WO2005118473A1 - Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor - Google Patents

Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor Download PDF

Info

Publication number
WO2005118473A1
WO2005118473A1 PCT/JP2004/008181 JP2004008181W WO2005118473A1 WO 2005118473 A1 WO2005118473 A1 WO 2005118473A1 JP 2004008181 W JP2004008181 W JP 2004008181W WO 2005118473 A1 WO2005118473 A1 WO 2005118473A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
raw material
carbon
gas
material gas
Prior art date
Application number
PCT/JP2004/008181
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Nakayama
Takeshi Nagasaka
Toru Sakai
Takeshi Hayashi
Hiroyuki Tsuchiya
Xu Li
Toshikazu Nosaka
Original Assignee
Japan Science And Technology Agency
Public University Corporation, Osaka Prefecture University
Taiyo Nippon Sanso Corporation
Nissin Electric Co., Ltd.
Osaka Prefecture
Daiken Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Public University Corporation, Osaka Prefecture University, Taiyo Nippon Sanso Corporation, Nissin Electric Co., Ltd., Osaka Prefecture, Daiken Chemical Co., Ltd. filed Critical Japan Science And Technology Agency
Priority to US11/628,304 priority Critical patent/US20070253890A1/en
Priority to PCT/JP2004/008181 priority patent/WO2005118473A1/en
Priority to JP2006514046A priority patent/JP4674355B2/en
Priority to CN2004800432279A priority patent/CN1960942B/en
Publication of WO2005118473A1 publication Critical patent/WO2005118473A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Definitions

  • the present invention relates to a method for producing carbon nanostructures from a source gas by catalytic chemical vapor deposition, and more particularly, to a method for producing carbon nanostructures from a source gas with high efficiency, and a method for producing a carbon nanostructure from a source gas.
  • the present invention relates to a method and an apparatus for producing a carbon nanostructure capable of reducing a by-product by a tail.
  • Carbon nanostructures are attracting attention as core materials of nanotechnology.
  • the carbon nanostructure referred to in the present invention is a nano-sized substance composed of carbon atoms, such as a coiled carbon nanocoil, a tube-shaped carbon nanotube, a carbon nanotwist having a twisted carbon nanotube, There are beaded carbon nanotubes in which beads are formed on carbon nanotubes, power-pon nanobrushes with a large number of carbon nanotubes, and spherical fullerenes.
  • the contents of the present invention will be described by exemplifying carbon nanocoils and carbon nanotubes among these many carbon nanostructures.
  • Carbon nanocoils were first synthesized by Amelinckx et al. (Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635) in 1994. In 1999, Lee et al. (W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J. Material Sci., 34
  • CVD method Catalyst Chemical Vapor Deposition
  • Japanese Patent Application Laid-Open No. 2001-310130 which was made by a part of the present investigators, discloses "Indium 'tin' iron for producing carbon nanocoils. Production method of system catalyst ”. This technique shows a method for synthesizing an indium-tin-iron catalyst from a metal organic compound, and discloses a method for mass-producing an indium-tin-iron catalyst.
  • carbon nanotubes are carbon nanostructures discovered in 1991 in the cathode deposits of carbon arc discharges by Sumio Iijima. Since then, mass synthesis methods of carbon nanotubes have been studied, and in recent years, the "method for producing carbon nanotubes" disclosed in JP-A-2002-180251 and JP-A-2002-180252 has been published.
  • the former is based on the thermal decomposition of an organic carbon material by a CVD method at a temperature of 400 to 500 ° C on an active substrate containing a catalytic metal in high-purity alumina containing 0.05% or less of alkali metal.
  • This is a technique for mass-producing nanotubes.
  • the latter is a catalyst metal from 0.001 to 0.005 on a molar / m 2 active substrate formed by depositing at a rate of, the organic carbon source is thermally decomposed at a temperature of 1 100 to 1,250 ° C carbon nano This is a technique for synthesizing a large number of tubes.
  • FIG. 19 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanocoils.
  • a carbon nanostructure manufacturing apparatus 40 has a heater 6 for heating a reaction area around an outer periphery of a reaction tube 4, and a heater 6 for heating the reaction area to obtain a uniform temperature.
  • the set reaction temperature region is defined as a reaction region 10, and a catalyst 12 is arranged in the reaction region 10. Formation of carbon nanocoils made of indium 'tin' iron in catalyst 12 Catalyst was used.
  • the reaction zone 10 was set at 700 ° C., and the reaction time was set at 1 hour.
  • C 2 H 2 was decomposed, and a carbon nanostructure 14 composed of carbon nanocoils grew.
  • the tar-like by-product 16 adhered to the inner surface of the reaction tube 4 in a dispersed manner. Analysis of this tar-like by-product determined that it was an aromatic hydrocarbon. It was determined that there were very few alkyl groups and no paraffinic hydrocarbons. Analysis of the infrared spectrum of the tar-like by-product 16 obtained by the FT-IR method revealed that condensed aromatic ring substances such as naphthalene and anthracene, CH 3 -substituted condensed aromatic ring substances, or highly condensed aromatic substances It is presumed to be a binding substance of a ring substance, or a mixture of these components.
  • FIG. 20 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanotubes.
  • the configuration of the carbon nanostructure manufacturing apparatus 40 is the same as that shown in FIG. 19, and differs in the following two points.
  • the first difference is that the catalyst body 12 has a sodium content of 0.01.
  • the catalyst was obtained by sintering Ni to the following high-purity r-alumina pellets (99.95% or more).
  • the second difference is that a mixed gas of CH 4 and Ar mixed at an appropriate flow ratio was allowed to flow in the direction of arrow c while maintaining the vicinity of the catalyst body at 500 ° C.
  • the method and apparatus for producing a carbon nanostructure according to the present invention can reduce the generation of tar-like by-products in the process of producing a carbon nanostructure by improving the reaction method and the reaction apparatus.
  • the objective is to significantly improve the production yield of carbon nanostructures by efficiently reacting gas.
  • a first aspect of the present invention is a method for producing a carbon nanostructure from a source gas by a catalytic chemical vapor deposition method.
  • the raw material gas in the temperature range where tar-like by-products are not generated is sprayed so as to come into contact with the catalyst body to produce carbon nanostructures.
  • This is an efficient method for producing carbon nanostructures.
  • Tall by-products gradually form carbon nanostructures from low temperatures.
  • the subject of the present invention is to remove, from the reaction process, the intermediate temperature region where the source gas is decomposed and combined.
  • the raw material gas is kept in a temperature range where the tar-like by-product is not generated (lower temperature, normal temperature or lower temperature than the intermediate temperature range), and the raw material gas is kept at the intermediate temperature.
  • the catalyst body may be fixed in the reaction region, and a raw material gas may be sprayed on the catalyst body, or the catalyst body may be supplied from the catalyst body tank or the like to the reaction region as needed. .
  • a method for producing a carbon nanostructure from a raw material gas by catalytic chemical vapor deposition wherein the carbon nanostructure is brought into contact with a catalyst body in a space heated to a temperature range for generating the carbon nanostructure.
  • this is a raw material spraying type high-efficiency carbon nanostructure manufacturing method in which a raw material gas preheated to a temperature range in which tar-like by-products are not generated is directly sprayed to generate carbon nanostructures.
  • the raw material gas is preheated to a temperature range in which no tall by-product is generated, and the preheated raw material gas is jumped over the intermediate temperature and raised to the carbon nanostructure generation temperature at a stretch.
  • the difference from the first invention is that the raw material gas is preheated. This preheating can increase the reactivity of the raw material gas, thereby increasing the reaction probability of the raw material gas in the catalyst region at an accelerated rate. Further, since the raw material gas is directly blown toward the reaction region, the reaction probability between the catalyst body and the raw material gas in the reaction region increases, and the generation density and generation efficiency of the carbon nanostructure can be greatly improved. Further, the catalyst body may be fixed in the reaction area, and a raw material gas may be sprayed on the catalyst body, or the catalyst body may be supplied from the catalyst body tank or the like to the reaction area as needed.
  • a third aspect of the present invention is a method for producing a raw material spray-type high-efficiency carbon nanostructure, wherein the catalyst body is composed of a catalyst structure.
  • the catalyst body comprises a catalyst structure
  • the catalyst body can be placed only in the reaction region, so that the catalyst body and the source gas can be reacted with high efficiency.
  • the carbon nanostructure is formed on the surface of the catalyst structure, the carbon nanostructure can be collected with higher efficiency than the catalyst structure.
  • a method for producing a carbon nanostructure wherein the catalyst structure has at least one of a plate structure, a layer structure, a lattice structure, a porous structure and a fibrous structure.
  • the structure of the catalyst structure can be selected according to the type of the catalyst structure of the carbon nanostructure to be produced.
  • a fifth aspect of the present invention is a method for producing a raw material spray-type high-efficiency carbon nanostructure, wherein the catalyst body is composed of catalyst powder.
  • the catalyst body is composed of catalyst powder.
  • a raw material for supplying the catalyst powder to a reaction region in a space heated to a temperature range for generating carbon nanostructures, and heating the catalyst powder to the temperature range for generation is a spray type high efficiency carbon nanostructure manufacturing method.
  • the catalyst powder can be supplied to the reaction region as needed, and the raw material gas and the catalyst powder can be reacted with high efficiency.
  • a seventh aspect of the present invention is a raw material spraying type high-efficiency monobon nanostructure manufacturing method for supplying the catalyst powder from a catalyst powder supply pipe into a space heated to the generation temperature range.
  • a necessary amount can be appropriately supplied to the reaction region.
  • the catalyst powder heated to the production temperature range can be supplied, and can react with the raw material gas immediately.
  • the raw material gas mixed with the catalyst powder is mixed with the raw material gas in the generation temperature range.
  • This is a method for producing high-efficiency carbon nanostructures by spraying raw materials into the space heated up to the maximum.
  • the carbon nanostructure can be manufactured with high efficiency.
  • the raw material gas and the catalyst powder can be preheated to the same temperature. When introduced into the reaction zone, the mixed gas is instantly heated to the generation temperature zone, and the carbon nanostructure Can be manufactured with high efficiency.
  • a raw material spraying type high-efficiency carbon nanostructure in which a catalyst powder in a space heated to the production temperature range is stirred and the raw material gas is blown onto the catalyst powder. It is a manufacturing method. By stirring the catalyst powder, the raw material gas can be efficiently brought into contact with the catalyst powder, and the carbon nanostructure can be manufactured with high efficiency.
  • a stirring method a vibration method using ultrasonic vibration or the like, a rotation method of rotating a rotating plate or a container itself to which the catalyst powder is supplied, and a swing plate provided in the reaction region are provided. A swinging method of swinging or other known methods can be used. '
  • a tenth aspect of the present invention is a method for producing a carbon nanostructure in which a preheating temperature of a raw material gas is set at 300 ° C. or lower.
  • a preheating temperature of a raw material gas is set at 300 ° C. or lower.
  • the temperature at which tar-like by-products from the hydrocarbon is produced which is used as a raw material gas is 3 0 0 ° C ⁇ 6 0 0 ° C
  • a temperature that carbon nanostructure from a hydrocarbon is produced catalyst
  • the force is somewhat more than 550 ° C, and it is considered that the force is efficiently from 600 ° C to 1200 ° C. Therefore, if the preheating temperature of the raw material gas is controlled to 300 ° C.
  • an apparatus for producing a carbon nanostructure from a raw material gas by a catalytic chemical vapor deposition method wherein a heating device for heating a reaction region to a temperature range for generating a carbon nanostructure is provided.
  • a source gas supply pipe for introducing a source gas into the reaction region is provided, and a source gas outlet thereof is disposed in the reaction region.
  • the source gas in a temperature range where tar-like by-products are not generated is supplied to the source gas outlet.
  • This is a high-efficiency carbon nanostructure production system that sprays raw materials onto the catalyst. Since the temperature of the raw material gas is in the temperature range where tar-like by-products are not generated, the temperature of the raw material gas Since the structure is such that no raw by-products are generated and the raw material gas is blown directly to the catalyst from the raw material gas outlet, the raw material gas comes into contact with the catalyst with a high probability to efficiently produce a carbon nanostructure. Is converted and the generation of tar-like by-products can be reduced sharply. Since much of the raw material gas is consumed in the catalytic reaction, the formation of tar-like substances in the reaction tube is also strongly suppressed.
  • an apparatus for producing a carbon nanostructure from a raw material gas by a catalytic chemical vapor deposition method wherein a heating device for heating a reaction region to a temperature range for generating a carbon nanostructure is provided.
  • a source gas supply pipe for introducing a source gas into the reaction area is provided, and a source gas outlet thereof is arranged in the reaction area.
  • the source gas supply pipe extends to a temperature range where tar-like products are not generated from the source gas.
  • This is a raw material spraying type high-efficiency single-bon nanostructure manufacturing apparatus which comprises a preheating device for preheating the raw material gas and blows the preheated raw material gas to the catalyst from the raw material gas outlet.
  • an apparatus for producing a carbon nanostructure from a source gas by a catalytic chemical vapor deposition method wherein a heating device for heating a reaction region to a temperature range for producing a carbon nanostructure is provided.
