RU2129018C1 - Иммуноконьюгат, способ получения иммуноконьюгата и фармацевтическая композиция - Google Patents

Иммуноконьюгат, способ получения иммуноконьюгата и фармацевтическая композиция Download PDF

Info

Publication number
RU2129018C1
RU2129018C1 RU94045281A RU94045281A RU2129018C1 RU 2129018 C1 RU2129018 C1 RU 2129018C1 RU 94045281 A RU94045281 A RU 94045281A RU 94045281 A RU94045281 A RU 94045281A RU 2129018 C1 RU2129018 C1 RU 2129018C1
Authority
RU
Russia
Prior art keywords
antibody
mab
fragment
immunoconjugate
cells
Prior art date
Application number
RU94045281A
Other languages
English (en)
Other versions
RU94045281A (ru
Inventor
фон Хеген Илка
Хофманн Уве
Еггле Карлотта-Сильвия
Штриттматтер Вольфганг
Штадльмюллер Йорг
Матцку Зигфрид
Original Assignee
Мерк Патент Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мерк Патент Гмбх filed Critical Мерк Патент Гмбх
Publication of RU94045281A publication Critical patent/RU94045281A/ru
Application granted granted Critical
Publication of RU2129018C1 publication Critical patent/RU2129018C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5406IL-4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/5418IL-7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/028Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from a herpesvirus

Abstract

Изобретение относится к области биохимии, в частности к новым слитым белкам, и может быть использовано при лечении опухолевых заболеваний. Иммуноконьюгат представляет собой моноклональное антитело или его фрагмент, соединенный с биологически активным лигандом. Антитело или его фрагмент направлены против опухолевой клетки, несущей антигенный эпитон рецептора эпидермального фактора роста. В качестве биологически активного лиганда использован цитокин. Для получения иммуноконьюгата используют слияние ДНК-последовательности, кодирующей антитело или его фрагмент, и ДНК-последовательности, кодирующей биологически активный лиганд. Полученную конструкцию вводят в вектор экспрессии. Вектор экспрессии культивируют в хозяйских клетках. Изобретение может быть использовано для лечения любых видов опухолей. 3 с. и 10 з.п. ф-лы, 6 ил., 2 табл.

