в том, чтобы печатать один и тот же рисунок за несколько прохождений, но со смещением границ сшивания между прохождениями. Если рисунок печатается четыре раза, то погрешность сшивания произойдет в четырех положениях, но только с четвертой частью величины. В предпочтительном варианте реализации настоящего изобретения способность создавать промежуточные экспозиции используется вместе с полосой перекрывания между полями. Значения вычисляются во время растеризации, хотя это также можно было бы делать во время разворачивания сжатых данных. Перекрытие краев уменьшает погрешности сшивания с намного меньшими потерями производительности, чем при многопроходной печати.
Модифицированное освещение
В первом предпочтительном варианте реализации освещение ПМС модулятора осуществляется эксимерным лазером и световым скремблером, таким как матрица фасеточных линз типа "мушиный глаз", чтобы создать освещение, которое имеет сходство с освещением из круглой самосветящейся поверхности в плоскости зрачка осветителя. Чтобы увеличить разрешение при печати со специфической проекционной системой, можно использовать модифицированное освещение. В наиболее простых случаях в плоскость зрачка осветителя вводятся фильтры зрачка, например, с кольцеобразным участком пропускания или с участком пропускания в форме четырехугольника. В более сложном случае одно и то же поле печатается несколько раз. Можно сделать так, чтобы между экспозициями варьировалось несколько параметров, таких как фокус в плоскости изображения, рисунок освещения, данные, поступающие в ПМС модулятор и фильтр зрачка в плоскости зрачка проекционной оптики. В частности, увеличенное разрешение может дать синхронизированная вариация освещения и фильтра зрачка, особенно, если зрачок имеет секторообразный участок пропускания, и освещение, центрированное так, чтобы недифрагированный свет перекрывался на поглощающей диафрагме около вершины сектора.
Линеаризация отклика
По существу, имеется три способа линеаризации передаточной функции из данных для позиционирования края:
- учет нелинейности в блоке преобразования данных и генерация двоичных 8 разрядных (как пример) значений пикселей в блоке преобразования данных и использование цифроаналоговых преобразователей ЦАП с одинаковым разрешением для возбуждения ПМС модулятора. Это схематично показано на фиг.8а, где R - сигналы реле, и С - конденсаторы, обеспеченные на каждом элементе матрицы на ПМС модуляторе, ПМС модулятор обозначен пунктирной линией,
- генератор цифровых значений с меньшим количеством значений, например 5 разрядных, или до 32 значений, и их преобразование в 8 разрядное значение в справочной таблице (LUT) и затем подача 8 разрядных значений в ЦАП преобразователи,
- использование 5 разрядного значения и полупроводниковых переключателей для выбора постоянного напряжения, которое генерируется одним или несколькими ЦАП преобразователями с высоким разрешением, это схематично показано на фиг.8б.
В любом случае возможно измерять эмпирическую калибровочную функцию таким образом, чтобы отклик на пластинке был линеаризованным, когда упомянутая функция применяется соответственно к блоку преобразования данных, справочной таблице или к постоянным напряжениям.
Какую именно схему линеаризации следует использовать, зависит от скорости передачи данных, от требований к точности, а также от доступной технологии схем, которая может изменяться через какое-то время. В настоящее время блок преобразования данных является узким местом, и поэтому решение о линеаризации в блоке преобразования данных, либо о генерации 8 разрядных значений пикселей не является предпочтительным. Быстродействующие ЦАП преобразователи дороги и потребляют много мощности, и наиболее подходящее решение состоит в том, чтобы генерировать постоянные напряжения и использовать переключатели. Тогда возможно использовать даже более высокое разрешение, чем 8 разрядов.
Описание предпочтительного генератора рисунков
Как изображено на фиг.6, генератор рисунков содержит ПМС модулятор 601 с индивидуальной или многозначной адресацией пикселей, источник 602 освещения, устройство 603 освещения с кодированием луча, формирующую изображение оптическую систему 604, столик 605 точного позиционирования подложки с интерферометрической системой 606 управления положением и систему 607 аппаратных средств ЭВМ и программного обеспечения обработки данных для ПМС модулятора. Для надлежащего функционирования и простоты работы оно также содержит климатическую камеру с управлением температурой, систему загрузки подложек, программное обеспечение для синхронизации движения столика и лазерный запуск экспозиции для достижения оптимальной точности позиционирования рисунков, а также пользовательский интерфейс программного обеспечения.
Освещение в генераторе рисунков выполняется KrF эксимерным лазером, дающим вспышку света длительностью 10-20 наносекунд в УФ области на длине волны 248 нанометров с шириной полосы, соответствующей естественной ширине линии эксимерного лазера. Для избежания искажения рисунков на подложке свет из эксимерного лазера равномерно распределяется по поверхности ПМС модулятора, а также свет имеет достаточно малую длину когерентности, чтобы не создавать на подложке лазерный спекл. Для достижения этих двух целей используется скремблер луча. Он делит луч от эксимерного лазера на несколько лучей с различной длиной пути и затем складывает их, чтобы уменьшить длину пространственной когерентности. Скремблер луча также имеет гомогенизатор луча, состоящий из системы линз, содержащий набор фасеточных линз типа "мушиный глаз", который распределяет свет из каждой точки в лазерном луче из эксимерного лазера равномерно по поверхности ПМС модулятора, давая распределение света по типу "шляпы-цилиндра". Эти процессы - кодирование луча, гомогенизация и уменьшение когерентности выгодны во всех принтерах с ПМС модуляторами. В зависимости от фактических обстоятельств могут использоваться исполнения, использующие делители луча и объединители лучей, дифракционные элементы, оптические волокна, калейдоскопы, матрицы элементарных линз, призмы или матрицы призм или интегрирующие сферы, а также другие подобные устройства в комбинациях, которые расщепляют и объединяют лучи, чтобы создать множество взаимно некогерентных световых полей, падающих на ПМС модулятор.
Свет из ПМС модулятора передается и формирует изображение на подложке, находящейся на столике подложек. Это осуществляется с использованием оптической системы Schlieren, описанной Kuck. Линза l1 с фокусным расстоянием f1 помещается на расстоянии f1 от ПМС модулятора. Другая линза l2 с фокусным расстоянием f2 помещается на расстоянии 2×f1+f2 от ПМС модулятора. Тогда подложка находится на расстоянии 2×f1+2×f2 от ПМС модулятора. На расстоянии 2×f1 от ПМС модулятора имеется апертура 608, размер которой определяет числовую апертуру (NA) системы и таким образом минимальный размер элемента рисунка, который может быть записан на подложке. Чтобы корректировать дефекты оптической системы и плоскостности подложки, также имеется фокальная система, которая динамически позиционирует линзу l1 в направлении z с позиционным промежутком 50 микрометров, для достижения оптимальных свойств фокусировки. Система линз также корректируется на длину волны для длины волны освещения 248 нанометров, и имеет диапазон допустимых отклонений света освещения по крайней мере ±1 нанометр. Свет освещения отражается на формирующую изображение оптическую систему, используя светоделитель 609, который помещается непосредственно над линзой l1. Для коэффициента уменьшения=250 и числовой апертуры NA=0.62 можно экспонировать элементы рисунка с размером до 0.2 микрометра с хорошим качеством рисунка. С 32 уровнями яркости от каждого пикселя ПМС модулятора минимальный размер сетки составляет 2 нанометра.
Генератор рисунков имеет столик точного позиционирования подложки с интерферометрической системой управления положением. Он состоит из ху стола 605, перемещаемого на воздушной подушке, выполненного из материала "zerodur" с целью минимального теплового расширения. Система сервомотора с интерферометрической системой 606 измерения положения с обратной связью управляет позиционированием столика в каждом направлении. В одном направлении, у, система сервомотора сохраняет столик в фиксированном положении, а в другом направлении, х, столик перемещается с постоянной скоростью. Интерферометрическая система измерения положения используется в х-направлении, чтобы запускать лазерные вспышки экспозиции, чтобы давать равномерное положение между каждым изображением ПМС модулятора на подложке. Когда полная строка изображений ПМС модулятора оказывается экспонированной на подложке, столик перемещается назад в исходное положение в направлении х, и перемещается на одно приращение изображения ПМС модулятора в направлении у, чтобы экспонировать другую строку изображений ПМС модулятора на подложке. Эта процедура повторяется до тех пор, пока не будет экспонирована вся подложка.
Изображения ПМС модулятора перекрываются с множеством пикселей в обоих х- и у- направлениях, и рисунок данных экспозиции локально изменяется в перекрывающихся пикселях, для компенсирования увеличенного числа экспозиций, которые приводят к таким перекрывающимся участкам.
Вариации интенсивности излучения эксимерного лазера от импульса к импульсу компенсируются посредством использования двухпроходной экспозиции рисунка, где первый проход выполняется, используя номинальную интенсивность, составляющую 90% от исходной интенсивности. При первом проходе измеряется и запоминается фактическая интенсивность в каждой лазерной вспышке. Во втором проходе используется скорректированная интенсивность для каждой экспозиции изображения ПМС модулятора, основанная на измеренных значениях интенсивности в первом проходе. Таким образом, влияние вариаций интенсивности от импульса к импульсу эксимерного лазера возможно снизить на один порядок величин.
Функциональные возможности ПМС модулятора полностью описаны в этом описании в другом месте. Он имеет 2048×256 пикселей с размером пикселя 16 микрометров, и имеется возможность адресовать все пиксели в пределах 1 миллисекунды. ПМС модулятор жестко монтируется на прецизионном столике. Этот прецизионный столик способен перемещаться на 100 микрон в направлениях х и у с точностью выше 100 нанометров между каждой экспозицией вспышки. Прецизионное позиционирование ПМС модулятора используется для корректировки погрешности положения столика позиционирования подложек для дополнительного снижения погрешностей сшивания рисунков. В дополнение к х-у позиционированию, также имеется возможность вращения столика ПМС модулятора, чтобы экспонировать на подложке рисунок с углом, отличным от угла, задаваемого системой координат столика подложек. Цель такого вращения состоит в том, чтобы обеспечить возможность внедрения осуществимости центрирования подложек, для подложек с уже существующим рисунком, в который должны быть добавлены дополнительные элементы. Имеется возможность измерять точное положение подложки на столике после загрузки подложки, используя автономный оптический канал и/или ПЗС камеру, смотрящую через линзы, для определения координаты системы относительно множества отметок центровки, существующих на подложке. Затем, во время экспозиции, положение столика корректируется в х- и у-направлениях, на основе измеренных положений отметок центровки. Вращательная центровка достигается посредством использования системы сервомотора столика, для того, чтобы следовать за вращаемой системой координат, а также посредством вращения прецизионного столика ПМС модулятора, как описано ранее. Возможность вращения ПМС модулятора также обеспечивает возможность записи в искаженной системе координат, например, чтобы компенсировать последующее коробление рисунка.
Произвольный рисунок данных произвольного формата преобразуется в сжатую растеризованную карту пикселей с 32 (5 разрядными) яркостными уровнями на пиксель в устройстве 610 растеризации рисунков. Поскольку уровни яркостной шкалы экспонированного пикселя не являются линейными в ответ на напряжение, приложенное к электроду пикселя, входные данные линеаризуются в устройстве 611 линеаризации пикселей таким образом, чтобы 32 яркостных уровня соответствовали равномерному увеличению дозы экспозиции для каждого последующего уровня. Это осуществляется с помощью 8 разрядного цифроаналогового преобразователя (ЦАП) 612, где каждый полутоновый уровень из карты пикселей выбирает напряжение из ЦАП преобразователей согласно предварительно эмпирически откалиброванной функции линеаризации. Дополнительное смещение при выборе аналогового уровня из ЦАП преобразователей осуществляется с использованием справочной таблицы, в которой каждое значение соответствует пикселю ПМС модулятора, и каждое такое значение корректирует аномалии соответствующего пикселя. Значения калибровки в справочной таблице производятся с использованием эмпирической процедуры калибровки, в которой ряд контрольных рисунков посылается в ПМС модулятор, и результирующие экспонированные рисунки измеряются и используются для индивидуальной коррекции пикселей. Это означает, что каждый полутоновый уровень в карте пикселей выбирает аналоговое напряжение, производящее деформацию пикселя для каждого соответствующего пикселя ПМС модулятора, чтобы дать скорректированную дозу экспозиции.
Ссылки
Нельсон, 1988 г.: патент США №5,148,157.
Kuck, 1990 г.: Европейский патент ЕР 0610183.
Sandstrom и соавт., 1990 г.: Европейский патент ЕР 0467076.