  • a mixed gas supply pipe for introducing a mixed gas of the raw material gas and the catalyst body is provided in the reaction area ⁇ , and the mixed gas outlet is arranged in the reaction area, and a temperature at which tar-like products are not generated from the mixed gas.
  • This is a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus in which a preheating device for preheating the mixed gas supply pipe to a region is provided, and the preheated mixed gas is blown to the reaction region.
  • a catalyst supply pipe for supplying a catalyst in the reaction region, a preheating device for preheating the catalyst supply pipe is provided, and the raw material is added to the preheated catalyst.
  • supplying the catalyst body to the reaction zone through the catalyst supply pipe for supplying the catalyst body a required amount of catalyst powder can be supplied.
  • the catalyst body supplied to the reaction region instantaneously reaches the generation temperature and can react with the raw material powder.
  • a fifteenth aspect of the present invention is a raw material spraying type high-efficiency carbon nanostructure manufacturing apparatus, which is provided with a stirring device for stirring the catalyst body in the reaction region, and blows a raw material gas to the stirred catalyst body.
  • the stirrer includes a vibrating means using ultrasonic vibration, a rotating means for rotating a rotating plate or rotating a container to which the catalyst powder is supplied, and a swinging plate provided in the reaction area for swinging. It can be constituted by a rocking means for moving or other known means.
  • the catalyst may be stirred after a predetermined amount of the catalyst is deposited in the reaction zone where the reaction zone is located, or the catalyst may be stirred while the supply of the catalyst is continued.
  • a sixteenth aspect of the present invention is a raw material spraying type high efficiency carbon nanostructure manufacturing method in which the catalyst body is a catalyst for manufacturing carbon nanocoils. If a carbon nanocoil production catalyst is used, carbon nanocoils can be selectively produced from hydrocarbons. Therefore, the method of the present invention can be used to reduce tar-like by-products and to produce carbon nanocoils with high density and high efficiency. Can be.
  • a metal carbide catalyst, a metal oxide catalyst or a metal catalyst containing a transition metal element can be used as the carbon nanocoil production catalyst.
  • the transition metal element means a transition element shown in the periodic table, specifically, Sc to Cu in the fourth cycle, Y to Ag in the fifth cycle, and La to A in the sixth cycle. u and so on.
  • AI n C, AS n C, AI n Sn C, or the like can be used as a catalyst for producing a carbon nanostructure as the metal carbide.
  • the metal oxide a carbon nanostructure such as AInO, ASnO, AInSnO, AA1SnO or ACrSnO is used.
  • the metal-based catalyst may be AAl Sn, AC r Sn, AI n Sn, or the like.
  • a metal catalyst containing an Fe element as a transition metal element can be used as a catalyst for producing a carbon nanostructure.
  • F e x I n y C z F e x Sn y C z or F e x I n y C z Sn w carbon nano structure creation catalyst for producing an F e based metal carbide catalyst such as it can be used
  • more preferred composition ratio of the metal carbide catalysts F e 3 I nC 0. 5 , F e 3 S n C or F e 3 I n preparative v C 0. 5 S n w (0 ⁇ v ⁇ 1, W ⁇ 0).
  • the carbon nanostructure production catalyst using the F e x I n y Sn z , F e based metal catalyst such as F e X A 1 y S n z or F e x C r y S n z
  • F e based metal catalyst such as F e X A 1 y S n z or F e x C r y S n z
  • the more preferable composition ratio is F e 3 I n y S n z ( y ⁇ 9, z ⁇ 3), F e x A 1 y S n z ( y ⁇ 1, z ⁇ 3) or F e C r y S n z (y ⁇ 1, z ⁇ 3).
  • a seventeenth aspect of the present invention is a method for producing a high-efficiency carbon nanostructure by spraying a raw material, wherein the raw material gas contains at least one of acetylene, arylene, ethylene, benzene or toluene, alcohol or methane.
  • These source gases are suitable source gases particularly for producing carbon nanostructures among hydrocarbons, and can mass-produce carbon nanostructures without generating tar-like by-products.
  • the carbon nanostructure is a carbon nanocoil, a carbon nanotube, a carbon nanotwist, a carbon nanotube with beads, a carbon nanobrush or fullerene. Is the way.
  • a specific carbon nanostructure can be selectively mass-produced by changing the type of the catalyst or by modulating the generation temperature of the reaction zone.
  • FIG. 1 is a schematic configuration diagram when a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention is used for manufacturing carbon nanocoils.
  • FIG. 2 is an overall configuration diagram in the case where the accessory spraying apparatus is combined with the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 shown in FIG.
  • FIG. 3 is an electron microscope image of a 10,000-fold carbon nanocoil obtained under condition 1 (standard concentration 1 to 2).
  • Figure 4 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 1 (standard concentration 1Z2).
  • Figure 5 is an electron microscope image of a 10000-fold carbon nanocoil obtained under condition 2 (standard concentration 1Z4).
  • Fig. 6 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 2 (standard concentration 1Z4).
  • Figure 7 is an electron microscope image of a 10,000-fold carbon nanocoil obtained under condition 3 (standard concentration 1-8).
  • Figure 8 is an electron microscope image of a 30,000-fold carbon nanocoil obtained under condition 3 (1/8 of the reference concentration).
  • Figure 9 is an electron microscope image of a 10,000 times carbon nanocoil obtained under condition 4 (identical to the reference concentration).
  • Figure 10 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 4 (identical to the reference concentration).
  • Figure 11 is an electron microscope image of a 10,000-fold carbon nanomaterial obtained under condition 5 (2/3 of the reference concentration).
  • Figure 12 is an electron microscope image of a 10,000-fold carbon nanostructure obtained under condition 6 (1/3 of the reference concentration).
  • FIG. 13 is a schematic configuration diagram when the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention is used for manufacturing carbon nanotubes.
  • FIG. 14 is a schematic configuration diagram when a catalyst powder is used as a catalyst in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention.
  • FIG. 15 is a schematic configuration diagram in the case where a catalyst powder supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention.
  • FIG. 16 is a schematic configuration diagram in the case where a mixed gas supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention.
  • FIG. 17 is a schematic configuration diagram in a case where a stirrer 17 is attached to the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention.
  • FIG. 18 is a schematic configuration diagram of each gas supply pipe 8 according to the present invention and its gas outlet.
  • FIG. 19 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanocoils.
  • FIG. 20 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanotubes.
  • the present inventors have conducted intensive studies on the mechanism of the formation of tar-like substances by-produced in the production of carbon nanostructures. As a result, the raw material gas molecules undergo self-decomposition in a specific temperature range. They found that they formed an aromatic ring while associating, and that the aromatic rings condensed to form a macromolecule, which resulted in the formation of a macromolecule.
  • the tar-like substances are naphthalene having two benzene rings, anthracene having three benzene rings, a condensed aromatic ring substance obtained by condensing a large number of benzene rings, and a CH 3 substituted substance of these condensed aromatic rings. Is determined. After searching and examining the standard charts, no identifiable charts were found. Therefore, it can be determined that the pitch is a certain kind of pitch.
  • mass spectrometry was performed on tar-like substances.
  • the mass spectrometer used is a model that can measure substances with a molecular weight of 1000 or less. With this mass spectrometer, a mass spectrum with a molecular weight of 1000 or less could not be observed.
  • tar-like substances are composed of macromolecules with a molecular weight of 1000 or more.
  • the process of forming such a condensed aromatic ring substance from C 2 H 2 as the raw material gas is presumed to be a two-step reaction consisting of the association reaction of (1) and the polymerization reaction of (2).
  • the catalyst was removed from the reaction zone shown in FIGS. 19 and 20, and the temperature of the reaction zone was variously changed, and the amount of the tar-like substance deposited on the inner surface of the reaction tube was examined. As a result, it was found that these polymerization reactions occur in the range of 300 ° C to 600 ° C.
  • the temperature range in which carbon nanocoils are generated using C 2 H 2 as a raw material gas using an indium-tin-iron-based catalyst is 550 ° C. or higher, preferably 600 ° C. It is known to be ⁇ 1200 ° C. That is, above 550 ° C, the following autolysis reaction of C 2 H 2 occurs.
  • the preheating method includes a method of preheating outside the reaction tube and a method of preheating inside the reaction tube. Either of these methods is included in the method of the present invention.
  • a high purity alumina pellet catalyst containing Ni metal with CH 4 content of less than 0.05% using CH 4 as a raw material gas has a carbon nanotube temperature of 400 ° C.
  • the above is selectively generated.
  • the temperature range in which tar-like substances were generated by this catalyst was in the range of 250 ° C to 400 ° C.
  • Ni metal-containing high-purity alumina pellet catalyst if this Ni metal-containing high-purity alumina pellet catalyst is used, if the raw material gas such as CH 4 is set at 250 ° C or less and this raw material gas is blown into the catalyst body at 400 ° C or more at once, tar
  • the desired carbon nanotubes can be produced without producing a carbonaceous material.
  • a method in which a raw material gas cooled to a low temperature is directly blown into the catalyst a method in which a room temperature raw material gas is directly blown into the catalyst, and a method in which a low temperature or room temperature raw material gas is preheated to 250 ° C or less
  • a method of blowing the preheating gas into the catalyst There is a method of blowing the preheating gas into the catalyst.
  • various deformation patterns can be designed such that the raw material gas at room temperature may be preheated to 250 ° C or less outside the reaction tube, or may be preheated to 250 ° C or less in the reaction tube. . Izu In any case, it is important to keep the raw material gas in a temperature range where tar-like substances are not generated, and it is the gist of the invention to blow this raw material gas directly into the catalyst.
  • the temperature range for the formation of tar-like substances slightly changes, but it is a relatively low temperature range.
  • the temperature range in which carbon nanostructures are selectively formed is a relatively low temperature range, which does not overlap with the tar-like substance formation temperature range. Therefore, the raw material gas is kept in a temperature range where tar-like substances are not generated, and this raw material gas is blown into the catalyst in the carbon nanostructure generation temperature range at a stretch to remove tar-like by-products. It is possible to selectively generate carbon nanostructures by rapidly decreasing.
  • the present invention employs the following measures.
  • the cross-sectional area of the reaction tube through which the raw material gas flows is configured to be much larger than the cross-sectional area of the catalyst in that direction.
  • the raw material gas flowing in contact with the catalyst surface causes a catalytic reaction, but the raw material gas that passes far from the catalyst simply passes through without being reacted.
  • the mixed gas of the carrier gas and the raw material gas flowing inside was flowing at a low speed in order to increase the probability of contact with the catalyst.
  • the mixed gas is in a laminar flow state, and the carrier gas He and the raw material gas C 2 H 2 are not uniformly mixed, and the concentration of the raw material gas is partially biased and mixed in the reaction tube. There is likely to be a partial bias in the gas temperature of the gas.
  • the above-mentioned raw material gas is intensively sprayed onto the catalyst surface, and by blowing the raw material gas, the contact probability between the raw material gas and the catalyst surface is drastically improved, and the generation probability of carbon nanostructures is increased.
  • the apparatus of the present invention uses a source gas supply pipe for introducing the source gas into the reaction tube separately from the reaction tube.
  • the source gas outlet of the supply pipe is disposed near the surface of the catalyst body. In other words, the raw material gas or raw material A mixed gas of a gas and a carrier gas is introduced.
  • the raw material gas intensively comes into contact with the surface of the catalyst body, and the generation probability of carbon nanostructures is drastically increased.
  • the concentration of the raw material gas flowing through the raw material gas supply pipe is set lower than before, the generation yield of carbon nanostructures remains the same as before or only because the generation probability increases. Can be increased.
  • the cross-sectional area of the source gas supply pipe is relatively small, when the source gas or a mixed gas of the source gas and the carrier gas is blown from the source gas outlet, uneven temperature and concentration within the cross-sectional area are reduced. Unthinkable. In that sense, the source gas can come into contact with the catalyst at a uniform temperature and a uniform concentration, and the carbon nanostructure can grow relatively uniformly on the surface of the catalyst.
  • an iodine-containing organic gas such as thiophene, a phosphorus-containing organic gas, a hydrocarbon gas, or the like can be used.
  • hydrocarbons are preferable because unnecessary elements are not added.
  • Hydrocarbons include alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, aryl hydrocarbon compounds such as benzene, toluene, and styrene, and condensed rings such as indene, naphthalene, and phenanthrene.
  • Aromatic hydrocarbons, cyclopropanes, cyclohexanes such as cyclopentenes, cyclopentin compounds such as cyclopentenes, and alicyclic hydrocarbon compounds having condensed rings such as steroids can be used. It is also possible to use a mixed hydrocarbon gas in which two or more of the above hydrocarbon compounds are mixed. In particular, low molecular weight hydrocarbons, for example, acetylene, arylene, ethylene, benzene, and toluene are preferable.
  • the carrier gas used in the present invention is a gas capable of transporting a source gas, and for example, He, Ne, Ar, N 2 , H 2 and the like can be used.
  • the gas flowing through the source gas supply pipe may be only the source gas or a mixed gas of the source gas and the above-mentioned carrier gas.
  • the carrier gas is preferably used as the gas flowing through the reaction tubes except the source gas supply tube, but the carrier gas may be partially mixed with the carrier gas.