Description

Изобретение относится к новым слитым белкам, которые включают в себя опухолеассоциированный и направленный против клетки-мишени элемент, предпочтительно моноклональное антитело или его фрагмент, распознающие молекулу, экспрессирующуюся преимущественно на опухолевых клетках человека, например, такую, как рецептор эпидермального фактора роста (EGFR); и биологически активный лиганд, например, такой, как фактор роста и/или фактор дифференцировки. Полученный гибридный белок может быть использован для доставки биологически активного лиганда к специфическим клеткам-мишеням или тканям-мишеням. Новые иммуноконъюгаты могут быть использованы для лечения опухолевых заболеваний.
Для лечения раковых заболеваний было разработано множество различных терапевтических методов. В последние годы были проведены клинические испытания с использованием моноклональных антител, которые обладают способностью к специфическому или преимущественному распознаванию молекул клеточной поверхности, экспрессируемых на злокачественных клетках. Целью описанной методики является индукция антитело-зависимой клеточной цитотоксичности (ADCC) или комплект опосредованной цитотоксичности (CDC) для удаления опухолевых клеток. Второй способ, разработанный за последнее время, заключается в цитокин-опосредованной активации иммунного ответа. Такая цитокин-индуцированная противоопухолевая активность может быть опосредована:
1) прямым цитотоксическим/цитостатическим воздействием цитотоксина на рост опухоли%
2) "опухоль-антиген" - неспецифическими механизмами, такими, как LAK-активность, или моноцит/макрофаг-опосредованная цитотоксичность;
3) "опухоль-антиген" - специфическими иммунными реакциями, опосредованными CD4 и CD8-положительными T-клетками. В этом случае системный иммунитет против опухолей наблюдался на моделях животных.
К сожалению, токсичность цитокинов таких, как ШД-2 или TNFα , не позволяет широко использовать их для системного введения (Rubin, Cancer Inverst., II, 460-172, 1990, Balkwill Nature 361: 206-207, 1993). Для обеспечения достаточной концентрации цитокинов в месте локализации опухоли их необходимо вводить в довольно высоких дозах, и эти дозы, как правило, превышают предельно допустимые дозы. Отсюда очевидно, что негативный эффект применения обусловлен, в основном, их системным введением; однако возможность использования цитокинов при лечении опухолей не вызывает сомнений. На моделях животных было проиллюстрировано, что присутствие in situ цитокина, обусловленное либо внутриопухолевой инъекцией, либо секрецией трансфецированных опухолевых клеток, может приводить к регрессии опухоли (Носок и др., PNAS, 90: 2774 - 2778, 1993; Colombo и др., Cancer Res. 52: 4853 - 4857, 1992; Mcbride и др., Cancer Res. 52: 3931 - 3937, 1992; Tepper и др., Science 287: 548 - 551, 1992; Mullen и др., Cancer Res. 52: 6020 - 6024, 1992; Blankenstein и др., J.Exp. Med. 173: 1047 - 1052, 1991; Gansdbacher и др. J.Exp Med. 172: 1217 - 1224, 1990). В этих системах цитокины не ослабляют опухолевую пролиферацию, но активируют и сильную антиопухолевую реакцию. Поэтому, физическая комбинация эффекторной молекулы и элемента, направленного против мишени, должна способствовать снижению периферического количества биологически активного лиганда и увеличению его количества внутри опухоли. Кроме того, эти молекулы могут быть также направлены на одиночные опухолевые клетки или микро-метастазы.
Указанный биологически активный лиганд, обеспечивающий антитело-направленную доставку конъюгата к клеткам-мишеням, должен индуцировать деструкцию клетки-мишени либо непосредственно, либо посредством создания условий, летальных для клетки-мишени. Таким биологически активным лигандом может быть цитокин, например, IL-1, LI-2, IL-4, IL-6, IL-7, IL-10, IL-13, IFN, TNFα, или CSF. Было показано, что эти цитокины обладают либо непосредственным противоопухолевым действием, либо способностью активировать защитные механизмы хозяина (Mire-Sluis TIBTECH 11:74-77, 1993; Colombo и др., Cancer Res. 52: 4853-4857, 1992; Thomas $ Balkwill, Pharmac Ther. 52:307.
Например, IL-2 является, как предполагают, центральным медиатором иммунного ответа. Было показано, что IL-2 стимулирует пролиферацию T-клеток и NK-клеток (природных киллеров), а также индуцирует лимфокин-активированные клетки-киллеры (LAK). IL-2 индуцируют пролиферацию T-лимфоцитов, вызывающих инфильтрацию опухоли. Кроме того, IL-2 усиливают цитотоксичность T-клеток и моноцитов. IL-2 индуцируют каскад цитокинов, секретируемых T-клетками, NK-клетками и моноцитами, что способствует дополнительному потенцированию иммунной реакции.
TNFα находит широкое применение в опухолевой терапии, главным образом, благодаря своей непосредственной цитотоксичности в отношении некоторых опухолевых клеток, и способностью индуцировать геморрагический регресс опухоли. Помимо этого, TNFα способствует усилению иммунного ответа, поскольку он является костимулирующим фактором пролиферации T-клеток, и индуцирует экспрессию антигенов ГКС класса I и класса II, а также секрецию TNFα , IFN и IL-1 макрофагами. IL-4 был первоначально описан как фактор роста B-клеток. В последующих исследованиях было показано, что IL-4 стимулирует антиген-специфические цитотоксические T-клетки, и оказывает специфическое воздействие на T-клетки, подобные LAK-клеткам, а не на NK-клетки, подобные LAK-клеткам. IL-4 ингибирует рост клеток меланомы человека и усиливает экспрессию их ГКС класса I и класса II. Факт индуцирования макрофаг-опосредованного противоопухолевого действия IL-4 остается пока спорным.
IL-7 представляет собой фактор роста пре-B-клеток, а также периферических CD4- и CD8-положительных T-клеток. IL-7 непосредственно увеличивает цитотоксичность CЭ8-положительной субпопуляции T-клеток. помимо этого, IL-7 способствует продуцированию IL-1, IL-6 и TNFα периферическими моноцитами. in vitro, противоопухолевая активность моноцитов/макрофагов может быть стимулирована вышеуказанным фактором IL-7, и возможно опосредована цитокинами, такими, как TNFα .
Эпидермальный фактор роста (EGF) представляет собой полипептидный гормон, который является митогенным для эпидермальных и эпителиальных клеток. При взаимодействии EGF с чувствительными клетками, он связывается с мембранными рецепторами (EGFP). EGFP представляет собой трансмембранный гликопротеин (около 170 кДа), и является генным продуктом c-evb-B протоонкогена.
Было обнаружено, что мышиное моноклональное антитело MAb 425, продуцируемое против клеточной линии карциномы А 431 человека (АТСС CPI 1555), связывается с эпитопом полипептида на внешнем домене EGFP. Как было установлено, это антитело ингибирует связывание EGF, опосредует in vitro - цитотоксичность по отношению к опухолям, и подавляет опухолевый рост in vitro клеточных линий, происходящих от эпидермальной и колоректальной карциномы (Rodeck и др. , 1987, Cancer Res. 47, 3692). Гуманизированные и химерные варианты MAb 425 описаны в WO 92/15683.
В литературе были описаны иммуноконъюгаты "антитело-цитокин" в различных комбинациях, предназначенных для направленной доставки активных белков к тканям-мишеням. Il-2 был объединен со специфическим антителом против карциномы человека L6 (Fell и др., 1991, J. Immunol. 146: 2446 - 2452, EP-OS-0439095), или с антителом против ганглиозида CD2 (Gillies и др., 1992, PN AS 89: 1428-1432, WO 92/08495). Были также генерированы иммуноконъюгаты, состоящие из антиданзилового антитела и IGFI, и обеспечивающие направленную доставку гормонов к тканям-мишеням (Shin & Morrison 1990, PNAS 87: 5322-5326, WO 91/14438).
Таким образом, целью настоящего изобретения является продуцирование антител или их фрагментов, содержащих (I) эпитоп, направленный против EGFP - антигена на поверхности опухолевой клетки, и (2) биологически активной лиганд, обладающий высокой степенью способности индуцировать цитотоксичность, и тем самым, интенсифицировать противоопухолевый эффект in situ.
Настоящее изобретение относится к иммуноконъюгатам, включающим в себя часть моноклонального антитела, или, по крайней мере, его сайт распознавания антигена, либо полное моноклональное антитело; и биологически активный лиганд. Конструкции, кодирующие указанные иммуноконъюгаты, получают с использованием техники рекомбинантных ДНК. Эти иммуноконъюгата содержат вариабельную область тяжелой цепи антитела и СР1-домен константой области (антитело-СР1-конъюгат), или CH1- и СР2-домены контактной области (антитело-CH2-конъюгат), или CH1-, CH2- или CH3-домены контактной области (антитело-CH3-конюъгат), связанные с биологически активным лигандом. Кроме того, могу быть генерированы иммуноконъгаты, которые содержат соответствующую легкую цепь, и которые направлены на антиген-несущие клетки и способны обеспечивать доставку активного лиганда к контрольному участку организма (фиг. 1 a-c).
С помощью имммуноконъюгатов настоящего изобретения могут быть обнаружены и подвергнуты успешному лечению такие опухоли, как меланома, глиома и карцинома.
В соответствии с этим, целью настоящего изобретения является получение иммуноконъюгата, состоящего из (I) моноклонального антитела или его фрагмента, направленного против опухолевой клетки, несущей антигенную детерминанту (эпитоп) рецептора эпидермального фактора роста (EGFR); и (2) биологически активный лиганд, предпочтительно, цитокин, который сцеплен с указанным антителом или его фрагментом, и обладает цитотоксической способностью специфически лизировать опухолевую клетку in situ, или индуцировать опухолеспецифический иммунный ответ.
В предпочтительном варианте осуществления настоящего изобретения, цитокины выбирают из TNFα , IL-2, IL-4 и IL-7.
В другом предпочтительном варианте осуществления настоящего изобретения, антитело или его фрагмент происходит от мышиного, гумманизированного или химерного MAb 425.
В еще одном предпочтительном варианте осуществления настоящего изобретения, иммуноконъюнгатами является MAb 425-CH1-INF, MAb 425-CH2-INF и MAb 425-CH3-INF, MAb 425-CH1-IL2 и MAb 425-CH2-IL2, MAb 425-CH3-IL-7, MAb 425-CH2-IL-7 и MAb 425-CH3-IL-7.
Кроме того, целью настоящего изобретения является разработка способа получения иммуноконъюгата, определенного выше и в нижеприведенной формуле изобретения, который осуществляют с использованием организма-хозяина, и который заключается в том, что: получают гибридную конструкцию, содержащую ДНК-последовательность, кодирующую антитело или его фрагмент, и биологически активный лиганд; полученную конструкцию вставляют в экспрессирующий вектор, которым трансформируют указанный хозяйский организм; хозяйские клетки культивируют в питательном растворе; и гибридный белок экспрессируют.
А предпочтительном варианте осуществления настоящего изобретения используется технология, в которой ДНК-последовательности, кодирующие антитело или его фрагмент, и биологически активный лиганд, сливают на одноцепочечной ДНК с использованием олигонуклеотида, комплеменатарного ДНК-последовательности нужной для слияния.
Кроме того, целью настоящего изобретения является получение фармацевтической композиции, содержащей по крайней мере один иммуноконъюгант, определенный выше и в формуле изобретения, и физиологически приемлемый носитель.
И наконец, еще одной целью настоящего изобретения является использование иммуноконъюгатов, определенных выше и в формуле изобретения, для изготовления противоопухолевого лекарственного средства.
Было обнаружено, что в случае использования иммуноконъюгатов "антитело-CH2" и "антилтело-CH3", например, таких, как МAb 425-CH2-TNFα и MAb 425-CH3-TNFα , наблюдается особенно высокая степень индукции клеточной цитотоксичности по сравнению с неконъюгированным TNFα . Этот факт, вероятно, обусловлен сочетанием связывающих свойств, индуцирования ACC (антитело-зависимой клеточной цитотоксичности) константными областями моноклонального антитела, и активности цитокинов.
Преимущество конъюгатов "антитело-CH1" настоящего изобретения заключается в небольшом размере из молекулы, а также в их способности экспрессироваться в прокариотах. Малый размер молекулы облегчает проникновение конъюгата в ткани (опухоль).
Кроме того, иммуноконъюгаты настоящего изобретения обнаруживают хорошую способность к связыванию и пролиферации по сравнению с моноклональным антителом (предпочтительно MAb 425) как таковым или его фрагментами.
Материалы и методы.
Моноклональные антитела.
MAb 425 представляет собой мышиное моноклональное антитело IoG1, продуцируемое против клеточной линии карциномы А431 человека (АТСС CPL 1555). MAb 425 связывается с полипептидным эпитопом внешнего домена EGF-рецептора человека и конкурирует за связывание с EGF. Было обнаружено, что MAb 425 опосредует опухолевую цитотоксичность in vitro, и подавляет in vitro рост клеток эпидермальной и колоректальной карциномы (Rodeck и др., 1987, Cancer Res 47:3692). Гуманизированные и химерные варианты MAb 425 были описаны в WO 92/15683.
Цитокины.
Цитокинкодирующие кДНК поставлялись от фирмы British Biotechnology Limited (Herrmann Biermann GMBH, Ban Nauheim FRG:
чел. IL -2 BBG30, чел. IL-4 BBG15, чел. IL-7 BBG 43, чел. TNF BBG 18). В коммерчески доступных кДРК отсутствует сигнальная последовательность, необходимая для выделения белка. Цитокин-кодирующие кДНК могут быть генерированы из мРНК, выделенной из цитокин-продуцирующих клеток.
Векторы.
pUC19 является одним из серии родственных мультикопийных E.coli-плазмидных векторов клонирования и содержит части pBP322 и M13 mp19. pUC19 содержит индуцибельный lac-бактериальный промотор-оператор и расположенный за ним множественный клонирующий сайт (Yanisch-Perron и др., Gene 33: 103-109, 1985). Векторы pUC являются коммерчески доступными (например, New England Biolahs). Фазмидные векторы pBlue script KS/SK + и KS/SK - происходит от p C19. Эти векторы являются коммерчески доступными (Stratagene).
Эукариотический экспрессирующий вектор pHCM V (Gil Lies и др., 1983, Cell 33:717) содержит сайт инициации репликации обезьяньего вируса 40 (SV40) и область промотора и энхансера цитомегаловируса человека. Указанная область просмотра/энхансера расположена за сайтом мультиклонирования (mcs) для введения экспрессируемых генов. В этом векторе для генерирования гибридного белка с тяжелой цепью MAb 425 были объединены химерная форма вариабельной области тяжелой цепи m AB425 и области C γ Δ Sac 11, сцепленная с эффекторной молекулой в конце домена CH1, CH2 или CH3, соответственно. Гибридная цепь Ig может быть включена в иммуноконьюгат путем ее объединения с соответствующей легкой цепью, в результате чего образуется моновалентная область связывания с антигеном, которая может быть затем использована для продуцирования иммуноконьюгата, специфического для антигена-мишени (фиг. 1). Конструкция с тяжелой и легкой цепью могут быть введены в тот же самый или в разные векторы.
Вектор для экспрессии в прокариотах получают на основе вектора pSW1 (Ward и др., Nature 341:544-546, 1989), который происходит от вектора pUC19. pSW1 содержит последовательность, колирующую лидерный пептид бактериального peIB-гена от Erwinia carotovra (Lei и др., J. Bact 169: 4379 - 4383, 1987). Чужеродные ДНК могут быть введены с сохранением рамки считывания ниже лидерной последовательности peIB для регулирования экспрессии белка в периплазме.
Краткое описание чертежей и таблиц.
Таблица I. PCP-праймеры, используемые для генерирования MAb 425-цитокин-гибридных белков (зукариотическая экспрессия).
* Обратный праймер, гибридизирующийся с векторами (Stratagene) SR+/- и KS+/- (коммерческий продукт);
** Этот праймер гибридизируется с константной областью CgL, включая уникальный Sac 11-сайт;
*** Обратный праймер, гибридизирующийся с векторами, происходящими из М13 (коммерческий продукт).
Таблица II. PCR-праймеры, используемые для генерирования MAb 425-цитокин-гибридных белков (прокариотическая экспрессия)
Фиг. 1. Модель иммуноконьюгатов "антитело-цитокин"
C = цитокин; VH = вариабельная область тяжелой цепи; VL = вариабельная область легкой цепи; CH = константная область тяжелой цепи; CL = константная область легкой цепи. (а) конъюгат "антитело-CHI"; (b) конъюгат "антитело-CH2"; (c) конъюгат "антитело-CH3".
Фиг. 2. Связывание иммуноконъюгатов с EGF-рецептором (EGFR) в EGFR- специфическом ELISA - анализе.
Супернатанты кратковременно трансфицированных клеток CO S-7 анализировали на содержание иммуноконъюгата. Вертикальная ось:% оптической плотности при 490 нм; горизонтальная ось: разведение супернатанта (log.2).
MAb 425 CHI-TNFα (заштрихованные (cilled) кружочки), MAb 425 CH2-TNFα (заштрихованные квадраты), MAb 425 CH3-TNFα (заштрихованные треугольники), MAb 425-контроль (заштрихованные ромбы); MAb 425 FAb-контроль (перевернутый заштрихованный треугольник); MAb 425 F(ab')2 в своей первоначальной форме (очищенный белок) (заштрихованный шестиугольник).
Фиг. 3А. IL-2-активность иммуноконъюгата "MAb 425-CHI-IL-2", экспрессированного в клетках COS-7.
Клетки CTLL-2 использовали в качестве индикаторной клеточной линии, пролиферативная активность серийно разведенного COS-супернатанта, содержащего MAb 425-CHI-II-2, показана на левой панели (заштрихованные кружки). В качестве контроля использовали COS-супернатант, содержащий MAb 425 Fab-контроль (незаштрихованные кружки). Пролиферативный ответ клеток CTLL-2 на активацию рекомбинантным коммерческим IL-2-белком или без IL-2 (KO) показан на правой панели.
Фиг. 3B. IL-2-активность иммуноконъюгата "MAb 425-CHI-IL-2", экспрессированного в E.coli.
Клетки CTLL-2 использовали в качестве индикаторной клеточной линии. Пролиферативная активность серийно разведенного иммуноконъюгата MAb 425-CHI-IL-2, экспрессированного в E.coli, и аффинноочищенного на идиотипической колонке против MAb 425, показана на левой панели (заштрихованные треугольники). В качестве контроля использовали COS-супернатант, содержащий MAb 425-CHI-IL-2 (зачерненные (closed)кружки). Буфер для диализа - зачерненные квадраты. Для того, чтобы убедиться, что буфер не влияет на IL-2-активность, буфер для диализа титровали в присутствии постоянной концентрации IL-2 (I ед. /мл) (заштрихованные перевернутые треугольники). Пролиферативный ответ клеток CTLL.2 на активно коммерчески рекомбинантным белкам с IL-2 или при отсутствии IL-2 (КО) показан на правой панели.
Фиг. 3C. Индуцирование TIL-пролиферация с помощью иммуноконъюгата MAb 425-CHI-IL-2.
Лимфоциты, вызывающие инфильтрацию меланомы, культивировали в отсутствии (КО) или в присутствии серийно разведенных COS-супернатантов, содержащих иммуноконъюгат 425-CHI-IL-2 (левая панель). Пролиферативный ответ TII на активацию рекомбинантным коммерческим IL-2 показан на правой панели.
Фиг. 4. Индуцирование HPBL-пролиферации с помощью иммуноконъюгата MAb 425-IL-4
PHA - активированные HPBL культивировали в присутствии серийно разведенных COS - супернатантов, содержащих MAb 425-CH2-IL-4 (зачерненные кружочки), MAb 425-CH3-IL-4 (зачерненные треугольники) - гибридные белки. Супернатанты, содержащие MAb 425 (зачерненные квадраты), IL -4 (зачерненный ромб), и векторный контроль (зачерненный перечеркнутый треугольник), использовали в качестве контроля. Пролиферативный ответ HPBL на активацию рекомбинатным коммерческим IL-4 и при отсутствии фактора роста (КО) показан на правой панели.
Фиг. 5. Цитотоксичность иммуноконъюгата MAb 425-TNFL по отношению к клеткам EHI 164
Клеточную линию TNFL-чувствительной мышиной фибросаркомы WEHI 164 культивировали 48 часов в присутствии серийно разведенных COS-супернатантов (левая панель), содержащих 425-CHI-TNFα-иммуноконъюгат (заштрихованные квадраты) или 425-CH2-TNFα-иммуноконъюгат (заштрихованные треугольники), или MAb 425Fab-контроль (заштрихованные кружки). Ингибирование роста индикаторных клеток, индуцированного коммерчески рекомбинантным TNFα-человека, проиллюстрировано на правой панели.
Фиг. 6. Цитолиз опухолевых клеток лимфоцитами периферической крови, опосредованной MAb 425 - TNFL-иммуноконъюгатом
Неактивированные лимфоциты периферической крови (PBMC) использовали в качестве эффекторных клеток и культивировали вместе с аллогенными EGF-R-положительными 51Cr-меченными клетками-мишенями C8161 в отношении эффектор/мишень = 30:1. Процент специфического лизиса вычисляли после 18-часового совместного культивирования в отсутствие или в присутствии серийно разведенных COS-супернатантов, содержащих иммуноконъюгат MAb 425-CH3-TNFα (заштрихованные столбцы). Рекомбинатный TNFα (Genzym) был экспрессирован в E.coli как 36 кДа-димер (точечные столбцы).
Другие микроорганизмы, клеточные линии, плазмиды, промоторы маркеры резистентности, сайты инициации репликации, рестрикционные сайты или другие фрагменты векторов, которые упоминаются в настоящем описании, являются коммерчески доступными, либо они могут быть продуцированы стандартными методами. Если это не оговорено особо, то все указанные элементы могут быть использованы лишь в иллюстрированных целях, и в основном, не относятся к настоящему изобретению, причем, они могут быть заменены другими подходящими элементами и биологическими материалами, соответственно.
Способы, относящиеся к настоящему изобретению, подробно описаны ниже. Другие способы, которые являются стандартными и достаточно хорошо известными специалистам и которые упоминаются в настоящем описании, более подробно описываются в цитируемых работах, патентных заявках и в специальной литературе (см. , например, "Antibodies, A Laboratory Manual, Harlon, Lane, Cold Spring Harbor, 1988).
Экспрессия гибридных белков в эукариотических клетках.
Конструирование экспрессирующих векторов для эукариотической экспрессии Fab 425-цитокин-гибридного белка.
Слияние MAb 425 и цитокинов с использованием техники выпетливания.
Генерирование TNFα-конструкций.
Sac11/Xba1-фрагмент Sac11-cγ1- клона вставляли в вектор Bluescript SK+, содержащий цитокин-кодирующие последовательности, такие, как TNFα-кДНК.
TNFα-кДНК вводили между сайтами Smal и EcoRI. Эту конструкцию получали в виде одноцепочечной ДНК путем добавления соответствующего фага-хелпера. Домен CH2 или CH3 сливали с сохранением рамки считывания к 5'-концу TNFα-колирующей последовательности. Олигонуклеотиды
Figure 00000002