Claims (37)

1. Устройство для создания рисунка на заготовке, чувствительной к световому излучению, например такой, как фотошаблон, панель дисплея или микрооптический прибор, устройство содержит источник для испускания света в диапазоне длин волн от КУФ до ИК излучения, пространственный модулятор света (ПМС), имеющий множество модулирующих элементов (пикселей), адаптированных к их освещению упомянутым излучением, проекционную систему, формирующую изображение модулятора на заготовке, электронную систему обработки и подачи данных, принимающую цифровое описание рисунка, подлежащего записи, преобразующую упомянутый рисунок в сигналы модулятора и подающую упомянутые сигналы в модулятор, прецизионную механическую систему для позиционирования упомянутой заготовки и/или проекционной системы относительно друг друга, электронную систему управления, управляющую положением заготовки, подачей сигналов в модулятор и интенсивностью излучения, так чтобы упомянутый рисунок печатался на заготовке, в котором возбуждающие сигналы и модулирующие элементы адаптируются для создания числа состояний модуляции более двух и, предпочтительно, более трех.
2. Устройство по п.1, отличающееся тем, что модулирующий элемент модулирует по меньшей мере один из следующих параметров излучения: интенсивность, фаза, комплексная амплитуда, направление, поляризация, плоскостность волнового фронта, частота, в котором модуляция, накладываемая на поле излучения, имеет по меньшей мере три, а предпочтительно, по меньшей мере четыре различных состояния.
3. Устройство по п.2, отличающееся тем, что имеет фильтр, избирательный к состоянию излучения, посредством чего модуляция поперек поверхности пространственного модулятора преобразуется в изображение яркости на заготовке.
4. Устройство по п.1, отличающееся тем, что компенсирующая функция линеаризации используется при преобразовании входного описания рисунков в напряжения модулятора для того, чтобы скорректировать нелинейный отклик от напряжений модулятора на экспозицию заготовки.
5. Устройство по п.4, отличающееся тем, что функция линеаризации базируется на теоретическом моделировании.
6. Устройство по п.4, отличающееся тем, что функция линеаризации базируется на эмпирической характеристике отклика.
7. Устройство по любому из пп.4-6, отличающееся тем, что упомянутый отклик представляет собой физический или химический результат экспозиции элемента поверхности, такой, как абсорбция проявленной эмульсии галогенида серебра или удаление массы материала на участке поверхности посредством процесса абляции.
8. Устройство по п.4, отличающееся тем, что желательные отклики вычисляются в виде цифровых значений и функция линеаризации запоминается в справочной таблице, создавая новые скорректированные цифровые значения, используемые для генерации возбуждающих напряжений модулятора.
9. Устройство по п.8, отличающееся тем, что напряжения модулятора создаются цифроаналоговыми преобразователями.
10. Устройство по п.4, отличающееся тем, что желательные отклики вычисляются в виде цифровых значений и эти значения используются для выбора для каждого модулирующего элемента одного из нескольких независимо генерируемых напряжений, в котором упомянутые напряжения устанавливаются так, чтобы содержать функцию линеаризации.
11. Устройство по любому из предшествующих пунктов, отличающееся тем, что по меньшей мере два сигнала напряжения модулятора подаются в один элемент модулятора и элемент модулятора способен реагировать на комбинацию сигналов, таким образом возбуждаясь до большего числа состояний, чем число возможных значений напряжения в каждом сигнале, например, четыре двоичных сигнала создают шестнадцать различных состояний модулирующего элемента.
12. Устройство по любому из предшествующих пунктов, отличающееся тем, что содержит справочную таблицу, имеющую коррекции различных откликов между элементами модулятора.
13. Устройство по п.12, отличающееся тем, что справочная таблица формируется во время процедуры калибровки, в которой измеряется функция отклика по меньшей мере двух различных элементов модулятора.
14. Устройство по п.12, отличающееся тем, что упомянутая справочная таблица сохраняет по меньшей мере один из следующих типов данных для модулирующего элемента: напряжение смещения, коэффициент чувствительности, полиномиальная функция отклика.
15. Устройство по п.12, отличающееся тем, что коррекция модулирующего элемента применяется как цифровая операция на цифровом представлении желательного состояния элемента модулятора.
16. Устройство по п.12, отличающееся тем, что коррекция модулирующего элемента применяется посредством аналоговой операции на аналоговом возбуждающем сигнале.
17. Устройство по любому из пп.1-16, отличающееся тем, что пространственный модулятор представляет собой двухмерную матрицу модулирующих элементов с загрузкой, с временным уплотнением значений в модулирующие элементы и с сохранением загруженных значений в каждом элементе.
18. Устройство по любому из пп.1-16, отличающееся тем, что модулятор монтируется на матрично-адресуемой активной схеме.
19. Устройство по любому из пп.1-16, отличающееся тем, что модулятор монтируется сверху на полупроводниковом чипе.
20. Устройство по любому из пп.1-16, отличающееся тем, что модулятор содержит жидкий кристалл.
21. Устройство по любому из пп.1-16, отличающееся тем, что модулятор имеет вязкоупругий слой.
22. Устройство по любому из пп.1-16, отличающееся тем, что модулятор имеет матрицу микромеханических элементов, предпочтительно матрицу микрозеркал, наиболее предпочтительно матрицу пирамидальных микрозеркал.
23. Устройство по любому из предшествующих пунктов, отличающееся тем, что модулятор является отражающим.
24. Устройство по любому из пп.1-22, отличающееся тем, что модулятор является пропускающим.
25. Устройство по любому из предшествующих пунктов, отличающееся тем, что входной рисунок раскладывается на множество полей экспозиции, упомянутые поля экспозиции экспонируются в различных положениях на заготовке, таким образом сшивая полный рисунок из упомянутых полей экспозиции.
26. Устройство по п.25, отличающееся тем, что столик и проекционная система адаптируются таким образом, чтобы вырабатывать такты непрерывного прохождения относительно друг друга, а электронная система управления координирует движение, подачу возбуждающих сигналов модулятора и освещение таким образом, чтобы в течение непрерывного такта экспонировалось по меньшей мере два, предпочтительно по меньшей мере десять полей экспозиции.
27. Устройство по любому из предшествующих пунктов, отличающееся тем, что дополнительно содержит блок синхронизации, управляющий синхронизацией излучения из источника света.
28. Устройство по п.27, отличающееся тем, что блок синхронизации прогнозирует временную задержку управляющего сигнала до эмиссии источника света на основе предыдущих измерений и компенсирует эту задержку.
29. Устройство по любому из предшествующих пунктов, отличающееся тем, что источником света является лазер, предпочтительно эксимерный лазер.
30. Устройство по любому из предшествующих пунктов, отличающееся тем, что освещение по меньшей мере одного модулирующего элемента ПМС модулятора является импульсным, предпочтительно таковым является освещение всего ПМС модулятора.
31. Устройство по п.30, отличающееся тем, что длительность импульса освещения, являющаяся полной шириной на половине высоты или ее эквивалента модулирующего элемента ПМС модулятора короче, чем время прохождения расстояния, соответствующего трем пикселям, проектированным на заготовке.
32. Устройство по любому из пп.1-29, отличающееся тем, что освещение по меньшей мере одного модулирующего элемента ПМС модулятора является непрерывным и сканируемым, предпочтительно таковым является освещение всего ПМС модулятора.
33. Устройство по любому из предшествующих пунктов, отличающееся тем, что цифровое описание рисунка дается в символическом формате, например, векторном или алгоритмическом формате.
34. Устройство по п.26, в котором столик и/или оптическая система адаптируются таким образом, чтобы производить микролитографический рисунок с характерными элементами рисунка меньшими, чем 30 мкм и/или с позиционированием и точностью размера выше чем 3 мкм.
35. Устройство по любому из предшествующих пунктов, отличающееся тем, что рисунок формируется в фоторезисте, фотополимере или фотоэмульсии.
36. Устройство по любому из предшествующих пунктов, отличающееся тем, что рисунок формируется посредством абляции, фоторефракции, фотохимического изменения компонентов заготовки или изменения под действием теплового процесса.
37. Устройство по п.1, отличающееся тем, что электронная система обработки данных имеет матрицу параллельных процессоров для преобразования рисунков в масштабе реального времени.
RU2000124871/28A 1998-03-02 1999-03-02 Усовершенствованный генератор рисунков RU2232411C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9800665A SE9800665D0 (sv) 1998-03-02 1998-03-02 Improved method for projection printing using a micromirror SLM
SE9800665-3 1998-03-02

Publications (2)

Publication Number Publication Date
RU2000124871A RU2000124871A (ru) 2002-09-27
RU2232411C2 true RU2232411C2 (ru) 2004-07-10

Family

ID=20410382

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2000124872/28A RU2257603C2 (ru) 1998-03-02 1999-03-02 Устройство для формирования рисунков
RU2000124871/28A RU2232411C2 (ru) 1998-03-02 1999-03-02 Усовершенствованный генератор рисунков

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2000124872/28A RU2257603C2 (ru) 1998-03-02 1999-03-02 Устройство для формирования рисунков

Country Status (12)

Country Link
US (16) US6747783B1 (ru)
EP (6) EP1060439B1 (ru)
JP (12) JP2002506231A (ru)
KR (2) KR100474121B1 (ru)
CN (3) CN1550902A (ru)
AT (5) ATE491971T1 (ru)
AU (7) AU2755699A (ru)
DE (6) DE69943041D1 (ru)
ES (1) ES2357473T3 (ru)
RU (2) RU2257603C2 (ru)
SE (1) SE9800665D0 (ru)
WO (7) WO1999045440A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2515672C1 (ru) * 2012-12-18 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (НИУ ИТМО) Способ изготовления микрооптического растра
RU2531201C1 (ru) * 2011-01-05 2014-10-20 Макдермид Принтинг Солюшнз, Ллк Способ повышения качества печати на флексографских печатных формах