  • the concentration ratio of the mixed gas can be freely determined in consideration of the amount of carbon nanostructure generated. Compared to conventional equipment without a source gas supply pipe, even if the concentration of the source gas is lowered, the probability of S response is increased by the source gas spraying method. The above can be secured.
  • the raw material gas outlet of the raw material gas supply pipe is arranged near the catalyst,
  • the source gas is arranged and configured to be directly blown onto the surface of the catalyst body.
  • the source gas supply pipe only needs to be one or more, and the source gas outlet is formed in various shapes such as a round hole and a rectangular hole so as to increase the contact area of the source gas with the surface of the catalyst. It is desirable to be done.
  • the source gas blown from the source gas supply pipe is set in a temperature range where tar-like substances are not generated.
  • This temperature range is from low temperature (normal temperature) to the lowest temperature at which tar-like substances are formed. Therefore, it is not necessary to heat the source gas in order to blow the source gas at a low or normal temperature. However, in order to increase the reactivity of the raw material gas, it is desired to preheat the raw material gas to a temperature lower than the minimum temperature for producing tar-like substances.
  • the first method is a case where a raw material gas is preheated outside a reaction tube, and the preheated gas is introduced into a raw material gas supply tube in the reaction tube.
  • the second method is a case where a source gas at a low temperature or a normal temperature is introduced into a source gas supply pipe, and the source gas supply pipe is heated to heat the internal source gas.
  • this case is included when the temperature range of the source gas introduced into the source gas supply pipe is from low temperature to (normal temperature) to the lowest temperature at which tar-like substances are generated.
  • a heater for heating the supply pipe is provided around the source gas supply pipe.
  • the raw material gas is preheated by the heater for heating the supply pipe in a temperature range in which tar-like substances are not generated.
  • This preheating temperature depends somewhat on the type of the raw material gas, and may be set at 300 ° C. or less for C 2 H 2 . In order to increase the reactivity with the catalyst, it is preferable that the temperature is set to the maximum temperature of about 300 ° C.
  • most of the raw material gas is converted into carbon nanostructures on the surface of the catalyst body, and the amount of the raw material gas flowing downstream unreacted is extremely small.
  • FIG. 1 is a schematic configuration diagram when a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention is used for manufacturing carbon nanocoils.
  • a heater 6 for heating a reaction area is arranged on the outer periphery of a reaction tube 4, and a uniform reaction temperature area is defined as a reaction area 10 by the heater 6 for heating a reaction area.
  • the catalyst 12 is disposed in the reaction region 10.
  • a small diameter source gas supply pipe 8 is disposed in the reaction pipe 4, and the supply pipe tip 8 a reaches the inside of the reaction region 10, and the supply pipe tip 8 a is a catalyst body 12. It is located in the vicinity of.
  • a heater 9 for supply pipe heating is arranged around the source gas supply pipe 8, and the whole of the source gas supply pipe 8 is heated and held in a temperature range where tar-like substances are not generated.
  • the nozzle-shaped source gas supply pipe 8 is used.
  • the above-described reaction tube 4 is a quartz tube having a cross-sectional diameter (outer diameter) of 33 mm (inner diameter 28 mm), and the source gas supply pipe 8 is made of SUS having an outer diameter of 3.2 mm and an inner diameter of 1.6 mm. Piping is used.
  • the catalyst body 12 is a quartz glass substrate on which an indium-tin-iron-based catalyst is formed. The method for producing an aluminum-tin-iron catalyst is described below.
  • the quartz glass substrate was put into a heating furnace at 500 ° C. for 20 minutes to thermally decompose the organic components to form an indium tin film.
  • the thickness of the indium tin film was 300 nm.
  • Carry gas is high purity He (purity 99.999 V o 1%) manufactured by Taiyo Toyo Oxygen Co., Ltd., and C 2 H 2 is general dissolved acetylene (purity 98 V o 1% or more) manufactured by Sangas Nichigo Co., Ltd. used.
  • the pressure of the carrier He is 1 atm
  • the flow rate is 0.8 cm / s
  • the reaction zone temperature is 700 ° C
  • the reaction time is 30 minutes. This condition is common to the following three embodiments.
  • FIG. 2 is an overall configuration diagram in a case where an accessory device is combined with the carbon nanostructure manufacturing apparatus shown in FIG. He is supplied from the carrier gas container 21 via a valve 23, the flow rate is controlled by a mass flow controller 25, and He is supplied to a carrier gas supply pipe 31 via a valve 29.
  • the He whose flow rate is controlled by the mass flow controller 26 is also supplied to the source gas supply pipe 8 via the valve 28.
  • C 2 H 2 is supplied from the source gas container 22 via the valve 24. This C 2 H 2 is a mass flow controller
  • the flow rate is controlled by 27 and supplied to the raw gas supply pipe 8 via the pulp 30. Therefore, a mixed gas of He and C 2 H 2 is supplied to the source gas supply pipe 8.
  • the passing gas flows to the tar trap 32 containing the coolant 32a cooled to the ice temperature.
  • the tar-like by-product cooled by the tar trap 32 is trapped, and the residual gas flows from the exhaust pipe 33 in the direction of arrow f.
  • the state of formation of the carbon nanocoils on the catalyst body 12 is determined from an electron microscope image, and is indicated by ⁇ when the generation rate is good, and X when the generation rate is not good.
  • the amount of tar-like by-products can be determined by dissolving and collecting all substances adhering to the reaction tube 4, the exhaust pipe 33, the tar trap 32, etc. in acetone, and measuring the weight of the residue obtained by evaporating the acetone. It was measured.
  • the tar-like by-products are subjected to component analysis using an infrared spectrophotometer (FT-IR-8200PC, Shimadzu Corp.), and a high-condensed aromatic ring derived from acetylene or a bond between highly condensed aromatic rings was found to be a substance.
  • FT-IR-8200PC infrared spectrophotometer
  • a substance identification test was performed using a mass spectrometer, and it was found that the substance had a high molecular weight and at least a molecular weight of 1,000 or more.
  • Table 1 summarizes the results of Condition 1 to Condition 3.
  • the electron microscope images of Condition 1 are shown in FIGS. 3 and 4
  • the electron microscope images of Condition 2 are shown in FIGS. 5 and 6
  • the electron microscope images of Condition 3 are shown in FIGS. 7 and 8.
  • Figure 3 is an electron microscope image of a 10000x carbon nanocoil obtained under condition 1 (reference concentration of 12).
  • Figure 4 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 1 (1/2 of the reference concentration). Both show that carbon nanocoils are growing well.
  • Figure 5 is an electron microscope image of a 10,000 times carbon nanocoil obtained under condition 2 (1/4 of the reference concentration).
  • Figure 6 is an electron microscope image of a 5000-fold carbon nanocoil obtained under condition 2 (1/4 of the reference concentration). As in condition 1, both show that carbon nanocoils grow well.
  • Figure 7 is an electron microscope image of a 10000x carbon nanocoil obtained under condition 3 (standard concentration 1Z8).
  • Figure 8 is an electron microscope image of a 30,000-fold carbon nanocoil obtained under condition 3 (standard concentration 1Z8). Again, as in condition 1, both show that carbon nanocoils grow well.
  • the use of the method and apparatus of the present invention allows carbon nanocoils to grow at a high density even when the C 2 H 2 concentration is reduced to 1/2, 1Z4 and 1/8 of the reference concentration. Proven to be.
  • the amount of tar-like substance produced changes from 0.089 g to 0.025 g to 0.05 lg according to the standard concentration of 1 da 2 ⁇ 1 / 4 ⁇ 1/8, and moreover, It turned out to be very small. Observation of the external appearance of the reaction tube 4 also showed that contamination by tar-like substances was extremely small, and that the antifouling performance was far superior to that of the conventional apparatus.
  • Condition 4 is the same as the reference concentration, condition 5 is the reference concentration 2 33, and condition 6 is the reference concentration 1-3. These results are summarized in Table 2. The results of condition 4 are shown in FIGS. 9 and 10, the result of condition 5 is shown in FIG. 11 and the result of condition 6 is shown in FIG. 12 as electron microscope images. [Table 2]
  • FIG. 9 is an electron microscope image of a 1000 ⁇ magnification carbon nanocoil obtained under condition 4 (identical to the reference concentration).
  • Figure 10 is obtained under condition 4 (identical to the reference concentration). It is an electron microscope image of a carbon nanocoil of 5000 times. Carbon nanocoils are growing well, and the results of the prior art have been reproduced! /
  • Fig. 11 is an electron microscope image of a 10,000-fold carbon nanomaterial obtained under condition 5 (2/3 of the reference concentration).
  • Figure 12 is an electron microscope image of a 10,000-fold carbon nanostructure obtained under condition 6 (1/3 of the reference concentration). These images show that the carbon nanocoils are not growing.
  • the weight of the tar-like substance produced is extremely high at 0.317 g in Condition 4, and decreases to 0.083 ⁇ and 0.048 g in Condition 5 and Condition 6.
  • the amount of this tar-like substance produced is far greater than the amount of tar-like substance produced under conditions 1 to 3 shown in Table 1. The situation can be understood from the fact that the inner surface of the reaction tube 4 is blackened.
  • FIG. 13 is a schematic configuration diagram when the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention is used for manufacturing carbon nanotubes.
  • This apparatus is a raw material spraying type high-efficiency carbon nanostructure manufacturing apparatus 2 which is exactly the same as in Example 1, except for the catalyst 12, the reaction zone temperature, the temperature of the raw material gas supply pipe, the raw material gas and the carrier gas.
  • the first difference is that a catalyst obtained by sintering Ni on high-purity r-alumina pellets (99.95% or more) with a sodium content of 0.01% or less was used as the catalyst body 12. It is.
  • the second difference is that the temperature of the reaction zone is maintained at 500 ° C.
  • the third difference is that the temperature of the source gas supply pipe was kept at 250 ° C.
  • the fourth difference is that CH 4 is used as a source gas and Ar is used as a carrier gas.
  • the temperature of the reaction zone was set at 500 ° C
  • the temperature of the source gas supply pipe was set at 250 ° C. '
  • the present invention is not limited to the production of carbon nanocoils and carbon nanotubes, but can be used for the production of a wide range of carbon nanostructures such as carbon nanotubes with beads, carbon nanobrushes, and fullerenes. .
  • FIG. 14 is a schematic configuration diagram of a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention in which catalyst powder is used as a catalyst.
  • the catalyst 12 of FIG. 1 is composed of the catalyst structure.
  • the catalyst powder 13 flows in the direction of arrow a.
  • the catalyst powder 13 flows into the reaction zone 10
  • the catalyst powder 13 is heated to the generation temperature by the reaction zone heater 6, and the source gas is blown from the source gas outlet 8 b onto the catalyst powder 13.
  • the carbon nanostructures 14 grow on the surface of the catalyst powder constituent particles 13a.
  • the source gas supply pipe 8 is arranged so that the source gas outlet 8 b reaches the reaction region 10, and a heater 9 for the source gas supply pipe is arranged around the source gas supply pipe 8. 8 is heated and held in a temperature range where tar-like substances are not generated.
  • FIG. 15 is a schematic configuration diagram in the case where a catalyst powder supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention.
  • a catalyst powder supply pipe 7 and a carrier gas supply pipe 31 are provided in addition to the source gas supply pipe 8, and each supply pipe has a heater 9 for a source gas supply pipe, a heater for a catalyst powder supply pipe, A heater for the carrier gas supply pipe is provided.
  • the source gas supply heater is the same as in the other embodiments. No tar-like substance is generated in the entire raw gas supply pipe 8! / Heated and held in the temperature range.
  • the catalyst powder supply pipe heater 5 heats the catalyst powder supply pipe 7 to the generation temperature, the catalyst powder 13 is supplied to the reaction region 10 at the generation temperature, and the raw material gas is converted into the catalyst gas. By spraying on the powder, the carbon nanostructures begin to grow immediately.
  • a carrier gas supply pipe 31 is also provided, so that the carrier gas can be heated to a predetermined temperature.
  • the reaction region 10 is maintained at a uniform temperature, and a carbon nanostructure can be stably generated.
  • FIG. 16 is a schematic configuration diagram in a case where a mixed gas supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention.
  • the raw material gas and the catalyst powder 13 are mixed and supplied to the reaction zone 10.
  • the mixing ratio between the raw material gas and the catalyst powder 13 is appropriately adjusted.
  • the mixed gas is heated by the mixed gas supply pipe heater 9 so that the raw material gas and the catalyst powder 13 are preheated to the same temperature.
  • the mixed gas is introduced into the reaction zone 10, the mixed gas is immediately heated to the generation temperature zone, and Nanostructures 14 are generated.
  • FIG. 17 is a schematic configuration diagram in a case where a stirrer 17 is attached to the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention.
  • a stirrer 17 for stirring the catalyst powder 13 in the reaction region 10 is provided, and the raw material gas is blown onto the stirred catalyst powder 13.
  • the stirrer 17 is provided with a vibrating means using ultrasonic vibration or the like, a rotating means for rotating a rotating plate or a container itself to which the catalyst powder is supplied, and a swinging plate provided in the reaction area. It is composed of rocking means for rocking movement or other known means.