являются гомологичными 3'-концу CH2-домена и CH3-домена, соответственно, и 5'-концу TNA α-кодирующей последовательности. Одноцепочечные ДНК-последовательности соединяли друг с другом посредством олигонуклеотида, а нежелательные последовательности, расположенные между ними, из конструкции удаляли. Олигонуклеотиды имели противоположную ориентацию, поскольку верхнюю цепь продуцировали как одноцепочечную ДНК.
К полученной ДНК достраивали вторую цепь с помощью секвеназы-полимеразы. Этот фермент не подвержен ошибкам, как ДНК-полимераза Amplitag, а поэтому была определена лишь ДНК-последовательность области соединения выделенных клонов. Клоны с правильной последовательностью были лигированы с последовательностями, необходимыми для генерирования полного 425-гибридного белка, и клонированы в вектор pHCMV для экспрессии в эукариотических клетках.
Генерирование IL-4-конструкций.
Для генерирования указанных конструкций, полный ΔSac11-cγ1-клон вставляли в Bluescript RS+ в качестве Kpnl/Sall -фрагмента. IL-4 клонировали как Hind 111/EcoRL -фрагмент в тот же самый вектор. Генерирование гибрида осуществляли так же, как и для TNF-конструкций, но с использованием следующих олигонуклеотидов:
Figure 00000003