Families Citing this family (512)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6919298A (en) * 1997-04-14 1998-11-11 Dicon A/S An illumination unit and a method for point illumination of a medium
US6816302B2 (en) * 1998-03-02 2004-11-09 Micronic Laser Systems Ab Pattern generator
SE9800665D0 (sv) 1998-03-02 1998-03-02 Micronic Laser Systems Ab Improved method for projection printing using a micromirror SLM
US6727980B2 (en) * 1998-09-17 2004-04-27 Nikon Corporation Apparatus and method for pattern exposure and method for adjusting the apparatus
US6181210B1 (en) * 1998-09-21 2001-01-30 Broadcom Corporation Low offset and low glitch energy charge pump for PLL-based timing recovery systems
US7328425B2 (en) * 1999-05-20 2008-02-05 Micronic Laser Systems Ab Method and device for correcting SLM stamp image imperfections
GB2344899B (en) * 1999-05-29 2000-11-22 Bookham Technology Ltd Production of an integrated optical device
SE516914C2 (sv) * 1999-09-09 2002-03-19 Micronic Laser Systems Ab Metoder och rastrerare för högpresterande mönstergenerering
JP3509804B2 (ja) * 1999-09-30 2004-03-22 株式会社ニコン 多層薄膜付き光学素子及びそれを備える露光装置
SE522531C2 (sv) * 1999-11-24 2004-02-17 Micronic Laser Systems Ab Metod och anordning för märkning av halvledare
TW508653B (en) * 2000-03-24 2002-11-01 Asml Netherlands Bv Lithographic projection apparatus and integrated circuit manufacturing method
SE517550C2 (sv) * 2000-04-17 2002-06-18 Micronic Laser Systems Ab Mönstergenereringssystem användande en spatialljusmodulator
US6552740B1 (en) * 2000-08-01 2003-04-22 Eastman Kodak Company Method and apparatus for printing monochromatic imaging using a spatial light modulator
US6645677B1 (en) 2000-09-18 2003-11-11 Micronic Laser Systems Ab Dual layer reticle blank and manufacturing process
US6580490B1 (en) * 2000-10-30 2003-06-17 Eastman Kodak Company Method and apparatus for printing images in multiple formats using a spatial light modulator
US6690499B1 (en) * 2000-11-22 2004-02-10 Displaytech, Inc. Multi-state light modulator with non-zero response time and linear gray scale
USRE43841E1 (en) * 2000-12-14 2012-12-04 F. Poszat Hu, Llc Printing by active tiling
US6653026B2 (en) * 2000-12-20 2003-11-25 Numerical Technologies, Inc. Structure and method of correcting proximity effects in a tri-tone attenuated phase-shifting mask
US20020122237A1 (en) * 2001-03-01 2002-09-05 Torbjorn Sandstrom Method and apparatus for spatial light modulation
JP4495898B2 (ja) * 2001-04-04 2010-07-07 マイクロニック レーザー システムズ アクチボラゲット 改良型パターン・ジェネレータ
US7843632B2 (en) * 2006-08-16 2010-11-30 Cymer, Inc. EUV optics
US6753947B2 (en) * 2001-05-10 2004-06-22 Ultratech Stepper, Inc. Lithography system and method for device manufacture
GB0114862D0 (en) 2001-06-19 2001-08-08 Secr Defence Image replication system
US7095484B1 (en) * 2001-06-27 2006-08-22 University Of South Florida Method and apparatus for maskless photolithography
JP5144863B2 (ja) * 2001-06-29 2013-02-13 株式会社オーク製作所 多重露光描画方法及び多重露光描画装置
JP4273291B2 (ja) * 2001-08-17 2009-06-03 株式会社オーク製作所 多重露光描画装置および多重露光描画方法
JP4324645B2 (ja) * 2001-08-21 2009-09-02 株式会社オーク製作所 多重露光描画装置および多重露光描画方法
JP2003066366A (ja) * 2001-08-22 2003-03-05 Fuji Photo Film Co Ltd 照明光学系及びこれを用いた画像表示装置、画像露光装置
US6784975B2 (en) * 2001-08-30 2004-08-31 Micron Technology, Inc. Method and apparatus for irradiating a microlithographic substrate
US6794100B2 (en) * 2001-08-30 2004-09-21 Micron Technology, Inc. Method for controlling radiation beam intensity directed to microlithographic substrates
US6819490B2 (en) 2001-09-10 2004-11-16 Micronic Laser Systems Ab Homogenization of a spatially coherent radiation beam and printing and inspection, respectively, of a pattern on a workpiece
US7302111B2 (en) * 2001-09-12 2007-11-27 Micronic Laser Systems A.B. Graphics engine for high precision lithography
CN100410725C (zh) * 2001-09-12 2008-08-13 麦克罗尼克激光***公司 使用空间光调制器的改进方法和装置
JP3881865B2 (ja) 2001-10-19 2007-02-14 株式会社 液晶先端技術開発センター 光学的な記録装置及び方法並びに露光装置及び方法
KR20050044369A (ko) 2001-11-07 2005-05-12 어플라이드 머티어리얼스, 인코포레이티드 마스크없는 광자-전자 스팟-그리드 어레이 프린터
US6897941B2 (en) * 2001-11-07 2005-05-24 Applied Materials, Inc. Optical spot grid array printer
US6618185B2 (en) 2001-11-28 2003-09-09 Micronic Laser Systems Ab Defective pixel compensation method
US6950194B2 (en) * 2001-12-07 2005-09-27 Micronic Laser Systems Ab Alignment sensor
US6903859B2 (en) 2001-12-07 2005-06-07 Micronic Laser Systems Ab Homogenizer
GB2383140A (en) * 2001-12-13 2003-06-18 Zarlink Semiconductor Ltd Exposure positioning in photolithography
US20030233630A1 (en) * 2001-12-14 2003-12-18 Torbjorn Sandstrom Methods and systems for process control of corner feature embellishment
US7106490B2 (en) * 2001-12-14 2006-09-12 Micronic Laser Systems Ab Methods and systems for improved boundary contrast
SE0104238D0 (sv) * 2001-12-14 2001-12-14 Micronic Laser Systems Ab Method and apparatus for patterning a workpiece
US6665110B2 (en) * 2001-12-31 2003-12-16 Texas Instruments Incorporated Diagonal to rectangular pixel mapping for spatial light modulator
US7159197B2 (en) * 2001-12-31 2007-01-02 Synopsys, Inc. Shape-based geometry engine to perform smoothing and other layout beautification operations
US6873401B2 (en) * 2002-01-24 2005-03-29 Intel Corporation Reflective liquid crystal display lithography system
CN1279403C (zh) * 2002-02-06 2006-10-11 Asml荷兰有限公司 光刻装置和器件制造方法
SE0200547D0 (sv) * 2002-02-25 2002-02-25 Micronic Laser Systems Ab An image forming method and apparatus
US6590695B1 (en) * 2002-02-26 2003-07-08 Eastman Kodak Company Micro-mechanical polarization-based modulator
SE0200864D0 (sv) * 2002-03-21 2002-03-21 Micronic Laser Systems Ab Method and apparatus for printing large data flows
US7167185B1 (en) 2002-03-22 2007-01-23 Kla- Tencor Technologies Corporation Visualization of photomask databases
US6976426B2 (en) * 2002-04-09 2005-12-20 Day International, Inc. Image replication element and method and system for producing the same
US6707534B2 (en) * 2002-05-10 2004-03-16 Anvik Corporation Maskless conformable lithography
US6728023B1 (en) * 2002-05-28 2004-04-27 Silicon Light Machines Optical device arrays with optimized image resolution
US7023528B2 (en) * 2002-06-10 2006-04-04 International Business Machines Corporation Hybrid electronic mask
AUPS328402A0 (en) * 2002-06-28 2002-07-18 Australian Photonics Pty Limited Writing of photo-induced structures
US7302672B2 (en) * 2002-07-12 2007-11-27 Cadence Design Systems, Inc. Method and system for context-specific mask writing
WO2004008246A2 (en) * 2002-07-12 2004-01-22 Cadence Design Systems, Inc. Method and system for context-specific mask writing
US7231628B2 (en) * 2002-07-12 2007-06-12 Cadence Design Systems, Inc. Method and system for context-specific mask inspection
WO2004017069A1 (ja) * 2002-08-16 2004-02-26 Kabushiki Kaisha Hayashi Soken バイオチップ分析装置およびオンライン分析システム
US6818910B2 (en) * 2002-08-23 2004-11-16 Micron Technology, Inc. Writing methodology to reduce write time, and system for performing same
JP4597675B2 (ja) * 2002-08-24 2010-12-15 マスクレス・リソグラフィー・インコーポレーテッド 連続直接書込み光リソグラフィ
KR101060567B1 (ko) 2002-10-25 2011-08-31 마퍼 리쏘그라피 아이피 비.브이. 리소그라피 시스템
US7098468B2 (en) * 2002-11-07 2006-08-29 Applied Materials, Inc. Raster frame beam system for electron beam lithography
JP2004200221A (ja) * 2002-12-16 2004-07-15 Toray Eng Co Ltd レーザマーキング方法及び装置
US7171068B2 (en) * 2002-12-20 2007-01-30 Texas Instruments Incorporated Method to improve an extinction ratio of an optical device
CN1723384A (zh) * 2003-01-15 2006-01-18 麦克罗尼克激光***公司 检测缺陷像素的方法
SE0300138D0 (sv) * 2003-01-22 2003-01-22 Micronic Laser Systems Ab Electromagnetic radiation pulse timing control
US6906848B2 (en) * 2003-02-24 2005-06-14 Exajoule, Llc Micromirror systems with concealed multi-piece hinge structures
SE0300516D0 (sv) * 2003-02-28 2003-02-28 Micronic Laser Systems Ab SLM direct writer
US20060104413A1 (en) * 2003-03-05 2006-05-18 Tadahiro Ohmi Mask repeater and mask manufacturing method
TWI356973B (en) * 2003-04-11 2012-01-21 Tadahiro Ohmi Pattern drawing apparatus and pattern drawing meth
JP4314054B2 (ja) * 2003-04-15 2009-08-12 キヤノン株式会社 露光装置及びデバイスの製造方法
US6956692B2 (en) * 2003-04-24 2005-10-18 Micronic Laser Systems, Ab Method and apparatus for controlling exposure of a surface of a substrate
DE60333398D1 (de) * 2003-04-24 2010-08-26 Micronic Laser Systems Ab Belichtungssteuerung
JP2004341160A (ja) * 2003-05-15 2004-12-02 Seiko Epson Corp 露光用マスク、光近接効果補正装置、光近接効果補正方法、半導体装置の製造方法および光近接効果補正プログラム
US7063920B2 (en) * 2003-05-16 2006-06-20 Asml Holding, N.V. Method for the generation of variable pitch nested lines and/or contact holes using fixed size pixels for direct-write lithographic systems
TWI304522B (en) * 2003-05-28 2008-12-21 Asml Netherlands Bv Lithographic apparatus, method of calibrating and device manufacturing method
US20040239901A1 (en) * 2003-05-29 2004-12-02 Asml Holding N.V. System and method for producing gray scaling using multiple spatial light modulators in a maskless lithography system
US7061591B2 (en) * 2003-05-30 2006-06-13 Asml Holding N.V. Maskless lithography systems and methods utilizing spatial light modulator arrays
US6989920B2 (en) 2003-05-29 2006-01-24 Asml Holding N.V. System and method for dose control in a lithographic system
EP1482373A1 (en) * 2003-05-30 2004-12-01 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4486323B2 (ja) * 2003-06-10 2010-06-23 富士フイルム株式会社 画素位置特定方法、画像ずれ補正方法、および画像形成装置
WO2004111701A1 (en) * 2003-06-12 2004-12-23 Micronic Laser Systems Ab Method for high precision printing of patterns
US6833854B1 (en) * 2003-06-12 2004-12-21 Micronic Laser Systems Ab Method for high precision printing of patterns
SG118283A1 (en) 2003-06-20 2006-01-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1489449A1 (en) * 2003-06-20 2004-12-22 ASML Netherlands B.V. Spatial light modulator
US7110082B2 (en) * 2003-06-24 2006-09-19 Asml Holding N.V. Optical system for maskless lithography
SG110099A1 (en) * 2003-06-24 2005-04-28 Asml Holding Nv Projection optical system for maskless lithography
EP1491966A1 (en) * 2003-06-26 2004-12-29 ASML Netherlands B.V. Calibration method for a lithographic apparatus
SG119224A1 (en) * 2003-06-26 2006-02-28 Asml Netherlands Bv Calibration method for a lithographic apparatus and device manufacturing method
US7158215B2 (en) * 2003-06-30 2007-01-02 Asml Holding N.V. Large field of view protection optical system with aberration correctability for flat panel displays
US7154587B2 (en) * 2003-06-30 2006-12-26 Asml Netherlands B.V Spatial light modulator, lithographic apparatus and device manufacturing method
US7024638B2 (en) * 2003-07-14 2006-04-04 Cadence Design Systems, Inc. Method for creating patterns for producing integrated circuits
US7224504B2 (en) 2003-07-30 2007-05-29 Asml Holding N. V. Deformable mirror using piezoelectric actuators formed as an integrated circuit and method of use
US6831768B1 (en) * 2003-07-31 2004-12-14 Asml Holding N.V. Using time and/or power modulation to achieve dose gray-scaling in optical maskless lithography
JP2007501430A (ja) * 2003-08-04 2007-01-25 マイクロニック レーザー システムズ アクチボラゲット Psm位置調整方法及び装置
US7186486B2 (en) * 2003-08-04 2007-03-06 Micronic Laser Systems Ab Method to pattern a substrate
US7079306B2 (en) * 2003-08-22 2006-07-18 Plex Llc Optically addressed extreme ultraviolet modulator and lithography system incorporating modulator
US6972843B2 (en) * 2003-08-25 2005-12-06 Intel Corporation Lithography alignment
US7315294B2 (en) * 2003-08-25 2008-01-01 Texas Instruments Incorporated Deinterleaving transpose circuits in digital display systems
EP1660942A2 (en) * 2003-08-27 2006-05-31 Koninklijke Philips Electronics N.V. Method of forming optical images, a control circuit for use with this method, apparatus for carrying out said method and process for manufacturing a device using said method
DE10343333A1 (de) * 2003-09-12 2005-04-14 Carl Zeiss Smt Ag Beleuchtungssystem für eine Mikrolithographie-Projektionsbelichtungsanlage
US7714983B2 (en) * 2003-09-12 2010-05-11 Carl Zeiss Smt Ag Illumination system for a microlithography projection exposure installation
SG110196A1 (en) * 2003-09-22 2005-04-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7414701B2 (en) * 2003-10-03 2008-08-19 Asml Holding N.V. Method and systems for total focus deviation adjustments on maskless lithography systems
JP2007506136A (ja) * 2003-09-22 2007-03-15 オーボテック リミテッド カラーフィルタの直接描画システム及び直接描画方法
US6876440B1 (en) 2003-09-30 2005-04-05 Asml Holding N.V. Methods and systems to compensate for a stitching disturbance of a printed pattern in a maskless lithography system utilizing overlap of exposure zones with attenuation of the aerial image in the overlap region
US7410736B2 (en) * 2003-09-30 2008-08-12 Asml Holding N.V. Methods and systems to compensate for a stitching disturbance of a printed pattern in a maskless lithography system not utilizing overlap of the exposure zones
US7023526B2 (en) * 2003-09-30 2006-04-04 Asml Holding N.V. Methods and systems to compensate for a stitching disturbance of a printed pattern in a maskless lithography system utilizing overlap without an explicit attenuation
US7003758B2 (en) 2003-10-07 2006-02-21 Brion Technologies, Inc. System and method for lithography simulation
CN100452057C (zh) * 2003-10-07 2009-01-14 睿初科技公司 用于平板印刷仿真的***和方法
US7109498B2 (en) 2003-10-09 2006-09-19 Asml Netherlands B.V. Radiation source, lithographic apparatus, and device manufacturing method
US6894765B2 (en) * 2003-10-14 2005-05-17 Micron Technology, Inc. Methods and systems for controlling radiation beam characteristics for microlithographic processing
US8157389B2 (en) * 2003-11-01 2012-04-17 Silicon Quest Kabushiki-Kaisha Synchronous control system for light source and spatial light modulator employed in projection apparatus
DE10352040A1 (de) * 2003-11-07 2005-07-21 Carl Zeiss Sms Gmbh In Lage, Form und/oder den optischen Eigenschaften veränderbare Blenden-und/oder Filteranordnung für optische Geräte, insbesondere Mikroskope
US7116398B2 (en) * 2003-11-07 2006-10-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7196772B2 (en) * 2003-11-07 2007-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005047955A1 (en) 2003-11-12 2005-05-26 Micronic Laser Systems Ab Method and device for correcting slm stamp image imperfections
US7842926B2 (en) * 2003-11-12 2010-11-30 Micronic Laser Systems Ab Method and device for correcting SLM stamp image imperfections
US7001232B2 (en) * 2003-12-11 2006-02-21 Montgomery Robert E Personal watercraft air intake assembly
KR100797433B1 (ko) * 2003-12-11 2008-01-23 마이크로닉 레이저 시스템즈 에이비 워크피스를 패터닝하기 위한 방법과 장치 및 그 제조 방법
US6995830B2 (en) * 2003-12-22 2006-02-07 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7184184B2 (en) * 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7012674B2 (en) * 2004-01-13 2006-03-14 Asml Holding N.V. Maskless optical writer
JP4083751B2 (ja) * 2004-01-29 2008-04-30 エーエスエムエル ホールディング エヌ.ブイ. 空間光変調器アレイを較正するシステムおよび空間光変調器アレイを較正する方法
US6847461B1 (en) * 2004-01-29 2005-01-25 Asml Holding N.V. System and method for calibrating a spatial light modulator array using shearing interferometry