  • an intermittent operation in which a predetermined amount of the catalyst powder 13 is deposited in the carbon nanostructure reaction region 10 provided with the stirring device of Example 6, and then the catalyst powder 13 is stirred, or It can be used in any case of continuous operation in which the catalyst powder 13 is continuously supplied while stirring.
  • FIG. 18 is a schematic configuration diagram of each gas supply pipe 8 according to the present invention and its gas outlet.
  • (18 A) is a schematic configuration diagram of the nozzle-shaped gas supply pipe 8.
  • a gas outlet 8b is formed at the leading end 8a of each gas supply pipe (a raw material gas supply pipe, a catalyst powder supply pipe, or a carrier gas supply pipe).
  • Supply gas to In (18A) the tip 8a is formed in a tapered shape, and the supplied gas can be more efficiently blown to the reaction region 10.
  • (18B) is a schematic configuration diagram of a gas supply pipe 8 provided with a gas outlet 8b on the outer periphery.
  • a plurality of outlets 8b are provided on the outer periphery of the supply pipe tip 8a, and the raw material gas and Z or the catalyst powder 13 are diffused into the reaction region 10. Therefore, the contact probability between the raw material gas and the catalyst powder 13 increases, so that the carbon nanostructures 14 can be generated with high efficiency.
  • the gas supply pipes used in Examples 1 to 6 are not limited to the shape shown in FIG. 18, and known gas supply pipes having various shapes according to the purpose and gas outlets thereof can be used.
  • the tar-like by-products are generated by the decomposition and combination of the raw material gas in the process of gradually increasing from the low temperature to the temperature for forming the carbon nanostructure.
  • the inventor's research revealed this.
  • the subject of this effort is to remove from the reaction process the intermediate temperature region where the source gas decomposes and combines.
  • the raw material gas is kept in a temperature range where the tar-like by-product is not generated (lower temperature, normal temperature or lower temperature than the intermediate temperature range), and the raw material gas is maintained at the intermediate temperature.
  • the catalyst body is fixed in the reaction region, and the raw material gas is added to the catalyst body.
  • a catalyst may be supplied from the catalyst tank or the like to the reaction area as needed.
  • the raw material gas is preheated to a temperature range in which tar-like by-products are not generated, and the preheated raw material gas is jumped over the intermediate temperature to make a carbon nanostructure at once.
  • the preheated raw material gas is jumped over the intermediate temperature to make a carbon nanostructure at once.
  • the catalyst body may be fixed in the reaction area, and a raw material gas may be sprayed on the catalyst body, or the catalyst body may be supplied to the reaction area as needed from a catalyst body tank or the like.
  • the catalyst body is composed of the catalyst structure
  • the catalyst body can be installed only in the reaction region, so that the catalyst body and the raw material gas can be efficiently converted. Can be reacted.
  • the carbon nanostructure is formed on the surface of the catalyst structure, the carbon nanostructure can be collected with higher efficiency than the catalyst structure.
  • the structure of the catalyst structure can be selected according to the type of the catalyst structure of the carbon nanostructure to be produced.
  • a catalyst structure having a layered structure, a lattice structure, a porous structure, or a fibrous structure having a large surface area By using a catalyst structure having a layered structure, a lattice structure, a porous structure, or a fibrous structure having a large surface area, a carbon nanostructure can be generated with high efficiency. Further, by using a catalyst structure having a plate-like structure, a carbon nanostructure can be easily recovered.
  • the catalyst body is formed from catalyst powder, so that the catalyst body can be easily supplied as needed. Further, the carbon nanostructure formed on the surface of the catalyst powder constituent particles can be easily collected by flowing out the catalyst powder.
  • the catalyst powder is supplied to the reaction region as needed.
  • the source gas and the catalyst powder can be reacted with high efficiency.
  • a seventh aspect of the present invention is a method for producing a raw material spraying type high-efficiency carbon nanostructure in which the catalyst powder is supplied from a catalyst powder supply pipe into a space heated to the production temperature range.
  • the catalyst powder is supplied from a catalyst powder supply pipe into a space heated to the production temperature range.
  • the carbon nanostructure can be manufactured with high efficiency by appropriately adjusting the mixing ratio of the raw material gas and the catalyst powder. Furthermore, by heating the mixed gas, the raw material gas and the catalyst powder can be preheated to the same temperature, and when introduced into the reaction zone, the mixed gas is immediately heated to the generation temperature range, and the carbon nanostructure is heated. Products can be manufactured with high efficiency.
  • the raw material gas can be efficiently brought into contact with the catalyst powder by stirring the catalyst powder, and the carbon nanostructure can be manufactured with high efficiency.
  • the stirring method include a vibration method using ultrasonic vibration, a rotation method for rotating a rotating plate or a container to which the catalyst powder is supplied, and a swinging plate provided in the reaction region.
  • An oscillating method of moving or other known methods can be used.
  • the temperature at which tar-like by-products are generated from hydrocarbons used as a raw material gas is from 300 ° C. to 600 ° C.
  • the temperature at which carbon nano-structures are formed from 550 ° C or more, depending on the type of catalyst, is a little more than 550 ° C, and is efficiently between 600 ° C and 1200 ° C. it is conceivable that. Therefore, if the preheating temperature of the raw material gas is controlled to 300 ° C. or lower and the preheated raw material gas is sent to the reaction zone at 600 ° C. or higher at a stretch, the raw material gas becomes a tar-like by-product.
  • the temperature of the raw material gas is in a temperature range in which tar-like by-products are not generated, so that no tar-like by-products are generated inside the raw material gas supply pipe.
  • the source gas since the source gas is blown directly from the source gas outlet to the catalyst body, the source gas comes into contact with the catalyst with high probability and is efficiently converted into carbon nanostructures. Thus, the generation of tar-like by-products can be sharply reduced. Since much of the raw material gas is consumed in the catalytic reaction, the formation of tar-like substances in the reaction tube is also strongly suppressed.
  • a tar-like product is not generated inside the raw material gas supply pipe in the preheating temperature range, and the preheated raw material gas is directly blown from the raw material gas outlet to the catalyst. Therefore, the preheated raw material gas comes into contact with the catalyst with high probability, and the carbon nanostructure is produced with high efficiency. Therefore, as in the case of the above-described apparatus, much of the raw material gas is consumed in the catalytic reaction, so that the generation of tar-like substances in the reaction tube can be prevented.
  • no tar-like products are generated inside the mixed gas supply pipe in the preheating temperature range.
  • the preheated mixed gas that has flowed into the reaction zone from the mixed gas outlet is instantaneously heated to the generation temperature, and is discharged to the raw material gas and the catalyst body of the mixed gas, so that the preheated mixed gas is directly blown onto the catalyst body.
  • the preheated raw material gas comes into contact with the catalyst with high probability, and carbon nanostructures are produced with high efficiency. Therefore, as in the case of the above-described apparatus, much of the raw material gas is consumed in the catalytic reaction, so that the formation of tar-like substances in the reaction tube can be prevented.
  • a required amount of catalyst powder can be supplied by supplying the catalyst to the reaction region through the catalyst supply pipe for supplying the catalyst. Further, by preheating the catalyst body from the preheating device, the catalyst body supplied to the reaction region reaches the generation temperature instantaneously and can react with the raw material powder.
  • the raw material gas can be efficiently brought into contact with the catalyst powder by stirring the catalyst powder, and the carbon nanostructure can be produced with high efficiency.
  • the stirrer includes a vibrating means using ultrasonic vibration, a rotating means for rotating a rotating plate or a container to which the catalyst powder is supplied, and a swinging plate provided in the reaction region. It can be constituted by a rocking means for performing a moving motion, or other known means.
  • the catalyst may be stirred after a predetermined amount of the catalyst has been deposited in the reaction zone, or the catalyst may be stirred while the supply of the catalyst is continued.
  • the method of the present invention can reduce tallic by-products and simultaneously produce carbon nanocoils with high density and high efficiency.
  • a metal carbide catalyst, a metal oxide catalyst or a metal catalyst containing a transition metal element can be used as the carbon nanocoil production catalyst.
  • the transition metal element means a transition element shown in the periodic table. Specifically, the transition metal element includes Sc to Cu in the fourth cycle, Y to Ag in the fifth cycle, and La to Au in the sixth cycle. is there.
  • an element selected from the above transition metal elements is A
  • the metal carbide AInC, ASnC, AInSnC and the like can be used as a catalyst for producing a carbon nanostructure.
  • the metal oxide AIn ⁇ , ASnO, AInSnO, AA13110 or SnO or the like can be used as a catalyst for producing a carbon nanostructure.
  • the metal-based catalyst AAl Sn, AC r Sn or AI n Sn can be used.
  • a metal catalyst containing a Fe element as a transition metal element can be used as a catalyst for producing a carbon nanostructure.
  • F e x I n y C z F e x S n y C z or F e x I n y C z Sn w Fe -based metal carbide catalyst for carbon nanostructure production catalyst, such as
  • the preferred composition ratio of the metal carbide catalyst is Fe 3 InC. . 5, F e 3 S nC or F e 3 I ni -. V C 0 5 S n w (0 ⁇ v ⁇ 1, W ⁇ 0) Ru der.
  • F e x I n y Sn z, F e x A l y Sn z or F e x C r y Sn z can be used F e based metal catalyst such as ,
  • a more preferable composition ratio is F e 3 I n y S n z ( y ⁇ 9, z ⁇ 3), F e x A l y Sn z
  • the raw material gas contains at least one of acetylene, arylene, ethylene, benzene or toluene, alcohol or methane.
  • These source gases are suitable source gases particularly for producing carbon nanostructures among hydrocarbons, and can mass-produce carbon nanostructures without generating tar-like by-products.
  • the carbon nanostructure is a carbon nanocoil. This is a method for producing a high-efficiency mono-bonano structure by spraying a raw material, which is carbon nanotube, carbon nano twist, carbon nanotube with beads, carbon nano brush or fullerene.

Abstract

A process for producing a carbon nanostructure in which a carbon nanostructure is produced with high efficiency while reducing the occurrence of tar-like by-products; and an apparatus therefor. There is provided apparatus (2) for highly efficient carbon nanostructure production through raw material blasting, including reaction pipe (4) having catalyst body (12) disposed thereinside; heater (6) for heating the vicinity of the catalyst body (12) up to a temperature zone for formation of the carbon nanostructure (14); source gas supply pipe (8) for introducing source gas into the reaction pipe (4), with front end (8a) of the source gas supply pipe disposed in the vicinity of the catalyst body (12); and preheater (9) for preheating the source gas supply pipe (8) up to a temperature zone at which no tar-like products are formed from the source gas. As in the source gas supply pipe no tar-like products are formed and as over an intermediate temperature the source gas is blasted at a breath to the catalyst body, the reaction probability would be increased to thereby increase the production yield of carbon nanostructure. As most of the source gas is consumed, formation of tar-like substances is avoided in the reaction pipe (4) as well.

Description

明 細 書 原料吹き付け式高効率力一ボンナノ構造物製造方法及び装置  Description Method and apparatus for producing high-efficiency carbon nanostructures by spraying raw materials
(技術分野) (Technical field)
本発明は原料ガスから触媒化学気相成長法によりカーボンナノ構造物を製造す る方法に関し、 更に詳細には、 原料ガスから高効率にカーボンナノ構造物を生成 し、 また原料ガスから生成されるタ一ル状副生成物を低減できるカーボンナノ構 造物製造方法及び装置に関する。  The present invention relates to a method for producing carbon nanostructures from a source gas by catalytic chemical vapor deposition, and more particularly, to a method for producing carbon nanostructures from a source gas with high efficiency, and a method for producing a carbon nanostructure from a source gas. The present invention relates to a method and an apparatus for producing a carbon nanostructure capable of reducing a by-product by a tail.
(従来の技術) (Conventional technology)
カーボンナノ構造物がナノテクノロジーの中核物質として注目を集めている。 本発明で云うカーボンナノ構造物とは炭素原子から構成されるナノサイズの物質 であり、 例えば、 コイル状のカーボンナノコイル、 チューブ状のカーボンナノチ ユーブ、 カーボンナノチューブが捩れを有したカーボンナノツイスト、 カーボン ナノチューブにビーズが形成されたビーズ付カーボンナノチューブ、 カーボンナ ノチューブが多数林立した力ーポンナノブラシ、 球殻状のフラーレンなどがある。 以下では、 これら多数のカーボンナノ構造物のうち、 カーボンナノコイルとカー ボンナノチューブを例示して本発明の内容を説明する。  Carbon nanostructures are attracting attention as core materials of nanotechnology. The carbon nanostructure referred to in the present invention is a nano-sized substance composed of carbon atoms, such as a coiled carbon nanocoil, a tube-shaped carbon nanotube, a carbon nanotwist having a twisted carbon nanotube, There are beaded carbon nanotubes in which beads are formed on carbon nanotubes, power-pon nanobrushes with a large number of carbon nanotubes, and spherical fullerenes. In the following, the contents of the present invention will be described by exemplifying carbon nanocoils and carbon nanotubes among these many carbon nanostructures.