для слияния с CH2- и CH3-доменом, соответственно.
Клоны с правильной последовательностью объединяли с последовательностями, необходимыми для генерирования полного mab 425-гибридного белка, и клонировали в вектор pHCM для экспрессии в эукариотических клетках.
Получение гибрида "MAb 425-цитокины" с помощью PCP-технологии.
ДНК-полимераза Amplitag подвержена ошибкам, и во избежании возможных ошибок, были определены последовательности вышеуказанных фрагментов, амплифицированных с помощью PCR-технологии. Праймеры, использованные в этих экспериментах, систематизированы в табл. 1.
Генерирование CHI-гибридных белков.
Плазмида pUH5 содержат последовательности фрагмента FAb 425 тяжелой цепи для прокариотической экспрессии и N-концевой pelB-лидерной последовательности, происходящей из Erwinia carotovora (Lei и др., J/Bact 169: 4379-4383, 1987), и обеспечивающей секрецию белка. Hind 111/Not1-фрагмент субклонировали в вектор Bluescript KS+. Цитокины IL-4 и IL-7 были амплифицированы с помощью PCP-технологии и введены в рестрикционные 5' Ncol и 3' Bam H1-сайты, соответственно. IL-2 и TNFα уже содержали 5' Hcol и 3' BamH1-сайты рестрикции. Все цитокины были клонированы в качестве Ncol/Bam H1 - фрагментов позади CHI-домена. В этих конструкциях, последовательности цитокинов были введены без сохранения рамки считывания. Поэтому, между Sall- и Ncol- сайтами рестрикции был введен адаптор (5'TGGACAAGAAAG 3'). В полученных конструкциях тяжелая цепь и цитокин были экспрессированы как гибридный белок с одной дополнительной аминокислотой (AIa), введенной последовательностью адаптора. Dra 111/BamH1-фрагменты были клонированы в экспрессирующий вектор pHCM, содержащий полный кДНК-клон тяжелой цепи MAb 425. В этой конструкции, pelB-лидерная последовательность была замена на лидерную последовательность кДНК тяжелой цепи MAb 425.
Генерирование CH2- и CH3-гибридных белков.
Sac11-cγ1-ДНК была амплифицирована с помощью PCR-технологии в двух отдельных реакциях с использованием CH2-3'-концевых праймеров, которые перекрывались (с сохранением рамки считывания) с 5'-концом соответствующего цитокина, такого, как IL-2 и IL-7. IL-2 и IL-7-кДНК-клоны были также амплифицированы с помощью PCR. Для облегчения субклонирования в SK+-вектор, а затем в экспрессирующий вектор pHCMV, в IL-2-конструкцию (у 3'-конца) были введены уникальные Not1- и Sa11-сайты, а в IL-7-конструкцию был введен уникальный Xot1-сайт. Генерирование гибрида IL-2- и IL-7-PCP-продуктов с полной ΔSac11-cγ1-областью осуществляли путем PCR-рекомбинации. Полученный BamH1/Not1-фрагмент ΔSac11-cγ'-CH2-IL-2 субклонировали в SK+, содержащий вариабельную область тяжелой цепи MAb 425. Sac11/Xba1-фрагмент ΔSa11-CH-2-IL-7 субклонировали в вектор SK+, содержащий вариабельную область тяжелой цепи MAb 425 и Sac11-cγ1-область до Sa11-сайта. В результате этой процедуры были генерированы полные MAb425-CH2-IL-2- и IL-7-гибридные гены, соответственно. Аналогичным образом был генерирован полный MAb 425-CH3-IL-2-гибридный ген за тем лишь исключением, что ΔSa11-c γ1 был амплифицирован из уникального Sac11-сайта в качестве 5'-конца. Sac11/Pst/-фрагмент MAb 425-CH2-IL-2 в SK+, содержащем CH2-IL-2-гибрид, затем заменяли Sac11/Pst-фрагментом, содержащим CH3-IL-2-гибрид. После этого полные MAb 425-гибридные гены клонировали в вектор pHCMV для экспрессии в аукариотических клетках.
Экспрессия иммуноконъюгатов.
Введение векторных конструкций в хозяйские клетки для экспрессии моновалентного иммуноконъюгата, содержащего лишь CH1-домен, или дивалентных иммуноконъюгатов, содержащих CH2-и CH2- плюс CH3-домены, может быть осуществлено путем электропорации, методами с использованием DEAE-декстрана, кальцийфосфата, липофектина, или путем слияния протопластов. При этом, может быть использован любой тип клетки-хозяина, при условии, что рекомбинантные ДНК-последовательности, кодирующие иммуноконъюгат и соответствующую легкую цепь, правильно транскрибируются в мРНК в клетках этого типа. Такими клетками-хозяевами могут быть клетки мышиной миеломы, которые не продуцируют иммуноглобулин, например, Sp2/0-AG14 (ATCC CPL 1581), P3X63Ag8.653 (ATCC CPL 1580), или клетки хомячка, такие, как CHO-K1 (ATCC CCL 61), или CHO/dhF - (ATCC CPL 9096), или ВНК-21 (ATCC CCL 10). Для кратковременной экспрессии могут быть использованы COS-1 (ATCC CPL 1650) или COS-7 (ATCC CPL 1651).
Кратковременная экспрессия иммуноконъюгатов.
Экспрессирующий вектор pHCMV содержит сайт инициации репликации обезьяньего вируса 40 (SV 40). Клеточная линия COS-7 происходит от обезьяньей клеточной линии CV-1, которая была трансформирована вирусом SV40, не содержащим точки инициации репликации. Поэтому, для улучшения продуцирования иммуноконъюгатов, амплифицировали плазмиды, содержащие точку инициации репликации вируса SV40. Через 72 часа, супернатанты собирали и анализировали на связывание с EGF-рецептором и на концентрацию цитокина.
Постоянная экспрессия иммуноконъюгатов.
Векторы, содержащие рекомбинантные конструкции, и предназначенные для экспрессии иммуноконъюгатов, вводили в соответствующие клетки-хозяева. Конструкции, содержащие тяжелую и легкую цепи могут быть введены в тот же самый вектор или в разные векторы. В последнем случае оба вектора могут нести идентичные селективные маркеры, такие, как резистентность к неомицину, или dhFr, либо два различных селективных маркера для отбора на присутствие этих векторов. Отбор на dhFR-маркер может быть осуществлен лишь в dhFr-отрицательных клеточных линиях, таких, как CHO/dhFr. Клоны анализировали на экспрессию иммуноконъюгатов с помощью EGFP-специфического анализа ELISA. Отобранные клоны подвергали дополнительной очистке путем клонирования методом серийных разведений.
Конструирование векторов для экспрессии MAb 425-CH1-цитокин-гибридного белка в прокариотах.
ДНК-последовательности, кодирующие легкую цепь MAb 425 и Fd-фрагмент тяжелой цепи, вводили в сайт множественного клонирования вектора pSWl. Перед последовательностью, кодирующей зрелую легкую цепь, и последовательностью, кодирующей зрелую тяжелую цепь, находился лидерный пептид pelB-бактериального гена. Последовательность, кодирующая тяжелую цепь, содержала 3'Ncol-сайт. Цитокин-кодирующие кДНК были модифицированы посредством PCR для введения рестрикционных Ncol (5'-конец) и Not (3'-конец)-сайтов. Гены цитокина сливали с сохранением рамки считывания непосредственно с CH1-доменом тяжелой цепи. Праймеры, используемые в этих экспериментах. Систематизированы в таблице II.
Эти векторы способны к эффективной экспрессии функциональных FAb-цитоксин-гибридных белков в E.coli. Белок-гибрид, содержащий легкую и тяжелую цепь и цитокин, локализован на дицистронной мРНК, находящейся под контролем индуцибельного Iac-промотора (Skerra и Pluckthun Science 242: 1038 - 104, 1988). Поэтому, экспрессия FAb-гибридного белка может быть индуцирована в соответствии с требуемыми условиями культивирования. Трансляция обоих белков с дицистронной мРНК способствует синтезу равных количеств Fd-IL-2-гибридного белка и легкой цепи, повышая, тем самым, вероятность правильной сборки функциональных Fab-гибридных белков. Эти два полипептида выделяются в периплазму E. coli, где происходит укладка, образование дисульфидных связей и сборка функционального FAb 425 CH1-гибридного белка. При продолжительном культивировании бактерий, белки выделяются в культуральную среду.
Экспрессия MAb 425-CH1-IL-2-гибридного белка в E. coli и его очистка.
Штаммы E. coli, подходящие для экспрессии белка, трансформировали экспрессирующими плазмидами. Клетки культивировали до уровня оптической плотности ОП580 = 0,5, и индуцировали с использованием IPTG (1 мМ). Эти клетки культивировали в течение ночи, после чего супернатанты и клетки собирали. Супернатант наносили антиидиотипическую колонку против MAb 425. Эту колонку промывали забуференным фосфатом 0,5 м NaCl, и связанные белки элюировали 100 мМ глицина 0,5 М NaCl, pH 2,5. Элюат сразу нейтрализовали 2,5 М - Трисом, pH 8. Фракции, содержащие MAb 425-CH1-IL-2, объединяли, концентрировали и диализовали против PBS.
Связывающие свойства MAb 425-иммуноконъюгатов.
Способность MAb 425 к связыванию определяли с помощью EGF-рецептор-специфического ELISA-анализа. В общих чертах, эту процедуру проводили следующим образом: планшеты для микротитрования покрывали (4oC, в течение ночи) очищенным EGF-рецептором, и промывали для удаления несвязанного белка. Затем планшеты инкубировали с супернатантами, содержащими гибридный белок, или с супернатантами, содержащими неконъюгированные MAb, или Fab-фрагменты, или белки в очищенной форме. Планшеты промывали и инкубировали с козьими античеловечьими IgG и IgM (тяжелая и легкая цепь), конъюгированными с пероксидазой. Затем добавляли субстрат, и путем измерения при 450 нм (фиг. 2) определяли количество связанного EGFR-специфического белка. Концентрацию цитокина определяли с помощью коммерческого набора для ELISA, специфического для каждого цитокина, в соответствии с инструкциями изготовителей (данные не приводятся).
Пролиферация лейкоцитов.
Опухолеспецифические эффекторные клетки.
Одноядерные лейкоциты периферической крови и опухолеинфильтрующие лимфоциты (TIL), полученные от пациентов, страдающих меланомой, культивировали вместе с облученными (30Gy) аутологичными опухолевыми клетками в среде RPMI 1640 (1% пенициллин/стрептомицин, 1% глутамин, 20 мМ Hepes, 50 мМ β-меркаптоэтанола, 10% околоплодной сыворотки теленка, 20 ед./мл IL-2, 20 ед. /мл IL-4). Иммунореактивные клетки были слегка стимулированы аутологичными опухолевыми клетками.
Оценка пролиферации.
Цитокин-опосредованная пролиферация может быть определена с помощью:
(a) соответствующих индикаторных клеточных линий. В случае IL-2, может быть использована IL-2-зависимая мышиная клеточная линия CTLL-2 (ATCC TIB 241) (фиг. 3A) или другие IL-2 зависимые клеточные линии;
(b) in vitro - развивающихся опухолеинфильтрующих лимфоцитов (фиг. 3B);
(c) свежевыделенных одноядерных клеток, предварительно обработанных РНА-М (Sigma). В этом случае, эксперимент проводили с MAb 425-IL-4-гибридными белками (фиг. 4).
Свежевыделенные лейкоциты периферической крови человека, полученные от здоровых доноров или от пациентов с меланомой, либо TIL, полученные от пациентов с меланомой, культивировали in vitro (см. выше). Для оценки гибридных белков, лимфоциты культивировали в 96-луночных плоскодонных планшетах для микротитрования при плотности 1 • 105 клеток на лунку в конечном объеме 200 мкл. Затем клетки инкубировали с супернатантами, содержащими гибридный белок, или с супернатантами, содержащими неконъюгированные MAb, или с супернатантами, содержащими неконъюгированные цитокины, или белки в очищенной форме. Через 72 часа, клетки подвергали импульсному мечению с использованием 0,5 мкКи 3H-тимидина. Введение радиоактивной метки определяли после ночного инкубирования путем β-счета подложки в жидком сцинтилляторе. Результаты выражали как среднее число импульсов в минуту.
Определение цитотоксичности MAb 425-TNFα-иммуноконъюгатов
Определение TNFα-опосредованной цитотоксичности
Известно, что TNFα обладает прямой цитотоксичностью в отношении некоторых клеток, включая, ряд опухолевых клеток. Непосредственное цитотоксическое действие TNFα может быть определено с использованием мышиных фибробластов L929 (ATCC CCL 1)/ или EH1 164 (ATCC CPL 1751), или других TNFα-чувствительных клеточных линий, описанных в литературе (Flick & Gifford 1984, J. Immunol Meth 68 : 167). На фиг. 4 цитотоксическое действие MAb 425 CH1-TNFα и MAb 425 CH2-TNFα проиллюстрировано на клетках WEH1 164, используемых в качестве индикаторной клеточной линии.
Определение TNFα-индуцированной цитотоксичности.
В качестве клеток-мишеней для цитолиза, опосредованного аллогенными опухолеинфильтрующими лимфоцитами или свежевыделенными лимфоцитами периферической крови человека, полученными от пациентов с меланомой или от здоровых доноров, могут быть использованы EGF-рецептор-положительные клеточные линии, такие, как в высокой степени инвазивная и спонтанно метастатическая EGFR-положительная клеточная линия С8161 (Welch и др., 1991, Int. J. Cancer 47: 227, и работы, цитированные выше). Условия культивирования опухолевых клеток и TIL были описаны ранее (Shimizu и др., 1991, Cancer Res. 51: 6153).
In vitro - анализ на цитотоксичность осуществляли с использованием 51Cr-меченных опухолевых клеток-мишеней. Эти клетки-мишени подвергали мечению в течение 1 ч с использованием 51Cr (100 мкКИ / 107 клеток), а затем промывали в три стадии для удаления избыточного 51Cr. После этого клетки-мишени (2 • 103 клеток на лунку) инкубировали вместе с эффекторными клетками в 96-луночных планшетах для микротитрования в присутствии супернатантов, содержащих слитый белок, или супернатантов, содержащих неконъюгированные MAb, или супернатантов, содержащих неконъюгированные цитокины (контроль), или белков в очищенной форме. Супернатанты или очищенные белки серийно разводили в культуральной среде и анализировали в трех дубликатах. Планшеты инкубировали в течение 4 ч при 37oC в атмосфере 10% CO2. Затем клетки удаляли путем центрифугирования, а радиоактивность в супернатантах оценивали с помощью γ-счетчика. Процент специфического 51Cr-высвобождения вычисляли по следующей формуле:
Figure 00000004

