KR101610354B1 - 전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터 - Google Patents

전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터 Download PDF

Info

Publication number
KR101610354B1
KR101610354B1 KR1020140124313A KR20140124313A KR101610354B1 KR 101610354 B1 KR101610354 B1 KR 101610354B1 KR 1020140124313 A KR1020140124313 A KR 1020140124313A KR 20140124313 A KR20140124313 A KR 20140124313A KR 101610354 B1 KR101610354 B1 KR 101610354B1
Authority
KR
South Korea
Prior art keywords
metal oxide
carbon
carbon nanofibers
electrode
nanofibers
Prior art date
Application number
KR1020140124313A
Other languages
English (en)
Korean (ko)
Other versions
KR20160033843A (ko
Inventor
박이슬
김순현
김재현
박정수
오미솔
Original Assignee
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인대구경북과학기술원 filed Critical 재단법인대구경북과학기술원
Priority to KR1020140124313A priority Critical patent/KR101610354B1/ko
Priority to JP2015159725A priority patent/JP6302878B2/ja
Publication of KR20160033843A publication Critical patent/KR20160033843A/ko
Application granted granted Critical
Publication of KR101610354B1 publication Critical patent/KR101610354B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/24Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/28Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds from polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
KR1020140124313A 2014-09-18 2014-09-18 전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터 KR101610354B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140124313A KR101610354B1 (ko) 2014-09-18 2014-09-18 전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터
JP2015159725A JP6302878B2 (ja) 2014-09-18 2015-08-12 電着法を用いた金属酸化物が担持されたカーボンナノファイバー電極の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140124313A KR101610354B1 (ko) 2014-09-18 2014-09-18 전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터

Publications (2)

Publication Number Publication Date
KR20160033843A KR20160033843A (ko) 2016-03-29
KR101610354B1 true KR101610354B1 (ko) 2016-04-11

Family

ID=55661723

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140124313A KR101610354B1 (ko) 2014-09-18 2014-09-18 전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터

Country Status (2)

Country Link
JP (1) JP6302878B2 (ja)
KR (1) KR101610354B1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106350846B (zh) * 2016-09-19 2018-06-22 长春理工大学 一种电化学沉积制备图案化有序α-Fe2O3纳米粒子阵列的方法
KR101893268B1 (ko) * 2016-12-21 2018-10-04 서울과학기술대학교 산학협력단 기공 네트를 포함하는 탄소나노섬유 및 그의 제조방법
KR101960154B1 (ko) 2017-01-11 2019-07-04 영남대학교 산학협력단 산소결핍 금속 산화물을 포함하는 탄소섬유/금속 산화물 복합체, 그 제조방법, 및 이를 포함하는 초고용량 캐퍼시터용 전극
JP6442574B2 (ja) * 2017-03-16 2018-12-19 太平洋セメント株式会社 ナノ粒子集合体、ナノ粒子焼成物、及びこれらの製造方法
KR102004250B1 (ko) * 2017-11-27 2019-07-26 한국에너지기술연구원 공기극의 제조방법, 공기극 및 이를 포함하는 고체산화물 연료전지
KR102261142B1 (ko) * 2018-10-31 2021-06-07 한국에너지기술연구원 전기화학기법을 적용한 고체산화물연료전지 공기극 및 이의 제조방법
CN112064339B (zh) * 2020-08-28 2022-10-28 山东非金属材料研究所 一种羟基氧化铁-铜包覆碳纳米管同轴核壳材料及其制备方法和应用
KR102460290B1 (ko) * 2021-01-27 2022-10-31 전주대학교 산학협력단 유연한 탄소섬유복합체의 제조방법, 그로부터 제조된 탄소섬유복합체로 이루어진 슈퍼커패시터 전극 및 그를 이용한 웨어러블 디바이스
CN114345422B (zh) * 2021-12-14 2024-04-12 江苏大学 一种具有连续梯度化纳米颗粒催化剂分布的活性炭纤维多孔材料的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07262992A (ja) * 1994-03-23 1995-10-13 Matsushita Electric Ind Co Ltd 鉛電池用正極活物質の製造方法
JP2007042601A (ja) * 2005-07-06 2007-02-15 Bridgestone Corp 炭素材電極及びその製造方法、並びに非水電解液二次電池
US8313723B2 (en) * 2005-08-25 2012-11-20 Nanocarbons Llc Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
KR100894481B1 (ko) * 2007-04-16 2009-04-22 한국과학기술연구원 초극세 탄소 섬유에 축적한 금속산화물로 이루어진슈퍼커패시터용 전극 및 그 제조 방법
KR101110297B1 (ko) * 2007-08-06 2012-02-14 연세대학교 산학협력단 나노복합체, 그의 제조 방법 및 상기를 포함하는 커패시터
KR20100028356A (ko) * 2008-09-04 2010-03-12 한국과학기술연구원 전이금속 산화물/다층벽 탄소나노튜브 나노복합체 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL COMMUNICATIONS 47(2011)
JOURNAL OF POWER SOURCES 195(2010)