カーボンナノコイルは 1 9 9 4年にァメリンクス等 (Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635) によって初めて合成された。 また、 1 9 9 9年にリー等 (W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J. Material Sci. , 34 Carbon nanocoils were first synthesized by Amelinckx et al. (Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635) in 1994. In 1999, Lee et al. (W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J. Material Sci., 34
(1999) 2745) 力 グラフアイトシートの外周に鉄粒子を被覆した触媒を用いて カーボンナノコイルの生成に成功した。 し力、し、 これらは何れも収率が低く、 量 産には向かなかった。 (1999) 2745) Force Carbon nanocoils were successfully produced using a catalyst in which iron particles were coated on the periphery of a graphite sheet. All of them had low yield and were not suitable for mass production.
そこで、 本発明者等の一部によって為された特開 2 0 0 1— 1 9 2 2 0 4に示 される 「カーボンナノコイルの製造方法」 が開発された。 この技術は、 インジゥ ム ·スズ ·鉄系触媒を用いて炭化水素などを原料ガスとして触媒ィヒ学気相成長法Accordingly, a “production method of carbon nanocoils” disclosed in Japanese Patent Application Laid-Open No. 2001-192204 made by a part of the present inventors has been developed. This technology is Catalytic vapor-phase epitaxy using hydrocarbons, etc., as raw material gases with a catalyst based on copper, tin, and iron
(CCVD法、 Catalyst Chemical Vapor Deposition) によりカーボンナノコィ ルを大量合成した最初の例である。 (CCVD method, Catalyst Chemical Vapor Deposition) This is the first example of mass production of carbon nanocoils.
また、 このインジウム ·スズ ·鉄系触媒を改良した従来技術には、 本努明者等 の一部によって為された特開 2001— 310130に示される 「カーボンナノ コイル生成用のインジウム 'スズ '鉄系触媒の製造方法」 がある。 この技術は、 インジウム ·スズ ·鉄系触媒を金属有機化合物から合成する方法を示しており、 インジウム♦スズ ·鉄系触媒の量産方法を開示している。  Further, in the prior art in which the indium-tin-iron catalyst is improved, Japanese Patent Application Laid-Open No. 2001-310130, which was made by a part of the present investigators, discloses "Indium 'tin' iron for producing carbon nanocoils. Production method of system catalyst ”. This technique shows a method for synthesizing an indium-tin-iron catalyst from a metal organic compound, and discloses a method for mass-producing an indium-tin-iron catalyst.
他方、 カーボンナノチューブは 1991年に飯島澄夫が炭素アーク放電の陰極 堆積物中に発見したカーボンナノ構造物である。 それ以後、 カーボンナノチュー ブの大量合成法が研究され、 近年に至って、 特開 2002— 180251及び特 開 2002— 180252に示される 「カーボンナノチューブの製造方法」.が公 開されるに至った。  On the other hand, carbon nanotubes are carbon nanostructures discovered in 1991 in the cathode deposits of carbon arc discharges by Sumio Iijima. Since then, mass synthesis methods of carbon nanotubes have been studied, and in recent years, the "method for producing carbon nanotubes" disclosed in JP-A-2002-180251 and JP-A-2002-180252 has been published.
前者は、 アルカリ金属の含有量が 0. 05%以下の高純度アルミナに触媒金属 を含有させた活性基体に 400〜500°Cの温度で有機炭素原料を CVD法によ り熱分解してカーボンナノチューブを大量合成する技術である。 また、 後者は、 触媒金属を 0. 001〜0. 005モル/ m 2の割合で蒸着させて形成した活性 基体上に、 1 100〜1250°Cの温度で有機炭素原料を熱分解してカーボンナ ノチューブを大量合成する技術である。 The former is based on the thermal decomposition of an organic carbon material by a CVD method at a temperature of 400 to 500 ° C on an active substrate containing a catalytic metal in high-purity alumina containing 0.05% or less of alkali metal. This is a technique for mass-producing nanotubes. The latter is a catalyst metal from 0.001 to 0.005 on a molar / m 2 active substrate formed by depositing at a rate of, the organic carbon source is thermally decomposed at a temperature of 1 100 to 1,250 ° C carbon nano This is a technique for synthesizing a large number of tubes.
以上のように、 従来の製法開発は、 カーボンナノ構造物の大量合成用の触媒を 開発すると同時に、 合成温度などの製造条件の改良が中心であった。 ところが、 最近では、 大量合成には成功したが、 無用な副生成物が発生するという問題が惹 起してきた。  As described above, the development of conventional manufacturing methods focused on developing catalysts for the mass synthesis of carbon nanostructures and at the same time improving manufacturing conditions such as synthesis temperature. Recently, however, large-scale synthesis has been successful, but the problem of generating unnecessary by-products has been raised.
図 1 9は従来のカーボンナノ構造物製造装置 40をカーボンナノコイルの生成 に用いた場合の概略構成図である。 カーボンナノ構造物製造装置 40は、 特開 2 001-192204に示されるように、 反応管 4の外周に反応領域加熱用ヒ一 タ 6を配置し、 この反応領域加熱用ヒータ 6により均一温度に設定された反応温 度領域を反応領域 10とし、 この反応領域 10に触媒体 12を配置して構成され ている。 触媒体 12にはインジウム 'スズ '鉄からなるカーボンナノコイル生成 用触媒が使用された。 FIG. 19 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanocoils. As shown in Japanese Patent Application Laid-Open No. 2001-192204, a carbon nanostructure manufacturing apparatus 40 has a heater 6 for heating a reaction area around an outer periphery of a reaction tube 4, and a heater 6 for heating the reaction area to obtain a uniform temperature. The set reaction temperature region is defined as a reaction region 10, and a catalyst 12 is arranged in the reaction region 10. Formation of carbon nanocoils made of indium 'tin' iron in catalyst 12 Catalyst was used.
キャリアガスとして He、 原料ガスとして C2H2を用い、 Heと C2H2を適 正な流量比で混合した混合ガスを矢印 c方向に流通させる。 反応領域 10は 70 0°Cに、 反応時間は 1時間に設定された。 その結果、 触媒体 12の表面には、 C 2H2が分解して、 カーボンナノコイルからなるカーボンナノ構造物 14が成長 した。 Using He as a carrier gas and C 2 H 2 as a source gas, a mixed gas in which He and C 2 H 2 are mixed at an appropriate flow ratio flows in the direction of arrow c. The reaction zone 10 was set at 700 ° C., and the reaction time was set at 1 hour. As a result, on the surface of the catalyst body 12, C 2 H 2 was decomposed, and a carbon nanostructure 14 composed of carbon nanocoils grew.
ところが、 反応管 4の内面にタール状副生成物 16が分散状に密着しているこ とが確認された。 このタール状副生成物を分析したところ、 芳香族炭化水素と判 定された。 アルキル基は非常に少なく、 パラフィン系炭化水素の含有はないと判 定された。 タール状副生成物 16の FT I R法により得られた赤外スぺク トルを 分析したところ、 ナフタレン、 アントラセン等の縮合芳香環物質、 縮合芳香環物 質の CH3置換物質、 或いは高縮合芳香環物質の結合物質、 それら多成分の混合 物だと推定される。 However, it was confirmed that the tar-like by-product 16 adhered to the inner surface of the reaction tube 4 in a dispersed manner. Analysis of this tar-like by-product determined that it was an aromatic hydrocarbon. It was determined that there were very few alkyl groups and no paraffinic hydrocarbons. Analysis of the infrared spectrum of the tar-like by-product 16 obtained by the FT-IR method revealed that condensed aromatic ring substances such as naphthalene and anthracene, CH 3 -substituted condensed aromatic ring substances, or highly condensed aromatic substances It is presumed to be a binding substance of a ring substance, or a mixture of these components.
タール状副生成物 16の付着している場所は、 反応領域 1◦の前後に位置する 反応管 4の内面であり、 反応領域 10の内面にはほとんど存在しないことが分か つた。 タール状副生成物 16は黒色で反応管を汚し、 しかも洗浄作業が面倒であ ると同時に、 洗浄不能の場所に付着すると清浄ィ匕できなくなるという問題がある。 また、 カーボンナノコイルは通常程度の密度で生成したが、 C2H2濃度を低 下させるとその成長密度も低下することが確認された。 この原因は、 反応管 4の 断面全体に混合ガスを流すため、 矢印 e方向に流れた C2H2ガスは触媒体 12 と接触してカーボンナノコイル 14へと反応転換されるが、 矢印 d方向のように 触媒体 12から遠方を流れる C2H2ガスは反応せずにそのまま通過し、 大量の 未反応原料ガスを下流側に流出させてしまうからである。 It was found that the place where the tar-like by-products 16 adhered was the inner surface of the reaction tube 4 located before and after the reaction zone 1 °, and hardly existed on the inner surface of the reaction zone 10. The tar-like by-product 16 has a problem that the reaction tube is stained with black color, and the washing operation is troublesome. It was also confirmed that carbon nanocoils were produced at a normal density, but when the C 2 H 2 concentration was reduced, the growth density was also reduced. This is because the C 2 H 2 gas flowing in the direction of arrow e comes into contact with the catalyst 12 and is converted into carbon nanocoils 14 because the mixed gas flows through the entire cross section of the reaction tube 4. This is because the C 2 H 2 gas flowing away from the catalyst body 12 as it is in the direction passes without reacting, and causes a large amount of unreacted raw material gas to flow downstream.
タール状副生成物 16が形成されるだけでもカーボンナノコイルの収率低下を もたらすが、 C2H2ガスが触媒体 12と接触しない場合には反応自体も起こら ず、 これら二つの事情が収率低下の原因と考えられる。 Although the formation of tar-like by-products 16 alone results in a decrease in the yield of carbon nanocoils, when C 2 H 2 gas does not come into contact with the catalyst 12, the reaction itself does not take place. This is considered to be the cause of the rate decrease.
図 20は従来のカーボンナノ構造物製造装置 40をカーボンナノチューブの生 成に用いた場合の概略構成図である。 カーボンナノ構造物製造装置 40の構成は 図 19と同様であり、 異なる点は次の 2点である。 第 1の相違点は、 触媒体 1 2として、 ナトリゥム含量が 0 . 0 1。 以下である 高純度 r—アルミナペレット (9 9 . 9 5 %以上) に N iを焼結させた触媒が 使用されたことである。 第 2の相違点は、 触媒体の近傍を 5 0 0 °Cに保持して適 正な流量比で混合された C H 4と A rの混合ガスを矢印 c方向に流通させたこと である。 FIG. 20 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanotubes. The configuration of the carbon nanostructure manufacturing apparatus 40 is the same as that shown in FIG. 19, and differs in the following two points. The first difference is that the catalyst body 12 has a sodium content of 0.01. The catalyst was obtained by sintering Ni to the following high-purity r-alumina pellets (99.95% or more). The second difference is that a mixed gas of CH 4 and Ar mixed at an appropriate flow ratio was allowed to flow in the direction of arrow c while maintaining the vicinity of the catalyst body at 500 ° C.
その結果、 ペレツトからなる触媒体 1 2の表面にカーボンナノチューブからな るカーボンナノ構造物 1 4が通常の密度で生成されることが分かった。 し力 し、 上記従来技術と同様に、 タール状副生成物 1 6が反応領域 1 0の前後において反 応管 4の内面に黒く密着することが確認された。 また、 カーボンナノチューブの 成長密度が通常の密度以上には向上しないことも確認された。 これらの原因は、 矢印 d方向に流れる C H4が反応に貢献しないこと、 しかも原料ガスである C H 4の多くがタール状副生成物 1 6の生成に使われることにあると考えられる。 以上のように、 従来の製造方法や製造装置では、 反応管の内面に無視できない 量のタール状副生成物が形成され、 しかもカーボンナノ構造物の生成収率も十分 には向上しないことが分かった。 最近では、 カーボンナノ構造物を高純度且つ高 密度に生成するためには、 これらの課題を解決することが緊急に必要であると認 識されるようになっている。 As a result, it was found that carbon nanostructures 14 composed of carbon nanotubes were formed at a normal density on the surface of the catalyst body 12 composed of pellets. However, it was confirmed that the tar-like by-product 16 adhered to the inner surface of the reaction tube 4 black before and after the reaction region 10 in the same manner as in the prior art. It was also confirmed that the growth density of carbon nanotubes did not increase beyond the normal density. It is considered that the reason for this is that CH 4 flowing in the direction of arrow d does not contribute to the reaction, and that most of the raw material gas, CH 4 , is used to generate tar-like by-products 16. As described above, it can be seen that conventional production methods and production equipment produce a considerable amount of tar-like by-products on the inner surface of the reaction tube and do not sufficiently improve the production yield of carbon nanostructures. Was. Recently, it has been recognized that it is urgently necessary to solve these issues in order to produce carbon nanostructures with high purity and high density.
従って、 本発明に係るカーボンナノ構造物の製造方法及び装置は、 反応方法及 ぴ反応装置を改良することにより、 カーボンナノ構造物の生成過程でタール状副 生成物の発生を減少させ、 しかも原料ガスを効率的に反応させてカーボンナノ構 造物の生成収率を格段に向上することを目的とする。  Therefore, the method and apparatus for producing a carbon nanostructure according to the present invention can reduce the generation of tar-like by-products in the process of producing a carbon nanostructure by improving the reaction method and the reaction apparatus. The objective is to significantly improve the production yield of carbon nanostructures by efficiently reacting gas.