Терапевтическое использование иммуноконъюгатов.
Иммуноконъюгаты настоящего изобретения могут быть введен человеку для проведения терапии. Поэтому, целью настоящего изобретения является получение фармацевтических композиций, которые, в качестве активного ингредиента, содержат, по крайней мере, один слитый белок, определенный выше или в формуле изобретения, в сочетании с одним или несколькими фармацевтическими приемлемыми носителями, наполнителями или разбавителями.
Иммуноконъюгаты настоящего изобретения, в основном, вводят путем внутривенной инъекции или другими парентеральными способами. Дозы вводимых иммуноконъюгатов должны быть достаточными для получения желаемого эффекта подавления опухоли и лизиса опухолевых клеток. Диапазон вводимых доз зависит от возраста, состояния здоровья, пола и степени тяжести заболевания пациента, и может варьироваться от 0,1 до 200,0 мг/кг, а предпочтительно от 0,1 до 100,0 мг/кг на одну или несколько доз в день, которые могут быть введены в течение одного или нескольких дней.
Препараты для парентерального введения могут быть изготовлены в виде стерильных водных или безводных растворов, суспензий и эмульсий. Примерами безводных растворителей являются пропиленгликоль, полиэтиленгликоль, растительные масла, такие, как оливковое масло, инъецируемые органические сложные эфиры, такие, как этилолеат, и другие растворители, которые обычно используются специалистами в этих целях. Иммуноконъюгаты настоящего изобретения могут быть введены в композиции, содержащие физиологически приемлемый носитель. Примерами таких носителей являются физиологический раствор, PBS, раствор Рингера, или лактатсодержащий раствор Рингера. В указанных фармацевтических препаратах могут также присутствовать консерванты, и другие добавки, такие, как антибиотики, антиоксиданты, и хелатообразующие агенты.
Фармацевтические композиции настоящего изобретения могут быть использованы для лечения любых видов опухолей, включая меланомы, глиомы, и карциномы, а также опухоли крови и твердые опухоли.

Claims (13)

1. Иммуноконьюгат, содержащий моноклональное антитело или его фрагмент и биологически активный лиганд, соединенный с антителом или его фрагментом, причем антитело или его фрагмент направлены против опухолевой клетки, несущей антигенный эпитон рецептора эпидермального фактора роста, а в качестве биологически активного лиганда использован цитокин, обладающий способностью к специфическому in situ - лизису опухолевой клетки или к возбуждению опухолеспецифического иммунного ответа.
2. Иммуноконьюгат по п. 1, отличающийся тем, что цитокин выбран из группы, содержащей TNFα, JL-2, JL-4 и JL-7.
3. Иммуноконьюгат по п.1 или 2, отличающийся тем, что в качестве антитела использован Fab-фрагмент или F(ab')2-фрагмент, содержащий вариабельную область тяжелой цепи антитела, СН1-домен постоянной области и соответствующую легкую цепь.
4. Иммуноконьюгат по п.1 или 2, отличающийся тем, что использован фрагмент антитела, содержащий вариабельную область тяжелой цепи антитела, СН1- и СН2-домены постоянной области и соответствующую легкую цепь.
5. Иммуноконьюгат по п.1 или 2, отличающийся тем, что использован фрагмент, включающий вариабельную область тяжелой цепи антитела, СН1-, СН2- и СН3-домены постоянной области и соответствующую легкую цепь.
6. Иммуноконьюгат по любому из пп.1 - 5, отличающийся тем, что антитело или его фрагмент происходят из мышиного гуманизированного или химерного МАв 425.
7. Иммуноконьюгат по п.6, отличающийся тем, что он выбран из группы, содержащей МАв 425-СН1-TNFα, МАв 425-СН2-TNFα,, МАв 425-СН3-TNFα, МАв 425-СН1-JL-2, МАв 425-СН2-JL-2 и МАв 425-СН3-JL-2.
8. Иммуноконьюгат по любому из пп.1 - 7, отличающийся тем, что его используют в качестве противоопухолевого препарата.
9. Способ получения иммуноконьюгата по любому из пп.1 - 7, включающий слияние ДНК-последовательности, кодирующей антитело или фрагмент антитела, с ДНК-последовательностью, кодирующей биологически активный лиганд, введение полученной конструкции в вектор экспрессии, введение вектора экспрессии в хозяйстве клетки и культивирование указанных клеток в питательной среде с экспрессией слитого белка, отличающийся тем, что используют антитело или фрагмент антитела, направленные на опухолевые клетки, содержащие детерминанту рецептора эпидермального фактора роста, а в качестве биологически активного лиганда используют цитокин, способный специфически лизировать опухолевые клетки in situ или индуцировать опухолеспецифический ответ.
10. Способ по п.8, отличающийся тем, что слияние ДНК-последовательностей, кодирующих антитело или его фрагмент и биологически активный лиганд, осуществляют на одноцепочечной ДНК-последовательности, необходимой для слияния.
11. Способ по п.8 или 9, отличающийся тем, что осуществляют экспрессию иммуноконьюгатов по п.3 в E.coli, используемой в качестве хозяина.
12. Способ по п.8 или 9, отличающийся тем, что осуществляют экспрессию иммуноконьюгатов по п.3 или 4 в эукартиотическом хозяине.
13. Фармацевтическая композиция, содержащая активный компонент и физиологически приемлемый носитель, отличающаяся тем, что в качестве активного компонента использован иммуноконьюгат по любому из пп.1 - 7.
RU94045281A 1993-12-24 1994-12-23 Иммуноконьюгат, способ получения иммуноконьюгата и фармацевтическая композиция RU2129018C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93120865.6 1993-12-24
EP93120865 1993-12-24

Publications (2)

Publication Number Publication Date
RU94045281A RU94045281A (ru) 1996-11-10
RU2129018C1 true RU2129018C1 (ru) 1999-04-20

Family

ID=8213530

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94045281A RU2129018C1 (ru) 1993-12-24 1994-12-23 Иммуноконьюгат, способ получения иммуноконьюгата и фармацевтическая композиция

Country Status (19)