US7580559B2 (en) * 2004-01-29 2009-08-25 Asml Holding N.V. System and method for calibrating a spatial light modulator
TWI505329B (zh) * 2004-02-06 2015-10-21 尼康股份有限公司 光學照明裝置、曝光裝置、曝光方法以及元件製造方法
US7333260B2 (en) * 2004-08-09 2008-02-19 Stereo Display, Inc. Two-dimensional image projection system
US7474454B2 (en) * 2004-06-18 2009-01-06 Angstrom, Inc. Programmable micromirror motion control system
US7580178B2 (en) * 2004-02-13 2009-08-25 Angstrom, Inc. Image-guided microsurgery system and method
US7898144B2 (en) * 2006-02-04 2011-03-01 Angstrom, Inc. Multi-step microactuator providing multi-step displacement to a controlled object
US7751694B2 (en) * 2004-02-13 2010-07-06 Angstrom, Inc. Three-dimensional endoscope imaging and display system
US7330297B2 (en) * 2005-03-04 2008-02-12 Angstrom, Inc Fine control of rotation and translation of discretely controlled micromirror
US7382516B2 (en) * 2004-06-18 2008-06-03 Angstrom, Inc. Discretely controlled micromirror with multi-level positions
US8537204B2 (en) * 2004-07-08 2013-09-17 Gyoung Il Cho 3D television broadcasting system
US7350922B2 (en) * 2004-02-13 2008-04-01 Angstrom, Inc. Three-dimensional display using variable focal length micromirror array lens
US7190434B2 (en) * 2004-02-18 2007-03-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7133118B2 (en) * 2004-02-18 2006-11-07 Asml Netherlands, B.V. Lithographic apparatus and device manufacturing method
EP1719018A1 (en) * 2004-02-25 2006-11-08 Micronic Laser Systems Ab Methods for exposing patterns and emulating masks in optical maskless lithography
US7081947B2 (en) * 2004-02-27 2006-07-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7016014B2 (en) * 2004-02-27 2006-03-21 Asml Netherlands B.V Lithographic apparatus and device manufacturing method
US7061586B2 (en) * 2004-03-02 2006-06-13 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
USRE43515E1 (en) 2004-03-09 2012-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6967711B2 (en) * 2004-03-09 2005-11-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7094506B2 (en) * 2004-03-09 2006-08-22 Asml Netherlands B.V Lithographic apparatus and device manufacturing method
US6999224B2 (en) * 2004-03-10 2006-02-14 Reflectivity, Inc Micromirror modulation method and digital apparatus with improved grayscale
US7410266B2 (en) * 2004-03-22 2008-08-12 Angstrom, Inc. Three-dimensional imaging system for robot vision
US7339746B2 (en) * 2004-03-22 2008-03-04 Angstrom, Inc. Small and fast zoom system using micromirror array lens
US7768571B2 (en) * 2004-03-22 2010-08-03 Angstrom, Inc. Optical tracking system using variable focal length lens
US7700265B2 (en) 2004-03-24 2010-04-20 Fujifilm Corporation Image forming method, planographic printing plate precursor, and planographic printing method
JP4541010B2 (ja) * 2004-03-25 2010-09-08 財団法人国際科学振興財団 パターン露光装置および二次元光像発生装置
US7561251B2 (en) * 2004-03-29 2009-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101101493B1 (ko) * 2004-03-30 2012-01-03 칼 짜이스 에스엠티 게엠베하 투영 대물렌즈, 투영 노광 장치 및 마이크로리소그래피용반사형 레티클
US7153616B2 (en) * 2004-03-31 2006-12-26 Asml Holding N.V. System and method for verifying and controlling the performance of a maskless lithography tool
US7053981B2 (en) * 2004-03-31 2006-05-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8049776B2 (en) * 2004-04-12 2011-11-01 Angstrom, Inc. Three-dimensional camcorder
US7619614B2 (en) * 2004-04-12 2009-11-17 Angstrom, Inc. Three-dimensional optical mouse system
US7742232B2 (en) * 2004-04-12 2010-06-22 Angstrom, Inc. Three-dimensional imaging system
US20070040924A1 (en) * 2005-08-19 2007-02-22 Stereo Display, Inc. Cellular phone camera with three-dimensional imaging function
US20070115261A1 (en) * 2005-11-23 2007-05-24 Stereo Display, Inc. Virtual Keyboard input system using three-dimensional motion detection by variable focal length lens
US8057963B2 (en) * 2004-06-10 2011-11-15 Lsi Corporation Maskless vortex phase shift optical direct write lithography
US7002666B2 (en) * 2004-04-16 2006-02-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005311145A (ja) * 2004-04-23 2005-11-04 Canon Inc 露光装置、露光方法、デバイス製造方法、パターン形成装置および位置合わせ方法
US7372547B2 (en) * 2004-04-27 2008-05-13 Lsi Corporation Process and apparatus for achieving single exposure pattern transfer using maskless optical direct write lithography
US6963434B1 (en) * 2004-04-30 2005-11-08 Asml Holding N.V. System and method for calculating aerial image of a spatial light modulator
US20050243295A1 (en) * 2004-04-30 2005-11-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing
CN101006454B (zh) * 2004-05-18 2012-05-09 西尔弗布鲁克研究有限公司 利用以许多数据部分编码的签名验证对象
US20050259269A1 (en) 2004-05-19 2005-11-24 Asml Holding N.V. Shearing interferometer with dynamic pupil fill
WO2005111717A2 (en) * 2004-05-19 2005-11-24 Fujifilm Corporation Image recording method
US7242456B2 (en) 2004-05-26 2007-07-10 Asml Holdings N.V. System and method utilizing a lithography tool having modular illumination, pattern generator, and projection optics portions
US7354167B2 (en) 2004-05-27 2008-04-08 Angstrom, Inc. Beam focusing and scanning system using micromirror array lens
US7477403B2 (en) 2004-05-27 2009-01-13 Asml Netherlands B.V. Optical position assessment apparatus and method
US7667896B2 (en) 2004-05-27 2010-02-23 Angstrom, Inc. DVD recording and reproducing system
US7777959B2 (en) * 2004-05-27 2010-08-17 Angstrom, Inc. Micromirror array lens with fixed focal length
US7123348B2 (en) * 2004-06-08 2006-10-17 Asml Netherlands B.V Lithographic apparatus and method utilizing dose control
US6989886B2 (en) * 2004-06-08 2006-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
ES2368929T3 (es) 2004-06-23 2011-11-23 Quin Media Arts And Sciences Inc. Formación de imágenes escultóricas con mosaicos ópticos.
US7345806B2 (en) * 2004-06-23 2008-03-18 Texas Instruments Incorporated Method and apparatus for characterizing microelectromechanical devices on wafers
US7016016B2 (en) * 2004-06-25 2006-03-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7116403B2 (en) * 2004-06-28 2006-10-03 Asml Netherlands B.V Lithographic apparatus and device manufacturing method
US7116404B2 (en) * 2004-06-30 2006-10-03 Asml Netherlands B.V Lithographic apparatus and device manufacturing method
US7158208B2 (en) * 2004-06-30 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060001890A1 (en) * 2004-07-02 2006-01-05 Asml Holding N.V. Spatial light modulator as source module for DUV wavefront sensor
US20060012779A1 (en) * 2004-07-13 2006-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7573574B2 (en) * 2004-07-13 2009-08-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7335398B2 (en) * 2004-07-26 2008-02-26 Asml Holding N.V. Method to modify the spatial response of a pattern generator
US7259829B2 (en) * 2004-07-26 2007-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7227613B2 (en) * 2004-07-26 2007-06-05 Asml Holding N.V. Lithographic apparatus having double telecentric illumination
US7142286B2 (en) * 2004-07-27 2006-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251020B2 (en) * 2004-07-30 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7538855B2 (en) * 2004-08-10 2009-05-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7102733B2 (en) 2004-08-13 2006-09-05 Asml Holding N.V. System and method to compensate for static and dynamic misalignments and deformations in a maskless lithography tool
US7304718B2 (en) * 2004-08-17 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7500218B2 (en) * 2004-08-17 2009-03-03 Asml Netherlands B.V. Lithographic apparatus, method, and computer program product for generating a mask pattern and device manufacturing method using same
WO2006021406A2 (en) * 2004-08-23 2006-03-02 Micronic Laser Systems Ab Pupil improvement of incoherent imaging systems for enhanced cd linearity
US7079225B2 (en) * 2004-09-14 2006-07-18 Asml Netherlands B.V Lithographic apparatus and device manufacturing method
JP4750396B2 (ja) * 2004-09-27 2011-08-17 キヤノン株式会社 露光装置及びデバイス製造方法
US7588868B2 (en) * 2004-10-06 2009-09-15 Cadence Design Systems, Inc. Method and system for reducing the impact of across-wafer variations on critical dimension measurements
US7177012B2 (en) * 2004-10-18 2007-02-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7136210B2 (en) * 2004-10-21 2006-11-14 Hewlett-Packard Development Company, L.P. Light modulator
JP2006128194A (ja) * 2004-10-26 2006-05-18 Canon Inc 露光装置及びデバイス製造方法
US7388663B2 (en) 2004-10-28 2008-06-17 Asml Netherlands B.V. Optical position assessment apparatus and method
US7423732B2 (en) * 2004-11-04 2008-09-09 Asml Holding N.V. Lithographic apparatus and device manufacturing method utilizing placement of a patterning device at a pupil plane
US7489434B2 (en) 2007-05-02 2009-02-10 Angstrom, Inc. Hybrid micromirror array lens for reducing chromatic aberration
US7619807B2 (en) * 2004-11-08 2009-11-17 Angstrom, Inc. Micromirror array lens with optical surface profiles
US7609362B2 (en) * 2004-11-08 2009-10-27 Asml Netherlands B.V. Scanning lithographic apparatus and device manufacturing method
US7457547B2 (en) * 2004-11-08 2008-11-25 Optium Australia Pty Limited Optical calibration system and method
US7170584B2 (en) * 2004-11-17 2007-01-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474384B2 (en) * 2004-11-22 2009-01-06 Asml Holding N.V. Lithographic apparatus, device manufacturing method, and a projection element for use in the lithographic apparatus
US7061581B1 (en) * 2004-11-22 2006-06-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7643192B2 (en) * 2004-11-24 2010-01-05 Asml Holding N.V. Pattern generator using a dual phase step element and method of using same
US7713667B2 (en) * 2004-11-30 2010-05-11 Asml Holding N.V. System and method for generating pattern data used to control a pattern generator
US7333177B2 (en) * 2004-11-30 2008-02-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7365848B2 (en) * 2004-12-01 2008-04-29 Asml Holding N.V. System and method using visible and infrared light to align and measure alignment patterns on multiple layers
US7391499B2 (en) * 2004-12-02 2008-06-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7362415B2 (en) * 2004-12-07 2008-04-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355677B2 (en) * 2004-12-09 2008-04-08 Asml Netherlands B.V. System and method for an improved illumination system in a lithographic apparatus
US7349068B2 (en) * 2004-12-17 2008-03-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7180577B2 (en) * 2004-12-17 2007-02-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a microlens array at an image plane
US7274502B2 (en) * 2004-12-22 2007-09-25 Asml Holding N.V. System, apparatus and method for maskless lithography that emulates binary, attenuating phase-shift and alternating phase-shift masks
US7230677B2 (en) * 2004-12-22 2007-06-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing hexagonal image grids
US7391676B2 (en) 2004-12-22 2008-06-24 Asml Netherlands B.V. Ultrasonic distance sensors
US7256867B2 (en) * 2004-12-22 2007-08-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7202939B2 (en) * 2004-12-22 2007-04-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7375795B2 (en) * 2004-12-22 2008-05-20 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US7242458B2 (en) * 2004-12-23 2007-07-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a multiple substrate carrier for flat panel display substrates
US7426076B2 (en) * 2004-12-23 2008-09-16 Asml Holding N.V. Projection system for a lithographic apparatus
US7538857B2 (en) * 2004-12-23 2009-05-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a substrate handler
US7656506B2 (en) * 2004-12-23 2010-02-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a substrate handler
US7317510B2 (en) * 2004-12-27 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7126672B2 (en) * 2004-12-27 2006-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7459247B2 (en) * 2004-12-27 2008-12-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060138349A1 (en) * 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7279110B2 (en) * 2004-12-27 2007-10-09 Asml Holding N.V. Method and apparatus for creating a phase step in mirrors used in spatial light modulator arrays
US7274029B2 (en) * 2004-12-28 2007-09-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7756660B2 (en) * 2004-12-28 2010-07-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145636B2 (en) * 2004-12-28 2006-12-05 Asml Netherlands Bv System and method for determining maximum operational parameters used in maskless applications
US7403865B2 (en) * 2004-12-28 2008-07-22 Asml Netherlands B.V. System and method for fault indication on a substrate in maskless applications
US7253881B2 (en) * 2004-12-29 2007-08-07 Asml Netherlands Bv Methods and systems for lithographic gray scaling
US7342644B2 (en) * 2004-12-29 2008-03-11 Asml Netherlands B.V. Methods and systems for lithographic beam generation
US7453645B2 (en) * 2004-12-30 2008-11-18 Asml Netherlands B.V. Spectral purity filter, lithographic apparatus including such a spectral purity filter, device manufacturing method, and device manufactured thereby
US7567368B2 (en) * 2005-01-06 2009-07-28 Asml Holding N.V. Systems and methods for minimizing scattered light in multi-SLM maskless lithography
EP1856654A2 (en) * 2005-01-28 2007-11-21 ASML Holding N.V. Method and system for a maskless lithography rasterization tecnique based on global optimization
US7542013B2 (en) * 2005-01-31 2009-06-02 Asml Holding N.V. System and method for imaging enhancement via calculation of a customized optimal pupil field and illumination mode
US7460208B2 (en) * 2005-02-18 2008-12-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7286137B2 (en) * 2005-02-28 2007-10-23 Asml Holding N.V. Method and system for constrained pixel graytones interpolation for pattern rasterization
US20060198011A1 (en) * 2005-03-04 2006-09-07 Stereo Display, Inc. Volumetric three-dimensional device using two-dimensional scanning device
US20060204859A1 (en) * 2005-03-09 2006-09-14 International Business Machines Corporation An extra dose trim mask, method of manufacture, and lithographic process using the same
US20060203117A1 (en) * 2005-03-10 2006-09-14 Stereo Display, Inc. Video monitoring system using variable focal length lens
US7499146B2 (en) * 2005-03-14 2009-03-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method, an integrated circuit, a flat panel display, and a method of compensating for cupping
US7812930B2 (en) * 2005-03-21 2010-10-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using repeated patterns in an LCD to reduce datapath volume
US7209216B2 (en) * 2005-03-25 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing dynamic correction for magnification and position in maskless lithography
US7403265B2 (en) * 2005-03-30 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing data filtering
US7456935B2 (en) * 2005-04-05 2008-11-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a positioning device for positioning an object table