(発明の開示) (Disclosure of the Invention)
本発明は上記課題を解決するために為されたものであり、 本発明の第 1の形態 は、 原料ガスから触媒化学気相成長法によりカーボンナノ構造物を製造する方法 において、 カーボンナノ構造物の生成温度域まで加熱された空間内で、 触媒体と 接触するように、 タール状副生成物が生成されない温度域にある原料ガスを吹き 付けて、 カーボンナノ構造物を生成する原料吹き付け式高効率カーボンナノ構造 物製造方法である。 タ一ル状副生成物は低温から次第にカーボンナノ構造物生成 温度にまで上昇する過程で、 原料ガスが分解 ·結合することによって発生するこ とが本楽明者等の研究で分かつた。 つまり原料ガスが分解 ·結合する中間温度領 域を反応過程から除去することが本発明の主題となる。 このために、 この発明で は、 原料ガスをタール状副生成物が生成されない温度領域 (前記中間温度領域よ り低い温度、 常温又は更に低温) に保持しておき、 この原料ガスを前記中間温度 を跳び越して、 一気にカーボンナノ構造物生成温度領域に導入することにより、 タール状副生成物の発生を大幅に低減することが可能となる。 し力も、 原料ガス を反応領域に向かつて直接吹き付けるから、 反応領域内の触媒体と原料ガスとの 反応確率が増大し、 カーボンナノ構造物の生成収率を大幅に向上できるようにな る。 更に、 前記触媒体を反応領域内に固定して、 この触媒体に原料ガスを吹き付 けても良く、 又は触媒体を触媒体タンク等から必要に応じて前記反応領域に供給 することもできる。 The present invention has been made to solve the above problems, and a first aspect of the present invention is a method for producing a carbon nanostructure from a source gas by a catalytic chemical vapor deposition method. In the space heated to the temperature of the formation of carbon, the raw material gas in the temperature range where tar-like by-products are not generated is sprayed so as to come into contact with the catalyst body to produce carbon nanostructures. This is an efficient method for producing carbon nanostructures. Tall by-products gradually form carbon nanostructures from low temperatures The research by the authors and others has revealed that the process is caused by the decomposition and combination of the raw material gas in the process of rising to the temperature. That is, the subject of the present invention is to remove, from the reaction process, the intermediate temperature region where the source gas is decomposed and combined. For this purpose, in the present invention, the raw material gas is kept in a temperature range where the tar-like by-product is not generated (lower temperature, normal temperature or lower temperature than the intermediate temperature range), and the raw material gas is kept at the intermediate temperature. By jumping into the temperature range where carbon nanostructures are formed at once, it is possible to greatly reduce the generation of tar-like by-products. Also, since the raw material gas is directly blown toward the reaction region, the probability of reaction between the catalyst body and the raw material gas in the reaction region increases, and the production yield of carbon nanostructures can be greatly improved. Further, the catalyst body may be fixed in the reaction region, and a raw material gas may be sprayed on the catalyst body, or the catalyst body may be supplied from the catalyst body tank or the like to the reaction region as needed. .
本発明の第 2の形態は、 原料ガスから触媒化学気相成長法によりカーボンナノ 構造物を製造する方法において、 カーボンナノ構造物の生成温度域まで加熱され た空間内で、 触媒体と接触するように、 タール状副生成物が生成されない温度域 まで予熱された原料ガスを直接吹き付けて、 カーボンナノ構造物を生成する原料 吹き付け式高効率カーボンナノ構造物製造方法である。 この発明では、 原料ガス をタ一ル状副生成物が生成されない温度域まで予熱しておき、 この予熱原料ガス を中間温度を跳び越して一気にカーボンナノ構造物生成温度にまで引き上げるこ とにより、 タール状副生成物の発生を大幅に低減することができる。 第 1の発明 との相違は原料ガスを予熱する点にある。 この予熱により原料ガスの反応性を増 大でき、 触媒領域における原料ガスの反応確率を加速的に増大することになる。 また、 原料ガスを反応領域に向かって直接吹き付けるから、 反応領域内の触媒体 と原料ガスとの反応確率が増大し、 カーボンナノ構造物の生成密度と生成効率を 大幅に向上できるようになる。 更に、 前記触媒体を反応領域内に固定して、 この 触媒体に原料ガスを吹き付けても良く、 又は触媒体を触媒体タンク等から必要に 応じて前記反応領域に供給することもできる。  According to a second aspect of the present invention, there is provided a method for producing a carbon nanostructure from a raw material gas by catalytic chemical vapor deposition, wherein the carbon nanostructure is brought into contact with a catalyst body in a space heated to a temperature range for generating the carbon nanostructure. As described above, this is a raw material spraying type high-efficiency carbon nanostructure manufacturing method in which a raw material gas preheated to a temperature range in which tar-like by-products are not generated is directly sprayed to generate carbon nanostructures. In the present invention, the raw material gas is preheated to a temperature range in which no tall by-product is generated, and the preheated raw material gas is jumped over the intermediate temperature and raised to the carbon nanostructure generation temperature at a stretch. Generation of tar-like by-products can be significantly reduced. The difference from the first invention is that the raw material gas is preheated. This preheating can increase the reactivity of the raw material gas, thereby increasing the reaction probability of the raw material gas in the catalyst region at an accelerated rate. Further, since the raw material gas is directly blown toward the reaction region, the reaction probability between the catalyst body and the raw material gas in the reaction region increases, and the generation density and generation efficiency of the carbon nanostructure can be greatly improved. Further, the catalyst body may be fixed in the reaction area, and a raw material gas may be sprayed on the catalyst body, or the catalyst body may be supplied from the catalyst body tank or the like to the reaction area as needed.
本発明の第 3の形態は、 前記触媒体が触媒構造体から構成される原料吹き付け 式高効率カーボンナノ構造物製造方法である。 前記触媒体が触媒構造体から構成 されることにより、 反応領域内にのみ触媒体を設置することができるから、 触媒 体と原料ガスを高効率に反応させることができる。 更に、 カーボンナノ構造物は 触媒構造体の表面に形成されるから、 この触媒構造体よりカーボンナノ構造物を 高効率に捕集することができる。 A third aspect of the present invention is a method for producing a raw material spray-type high-efficiency carbon nanostructure, wherein the catalyst body is composed of a catalyst structure. The catalyst body comprises a catalyst structure By doing so, the catalyst body can be placed only in the reaction region, so that the catalyst body and the source gas can be reacted with high efficiency. Furthermore, since the carbon nanostructure is formed on the surface of the catalyst structure, the carbon nanostructure can be collected with higher efficiency than the catalyst structure.
本発明の第 4の形態は、 前記触媒構造体が板状構造、 層状構造、 格子状構造、 多孔質構造又は繊維状構造の少なくとも 1つ以上の構造を有する原料吹き付け式 カーボンナノ構造製造方法である。 この発明により、 製造されるカーボンナノ構 造物の前記触媒構造体の種類に応じて、 触媒構造体の構造を選択することができ る。 表面積が大きい層状構造、 格子状構造、 多孔質構造又は繊維状構造を有する 触媒構造体を用いることにより、 高効率にカーボンナノ構造物を生成することが できる。 更に、 板状構造の触媒構造体を用いることにより、 容易にカーボンナノ 構造体を回収することができる。  According to a fourth aspect of the present invention, there is provided a method for producing a carbon nanostructure, wherein the catalyst structure has at least one of a plate structure, a layer structure, a lattice structure, a porous structure and a fibrous structure. is there. According to the present invention, the structure of the catalyst structure can be selected according to the type of the catalyst structure of the carbon nanostructure to be produced. By using a catalyst structure having a layered structure, a lattice structure, a porous structure, or a fibrous structure having a large surface area, a carbon nanostructure can be produced with high efficiency. Further, by using the plate-shaped catalyst structure, the carbon nanostructure can be easily recovered.
本発明の第 5の形態は、 前記触媒体が触媒粉体から構成される原料吹き付け式 高効率カーボンナノ構造物製造方法である。 前記触媒体が触媒粉体から形成され ることにより、 必要に応じて触媒体を容易に供給することができる。 更に、 前記 触媒粉体構成粒子表面に形成されたカーボンナノ構造物は、 触媒粉体を流出させ ることにより、 容易に回収することができる。  A fifth aspect of the present invention is a method for producing a raw material spray-type high-efficiency carbon nanostructure, wherein the catalyst body is composed of catalyst powder. By forming the catalyst from the catalyst powder, the catalyst can be easily supplied as needed. Further, the carbon nanostructure formed on the surface of the catalyst powder constituent particles can be easily recovered by flowing out the catalyst powder.
本発明の第 6の形態は、 前記触媒粉体をカーボンナノ構造物の生成温度域まで 加熱された空間内の反応領域に供給して、 この触媒粉体を前記生成温度域まで加 熱する原料吹き付け式高効率カーボンナノ構造物製造方法である。 この発明では、 前記触媒粉体を必要に応じて反応領域に供給することができ、 原料ガスと触媒粉 体を高効率に反応させることができる。  According to a sixth aspect of the present invention, there is provided a raw material for supplying the catalyst powder to a reaction region in a space heated to a temperature range for generating carbon nanostructures, and heating the catalyst powder to the temperature range for generation. This is a spray type high efficiency carbon nanostructure manufacturing method. According to the present invention, the catalyst powder can be supplied to the reaction region as needed, and the raw material gas and the catalyst powder can be reacted with high efficiency.
本発明の第 7の形態は、 前記触媒粉体を触媒粉体供給管から前記生成温度域ま で加熱された空間内に供給する原料吹き付け式高効率力一ボンナノ構造物製造方 法である。 前記触媒粉体が触媒粉体供給管から供給されることにより、 必要な量 を適宜に反応領域へ供給することができる。 更に、 前記触媒粉体供給管を加熱す ることにより、 前記生成温度域まで加熱された触媒粉体を供給することができ、 前記原料ガスと直ぐに反応することができる。  A seventh aspect of the present invention is a raw material spraying type high-efficiency monobon nanostructure manufacturing method for supplying the catalyst powder from a catalyst powder supply pipe into a space heated to the generation temperature range. By supplying the catalyst powder from the catalyst powder supply pipe, a necessary amount can be appropriately supplied to the reaction region. Further, by heating the catalyst powder supply pipe, the catalyst powder heated to the production temperature range can be supplied, and can react with the raw material gas immediately.
本発明の第 8の形態は、 前記触媒粉体が混合された原料ガスを前記生成温度域 まで加熱された空間内に吹き付ける原料吹き付け式高効率カーボンナノ構造物製 造方法である。 前記原料ガスと触媒粉体の混合比を適宜に調節することにより、 高効率に前記カーボンナノ構造物を製造することができる。 更に、 混合ガスを加 熱することにより、 原料ガスと触媒粉体を同一温度に予熱することができ、 反応 領域に導入されると混合ガスは瞬時に生成温度領域まで加熱され、 カーボンナノ 構造物を高効率に製造することができる。 According to an eighth aspect of the present invention, the raw material gas mixed with the catalyst powder is mixed with the raw material gas in the generation temperature range. This is a method for producing high-efficiency carbon nanostructures by spraying raw materials into the space heated up to the maximum. By appropriately adjusting the mixing ratio of the raw material gas and the catalyst powder, the carbon nanostructure can be manufactured with high efficiency. Furthermore, by heating the mixed gas, the raw material gas and the catalyst powder can be preheated to the same temperature. When introduced into the reaction zone, the mixed gas is instantly heated to the generation temperature zone, and the carbon nanostructure Can be manufactured with high efficiency.