Country Link
US (1) US6979726B1 (ru)
EP (1) EP0659439B1 (ru)
JP (2) JPH07223968A (ru)
KR (1) KR950016781A (ru)
AT (1) ATE207366T1 (ru)
AU (1) AU688817B2 (ru)
CA (1) CA2138928C (ru)
CZ (1) CZ289099B6 (ru)
DE (1) DE69428764T2 (ru)
DK (1) DK0659439T3 (ru)
ES (1) ES2166368T3 (ru)
HU (1) HU219680B (ru)
NO (1) NO315903B1 (ru)
PL (1) PL178793B1 (ru)
PT (1) PT659439E (ru)
RU (1) RU2129018C1 (ru)
SK (1) SK283494B6 (ru)
UA (1) UA41888C2 (ru)
ZA (1) ZA9410282B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451521C2 (ru) * 2006-06-16 2012-05-27 Онкотерапи Сайенс, Инк. Sparc-производные антигенные пептиды отторжения опухоли и лекарственные средства, содержащие их
RU2663795C2 (ru) * 2013-06-26 2018-08-09 Шанхай Цзюньши Биосайенсиз Инк. Антитело к pd-1 и его применение
RU2701341C2 (ru) * 2014-04-03 2019-09-25 Селлектис Cd33-специфические химерные антигенные рецепторы для иммунотерапии рака
RU2746021C2 (ru) * 2015-02-18 2021-04-06 Ф.Хоффманн-Ля Рош Аг Иммуноконъюгаты для специфической индукции цитотоксичности т-клеток против клеток-мишеней