US7728956B2 (en) * 2005-04-05 2010-06-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing multiple die designs on a substrate using a data buffer that stores pattern variation data
TWI427440B (zh) * 2005-04-06 2014-02-21 Kodak Graphic Comm Canada Co 用於校正影像化規則圖案的條帶之方法與裝置
JP4691653B2 (ja) * 2005-04-07 2011-06-01 国立大学法人東北大学 データ生成方法、データ生成装置、及びプログラム
US7209217B2 (en) 2005-04-08 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing plural patterning devices
US7330239B2 (en) 2005-04-08 2008-02-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a blazing portion of a contrast device
EP1896902B1 (en) * 2005-04-15 2018-09-19 Mycronic AB Method for writing patterns using multiple exposure beams and pattern generator
US20090303452A1 (en) * 2005-04-15 2009-12-10 Micronic Laser Systems Ab Image Enhancement Technique
US7221514B2 (en) * 2005-04-15 2007-05-22 Asml Netherlands B.V. Variable lens and exposure system
US20060244805A1 (en) * 2005-04-27 2006-11-02 Ming-Hsiang Yeh Multicolor pen
US7400382B2 (en) 2005-04-28 2008-07-15 Asml Holding N.V. Light patterning device using tilting mirrors in a superpixel form
US7738081B2 (en) * 2005-05-06 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a flat panel display handler with conveyor device and substrate handler
JP4570151B2 (ja) * 2005-05-06 2010-10-27 株式会社ナノシステムソリューションズ マスク製造方法
KR100815352B1 (ko) * 2005-05-12 2008-03-19 삼성전기주식회사 후단 렌즈계의 개구수가 개선된 광변조기를 이용한디스플레이 장치
US7477772B2 (en) * 2005-05-31 2009-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing 2D run length encoding for image data compression
US7197828B2 (en) * 2005-05-31 2007-04-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing FPD chuck Z position measurement
US7292317B2 (en) * 2005-06-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing substrate stage compensating
US7742148B2 (en) * 2005-06-08 2010-06-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method for writing a digital image
JP4828870B2 (ja) * 2005-06-09 2011-11-30 株式会社東芝 評価パタンの作成方法およびプログラム
US7233384B2 (en) * 2005-06-13 2007-06-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method, and device manufactured thereby for calibrating an imaging system with a sensor
US7321416B2 (en) * 2005-06-15 2008-01-22 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, device manufactured thereby, and controllable patterning device utilizing a spatial light modulator with distributed digital to analog conversion
US7408617B2 (en) * 2005-06-24 2008-08-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a large area FPD chuck equipped with encoders an encoder scale calibration method
US7965373B2 (en) * 2005-06-28 2011-06-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a datapath having a balanced calculation load
US7307694B2 (en) * 2005-06-29 2007-12-11 Asml Netherlands B.V. Lithographic apparatus, radiation beam inspection device, method of inspecting a beam of radiation and device manufacturing method
US7522258B2 (en) * 2005-06-29 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing movement of clean air to reduce contamination
US7209275B2 (en) 2005-06-30 2007-04-24 Asml Holding N.V. Method and system for maskless lithography real-time pattern rasterization and using computationally coupled mirrors to achieve optimum feature representation
US20070013889A1 (en) * 2005-07-12 2007-01-18 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby having an increase in depth of focus
US7251019B2 (en) * 2005-07-20 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a continuous light beam in combination with pixel grid imaging
US7446855B2 (en) * 2005-07-25 2008-11-04 Micron Technology, Inc Methods and apparatuses for configuring radiation in microlithographic processing of workpieces using an adjustment structure
US7283289B2 (en) * 2005-07-30 2007-10-16 Hewlett-Packard Development Company, L.P. Projection system modulator reducing distortion and field curvature effects of projection system lens
US20070041077A1 (en) * 2005-08-19 2007-02-22 Stereo Display, Inc. Pocket-sized two-dimensional image projection system
US7606430B2 (en) * 2005-08-30 2009-10-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a multiple dictionary compression method for FPD
US20070046917A1 (en) * 2005-08-31 2007-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method that compensates for reticle induced CDU
JP2007114750A (ja) * 2005-09-09 2007-05-10 Asml Netherlands Bv 投影システム設計方法、リソグラフィー装置およびデバイス製造方法
JP4991729B2 (ja) * 2005-09-26 2012-08-01 マイクロニック レーザー システムズ アクチボラゲット 設計データの多数の形態に基づいたパターン生成のための方法及びシステム
JP5025157B2 (ja) * 2005-09-29 2012-09-12 大日本スクリーン製造株式会社 画像記録装置および画像記録方法
JP2007101687A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 描画装置、描画方法、データ構造及び記録媒体、並びに、データ処理装置及び処理方法
JP2007101730A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 画像露光装置
US7830493B2 (en) * 2005-10-04 2010-11-09 Asml Netherlands B.V. System and method for compensating for radiation induced thermal distortions in a substrate or projection system
US7391503B2 (en) * 2005-10-04 2008-06-24 Asml Netherlands B.V. System and method for compensating for thermal expansion of lithography apparatus or substrate
US7332733B2 (en) * 2005-10-05 2008-02-19 Asml Netherlands B.V. System and method to correct for field curvature of multi lens array
US7492450B2 (en) * 2005-10-24 2009-02-17 General Electric Company Methods and apparatus for inspecting an object
CN100362387C (zh) * 2005-11-18 2008-01-16 重庆大学 静电简支梁式干涉光调制器
US20070127005A1 (en) * 2005-12-02 2007-06-07 Asml Holding N.V. Illumination system
US7626181B2 (en) * 2005-12-09 2009-12-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20070133007A1 (en) * 2005-12-14 2007-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using laser trimming of a multiple mirror contrast device
US7440078B2 (en) * 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US20070153249A1 (en) * 2005-12-20 2007-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using multiple exposures and multiple exposure types
US7466394B2 (en) * 2005-12-21 2008-12-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using a compensation scheme for a patterning array
US7528932B2 (en) * 2005-12-21 2009-05-05 Micronic Laser Systems Ab SLM direct writer
US7532403B2 (en) * 2006-02-06 2009-05-12 Asml Holding N.V. Optical system for transforming numerical aperture
JP4495104B2 (ja) * 2006-03-28 2010-06-30 エーエスエムエル ネザーランズ ビー.ブイ. 可変式照明源
US7528933B2 (en) * 2006-04-06 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing a MEMS mirror with large deflection using a non-linear spring arrangement
US7508491B2 (en) * 2006-04-12 2009-03-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilized to reduce quantization influence of datapath SLM interface to dose uniformity
US7948606B2 (en) * 2006-04-13 2011-05-24 Asml Netherlands B.V. Moving beam with respect to diffractive optics in order to reduce interference patterns
US7839487B2 (en) * 2006-04-13 2010-11-23 Asml Holding N.V. Optical system for increasing illumination efficiency of a patterning device
JP2007286311A (ja) * 2006-04-17 2007-11-01 Matsushita Electric Ind Co Ltd 波面変換装置、および光学装置
DE102006019963B4 (de) 2006-04-28 2023-12-07 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts durch schichtweises Verfestigen eines unter Einwirkung von elektromagnetischer Strahlung verfestigbaren Materials mittels Maskenbelichtung
US8264667B2 (en) * 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
DE102006020734A1 (de) * 2006-05-04 2007-11-15 Carl Zeiss Smt Ag Beleuchtungssystem für die EUV-Lithographie sowie erstes und zweites optisches Element zum Einsatz in einem derartigen Beleuchtungssystem
US9736346B2 (en) 2006-05-09 2017-08-15 Stereo Display, Inc Imaging system improving image resolution of the system with low resolution image sensor
US8934084B2 (en) * 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
US7728954B2 (en) * 2006-06-06 2010-06-01 Asml Netherlands B.V. Reflective loop system producing incoherent radiation
US8052289B2 (en) * 2006-06-07 2011-11-08 Asml Netherlands B.V. Mirror array for lithography
US7649676B2 (en) * 2006-06-14 2010-01-19 Asml Netherlands B.V. System and method to form unpolarized light
US7936445B2 (en) * 2006-06-19 2011-05-03 Asml Netherlands B.V. Altering pattern data based on measured optical element characteristics
US8896808B2 (en) * 2006-06-21 2014-11-25 Asml Netherlands B.V. Lithographic apparatus and method
US7697115B2 (en) * 2006-06-23 2010-04-13 Asml Holding N.V. Resonant scanning mirror
US7593094B2 (en) * 2006-06-26 2009-09-22 Asml Netherlands B.V. Patterning device
US20080002174A1 (en) * 2006-06-30 2008-01-03 Asml Netherlands B.V. Control system for pattern generator in maskless lithography
US7630136B2 (en) 2006-07-18 2009-12-08 Asml Holding N.V. Optical integrators for lithography systems and methods
JP5180446B2 (ja) * 2006-07-20 2013-04-10 株式会社ナノシステムソリューションズ 露光装置及び露光方法
US7548315B2 (en) * 2006-07-27 2009-06-16 Asml Netherlands B.V. System and method to compensate for critical dimension non-uniformity in a lithography system
US7738077B2 (en) * 2006-07-31 2010-06-15 Asml Netherlands B.V. Patterning device utilizing sets of stepped mirrors and method of using same
US7365899B2 (en) * 2006-08-10 2008-04-29 Angstrom, Inc. Micromirror with multi-axis rotation and translation
US7626182B2 (en) * 2006-09-05 2009-12-01 Asml Netherlands B.V. Radiation pulse energy control system, lithographic apparatus and device manufacturing method
TWI345748B (en) * 2006-09-05 2011-07-21 Chunghwa Picture Tubes Ltd Thin film transistor liquid crystal display
US7628875B2 (en) * 2006-09-12 2009-12-08 Asml Netherlands B.V. MEMS device and assembly method
US8049865B2 (en) * 2006-09-18 2011-11-01 Asml Netherlands B.V. Lithographic system, device manufacturing method, and mask optimization method
US7589885B2 (en) * 2006-09-22 2009-09-15 Angstrom, Inc. Micromirror array device comprising encapsulated reflective metal layer and method of making the same
US7589884B2 (en) * 2006-09-22 2009-09-15 Angstrom, Inc. Micromirror array lens with encapsulation of reflective metal layer and method of making the same
KR100816494B1 (ko) * 2006-10-09 2008-03-24 엘지전자 주식회사 마스크리스 노광기 및 이를 이용한 표시장치용 기판의 제조방법
US7683300B2 (en) * 2006-10-17 2010-03-23 Asml Netherlands B.V. Using an interferometer as a high speed variable attenuator
US20080121939A1 (en) * 2006-11-06 2008-05-29 Michael Murray Methods of automatically generating dummy fill having reduced storage size
US7738079B2 (en) * 2006-11-14 2010-06-15 Asml Netherlands B.V. Radiation beam pulse trimming
US7453551B2 (en) * 2006-11-14 2008-11-18 Asml Netherlands B.V. Increasing pulse-to-pulse radiation beam uniformity
JP4937705B2 (ja) * 2006-11-14 2012-05-23 株式会社オーク製作所 多重露光装置
US20080111977A1 (en) * 2006-11-14 2008-05-15 Asml Holding N.V. Compensation techniques for fluid and magnetic bearings
US8054449B2 (en) * 2006-11-22 2011-11-08 Asml Holding N.V. Enhancing the image contrast of a high resolution exposure tool
US7488082B2 (en) 2006-12-12 2009-02-10 Angstrom, Inc. Discretely controlled micromirror array device with segmented electrodes
US8259285B2 (en) * 2006-12-14 2012-09-04 Asml Holding N.V. Lithographic system, device manufacturing method, setpoint data optimization method, and apparatus for producing optimized setpoint data
US8125407B2 (en) * 2006-12-27 2012-02-28 Silicon Quest Kabushiki-Kaisha Deformable micromirror device
US8749463B2 (en) 2007-01-19 2014-06-10 Hamamatsu Photonics K.K. Phase-modulating apparatus
CN100456141C (zh) * 2007-01-23 2009-01-28 上海微电子装备有限公司 批量硅片曝光的方法
JP5211487B2 (ja) 2007-01-25 2013-06-12 株式会社ニコン 露光方法及び露光装置並びにマイクロデバイスの製造方法
US7965378B2 (en) * 2007-02-20 2011-06-21 Asml Holding N.V Optical system and method for illumination of reflective spatial light modulators in maskless lithography
US7705309B1 (en) * 2007-02-27 2010-04-27 Agiltron Corporation Radiation detector with extended dynamic range
US7535618B2 (en) * 2007-03-12 2009-05-19 Angstrom, Inc. Discretely controlled micromirror device having multiple motions
US8009269B2 (en) 2007-03-14 2011-08-30 Asml Holding N.V. Optimal rasterization for maskless lithography
US8009270B2 (en) * 2007-03-22 2011-08-30 Asml Netherlands B.V. Uniform background radiation in maskless lithography
US20080259304A1 (en) * 2007-04-20 2008-10-23 Asml Netherlands B.V. Lithographic apparatus and method
CN101669071B (zh) * 2007-04-25 2012-03-21 卡尔蔡司Smt有限责任公司 微光刻曝光装置中照明掩模的照明***
KR20100017530A (ko) * 2007-04-30 2010-02-16 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 모듈식 고상 조명 시스템
US8237913B2 (en) * 2007-05-08 2012-08-07 Asml Netherlands B.V. Lithographic apparatus and method
US20080278698A1 (en) * 2007-05-08 2008-11-13 Asml Netherlands B.V. Lithographic apparatus and method
US7714986B2 (en) * 2007-05-24 2010-05-11 Asml Netherlands B.V. Laser beam conditioning system comprising multiple optical paths allowing for dose control
US20080304034A1 (en) * 2007-06-07 2008-12-11 Asml Netherlands B.V. Dose control for optical maskless lithography
KR20080109409A (ko) * 2007-06-13 2008-12-17 삼성전자주식회사 투사형 디스플레이장치 및 그에 적용된 디스플레이방법
US9505606B2 (en) * 2007-06-13 2016-11-29 Angstrom, Inc. MEMS actuator with discretely controlled multiple motions
US8692974B2 (en) * 2007-06-14 2014-04-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using pupil filling by telecentricity control
US8189172B2 (en) * 2007-06-14 2012-05-29 Asml Netherlands B.V. Lithographic apparatus and method
US7768627B2 (en) * 2007-06-14 2010-08-03 Asml Netherlands B.V. Illumination of a patterning device based on interference for use in a maskless lithography system
WO2009011119A1 (ja) * 2007-07-13 2009-01-22 Nikon Corporation パターン形成方法及び装置、露光方法及び装置、並びにデバイス製造方法及びデバイス
US7605988B2 (en) * 2007-07-23 2009-10-20 Angstrom, Inc. Compact image taking lens system with a lens-surfaced prism
US7589916B2 (en) * 2007-08-10 2009-09-15 Angstrom, Inc. Micromirror array with iris function
US7838178B2 (en) * 2007-08-13 2010-11-23 Micron Technology, Inc. Masks for microlithography and methods of making and using such masks
DE102007038999A1 (de) * 2007-08-17 2009-02-19 Punch Graphix Prepress Germany Gmbh Verfahren zur Steigerung des Durchsatzes und zur Reduzierung der Bewegungsunschärfe
US7755121B2 (en) * 2007-08-23 2010-07-13 Aptina Imaging Corp. Imagers, apparatuses and systems utilizing pixels with improved optical resolution and methods of operating the same
JP2010537414A (ja) * 2007-08-30 2010-12-02 カール・ツァイス・エスエムティー・アーゲー マイクロリソグラフィ投影露光装置においてマスクを照明するための照明システム
US8111380B2 (en) * 2007-09-14 2012-02-07 Luminescent Technologies, Inc. Write-pattern determination for maskless lithography
JP5267029B2 (ja) * 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
KR101562073B1 (ko) * 2007-10-16 2015-10-21 가부시키가이샤 니콘 조명 광학 시스템, 노광 장치 및 디바이스 제조 방법
US8379187B2 (en) * 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
KR101909850B1 (ko) * 2007-11-06 2018-10-18 가부시키가이샤 니콘 조명 광학계, 노광 장치 및 노광 방법
JP5326259B2 (ja) * 2007-11-08 2013-10-30 株式会社ニコン 照明光学装置、露光装置、およびデバイス製造方法
JP5270142B2 (ja) 2007-12-05 2013-08-21 浜松ホトニクス株式会社 反射型空間光変調素子
JP5063320B2 (ja) * 2007-12-11 2012-10-31 株式会社ニューフレアテクノロジー 描画装置及び描画データの変換方法