本発明の第 9の形態は、 前記生成温度域まで加熱された空間内にある触媒粉体 を攪拌しておき、 この触媒粉体に前記原料ガスを吹き付ける原料吹き付け式高効 率カーボンナノ構造物製造方法である。 前記触媒粉体を攪拌することにより、 原 料ガスを触媒粉体と効率的に接触させることができ、 高効率にカーボンナノ構造 物を製造することができる。 攪拌方法としては、 超音波振動などを用いた振動方 法、 回転板を回転させる若しくは触媒粉体が供給される容器自体を回転させる回 転方法、 揺動板を前記反応領域内に付設して摇動させる揺動方法、 又はその他の 公知の方法を用いることができる。 '  According to a ninth aspect of the present invention, there is provided a raw material spraying type high-efficiency carbon nanostructure in which a catalyst powder in a space heated to the production temperature range is stirred and the raw material gas is blown onto the catalyst powder. It is a manufacturing method. By stirring the catalyst powder, the raw material gas can be efficiently brought into contact with the catalyst powder, and the carbon nanostructure can be manufactured with high efficiency. As a stirring method, a vibration method using ultrasonic vibration or the like, a rotation method of rotating a rotating plate or a container itself to which the catalyst powder is supplied, and a swing plate provided in the reaction region are provided. A swinging method of swinging or other known methods can be used. '
本発明の第 1 0の形態は、 原料ガスの予熱温度を 3 0 0 °C以下に設定するカー ボンナノ構造物の製造方法である。 例えば、 原料ガスとして使用される炭化水素 からタール状副生成物が生成される温度は 3 0 0 °C〜6 0 0 °Cであり、 炭化水素 からカーボンナノ構造物が生成される温度は触媒の種類によつて多少幅がある力 5 5 0 °C以上であり、 効率的には 6 0 0 °C〜1 2 0 0 °Cであると考えられる。 従 つて、 原料ガスの予熱温度を 3 0 0 °C以下に制御して、 この予熱原料ガスを一気 に 6 0 0 °C以上の反応領域に送り込めば、 原料ガスはタール状副生成物の生成温 度領域を通過しないから原理的にタール状副生成物は生成されないことになる。 本発明の第 1 1の形態は、 原料ガスから触媒化学気相成長法によりカーボンナ ノ構造物を製造する装置において、 反応領域をカーボンナノ構造物の生成温度域 にまで加熱する加熱装置を設け、 反応領域内に原料ガスを導入する原料ガス供給 管を設けてその原料ガス吹出し口を反応領域内に配置し、 タール状副生成物が生 成されない温度域にある原料ガスを前記原料ガス吹出し口から触媒体に吹き付け る原料吹き付け式高効率カーボンナノ構造物製造装置である。 原料ガスの温度は タール状副生成物が生成されない温度域にあるから、 原料ガス供給管の内部でタ 一ル状副生成物は生じず、 しかも原料ガス吹出し口からこの原料ガスを触媒体に 直接吹き付ける構造であるから、 原料ガスは触媒と高確率に接触して効率的に力 一ボンナノ構造物に転換され、 タール状副生成物の発生を急減できる。 原料ガス の多くは触媒反応に消費されるから、 反応管内でタール状物質が生成されること も強力に抑制される。 A tenth aspect of the present invention is a method for producing a carbon nanostructure in which a preheating temperature of a raw material gas is set at 300 ° C. or lower. For example, the temperature at which tar-like by-products from the hydrocarbon is produced which is used as a raw material gas is 3 0 0 ° C~6 0 0 ° C, a temperature that carbon nanostructure from a hydrocarbon is produced catalyst Depending on the type of force, the force is somewhat more than 550 ° C, and it is considered that the force is efficiently from 600 ° C to 1200 ° C. Therefore, if the preheating temperature of the raw material gas is controlled to 300 ° C. or lower and the preheated raw material gas is sent to the reaction zone at 600 ° C. or higher at a stretch, the raw material gas becomes a tar-like by-product. In principle, no tar-like by-products are generated because they do not pass through the formation temperature range. According to a eleventh aspect of the present invention, there is provided an apparatus for producing a carbon nanostructure from a raw material gas by a catalytic chemical vapor deposition method, wherein a heating device for heating a reaction region to a temperature range for generating a carbon nanostructure is provided. A source gas supply pipe for introducing a source gas into the reaction region is provided, and a source gas outlet thereof is disposed in the reaction region. The source gas in a temperature range where tar-like by-products are not generated is supplied to the source gas outlet. This is a high-efficiency carbon nanostructure production system that sprays raw materials onto the catalyst. Since the temperature of the raw material gas is in the temperature range where tar-like by-products are not generated, the temperature of the raw material gas Since the structure is such that no raw by-products are generated and the raw material gas is blown directly to the catalyst from the raw material gas outlet, the raw material gas comes into contact with the catalyst with a high probability to efficiently produce a carbon nanostructure. Is converted and the generation of tar-like by-products can be reduced sharply. Since much of the raw material gas is consumed in the catalytic reaction, the formation of tar-like substances in the reaction tube is also strongly suppressed.
本発明の第 1 2の形態は、 原料ガスから触媒化学気相成長法によりカーボンナ ノ構造物を製造する装置において、 反応領域をカーボンナノ構造物の生成温度域 にまで加熱する加熱装置を設け、 反応領域内に原料ガスを導入する原料ガス供給 管を設けてその原料ガス吹出し口を反応領域内に配置し、 原料ガスからタール状 生成物が生成されなレヽ温度域にまで前記原料ガス供給管を予熱する予熱装置から 構成され、 予熱された原料ガスを前記原料ガス吹出し口から触媒体に吹き付ける 原料吹き付け式高効率力一ボンナノ構造物製造装置である。 予熱温度域では原料 ガス供給管の内部でタール状生成物は生じず、 しかも原料ガス吹出し口から予熱 原料ガスを触媒体に直接吹き付ける構造であるから、 予熱原料ガスは触媒と高確 率に接触し、 カーボンナノ構造物が高効率に製造される。 従って、 上述の装置と 同様、 原料ガスの多くは触媒反応に消費されるから、 反応管内でタール状物質が 生成されることも防止できる。  According to a twelfth aspect of the present invention, there is provided an apparatus for producing a carbon nanostructure from a raw material gas by a catalytic chemical vapor deposition method, wherein a heating device for heating a reaction region to a temperature range for generating a carbon nanostructure is provided. A source gas supply pipe for introducing a source gas into the reaction area is provided, and a source gas outlet thereof is arranged in the reaction area. The source gas supply pipe extends to a temperature range where tar-like products are not generated from the source gas. This is a raw material spraying type high-efficiency single-bon nanostructure manufacturing apparatus which comprises a preheating device for preheating the raw material gas and blows the preheated raw material gas to the catalyst from the raw material gas outlet. In the preheating temperature range, no tar-like products are generated inside the raw material gas supply pipe, and the preheated raw material gas comes into contact with the catalyst with high accuracy because the preheated raw material gas is directly blown from the raw material gas outlet to the catalyst. Thus, carbon nanostructures are produced with high efficiency. Therefore, as in the case of the above-described apparatus, much of the raw material gas is consumed in the catalytic reaction, so that the generation of tar-like substances in the reaction tube can be prevented.
本発明の第 1 3の形態は、 原料ガスから触媒ィヒ学気相成長法によりカーボンナ ノ構造物を製造する装置において、 反応領域をカーボンナノ構造物の生成温度域 にまで加熱する加熱装置を設け、 反応領域內に原料ガスと触媒体の混合ガスを導 入する混合ガス供給管を設けてその混合ガス吹出し口を反応領域内に配置し、 混 合ガスからタール状生成物が生成されない温度域にまで前記混合ガス供給管を予 熱する予熱装置を設け、 予熱された混合ガスを反応領域に吹き付ける原料吹き付 け式高効率カーボンナノ構造物製造装置である。 予熱温度域では混合ガス供給管 の内部でタール状生成物は生じない。 混合ガス吹出し口から反応領域に吹き付け られた混合ガスは瞬時に生成温度まで加熱され、 前記混合ガス中の原料ガスと触 媒体が吹き付けられることによって効率良く接触するから、 カーボンナノ構造物 を高効率に生成することができる。 従って、 原料ガスの多くは触媒反応に消費さ れるから、 反応管内でタール状物質が生成されることも防止できる。 本発明の第 1 4の形態は、 前記反応領域に触媒体を供給する触媒体供給管を配 置し、 この触媒体供給管を予熱する予熱装置を設け、 予熱された触媒体に前記原 料ガスを吹き付ける原料吹き付け式高効率カーボンナノ構造物製造装置である。 前記触媒体を供給する触媒供給管を流通して触媒体を反応領域へ供給することに より、 必要な量の触媒粉体を供給することができる。 更に、 前記予熱装置より前 記触媒体を予熱することによって、 反応領域に供給された触媒体は瞬時に生成温 度まで到達し、 前記原料粉体と反応することができる。 According to a thirteenth aspect of the present invention, there is provided an apparatus for producing a carbon nanostructure from a source gas by a catalytic chemical vapor deposition method, wherein a heating device for heating a reaction region to a temperature range for producing a carbon nanostructure is provided. A mixed gas supply pipe for introducing a mixed gas of the raw material gas and the catalyst body is provided in the reaction area て, and the mixed gas outlet is arranged in the reaction area, and a temperature at which tar-like products are not generated from the mixed gas. This is a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus in which a preheating device for preheating the mixed gas supply pipe to a region is provided, and the preheated mixed gas is blown to the reaction region. No tar-like products are generated inside the mixed gas supply pipe in the preheating temperature range. The mixed gas blown from the mixed gas outlet to the reaction region is instantaneously heated to the generation temperature, and is efficiently contacted with the raw material gas in the mixed gas by being sprayed with the catalyst, so that the carbon nanostructure can be efficiently formed. Can be generated. Therefore, since much of the raw material gas is consumed in the catalytic reaction, the formation of tar-like substances in the reaction tube can be prevented. According to a fifteenth aspect of the present invention, there is provided a catalyst supply pipe for supplying a catalyst in the reaction region, a preheating device for preheating the catalyst supply pipe is provided, and the raw material is added to the preheated catalyst. It is a raw material spraying type high efficiency carbon nanostructure manufacturing equipment that blows gas. By supplying the catalyst body to the reaction zone through the catalyst supply pipe for supplying the catalyst body, a required amount of catalyst powder can be supplied. Further, by preheating the catalyst body by the preheating device, the catalyst body supplied to the reaction region instantaneously reaches the generation temperature and can react with the raw material powder.
本発明の第 1 5の形態は、 前記反応領域内の触媒体を攪拌する攪拌装置が付設 され、 攪拌された触媒体に原料ガスを吹き付ける原料吹き付け式高効率カーボン ナノ構造物製造装置である。 前記触媒粉体を攪拌することにより、 原料ガスを触 媒粉体と効率的に接触させることができ、 高効率にカーボンナノ構造物を製造す ることができる。 前記攪拌装置は、 超音波振動などを用いた振動手段、 回転板を 回転させる若しくは触媒粉体が供給される容器自体を回転させる回転手段、 揺動 板を前記反応領域内に付設して揺動運動させる揺動手段、 又はその他の公知の手 段から構成することができる。 更に、 反応領域がある反応領域内に所定量の触媒 体を堆積させてから、 前記触媒体を攪拌しても良く、 又は前記触媒体を供給し続 けながら攪拌することもできる。  A fifteenth aspect of the present invention is a raw material spraying type high-efficiency carbon nanostructure manufacturing apparatus, which is provided with a stirring device for stirring the catalyst body in the reaction region, and blows a raw material gas to the stirred catalyst body. By stirring the catalyst powder, the raw material gas can be efficiently brought into contact with the catalyst powder, and the carbon nanostructure can be manufactured with high efficiency. The stirrer includes a vibrating means using ultrasonic vibration, a rotating means for rotating a rotating plate or rotating a container to which the catalyst powder is supplied, and a swinging plate provided in the reaction area for swinging. It can be constituted by a rocking means for moving or other known means. Further, the catalyst may be stirred after a predetermined amount of the catalyst is deposited in the reaction zone where the reaction zone is located, or the catalyst may be stirred while the supply of the catalyst is continued.
本発明の第 1 6の形態は、 触媒体がカーボンナノコイル製造触媒である原料吹 き付け式高効率カーボンナノ構造物製造方法である。 カーボンナノコイル製造触 媒を用いれば、 炭化水素から選択的にカーボンナノコイルを生成できるから、 本 発明方法によりタール状副生成物を低減すると同時にカーボンナノコイルを高密 度で高効率に製造することができる。 前記カーボンナノコイル製造触媒としては、 遷移金属元素を含有する金属炭化物触媒、 金属酸化物触媒又は金属系触媒を用レヽ ることができる。 遷移金属元素は、 周期表に示される遷移元素を意味しており、 具体的には、 第 4周期の S c〜C u、 第 5周期の Y〜A g、 第 6周期の L a〜A uなどである。 上記遷移金属元素から選択された元素を Aとすると、 前記金属炭 化物としては、 A I n C、 A S n C、 A I n S n Cなどをカーボンナノ構造物製 造触媒として用いることができる。 更に、 前記金属酸化物としては、 A I n O、 A S n O、 A I n S n O、 AA 1 S n O又は A C r S n Oなどをカーボンナノ構 造物製造触媒として用いることができ、 前記金属系触媒としては、 AA l Sn、 AC r S n又は A I n S nなどを用いることができる。 更に、 好適な金属触媒と して、 遷移金属元素に F e元素を含有する金属触媒をカーボンナノ構造物製造用 触媒として用いることができる。 より具体的には、 F ex I nyCz、 F exSny Cz若しくは F ex I nyCzSnwなどの F e系金属炭化物触媒をカーボンナノ構 造物製造用触媒として用いることができ、 金属炭化物触媒のより好適な組成比は F e3 I nC0. 5、 F e 3 S n C若しくは F e 3 I nト v C 0. 5 S n w (0≤ v < 1 , W≥0) である。 更に、 前記カーボンナノ構造物製造用触媒として、 F ex I n ySnz、 F e XA 1 yS n z又は F e x C r y S n zなどの F e系金属触媒を用いる ことができ、 より好適な組成比は F e 3 I ny S n z (y≤ 9, z≤ 3) 、 F ex A 1 yS nz (y≤ 1, z≤ 3) 若しくは F e C r y S n z (y≤ 1, z≤3) で ある。 これらの金属触媒から目的に応じた触媒体を選択することにより、 高効率 にカーボンナノ構造物を生成することができる。 A sixteenth aspect of the present invention is a raw material spraying type high efficiency carbon nanostructure manufacturing method in which the catalyst body is a catalyst for manufacturing carbon nanocoils. If a carbon nanocoil production catalyst is used, carbon nanocoils can be selectively produced from hydrocarbons. Therefore, the method of the present invention can be used to reduce tar-like by-products and to produce carbon nanocoils with high density and high efficiency. Can be. As the carbon nanocoil production catalyst, a metal carbide catalyst, a metal oxide catalyst or a metal catalyst containing a transition metal element can be used. The transition metal element means a transition element shown in the periodic table, specifically, Sc to Cu in the fourth cycle, Y to Ag in the fifth cycle, and La to A in the sixth cycle. u and so on. Assuming that an element selected from the above transition metal elements is A, AI n C, AS n C, AI n Sn C, or the like can be used as a catalyst for producing a carbon nanostructure as the metal carbide. Further, as the metal oxide, a carbon nanostructure such as AInO, ASnO, AInSnO, AA1SnO or ACrSnO is used. The metal-based catalyst may be AAl Sn, AC r Sn, AI n Sn, or the like. Further, as a suitable metal catalyst, a metal catalyst containing an Fe element as a transition metal element can be used as a catalyst for producing a carbon nanostructure. More specifically, as F e x I n y C z , F e x Sn y C z or F e x I n y C z Sn w carbon nano structure creation catalyst for producing an F e based metal carbide catalyst such as it can be used, more preferred composition ratio of the metal carbide catalysts F e 3 I nC 0. 5 , F e 3 S n C or F e 3 I n preparative v C 0. 5 S n w (0≤ v < 1, W≥0). Further, as the carbon nanostructure production catalyst, using the F e x I n y Sn z , F e based metal catalyst such as F e X A 1 y S n z or F e x C r y S n z The more preferable composition ratio is F e 3 I n y S n z ( y ≤ 9, z ≤ 3), F e x A 1 y S n z ( y ≤ 1, z ≤ 3) or F e C r y S n z (y≤1, z≤3). By selecting a catalyst according to the purpose from these metal catalysts, a carbon nanostructure can be produced with high efficiency.