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CU22545A1 (es) * 1994-11-18 1999-03-31 Centro Inmunologia Molecular Obtención de un anticuerpo quimérico y humanizado contra el receptor del factor de crecimiento epidérmico para uso diagnóstico y terapéutico
AU4208897A (en) * 1996-09-16 1998-04-02 Merck Patent Gmbh Oligocistronic expression system for the production of heteromeric proteins
EP1189641B1 (en) 1999-06-25 2009-07-29 Genentech, Inc. HUMANIZED ANTI-ErbB2 ANTIBODIES AND TREATMENT WITH ANTI-ErbB2 ANTIBODIES
PT1585966E (pt) 2002-07-15 2012-02-20 Hoffmann La Roche Tratamento de cancro com o anticorpo anti-erbb2 rhumab 2c4
KR101520209B1 (ko) 2003-11-06 2015-05-13 시애틀 지네틱스, 인크. 리간드에 접합될 수 있는 모노메틸발린 화합물
CA2551915C (en) 2003-12-30 2015-06-23 Merck Patent Gesellschaft Mit Beschraenkter Haftung Il-7 fusion proteins
US8017321B2 (en) 2004-01-23 2011-09-13 The Regents Of The University Of Colorado, A Body Corporate Gefitinib sensitivity-related gene expression and products and methods related thereto
JP4969440B2 (ja) 2004-04-08 2012-07-04 デビッド, ビー. エイガス, 疼痛治療のためのErbBアンタゴニスト
CA2567293C (en) 2004-05-27 2017-05-16 The Regents Of The University Of Colorado Methods for prediction of clinical outcome to epidermal growth factor receptor inhibitors by cancer patients
NZ551180A (en) 2004-06-01 2009-10-30 Genentech Inc Antibody drug conjugates and methods
EP1791565B1 (en) 2004-09-23 2016-04-20 Genentech, Inc. Cysteine engineered antibodies and conjugates
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
EP3698807A1 (en) 2005-01-21 2020-08-26 Genentech, Inc. Fixed dosing of her antibodies
AU2006216732C1 (en) 2005-02-23 2017-07-20 Genentech, Inc. Extending time to disease progression or survival in cancer patients using a HER dimerization inhibitor
AR053272A1 (es) 2005-05-11 2007-04-25 Hoffmann La Roche Determinacion de responsivos a la quimioterapia
JP2009521912A (ja) 2005-12-30 2009-06-11 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 低減された免疫原性を有する抗cd19抗体
PT1966238E (pt) 2005-12-30 2012-07-31 Merck Patent Gmbh Uso de hsp70 como um regulador de atividade enzimática
CA2662236A1 (en) 2006-09-12 2008-03-20 Genentech, Inc. Methods and compositions for the diagnosis and treatment of cancer
WO2008109440A2 (en) 2007-03-02 2008-09-12 Genentech, Inc. Predicting response to a her dimerisation inhibitor based on low her3 expression
WO2008154249A2 (en) 2007-06-08 2008-12-18 Genentech, Inc. Gene expression markers of tumor resistance to her2 inhibitor treatment
TWI472339B (zh) 2008-01-30 2015-02-11 Genentech Inc 包含結合至her2結構域ii之抗體及其酸性變異體的組合物
ES2572728T3 (es) 2009-03-20 2016-06-02 F. Hoffmann-La Roche Ag Anticuerpos anti-HER biespecíficos
US9345661B2 (en) 2009-07-31 2016-05-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
JP5764127B2 (ja) * 2009-08-17 2015-08-12 ロシュ グリクアート アーゲー 標的化イムノコンジュゲート
EP2507381A4 (en) 2009-12-04 2016-07-20 Hoffmann La Roche PLURISPECIFIC ANTIBODIES, ANTIBODY ANALOGUES, COMPOSITIONS AND METHODS
CN102712640A (zh) 2010-01-12 2012-10-03 弗·哈夫曼-拉罗切有限公司 三环杂环化合物、其组合物和应用方法
JP5981853B2 (ja) 2010-02-18 2016-08-31 ジェネンテック, インコーポレイテッド ニューレグリンアンタゴニスト及び癌の治療におけるそれらの使用
US8617557B2 (en) 2010-03-12 2013-12-31 The Regents Of The University Of California Antibody fusion with IL-12 proteins with disrupted heparin-binding activity
EP2547338A2 (en) 2010-03-17 2013-01-23 F. Hoffmann-La Roche AG Imidazopyridine compounds, compositions and methods of use
MX2012011887A (es) 2010-04-16 2012-11-30 Genentech Inc Foxo 3a como biomarcador predictivo para la eficacia del inhibidor de la via de quinasa pi3k/akt.
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
SG10201408229WA (en) 2010-08-31 2015-02-27 Genentech Inc Biomarkers and methods of treatment
BR112013006016A2 (pt) 2010-09-15 2016-06-07 Hoffmann La Roche compostos de azabenzotiazol, composições e métodos de uso
UY33679A (es) 2010-10-22 2012-03-30 Esbatech Anticuerpos estables y solubles
EP2632947A4 (en) 2010-10-29 2015-03-18 Immunogen Inc NON-ANTAGONIST MOLECULES BINDING TO THE EGF RECEPTOR AND IMMUNOCONJUGATES THEREOF
CN103298489A (zh) 2010-10-29 2013-09-11 伊缪诺金公司 新型egfr结合分子及其免疫偶联物
US9309322B2 (en) 2010-11-12 2016-04-12 Scott & White Healthcare (Swh) Antibodies to tumor endothelial marker 8
WO2012066061A1 (en) 2010-11-19 2012-05-24 F. Hoffmann-La Roche Ag Pyrazolopyridines and pyrazolopyridines and their use as tyk2 inhibitors
WO2012085176A1 (en) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Tricyclic pyrazinone compounds, compositions and methods of use thereof as janus kinase inhibitors
WO2013007765A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Fused tricyclic compounds for use as inhibitors of janus kinases
WO2013007768A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors
CN103889976A (zh) 2011-08-12 2014-06-25 弗·哈夫曼-拉罗切有限公司 吲唑化合物、组合物及使用方法
MX2014001766A (es) 2011-08-17 2014-05-01 Genentech Inc Anticuerpos de neuregulina y sus usos.
CA2845409A1 (en) 2011-09-20 2013-03-28 Yingjie Lai Imidazopyridine compounds, compositions and methods of use
KR20140105765A (ko) 2011-11-21 2014-09-02 이뮤노젠 아이엔씨 EGfr 항체 세포독성제 접합체에 의한 EGfr 치료에 내성을 나타내는 종양의 치료 방법
CA2857114A1 (en) 2011-11-30 2013-06-06 Genentech, Inc. Erbb3 mutations in cancer
JP2015514710A (ja) 2012-03-27 2015-05-21 ジェネンテック, インコーポレイテッド Her3阻害剤に関する診断及び治療
JP2016509045A (ja) 2013-02-22 2016-03-24 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト がんを治療し、薬剤耐性を防止する方法
US9925240B2 (en) 2013-03-06 2018-03-27 Genentech, Inc. Methods of treating and preventing cancer drug resistance
CN105980386B (zh) 2013-03-13 2021-08-13 基因泰克公司 吡唑并化合物及其用途
EP2968540A2 (en) 2013-03-14 2016-01-20 Genentech, Inc. Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use
CA2905070A1 (en) 2013-03-14 2014-09-25 Genentech, Inc. Methods of treating cancer and preventing cancer drug resistance
MX2015011899A (es) 2013-03-15 2016-05-05 Genentech Inc Metodos para el tratamiento de cáncer y prevención de resistencia a los fármacos para el cáncer.
SI2968588T1 (sl) * 2013-03-15 2019-05-31 AbbVie Deutschland GmbH & Co. KG Formulacije konjugatov protitelo proti-EGFR zdravilo
WO2015035062A1 (en) 2013-09-05 2015-03-12 Genentech, Inc. Antiproliferative compounds
TW201605857A (zh) 2013-10-03 2016-02-16 赫孚孟拉羅股份公司 Cdk8之醫療性抑制劑及其用途
MX2016004802A (es) 2013-10-18 2016-07-18 Genentech Inc Anticuerpos anti-r-espondina (anti-rspo) y metodos de uso.
EP3083692B1 (en) 2013-12-17 2020-02-19 F.Hoffmann-La Roche Ag Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
CA2934028A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
BR112016021383A2 (pt) 2014-03-24 2017-10-03 Genentech Inc Método para identificar um paciente com câncer que é susceptível ou menos susceptível a responder ao tratamento com um antagonista de cmet, método para identificar um paciente apresentando câncer previamente tratado, método para determinar a expressão do biomarcador hgf, antagonista anti-c-met e seu uso, kit de diagnóstico e seu método de preparo
EP3632934A1 (en) 2014-03-31 2020-04-08 F. Hoffmann-La Roche AG Anti-ox40 antibodies and methods of use
WO2015153514A1 (en) 2014-03-31 2015-10-08 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and ox40 binding agonists
WO2016036873A1 (en) 2014-09-05 2016-03-10 Genentech, Inc. Therapeutic compounds and uses thereof
EP3193866A1 (en) 2014-09-19 2017-07-26 Genentech, Inc. Use of cbp/ep300 and bet inhibitors for treatment of cancer
EP3204379B1 (en) 2014-10-10 2019-03-06 Genentech, Inc. Pyrrolidine amide compounds as histone demethylase inhibitors
CA2966523A1 (en) 2014-11-03 2016-05-12 Genentech, Inc. Assays for detecting t cell immune subsets and methods of use thereof
CN114381521A (zh) 2014-11-03 2022-04-22 豪夫迈·罗氏有限公司 用于ox40激动剂治疗的功效预测和评估的方法和生物标志物
RU2017119428A (ru) 2014-11-06 2018-12-06 Дженентек, Инк. Комбинированная терапия, включающая применение агонистов, связывающихся с ох40, и ингибиторов tigit
MA40943A (fr) 2014-11-10 2017-09-19 Constellation Pharmaceuticals Inc Pyrrolopyridines substituées utilisées en tant qu'inhibiteurs de bromodomaines
MA40940A (fr) 2014-11-10 2017-09-19 Constellation Pharmaceuticals Inc Pyrrolopyridines substituées utilisées en tant qu'inhibiteurs de bromodomaines
JP6639497B2 (ja) 2014-11-10 2020-02-05 ジェネンテック, インコーポレイテッド ブロモドメインインヒビターおよびその使用
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
EP3224258B1 (en) 2014-11-27 2019-08-14 Genentech, Inc. 4,5,6,7-tetrahydro-1h-pyrazolo[4,3-c]pyridin-3-amine compounds as cbp and/or ep300 inhibitors
ES2764299T3 (es) 2014-12-09 2020-06-02 Inst Nat Sante Rech Med Anticuerpos monoclonales humanos contra AXL
RU2710735C2 (ru) 2014-12-23 2020-01-10 Дженентек, Инк. Композиции и способы лечения и диагностики резистентного к химиотерапии рака
EP3240908A2 (en) 2014-12-30 2017-11-08 F. Hoffmann-La Roche AG Methods and compositions for prognosis and treatment of cancers
CN107406429B (zh) 2015-01-09 2021-07-06 基因泰克公司 哒嗪酮衍生物及其在治疗癌症中的用途
CN107406414B (zh) 2015-01-09 2022-04-19 基因泰克公司 作为用于治疗癌症的组蛋白脱甲基酶kdm2b的抑制剂的(哌啶-3-基)(萘-2-基)甲酮衍生物
JP6889661B2 (ja) 2015-01-09 2021-06-18 ジェネンテック, インコーポレイテッド 4,5−ジヒドロイミダゾール誘導体およびヒストンジメチラーゼ(kdm2b)インヒビターとしてのその使用
JP2018501322A (ja) 2015-01-12 2018-01-18 チルドレンズ メディカル センター コーポレーション トール様受容体4アンタゴニストの炎症促進性およびアジュバント機能
WO2016123391A1 (en) 2015-01-29 2016-08-04 Genentech, Inc. Therapeutic compounds and uses thereof
WO2016123387A1 (en) 2015-01-30 2016-08-04 Genentech, Inc. Therapeutic compounds and uses thereof
MA41598A (fr) 2015-02-25 2018-01-02 Constellation Pharmaceuticals Inc Composés thérapeutiques de pyridazine et leurs utilisations
WO2016135041A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
CN107709364A (zh) 2015-04-07 2018-02-16 豪夫迈·罗氏有限公司 具有激动剂活性的抗原结合复合体及使用方法
ES2835866T3 (es) 2015-05-12 2021-06-23 Hoffmann La Roche Procedimientos terapéuticos y de diagnóstico para el cáncer
KR20180012753A (ko) 2015-05-29 2018-02-06 제넨테크, 인크. 암에 대한 치료 및 진단 방법
CA2988420A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
EP3303399A1 (en) 2015-06-08 2018-04-11 H. Hoffnabb-La Roche Ag Methods of treating cancer using anti-ox40 antibodies
MX2017016353A (es) 2015-06-17 2018-05-02 Genentech Inc Metodos para tratar canceres de mama metastasicos o localmente avanzados con antagonistas de union al eje de pd-1 y taxanos.
DK3341376T3 (da) 2015-08-26 2021-03-29 Fundacion Del Sector Publico Estatal Centro Nac De Investigaciones Oncologicas Carlos Iii F S P Cnio Kondenserede tricykliske forbindelser som proteinkinase-inhibitorer
CN113999249A (zh) 2015-12-16 2022-02-01 基因泰克公司 用于制备三环pi3k抑制剂化合物的方法及用其治疗癌症的方法
MX2018008347A (es) 2016-01-08 2018-12-06 Hoffmann La Roche Metodos de tratamiento de canceres positivos para ace utilizando antagonistas de union a eje pd-1 y anticuerpos biespecificos anti-ace/anti-cd3.
CN109196121B (zh) 2016-02-29 2022-01-04 基因泰克公司 用于癌症的治疗和诊断方法
WO2017180864A1 (en) 2016-04-14 2017-10-19 Genentech, Inc. Anti-rspo3 antibodies and methods of use
CN109072311A (zh) 2016-04-15 2018-12-21 豪夫迈·罗氏有限公司 用于癌症的诊断和治疗方法
ES2850428T3 (es) 2016-04-15 2021-08-30 Hoffmann La Roche Procedimientos de monitorización y tratamiento del cáncer
JP2019515670A (ja) 2016-04-15 2019-06-13 ジェネンテック, インコーポレイテッド がんをモニタリングし治療するための方法
EP3454863A1 (en) 2016-05-10 2019-03-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Combinations therapies for the treatment of cancer
CN109476663B (zh) 2016-05-24 2021-11-09 基因泰克公司 用于治疗癌症的吡唑并吡啶衍生物
CN109476641B (zh) 2016-05-24 2022-07-05 基因泰克公司 Cbp/ep300的杂环抑制剂及其在治疗癌症中的用途
EP3469099A1 (en) 2016-06-08 2019-04-17 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for cancer
EP3494139B1 (en) 2016-08-05 2022-01-12 F. Hoffmann-La Roche AG Multivalent and multiepitopic anitibodies having agonistic activity and methods of use
JP7250674B2 (ja) 2016-08-08 2023-04-03 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト がんの治療及び診断方法
AU2017339517B2 (en) 2016-10-06 2024-03-14 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
EP3532091A2 (en) 2016-10-29 2019-09-04 H. Hoffnabb-La Roche Ag Anti-mic antibidies and methods of use
TW201837467A (zh) 2017-03-01 2018-10-16 美商建南德克公司 用於癌症之診斷及治療方法
CA3056600A1 (en) * 2017-03-31 2018-10-04 Ignacio Moraga GONZALEZ Synthekine compositions and methods of use
AU2018250875A1 (en) 2017-04-13 2019-10-03 F. Hoffmann-La Roche Ag An interleukin-2 immunoconjugate, a CD40 agonist, and optionally a PD-1 axis binding antagonist for use in methods of treating cancer
WO2019033043A2 (en) 2017-08-11 2019-02-14 Genentech, Inc. ANTI-CD8 ANTIBODIES AND USES THEREOF
CA3073073A1 (en) 2017-09-08 2019-03-14 F. Hoffmann-La Roche Ag Diagnostic and therapeutic methods for cancer
JP2021502066A (ja) 2017-11-06 2021-01-28 ジェネンテック, インコーポレイテッド がんの診断及び療法
WO2019165434A1 (en) 2018-02-26 2019-08-29 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
AU2019275404A1 (en) 2018-05-21 2020-12-03 Nanostring Technologies, Inc. Molecular gene signatures and methods of using same
WO2019246557A1 (en) 2018-06-23 2019-12-26 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, a platinum agent, and a topoisomerase ii inhibitor
CA3104147A1 (en) 2018-07-18 2020-01-23 Genentech, Inc. Methods of treating lung cancer with a pd-1 axis binding antagonist, an antimetabolite, and a platinum agent
JP2021535169A (ja) 2018-09-03 2021-12-16 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Teadモジュレーターとして有用なカルボキサミドおよびスルホンアミド誘導体
AU2019342099A1 (en) 2018-09-19 2021-04-08 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
EP4249917A3 (en) 2018-09-21 2023-11-08 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
MX2021004348A (es) 2018-10-18 2021-05-28 Genentech Inc Procedimientos de diagnóstico y terapéuticos para el cáncer de riñón sarcomatoide.
CN112166122A (zh) * 2018-12-13 2021-01-01 丁邦 抗体-肿瘤坏死因子α融合蛋白及其制法和应用
CN113396230A (zh) 2019-02-08 2021-09-14 豪夫迈·罗氏有限公司 癌症的诊断和治疗方法
CN113710706A (zh) 2019-02-27 2021-11-26 豪夫迈·罗氏有限公司 用于抗tigit抗体和抗cd20抗体或抗cd38抗体治疗的给药
JP2022522185A (ja) 2019-02-27 2022-04-14 エピアクシス セラピューティクス プロプライエタリー リミテッド T細胞機能を評価して治療法に対する応答を予測するための方法および薬剤
WO2020223233A1 (en) 2019-04-30 2020-11-05 Genentech, Inc. Prognostic and therapeutic methods for colorectal cancer
AU2020270376A1 (en) 2019-05-03 2021-10-07 Genentech, Inc. Methods of treating cancer with an anti-PD-L1 antibody
CN112300279A (zh) 2019-07-26 2021-02-02 上海复宏汉霖生物技术股份有限公司 针对抗cd73抗体和变体的方法和组合物
MX2022002738A (es) 2019-09-04 2022-06-27 Genentech Inc Agentes de union a cd8 y uso de los mismos.
CR20220127A (es) 2019-09-27 2022-05-27 Genentech Inc Administración de dosis para tratamiento con anticuerpos antagonistas anti-tigit y anti-pd-l1
US20230024096A1 (en) 2019-10-29 2023-01-26 Hoffmann-La Roche Inc. Bifunctional compounds for the treatment of cancer
US20220389103A1 (en) 2019-11-06 2022-12-08 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
CA3155989A1 (en) 2019-11-13 2021-05-20 Jason Robert ZBIEG Therapeutic compounds and methods of use
PE20221511A1 (es) 2019-12-13 2022-10-04 Genentech Inc Anticuerpos anti-ly6g6d y metodos de uso
AU2020408562A1 (en) 2019-12-20 2022-06-23 Erasca, Inc. Tricyclic pyridones and pyrimidones
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
CN115698717A (zh) 2020-04-03 2023-02-03 基因泰克公司 癌症的治疗和诊断方法
EP4143345A1 (en) 2020-04-28 2023-03-08 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
EP3915576A1 (en) 2020-05-28 2021-12-01 Fundació Privada Institut d'Investigació Oncològica de Vall-Hebron Chimeric antigen receptors specific for p95her2 and uses thereof
KR20230025691A (ko) 2020-06-16 2023-02-22 제넨테크, 인크. 삼중 음성 유방암을 치료하기 위한 방법과 조성물
EP4168118A1 (en) 2020-06-18 2023-04-26 Genentech, Inc. Treatment with anti-tigit antibodies and pd-1 axis binding antagonists
CN115843335A (zh) 2020-06-30 2023-03-24 国家医疗保健研究所 用于预测患有实体癌的患者在术前辅助治疗和根治性手术后复发和/或死亡风险的方法
EP4172621A1 (en) 2020-06-30 2023-05-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapies
EP3939999A1 (en) 2020-07-14 2022-01-19 Fundación del Sector Público Estatal Centro Nacional de Investigaciones Oncológicas Carlos III (F.S.P. CNIO) Interleukin 11 receptor alpha subunit (il11ra) neutralizing antibodies and uses thereof
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
JP2023536602A (ja) 2020-08-03 2023-08-28 ジェネンテック, インコーポレイテッド リンパ腫のための診断及び治療方法
EP4196612A1 (en) 2020-08-12 2023-06-21 Genentech, Inc. Diagnostic and therapeutic methods for cancer
CN116406291A (zh) 2020-10-05 2023-07-07 基因泰克公司 用抗fcrh5/抗cd3双特异性抗体进行治疗的给药
US20230107642A1 (en) 2020-12-18 2023-04-06 Erasca, Inc. Tricyclic pyridones and pyrimidones
PE20231505A1 (es) 2021-02-12 2023-09-26 Hoffmann La Roche Derivados de tetrahidroazepina biciclicos para el tratamiento del cancer
AU2022280025A1 (en) 2021-05-25 2023-12-07 Erasca, Inc. Sulfur-containing heteroaromatic tricyclic kras inhibitors
WO2022266206A1 (en) 2021-06-16 2022-12-22 Erasca, Inc. Kras inhibitor conjugates
WO2023018699A1 (en) 2021-08-10 2023-02-16 Erasca, Inc. Selective kras inhibitors
US20230203062A1 (en) 2021-11-24 2023-06-29 Genentech, Inc. Therapeutic compounds and methods of use
WO2023097195A1 (en) 2021-11-24 2023-06-01 Genentech, Inc. Therapeutic indazole compounds and methods of use in the treatment of cancer
EP4253418A1 (en) 2022-03-29 2023-10-04 Fundació Privada Institut d'Investigació Oncològica de Vall-Hebron Immune cells expressing chimeric antigen receptors and bispecific antibodies and uses thereof
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024033388A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydrothiazepine derivatives
WO2024033389A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydrothiazepine derivatives
WO2024033457A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydrothiazepine derivatives
WO2024033458A1 (en) 2022-08-11 2024-02-15 F. Hoffmann-La Roche Ag Bicyclic tetrahydroazepine derivatives