EP2233960A4 (en) * 2007-12-17 2012-01-25 Nikon Corp SPATIAL LIGHT MODULATION UNIT, OPTICAL LIGHTING SYSTEM, ALIGNMENT DEVICE AND COMPONENT MANUFACTURING METHOD
EP2388649B1 (en) 2007-12-21 2013-06-19 Carl Zeiss SMT GmbH Illumination system for illuminating a mask in a microlithographic exposure apparatus
JP5639894B2 (ja) 2007-12-21 2014-12-10 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置用の照明系
US20090185067A1 (en) * 2007-12-21 2009-07-23 Stereo Display, Inc. Compact automatic focusing camera
US8109638B2 (en) * 2008-01-22 2012-02-07 Alcatel Lucent Diffuser configuration for an image projector
US8247999B2 (en) 2008-01-22 2012-08-21 Alcatel Lucent Time division multiplexing a DC-to-DC voltage converter
US8129669B2 (en) 2008-01-22 2012-03-06 Alcatel Lucent System and method generating multi-color light for image display having a controller for temporally interleaving the first and second time intervals of directed first and second light beams
GB0802944D0 (en) * 2008-02-19 2008-03-26 Rumsby Philip T Apparatus for laser processing the opposite sides of thin panels
US8810908B2 (en) * 2008-03-18 2014-08-19 Stereo Display, Inc. Binoculars with micromirror array lenses
US8077377B2 (en) * 2008-04-24 2011-12-13 Micronic Mydata AB Spatial light modulator with structured mirror surfaces
US8622557B2 (en) * 2008-05-20 2014-01-07 Stereo Display, Inc. Micromirror array lens with self-tilted micromirrors
US20090303569A1 (en) * 2008-05-20 2009-12-10 Stereo Didplay, Inc. Self-tilted micromirror device
US8300263B2 (en) * 2008-06-06 2012-10-30 Eastman Kodak Company Forming images with minimum feature sizes
US7971961B2 (en) * 2008-06-06 2011-07-05 Eastman Kodak Company Forming images with stitched swaths
US20100020331A1 (en) * 2008-07-25 2010-01-28 Micronic Laser Systems Ab Laser interferometer systems and methods with suppressed error and pattern generators having the same
JP5253037B2 (ja) * 2008-08-18 2013-07-31 株式会社日立ハイテクノロジーズ 露光装置、露光方法、及び表示用パネル基板の製造方法
ES2608464T3 (es) * 2008-08-26 2017-04-11 Hamamatsu Photonics K.K. Dispositivo de procesamiento por láser y procedimiento de procesamiento por láser
WO2010024106A1 (ja) * 2008-08-28 2010-03-04 株式会社ニコン 照明光学系、露光装置、およびデバイス製造方法
KR101560617B1 (ko) * 2008-09-10 2015-10-16 삼성전자주식회사 광 발생 장치 및 그 제어 방법
DE102008048660B4 (de) * 2008-09-22 2015-06-18 Carl Zeiss Sms Gmbh Verfahren und Vorrichtung zur Vermessung von Strukturen auf Photolithographiemasken
US8395752B2 (en) 2008-09-23 2013-03-12 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
US8253923B1 (en) 2008-09-23 2012-08-28 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
US8390786B2 (en) 2008-09-23 2013-03-05 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
US8670106B2 (en) * 2008-09-23 2014-03-11 Pinebrook Imaging, Inc. Optical imaging writer system
US8390781B2 (en) 2008-09-23 2013-03-05 Pinebrook Imaging Technology, Ltd. Optical imaging writer system
NL2003364A (en) * 2008-09-26 2010-03-29 Asml Netherlands Bv Lithographic apparatus and method.
JP5376494B2 (ja) * 2008-10-08 2013-12-25 大日本スクリーン製造株式会社 描画装置および描画方法
US8048359B2 (en) 2008-10-20 2011-11-01 3D Systems, Inc. Compensation of actinic radiation intensity profiles for three-dimensional modelers
NL2003449A (en) * 2008-10-28 2010-04-29 Asml Netherlands Bv Fly's eye integrator, illuminator, lithographic apparatus and method.
DE102009020320A1 (de) * 2008-11-19 2010-05-20 Heidelberg Instruments Mikrotechnik Gmbh Verfahren und Vorrichtung zur Steigerung der Auflösung und/oder der Geschwindigkeit von Belichtungssystemen
DE102008054844B4 (de) * 2008-12-17 2010-09-23 Carl Zeiss Smt Ag Beleuchtungseinrichtung einer mikrolithographischen Projektionsbelichtungsanlage, sowie mikrolithographisches Projektionsbelichtungsverfahren
EP2202580B1 (en) * 2008-12-23 2011-06-22 Carl Zeiss SMT GmbH Illumination system of a microlithographic projection exposure apparatus
WO2010092188A1 (en) 2009-02-16 2010-08-19 Micronic Laser Systems Ab Improved slm device and method
JP5209544B2 (ja) * 2009-03-04 2013-06-12 大日本スクリーン製造株式会社 描画装置、描画装置用のデータ処理装置、および描画装置用の描画データ生成方法
RU2473936C2 (ru) * 2009-04-02 2013-01-27 Аслан Хаджимуратович Абдуев Экран и оптический коммутатор
US8610986B2 (en) * 2009-04-06 2013-12-17 The Board Of Trustees Of The University Of Illinois Mirror arrays for maskless photolithography and image display
US8226241B2 (en) 2009-05-15 2012-07-24 Alcatel Lucent Image projector employing a speckle-reducing laser source
KR101636523B1 (ko) * 2009-05-20 2016-07-06 마퍼 리쏘그라피 아이피 비.브이. 듀얼 패스 스캐닝
US8434887B2 (en) 2009-08-27 2013-05-07 Dolby Laboratories Licensing Corporation Optical mixing and shaping system for display backlights and displays incorporating the same
CN102598310A (zh) * 2009-09-18 2012-07-18 应用材料公司 背接触太阳能电池中的通孔的激光钻孔
JP5393406B2 (ja) * 2009-11-06 2014-01-22 オリンパス株式会社 パターン投影装置、走査型共焦点顕微鏡、及びパターン照射方法
US9511448B2 (en) * 2009-12-30 2016-12-06 Resonetics, LLC Laser machining system and method for machining three-dimensional objects from a plurality of directions
JP5481400B2 (ja) * 2010-01-15 2014-04-23 株式会社日立ハイテクノロジーズ マイクロミラーデバイスの選別方法、マイクロミラーデバイス選別装置およびマスクレス露光装置
JP5446930B2 (ja) 2010-01-27 2014-03-19 東洋インキScホールディングス株式会社 インクジェットインキ受容層形成用コート剤、それを用いた記録媒体及び印刷物
KR101653213B1 (ko) * 2010-02-19 2016-09-02 삼성디스플레이 주식회사 디지털 노광 방법 및 이를 수행하기 위한 디지털 노광 장치
US8539395B2 (en) 2010-03-05 2013-09-17 Micronic Laser Systems Ab Method and apparatus for merging multiple geometrical pixel images and generating a single modulator pixel image
JP2011199279A (ja) * 2010-03-18 2011-10-06 Ims Nanofabrication Ag ターゲット上へのマルチビーム露光のための方法
DE102010029651A1 (de) 2010-06-02 2011-12-08 Carl Zeiss Smt Gmbh Verfahren zum Betrieb einer Projektionsbelichtungsanlage für die Mikrolithographie mit Korrektur von durch rigorose Effekte der Maske induzierten Abbildungsfehlern
JP5738410B2 (ja) * 2010-07-28 2015-06-24 カール・ツァイス・エスエムティー・ゲーエムベーハー ファセットミラーデバイス
JP5811362B2 (ja) * 2010-09-27 2015-11-11 株式会社ニコン 露光用パターンの生成方法、露光方法及び装置、並びにデバイス製造方法
US8413084B2 (en) 2010-10-04 2013-04-02 International Business Machines Corporation Photomask throughput by reducing exposure shot count for non-critical elements
CN103270453B (zh) * 2010-12-07 2016-04-13 密克罗尼克麦达塔公司 十字形写入策略
JP5880443B2 (ja) * 2010-12-13 2016-03-09 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
WO2012150263A1 (en) * 2011-05-03 2012-11-08 Stichting Dutch Polymer Institute Method for controlling deposition
JP5346356B2 (ja) * 2011-05-30 2013-11-20 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びデバイス製造方法
JP5722136B2 (ja) * 2011-06-30 2015-05-20 株式会社Screenホールディングス パターン描画装置およびパターン描画方法
JP5805868B2 (ja) * 2011-07-11 2015-11-10 マッパー・リソグラフィー・アイピー・ビー.ブイ. ターゲットの位置データを格納するためのリソグラフィシステムおよび方法
US8653454B2 (en) 2011-07-13 2014-02-18 Luminescent Technologies, Inc. Electron-beam image reconstruction
KR20200043533A (ko) * 2011-09-02 2020-04-27 가부시키가이샤 니콘 공간 광 변조기의 검사 방법 및 장치, 및 노광 방법 및 장치
US8691476B2 (en) 2011-12-16 2014-04-08 Taiwan Semiconductor Manufacturing Company, Ltd. EUV mask and method for forming the same
JP2013193110A (ja) * 2012-03-21 2013-09-30 Sumitomo Heavy Ind Ltd レーザ加工装置及びレーザ加工方法
WO2013161271A1 (ja) * 2012-04-23 2013-10-31 キヤノン電子株式会社 光走査装置及び画像読取装置
DE102012207220A1 (de) * 2012-04-30 2013-10-31 Robert Bosch Gmbh Verfahren zur Bearbeitung eines Werkstücks mit Laserstrahlung
US10149390B2 (en) * 2012-08-27 2018-12-04 Mycronic AB Maskless writing of a workpiece using a plurality of exposures having different focal planes using multiple DMDs
US9261793B2 (en) 2012-09-14 2016-02-16 Globalfoundries Inc. Image optimization using pupil filters in projecting printing systems with fixed or restricted illumination angular distribution
CN102914949B (zh) * 2012-09-17 2015-12-09 天津芯硕精密机械有限公司 一种用于扫描式无掩膜光刻机倾斜slm曝光的数据处理方法
JP2014066954A (ja) * 2012-09-27 2014-04-17 Dainippon Screen Mfg Co Ltd 描画装置、および、描画方法
WO2014070444A1 (en) * 2012-10-29 2014-05-08 Northwestern University Heat actuated and projected lithography systems and methods
KR101984898B1 (ko) 2012-12-27 2019-06-03 삼성디스플레이 주식회사 마스크리스 노광 장치를 이용한 표시 장치의 제조 방법 및 그 표시 장치
EP2757571B1 (en) * 2013-01-17 2017-09-20 IMS Nanofabrication AG High-voltage insulation device for charged-particle optical apparatus
KR102112751B1 (ko) * 2013-02-01 2020-05-19 삼성디스플레이 주식회사 레이저 빔을 이용한 마스크 제조 방법 및 마스크 제조 장치
JP6453780B2 (ja) 2013-03-12 2019-01-16 マイクロニック アーベーMycronic Ab 機械的に形成されるアライメント基準体の方法及び装置
WO2014140047A2 (en) 2013-03-12 2014-09-18 Micronic Mydata AB Method and device for writing photomasks with reduced mura errors
KR102171301B1 (ko) 2013-07-09 2020-10-29 삼성디스플레이 주식회사 Dmd를 이용한 디지털 노광기 및 그 제어 방법
JP2015023286A (ja) 2013-07-17 2015-02-02 アイエムエス ナノファブリケーション アーゲー 複数のブランキングアレイを有するパターン画定装置
EP2830083B1 (en) 2013-07-25 2016-05-04 IMS Nanofabrication AG Method for charged-particle multi-beam exposure
CN103424996B (zh) * 2013-09-03 2016-03-02 苏州大学 一种光学加工***和方法
CA3148330A1 (en) * 2013-10-20 2015-04-20 Mtt Innovation Incorporated Light field projectors and methods
JP6676527B6 (ja) * 2013-11-27 2020-05-20 東京エレクトロン株式会社 光学投影を使用する基板チューニングシステム及び方法
US9645391B2 (en) * 2013-11-27 2017-05-09 Tokyo Electron Limited Substrate tuning system and method using optical projection
DE102014203040A1 (de) 2014-02-19 2015-08-20 Carl Zeiss Smt Gmbh Beleuchtungssystem einer mikrolithographischen Projektionsbelichtungsanlage und Verfahren zum Betreiben eines solchen
EP2913838B1 (en) 2014-02-28 2018-09-19 IMS Nanofabrication GmbH Compensation of defective beamlets in a charged-particle multi-beam exposure tool
JP2015184480A (ja) * 2014-03-24 2015-10-22 古河電気工業株式会社 光信号選択装置および光信号選択装置の制御方法
EP2927941B1 (en) 2014-04-04 2022-07-27 Nordson Corporation X-ray inspection apparatus
CN103926803B (zh) * 2014-04-21 2016-03-09 中国科学院上海光学精密机械研究所 光刻机照明光源的描述方法
US9443699B2 (en) 2014-04-25 2016-09-13 Ims Nanofabrication Ag Multi-beam tool for cutting patterns
EP2944413A1 (de) * 2014-05-12 2015-11-18 Boegli-Gravures S.A. Vorrichtung zur Maskenprojektion von Femtosekunden- und Pikosekunden- Laserstrahlen mit einer Blende, einer Maske und Linsensystemen
EP3143763B8 (en) 2014-05-15 2023-12-27 MTT Innovation Incorporated Light projector and method for displaying an image
EP3358599B1 (en) 2014-05-30 2021-01-27 IMS Nanofabrication GmbH Compensation of dose inhomogeneity using row calibration
JP6892214B2 (ja) 2014-07-10 2021-06-23 アイエムエス ナノファブリケーション ゲーエムベーハー 畳み込みカーネルを使用する粒子ビーム描画機のカスタマイズ化
US9568907B2 (en) 2014-09-05 2017-02-14 Ims Nanofabrication Ag Correction of short-range dislocations in a multi-beam writer
KR20160046016A (ko) * 2014-10-17 2016-04-28 삼성디스플레이 주식회사 마스크리스 노광 장치 및 이를 이용한 누적 조도 보정 방법
JP6474995B2 (ja) 2014-11-11 2019-02-27 ローランドディー.ジー.株式会社 スライスデータ作成装置、スライスデータ作成方法、プログラムおよびコンピューター読み取り可能な記録媒体
DE102015201140A1 (de) * 2015-01-23 2016-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bearbeitungskopf für die Materialbearbeitung
JP6513980B2 (ja) * 2015-03-16 2019-05-15 株式会社東芝 撮像装置及び撮像方法
US9653263B2 (en) 2015-03-17 2017-05-16 Ims Nanofabrication Ag Multi-beam writing of pattern areas of relaxed critical dimension
EP3096342B1 (en) 2015-03-18 2017-09-20 IMS Nanofabrication AG Bi-directional double-pass multi-beam writing
JP6593623B2 (ja) * 2015-03-30 2019-10-23 株式会社ニコン 空間光変調器の設定方法、駆動データの作成方法、露光装置、露光方法、およびデバイス製造方法
DE102015217523B4 (de) 2015-04-28 2022-03-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur lokal definierten Bearbeitung an Oberflächen von Werkstücken mittels Laserlicht
US10410831B2 (en) 2015-05-12 2019-09-10 Ims Nanofabrication Gmbh Multi-beam writing using inclined exposure stripes
DE102016204703B4 (de) * 2016-03-22 2022-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur Erzeugung eines optischen Musters aus Bildpunkten in einer Bildebene
US10325756B2 (en) 2016-06-13 2019-06-18 Ims Nanofabrication Gmbh Method for compensating pattern placement errors caused by variation of pattern exposure density in a multi-beam writer
JP6818393B2 (ja) * 2016-09-01 2021-01-20 株式会社オーク製作所 露光装置
US10239178B2 (en) * 2016-10-17 2019-03-26 Virtek Vision International, ULC Laser projector with dynamically adaptable focus
BR112019013148A2 (pt) * 2016-12-27 2019-12-10 Depuy Synthes Products Inc sistemas, métodos e dispositivos para fornecer iluminação em um ambiente de imageamento endoscópico
US10325757B2 (en) 2017-01-27 2019-06-18 Ims Nanofabrication Gmbh Advanced dose-level quantization of multibeam-writers
WO2018168923A1 (ja) * 2017-03-16 2018-09-20 株式会社ニコン 制御装置及び制御方法、露光装置及び露光方法、デバイス製造方法、データ生成方法、並びに、プログラム
GB2560584B (en) * 2017-03-17 2021-05-19 Optalysys Ltd Optical processing systems
US10522329B2 (en) 2017-08-25 2019-12-31 Ims Nanofabrication Gmbh Dose-related feature reshaping in an exposure pattern to be exposed in a multi beam writing apparatus
CN109426091B (zh) * 2017-08-31 2021-01-29 京东方科技集团股份有限公司 曝光装置、曝光方法及光刻方法
US11569064B2 (en) 2017-09-18 2023-01-31 Ims Nanofabrication Gmbh Method for irradiating a target using restricted placement grids
CN107728312A (zh) * 2017-10-24 2018-02-23 上海天马微电子有限公司 一种空间光调制器及显示装置
US10651010B2 (en) 2018-01-09 2020-05-12 Ims Nanofabrication Gmbh Non-linear dose- and blur-dependent edge placement correction
US10840054B2 (en) 2018-01-30 2020-11-17 Ims Nanofabrication Gmbh Charged-particle source and method for cleaning a charged-particle source using back-sputtering
JP7260959B2 (ja) * 2018-03-16 2023-04-19 キヤノン株式会社 リソグラフィ装置、照明装置及び物品の製造方法
US10983444B2 (en) * 2018-04-26 2021-04-20 Applied Materials, Inc. Systems and methods of using solid state emitter arrays
US10761430B2 (en) 2018-09-13 2020-09-01 Applied Materials, Inc. Method to enhance the resolution of maskless lithography while maintaining a high image contrast
JP7283893B2 (ja) * 2018-12-03 2023-05-30 株式会社エスケーエレクトロニクス フォトマスクの製造方法
US11679555B2 (en) 2019-02-21 2023-06-20 Sprintray, Inc. Reservoir with substrate assembly for reducing separation forces in three-dimensional printing
US11099482B2 (en) 2019-05-03 2021-08-24 Ims Nanofabrication Gmbh Adapting the duration of exposure slots in multi-beam writers
DE102019115554A1 (de) * 2019-06-07 2020-12-10 Bystronic Laser Ag Bearbeitungsvorrichtung zur Laserbearbeitung eines Werkstücks und Verfahren zur Laserbearbeitung eines Werkstücks
CN110456609B (zh) * 2019-08-09 2021-04-09 中国科学院光电技术研究所 一种适用于无掩模数字光刻的邻近效应校正方法
CN113050381B (zh) * 2019-12-27 2022-04-26 上海微电子装备(集团)股份有限公司 一种拼接物镜的剂量控制装置、方法和曝光设备
KR20210132599A (ko) 2020-04-24 2021-11-04 아이엠에스 나노패브릭케이션 게엠베하 대전 입자 소스
EP4048472B1 (en) 2020-08-14 2024-03-20 Ceramic Data Solutions GmbH Method of and device for high-speed recording data on or in a layer (10) of a first material using a laser, a galvanometer and a digital micromirror
SE545314C2 (en) * 2021-03-30 2023-06-27 Sense Range Ab Method and apparatus for laser beam mudulation and beam steering
DE102021108339B4 (de) 2021-04-01 2023-12-07 Hochschule Anhalt, Körperschaft des öffentlichen Rechts Lichtfeld-Display, Verfahren, Computerprogramm und Vorrichtung zum Kalibrieren eines solchen Lichtfeld-Displays
EP4095882A1 (en) 2021-05-25 2022-11-30 IMS Nanofabrication GmbH Pattern data processing for programmable direct-write apparatus
CN113210873B (zh) * 2021-06-03 2022-04-05 北京理工大学 一种基于电子动态调控的金属纳米网的制备方法
DE102023101782B3 (de) 2023-01-25 2024-06-13 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zum Erzeugen eines zusammengesetzten Bildes einer Probe