Also Published As

Publication number Publication date
JP2016062891A (ja) 2016-04-25
KR20160033843A (ko) 2016-03-29
JP6302878B2 (ja) 2018-03-28

Similar Documents

Publication Publication Date Title
KR101610354B1 (ko) 전착법을 이용한 금속산화물이 담지된 탄소나노섬유 전극 제조방법 및 이를 이용한 에너지 저장장치 및 필터
Liang et al. Recent advances in electrospun nanofibers for supercapacitors
Zhang et al. Hierarchical MnO2/activated carbon cloth electrode prepared by synchronized electrochemical activation and oxidation for flexible asymmetric supercapacitors
CN108315834B (zh) 一种阵列式磁性还原氧化石墨烯-炭纳米纤维的制备方法
Xu et al. Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage
US8435676B2 (en) Mixed nano-filament electrode materials for lithium ion batteries
Xuan et al. Construction of hierarchical core-shell ZnCo2O4@ Ni-Co-S nanosheets with a microsphere structure on nickel foam for high-performance asymmetric supercapacitors
Naderi et al. Nickel vanadium sulfide grown on nickel copper phosphide Dendrites/Cu fibers for fabrication of all-solid-state wire-type micro-supercapacitors
KR101407236B1 (ko) 그래핀 함유 흑연나노섬유 및 그 제조방법, 이를 포함하는 리튬이차전지의 전극물질
KR101308740B1 (ko) 금속간화합물 함유 탄소나노섬유의 제조방법
Yuan et al. Electrospinning based fabrication and performance improvement of film electrodes for lithium-ion batteries composed of TiO 2 hollow fibers
US20180248175A1 (en) Mixed allotrope particulate carbon films and carbon fiber mats
KR101440843B1 (ko) 나트륨 이차전지용 금속산화물이 코팅된 황화 몰리브덴 전극활물질 및 그 제조방법
CN109417171B (zh) 分级多孔纳米碳/硫复合阴极的可调节且可量产的合成
KR20110063634A (ko) 전극 복합재, 상기 복합재로 이루어지는 전지 전극, 및 이러한 전극을 포함하는 리튬 전지
US10319994B2 (en) Method and use of ceramic/carbon composite nanofibers as an anode for lithium-ion and sodium-ion batteries
Barik et al. Polymer-derived electrospun Co3O4@ C porous nanofiber network for flexible, high-performance, and stable supercapacitors
KR101348200B1 (ko) 실리콘 또는 실리콘산화물을 포함하는 실리콘계 탄소나노섬유복합체, 상기 복합체 제조방법 및 상기 복합체를 포함하는 리튬이차전지
KR101438065B1 (ko) 하이브리드나노복합체, 상기 복합체 제조방법 및 상기 하이브리드나노복합체를 포함하는 슈퍼캐패시터용 전극
KR101392388B1 (ko) 탄소나노섬유 복합체, 그 제조방법 및 이를 이용한 리튬이차전지용 음극활물질
KR101893268B1 (ko) 기공 네트를 포함하는 탄소나노섬유 및 그의 제조방법
KR101308736B1 (ko) 주석 산화물 함유 탄소나노섬유, 그의 제조방법 및 이를 이용한 리튬이차전지
KR101950783B1 (ko) 이산화망간이 증착된 리그닌 유래 탄소나노섬유 매트의 슈퍼 커패시터용 전극과 그 제조방법
Zhou et al. Nanosized α-MnS homogenously embedded in axial multichannel carbon nanofibers as freestanding electrodes for lithium-ion batteries
CN114031079A (zh) 碳化钼碳纳米纤维复合材料及其制备方法和应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 4