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470571A (en) * 1988-01-27 1995-11-28 The Wistar Institute Method of treating human EGF receptor-expressing gliomas using radiolabeled EGF receptor-specific MAB 425
IE63847B1 (en) * 1989-05-05 1995-06-14 Res Dev Foundation A novel antibody delivery system for biological response modifiers
CA2066428C (en) * 1989-09-08 2000-11-28 Bert Vogelstein Structural alterations of the egf receptor gene in human gliomas
US5314995A (en) * 1990-01-22 1994-05-24 Oncogen Therapeutic interleukin-2-antibody based fusion proteins
EP0574395B1 (en) * 1990-11-09 2002-06-12 GILLIES, Stephen D. Cytokine immunoconjugates
JP3854306B2 (ja) * 1991-03-06 2006-12-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ヒト化及びキメラモノクローナル抗体
JPH06509563A (ja) * 1991-07-05 1994-10-27 セラゲン・インコーポレイテッド 炎症性関節炎の治療用の表皮細胞成長因子受容体を標的とする分子
DK0586002T3 (da) * 1992-08-18 2000-06-19 Centro Inmunologia Molecular Monoklonale antistoffer, som genkender epidermisvækstfaktor-receptoren, celler og fremgangsmåder heraf og præparater indeho
DK139193D0 (da) 1993-09-24 1993-12-13 Hartmann As Brdr Rektangulaer aegbakke
PT699237E (pt) * 1994-03-17 2003-07-31 Merck Patent Gmbh Fvs de cadeia anti-egfr e anticorpos anti-egfr

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451521C2 (ru) * 2006-06-16 2012-05-27 Онкотерапи Сайенс, Инк. Sparc-производные антигенные пептиды отторжения опухоли и лекарственные средства, содержащие их
RU2663795C2 (ru) * 2013-06-26 2018-08-09 Шанхай Цзюньши Биосайенсиз Инк. Антитело к pd-1 и его применение
RU2701341C2 (ru) * 2014-04-03 2019-09-25 Селлектис Cd33-специфические химерные антигенные рецепторы для иммунотерапии рака
RU2746021C2 (ru) * 2015-02-18 2021-04-06 Ф.Хоффманн-Ля Рош Аг Иммуноконъюгаты для специфической индукции цитотоксичности т-клеток против клеток-мишеней

Also Published As

Publication number Publication date
DE69428764D1 (de) 2001-11-29
NO944980L (no) 1995-06-26
UA41888C2 (ru) 2001-10-15
EP0659439A3 (en) 1996-12-04
DE69428764T2 (de) 2002-06-20
SK156294A3 (en) 1995-07-11
ES2166368T3 (es) 2002-04-16
RU94045281A (ru) 1996-11-10
CZ330694A3 (en) 1995-10-18
US6979726B1 (en) 2005-12-27
PT659439E (pt) 2002-04-29
KR950016781A (ko) 1995-07-20
CZ289099B6 (cs) 2001-11-14
CA2138928C (en) 2009-02-17
AU688817B2 (en) 1998-03-19
PL178793B1 (pl) 2000-06-30
CA2138928A1 (en) 1995-06-25
ATE207366T1 (de) 2001-11-15
EP0659439A2 (en) 1995-06-28
AU8159394A (en) 1995-06-29
NO315903B1 (no) 2003-11-10
PL306474A1 (en) 1995-06-26
HU9403784D0 (en) 1995-02-28
NO944980D0 (no) 1994-12-22
SK283494B6 (sk) 2003-08-05
HUT70471A (en) 1995-10-30
JP2006298936A (ja) 2006-11-02
HU219680B (hu) 2001-06-28
DK0659439T3 (da) 2002-01-14
EP0659439B1 (en) 2001-10-24
ZA9410282B (en) 1995-08-29
JPH07223968A (ja) 1995-08-22

Similar Documents

Publication Publication Date Title
RU2129018C1 (ru) Иммуноконьюгат, способ получения иммуноконьюгата и фармацевтическая композиция
AU702184B2 (en) Immunoconjugates II
RU2263118C2 (ru) Комплексы антител с несколькими цитокинами
Gillies et al. Antibody-IL-12 fusion proteins are effective in SCID mouse models of prostate and colon carcinoma metastases
EP0574395B1 (en) Cytokine immunoconjugates
JP6925431B2 (ja) Il2及びtnf突然変異体のイムノコンジュゲート
JP2002511432A (ja) 新脈管形成インヒビターの同時投与による抗体−サイトカイン融合タンパク質媒介性免疫応答の増強
CN1152877A (zh) 一种修饰的超抗原和一种寻找靶物化合物的缀合物和该缀合物的用途
EP3660039A1 (en) Il2 immunoconjugates
EP1731531B1 (en) Multiple cytokine-antibody complexes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101224