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2030468A5 (ru) * 1969-01-29 1970-11-13 Thomson Brandt Csf
US3896338A (en) * 1973-11-01 1975-07-22 Westinghouse Electric Corp Color video display system comprising electrostatically deflectable light valves
US4317611A (en) * 1980-05-19 1982-03-02 International Business Machines Corporation Optical ray deflection apparatus
US4430571A (en) * 1981-04-16 1984-02-07 Control Data Corporation Method and apparatus for exposing multi-level registered patterns interchangeably between stations of a multi-station electron-beam array lithography (EBAL) system
US4467211A (en) * 1981-04-16 1984-08-21 Control Data Corporation Method and apparatus for exposing multi-level registered patterns interchangeably between stations of a multi-station electron-beam array lithography (EBAL) system
US5171965A (en) * 1984-02-01 1992-12-15 Canon Kabushiki Kaisha Exposure method and apparatus
US4566935A (en) 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
US4596992A (en) * 1984-08-31 1986-06-24 Texas Instruments Incorporated Linear spatial light modulator and printer
US5061049A (en) * 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4675702A (en) 1986-03-14 1987-06-23 Gerber Scientific Inc. Photoplotter using a light valve device and process for exposing graphics
JPS6370423A (ja) * 1986-09-11 1988-03-30 Toshiba Corp パタ−ン形成方法
JPH01154519A (ja) * 1987-12-11 1989-06-16 Hitachi Ltd 半導体装置の製造方法
US5523193A (en) * 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
US6348907B1 (en) * 1989-08-22 2002-02-19 Lawson A. Wood Display apparatus with digital micromirror device
US5296891A (en) * 1990-05-02 1994-03-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Illumination device
US5073010A (en) * 1990-05-11 1991-12-17 University Of Colorado Foundation, Inc. Optically addressable spatial light modulator having a distorted helix ferroelectric liquid crystal member
JPH0423314A (ja) * 1990-05-15 1992-01-27 Kawasaki Steel Corp 露光装置
DE4022732A1 (de) 1990-07-17 1992-02-20 Micronic Laser Systems Ab Auf einem lichtempfindlich beschichteten substrat durch fokussierte laserstrahlung hergestellte struktur sowie verfahren und vorrichtung zu ihrer herstellung
JP2902506B2 (ja) * 1990-08-24 1999-06-07 キヤノン株式会社 半導体装置の製造方法及び半導体装置
US5148157A (en) 1990-09-28 1992-09-15 Texas Instruments Incorporated Spatial light modulator with full complex light modulation capability
JPH0536595A (ja) * 1991-08-02 1993-02-12 Fujitsu Ltd 電子線露光方法
CA2075026A1 (en) 1991-08-08 1993-02-09 William E. Nelson Method and apparatus for patterning an imaging member
DE59105477D1 (de) 1991-10-30 1995-06-14 Fraunhofer Ges Forschung Belichtungsvorrichtung.
DE69226511T2 (de) 1992-03-05 1999-01-28 Micronic Laser Systems Ab, Taeby Verfahren und Vorrichtung zur Belichtung von Substraten
US5312513A (en) * 1992-04-03 1994-05-17 Texas Instruments Incorporated Methods of forming multiple phase light modulators
WO1994010633A1 (en) * 1992-11-02 1994-05-11 Etec Systems, Inc. Rasterizer for a pattern generation apparatus
JP3296448B2 (ja) * 1993-03-15 2002-07-02 株式会社ニコン 露光制御方法、走査露光方法、露光制御装置、及びデバイス製造方法
JP3372086B2 (ja) * 1993-08-06 2003-01-27 株式会社ニコン 露光方法及び装置、並びにデバイスの製造方法
EP0657760A1 (en) 1993-09-15 1995-06-14 Texas Instruments Incorporated Image simulation and projection system
US5467146A (en) * 1994-03-31 1995-11-14 Texas Instruments Incorporated Illumination control unit for display system with spatial light modulator
US5497258A (en) * 1994-05-27 1996-03-05 The Regents Of The University Of Colorado Spatial light modulator including a VLSI chip and using solder for horizontal and vertical component positioning
US5539567A (en) * 1994-06-16 1996-07-23 Texas Instruments Incorporated Photolithographic technique and illuminator using real-time addressable phase shift light shift
US5504504A (en) 1994-07-13 1996-04-02 Texas Instruments Incorporated Method of reducing the visual impact of defects present in a spatial light modulator display
US6276801B1 (en) * 1994-08-04 2001-08-21 Digital Projection Limited Display system
US5614990A (en) * 1994-08-31 1997-03-25 International Business Machines Corporation Illumination tailoring system using photochromic filter
JP3537192B2 (ja) * 1994-09-14 2004-06-14 テキサス インスツルメンツ インコーポレイテツド 空間光変調器に基づく位相コントラスト画像投射装置
JP3335011B2 (ja) * 1994-09-16 2002-10-15 富士通株式会社 マスク及びこれを用いる荷電粒子ビーム露光方法
US5754217A (en) * 1995-04-19 1998-05-19 Texas Instruments Incorporated Printing system and method using a staggered array spatial light modulator having masked mirror elements
JPH08304924A (ja) * 1995-05-10 1996-11-22 Nikon Corp プロジェクター装置
US5835256A (en) * 1995-06-19 1998-11-10 Reflectivity, Inc. Reflective spatial light modulator with encapsulated micro-mechanical elements
US5661591A (en) * 1995-09-29 1997-08-26 Texas Instruments Incorporated Optical switch having an analog beam for steering light
JP3617558B2 (ja) * 1995-11-17 2005-02-09 株式会社ニコン 露光量制御方法、露光装置、及び素子製造方法
JPH09148221A (ja) * 1995-11-21 1997-06-06 Seiko Epson Corp 露光方法及び露光装置及びそれに用いるレチクル
JP3884098B2 (ja) * 1996-03-22 2007-02-21 株式会社東芝 露光装置および露光方法
JPH1050604A (ja) * 1996-04-04 1998-02-20 Nikon Corp 位置管理方法及び位置合わせ方法
JP3512945B2 (ja) * 1996-04-26 2004-03-31 株式会社東芝 パターン形成方法及びパターン形成装置
US5691541A (en) * 1996-05-14 1997-11-25 The Regents Of The University Of California Maskless, reticle-free, lithography
US5870176A (en) 1996-06-19 1999-02-09 Sandia Corporation Maskless lithography
JPH1011813A (ja) * 1996-06-26 1998-01-16 Nec Corp 露光方法及び露光装置
WO1998004950A1 (en) * 1996-07-25 1998-02-05 Anvik Corporation Seamless, maskless lithography system using spatial light modulator
US6312134B1 (en) * 1996-07-25 2001-11-06 Anvik Corporation Seamless, maskless lithography system using spatial light modulator
JPH10209019A (ja) * 1997-01-27 1998-08-07 Sony Corp 露光パターン投影デバイス及び露光装置
US5847959A (en) * 1997-01-28 1998-12-08 Etec Systems, Inc. Method and apparatus for run-time correction of proximity effects in pattern generation
JPH113849A (ja) * 1997-06-12 1999-01-06 Sony Corp 可変変形照明フィルタ及び半導体露光装置
US5774254A (en) * 1997-06-26 1998-06-30 Xerox Corporation Fault tolerant light modulator display system
US5790297A (en) * 1997-06-26 1998-08-04 Xerox Corporation Optical row displacement for a fault tolerant projective display
CA2307315C (en) 1997-10-29 2011-04-05 Calum Eric Macaulay Apparatus and methods relating to spatially light modulated microscopy
SE9800665D0 (sv) * 1998-03-02 1998-03-02 Micronic Laser Systems Ab Improved method for projection printing using a micromirror SLM
US6195196B1 (en) * 1998-03-13 2001-02-27 Fuji Photo Film Co., Ltd. Array-type exposing device and flat type display incorporating light modulator and driving method thereof
US6142641A (en) * 1998-06-18 2000-11-07 Ultratech Stepper, Inc. Four-mirror extreme ultraviolet (EUV) lithography projection system
US6489984B1 (en) 1998-12-29 2002-12-03 Kenneth C. Johnson Pixel cross talk suppression in digital microprinters
US6498685B1 (en) 1999-01-11 2002-12-24 Kenneth C. Johnson Maskless, microlens EUV lithography system
SE516914C2 (sv) * 1999-09-09 2002-03-19 Micronic Laser Systems Ab Metoder och rastrerare för högpresterande mönstergenerering
SE517550C2 (sv) 2000-04-17 2002-06-18 Micronic Laser Systems Ab Mönstergenereringssystem användande en spatialljusmodulator
US6425669B1 (en) * 2000-05-24 2002-07-30 Ball Semiconductor, Inc. Maskless exposure system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2531201C1 (ru) * 2011-01-05 2014-10-20 Макдермид Принтинг Солюшнз, Ллк Способ повышения качества печати на флексографских печатных формах
RU2515672C1 (ru) * 2012-12-18 2014-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (НИУ ИТМО) Способ изготовления микрооптического растра

Also Published As

Publication number Publication date
US6285488B1 (en) 2001-09-04
WO1999045439A1 (en) 1999-09-10
DE69936950D1 (de) 2007-10-04
JP2006080539A (ja) 2006-03-23
WO1999045438A1 (en) 1999-09-10
AU2756899A (en) 1999-09-20
US20100208327A1 (en) 2010-08-19
KR20010052196A (ko) 2001-06-25
SE9800665D0 (sv) 1998-03-02
CN1292102A (zh) 2001-04-18
DE69936950T2 (de) 2008-05-15
RU2257603C2 (ru) 2005-07-27
EP1060442A1 (en) 2000-12-20
US7009753B2 (en) 2006-03-07
DE69938921D1 (de) 2008-07-31
US20050225836A1 (en) 2005-10-13
ES2357473T3 (es) 2011-04-26
DE69943040D1 (de) 2011-01-27
CN1173234C (zh) 2004-10-27
EP1060443A1 (en) 2000-12-20
DE69928232T2 (de) 2006-08-03
ATE398299T1 (de) 2008-07-15
JP2002506231A (ja) 2002-02-26
EP1060439B1 (en) 2005-11-09
JP2002506234A (ja) 2002-02-26
US6428940B1 (en) 2002-08-06
JP2010016404A (ja) 2010-01-21
WO1999045436A1 (en) 1999-09-10
US20090147345A1 (en) 2009-06-11
AU2755699A (en) 1999-09-20
US6399261B1 (en) 2002-06-04
US7787174B2 (en) 2010-08-31
US6747783B1 (en) 2004-06-08
JP2010267978A (ja) 2010-11-25
EP1060443B1 (en) 2008-06-18
KR20010052197A (ko) 2001-06-25
EP1600817A1 (en) 2005-11-30
CN1292103A (zh) 2001-04-18
US20060103914A1 (en) 2006-05-18
US7957055B2 (en) 2011-06-07
US7034986B2 (en) 2006-04-25
JP2002506230A (ja) 2002-02-26
US6987599B2 (en) 2006-01-17
EP1060441B1 (en) 2010-12-15
US20060187524A1 (en) 2006-08-24
CN1189794C (zh) 2005-02-16
ATE309557T1 (de) 2005-11-15
ATE491970T1 (de) 2011-01-15
US20040165170A1 (en) 2004-08-26
JP2002506236A (ja) 2002-02-26
EP1060440A1 (en) 2000-12-20
US20030202233A1 (en) 2003-10-30
US7710634B2 (en) 2010-05-04
US7365901B2 (en) 2008-04-29
US6687041B1 (en) 2004-02-03
KR100474121B1 (ko) 2005-05-06
EP1060439A1 (en) 2000-12-20
AU2756999A (en) 1999-09-20
CN1550902A (zh) 2004-12-01
US20090191489A1 (en) 2009-07-30
ATE398792T1 (de) 2008-07-15
WO1999045440A1 (en) 1999-09-10
EP1060441A1 (en) 2000-12-20
JP2002506235A (ja) 2002-02-26
AU3284299A (en) 1999-09-20
US7184192B2 (en) 2007-02-27
JP2002506233A (ja) 2002-02-26
WO1999045435A1 (en) 1999-09-10
US6504644B1 (en) 2003-01-07
EP1060442B1 (en) 2008-06-11
AU2755599A (en) 1999-09-20
US7800815B2 (en) 2010-09-21
JP2010015176A (ja) 2010-01-21
WO1999045437A1 (en) 1999-09-10
EP1600817B1 (en) 2007-08-22
DE69928232D1 (de) 2005-12-15
US6373619B1 (en) 2002-04-16
AU2755799A (en) 1999-09-20
JP2009033190A (ja) 2009-02-12
DE69938895D1 (de) 2008-07-24
DE69943041D1 (de) 2011-01-27
ATE491971T1 (de) 2011-01-15
KR100451026B1 (ko) 2004-10-06
JP2002506232A (ja) 2002-02-26
EP1060440B1 (en) 2010-12-15
AU2757099A (en) 1999-09-20
US20080079922A1 (en) 2008-04-03
WO1999045441A1 (en) 1999-09-10

Similar Documents

Publication Publication Date Title
RU2232411C2 (ru) Усовершенствованный генератор рисунков
US6816302B2 (en) Pattern generator
JP4495898B2 (ja) 改良型パターン・ジェネレータ

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160303