本発明の第 17の形態は、 原料ガスがアセチレン、 ァリレン、 エチレン、 ベン ゼン又はトルエン、 アルコール又はメタンの少なくとも一つを含む原料吹き付け 式高効率カーボンナノ構造物製造方法である。 これらの原料ガスは、 炭化水素の 中でも特にカーボンナノ構造物を生成する場合に好適な原料ガスであり、 タール 状副生成物を発生させないで、 カーボンナノ構造物を量産することができる。 本発明の第 18の形態は、 カーボンナノ構造物が、 カーボンナノコイル、 カー ボンナノチューブ、 カーボンナノツイスト、 ビーズ付きカーボンナノチューブ、 カーボンナノブラシ又はフラーレンである原料吹き付け式高効率力一ボンナノ構 造物製造方法である。 触媒体の種類を変更したり、 反応領域の生成温度を可変調 整することにより、 特定のカーボンナノ構造物を選択的に量産することができる。  A seventeenth aspect of the present invention is a method for producing a high-efficiency carbon nanostructure by spraying a raw material, wherein the raw material gas contains at least one of acetylene, arylene, ethylene, benzene or toluene, alcohol or methane. These source gases are suitable source gases particularly for producing carbon nanostructures among hydrocarbons, and can mass-produce carbon nanostructures without generating tar-like by-products. According to an eighteenth aspect of the present invention, there is provided a method for producing a high-efficiency carbon nanostructure in which the carbon nanostructure is a carbon nanocoil, a carbon nanotube, a carbon nanotwist, a carbon nanotube with beads, a carbon nanobrush or fullerene. Is the way. A specific carbon nanostructure can be selectively mass-produced by changing the type of the catalyst or by modulating the generation temperature of the reaction zone.
(図面の簡単な説明) (Brief description of drawings)
図 1は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置 2を カーボンナノコィルの製造に用いた場合の概略構成図である。  FIG. 1 is a schematic configuration diagram when a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention is used for manufacturing carbon nanocoils.
図 2は、 図 1に示す原料吹き付け式髙効率カーボンナノ構造物製造装置 2に付 属装置を組み合わせた場合の全体構成図である。 図 3は、 条件 1 (基準濃度の 1ノ2) により得られた 10000倍のカーボン ナノコイルの電子顕微鏡像である。 FIG. 2 is an overall configuration diagram in the case where the accessory spraying apparatus is combined with the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 shown in FIG. FIG. 3 is an electron microscope image of a 10,000-fold carbon nanocoil obtained under condition 1 (standard concentration 1 to 2).
図 4は、 条件 1 (基準濃度の 1Z2) により得られた 5000倍のカーボンナ ノコイルの電子顕微鏡像である。  Figure 4 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 1 (standard concentration 1Z2).
図 5は、 条件 2 (基準濃度の 1Z4) により得られた 10000倍のカーボン ナノコイルの電子顕微鏡像である。  Figure 5 is an electron microscope image of a 10000-fold carbon nanocoil obtained under condition 2 (standard concentration 1Z4).
図 6は、 条件 2 (基準濃度の 1Z4) により得られた 5000倍のカーボンナ ノコイルの電子顕微鏡像である。  Fig. 6 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 2 (standard concentration 1Z4).
図 7は、 条件 3 (基準濃度の 1ノ 8) により得られた 10000倍のカーボン ナノコイルの電子顕微鏡像である。  Figure 7 is an electron microscope image of a 10,000-fold carbon nanocoil obtained under condition 3 (standard concentration 1-8).
図 8は、 条件 3 (基準濃度の 1/8) により得られた 30000倍のカーボン ナノコイルの電子顕微鏡像である。  Figure 8 is an electron microscope image of a 30,000-fold carbon nanocoil obtained under condition 3 (1/8 of the reference concentration).
図 9は、 条件 4 (基準濃度と同一) により得られた 10000倍のカーボンナ ノコイルの電子顕微鏡像である。  Figure 9 is an electron microscope image of a 10,000 times carbon nanocoil obtained under condition 4 (identical to the reference concentration).
図 10は、 条件 4 (基準濃度と同一) により得られた 5000倍のカーボンナ ノコイルの電子顕微鏡像である。  Figure 10 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 4 (identical to the reference concentration).
図 1 1は、 条件 5 (基準濃度の 2/3) により得られた 10000倍のカーボ ンナノ物質の電子顕微鏡像である。  Figure 11 is an electron microscope image of a 10,000-fold carbon nanomaterial obtained under condition 5 (2/3 of the reference concentration).
図 12は、 条件 6 (基準濃度の 1/3) により得られた 10000倍のカーボ ンナノ構造物の電子顕微鏡像である。  Figure 12 is an electron microscope image of a 10,000-fold carbon nanostructure obtained under condition 6 (1/3 of the reference concentration).
図 13は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置 2 をカーボンナノチューブの製造に用いた場合の概略構成図である。  FIG. 13 is a schematic configuration diagram when the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention is used for manufacturing carbon nanotubes.
図 14は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置の 触媒体として触媒粉体を用いた場合の概略構成図である。  FIG. 14 is a schematic configuration diagram when a catalyst powder is used as a catalyst in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention.
図 15は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置に 触媒粉体供給管を設けた場合の概略構成図である。  FIG. 15 is a schematic configuration diagram in the case where a catalyst powder supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention.
図 16は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置に 混合ガス供給管を設けた場合の概略構成図である。 図 1 7は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置 2 に攪拌装置 1 7が付設された場合の概略構成図である。 FIG. 16 is a schematic configuration diagram in the case where a mixed gas supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention. FIG. 17 is a schematic configuration diagram in a case where a stirrer 17 is attached to the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention.
図 1 8は、 本発明に係る各ガス供給管 8とそのガス吹出し口の概略構成図であ る。  FIG. 18 is a schematic configuration diagram of each gas supply pipe 8 according to the present invention and its gas outlet.
図 1 9は、 従来のカーボンナノ構造物製造装置 4 0をカーボンナノコイルの生 成に用いた場合の概略構成図である。  FIG. 19 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanocoils.
図 2 0は、 従来のカーボンナノ構造物製造装置 4 0をカーボンナノチューブの 生成に用いた場合の概略構成図である。  FIG. 20 is a schematic configuration diagram when a conventional carbon nanostructure manufacturing apparatus 40 is used for generating carbon nanotubes.
(発明を実施するための最良の形態) (Best mode for carrying out the invention)
本発明者等は、 カーボンナノ構造物を製造する際に副生されるタール状物質の 生成メカニズムを鋭意研究した結果、 原料ガス分子が特定の温度領域で自己分解 を起こし、 この分解生成物が会合しながら芳香環を形成し、 この芳香環が縮合し て巨大分子を形成しタールイ匕することを発見するに至った。  The present inventors have conducted intensive studies on the mechanism of the formation of tar-like substances by-produced in the production of carbon nanostructures. As a result, the raw material gas molecules undergo self-decomposition in a specific temperature range. They found that they formed an aromatic ring while associating, and that the aromatic rings condensed to form a macromolecule, which resulted in the formation of a macromolecule.
タール状副生成物について F T I R法により赤外吸収スぺクトルを測定したと ころ、 多数の吸収ピークが出現し、 夫々の吸収波数について分子振動の帰属決定 を行った。 結果は次の通りであった。  When the infrared absorption spectrum of the tar-like by-product was measured by the FTIR method, a number of absorption peaks appeared, and the assignment of molecular vibration was determined for each absorption wave number. The results were as follows.
<吸収の帰属決定 >  <Determination of absorption attribution>
<吸収波数 (c m— > <振動の帰属〉  <Absorption wave number (c m—>) <Assignment of vibration>
3 0 4 7 芳香核の C H伸縮振動  3 0 4 7 CH stretching vibration of aromatic nucleus
2 9 2 0 脂肪族の C H伸縮振動  2 9 2 0 aliphatic C H stretching vibration
1 5 9 7 芳香核の C = C伸縮振動  1 5 9 7 C = C stretching vibration of aromatic nucleus
1 5 0 4 芳香核の C = C伸縮振動  1 5 0 4 C = C stretching vibration of aromatic nucleus
1 4 5 0 芳香核の C = C伸縮振動  1 4 5 0 C = C stretching vibration of aromatic nucleus
1 3 8 9 C H 3の変角振動 1 3 8 9 CH 3 bending vibration
9 5 7 芳香核の C H面外変角振動 以上の結果から、 タール状物質は芳香族炭化水素であると結論できる。 波数が 2 9 2 0 ( c m- 1 ) のピークについてはアルキル基と考えられるが、 その吸収 強度は他の吸収強度と比較してかなり小さいので、 アルキル基は非常に少なく、 パラフィン系炭化水素の含有はほとんど無レ、と判断される。 9 5 7 Out-of-plane bending vibration of aromatic nucleus From the above results, it can be concluded that the tar-like substance is aromatic hydrocarbon. The peak at wavenumber 292 (cm- 1 ) is considered to be an alkyl group, but its absorption intensity is much smaller than other absorption intensities, so the alkyl group is very small, It is determined that there is almost no paraffinic hydrocarbon content.
赤外スペクトルより、 タール状物質は、 ベンゼン環が 2個のナフタレン、 ベン ゼン環 3個のアントラセン、 更にベンゼン環が多数縮合した縮合芳香環物質や、 それら縮合芳香環の CH3置換物質であると判断される。 標準チャートの検索と 検討を行ったが、 同定できるチャートは発見されなかった。 従って、 ある種のタ ールピッチであると判断できる。 According to the infrared spectrum, the tar-like substances are naphthalene having two benzene rings, anthracene having three benzene rings, a condensed aromatic ring substance obtained by condensing a large number of benzene rings, and a CH 3 substituted substance of these condensed aromatic rings. Is determined. After searching and examining the standard charts, no identifiable charts were found. Therefore, it can be determined that the pitch is a certain kind of pitch.
また、 タール状物質について質量分析も行った。 使用した質量分析器は分子量 が 1000以下の物質を測定できる機種である。 この質量分析器によっては 10 00以下の分子量のマススペクトルは観察できなかった。 このことは、 タール状 物質は分子量が 1000以上の巨大分子から構成されることを意味している。 赤外スぺクトルとマススぺクトルの両者を総合すると、 これらの巨大分子が主 として C6H6が多数縮合した縮合芳香環物質であると判断される。 原料ガスで ある C2H2からこの様な縮合芳香環物質が形成される過程は、 (1) の会合反 応と (2) の重合反応からなる 2段階反応であると推定される。 In addition, mass spectrometry was performed on tar-like substances. The mass spectrometer used is a model that can measure substances with a molecular weight of 1000 or less. With this mass spectrometer, a mass spectrum with a molecular weight of 1000 or less could not be observed. This means that tar-like substances are composed of macromolecules with a molecular weight of 1000 or more. When both the infrared spectrum and the mass spectrum are combined, it is judged that these macromolecules are mainly condensed aromatic ring substances obtained by condensing a large number of C 6 H 6 . The process of forming such a condensed aromatic ring substance from C 2 H 2 as the raw material gas is presumed to be a two-step reaction consisting of the association reaction of (1) and the polymerization reaction of (2).
(1) 3 C2H2 → C6H6 (1) 3 C 2 H 2 → C 6 H 6
(2) nC6H6 → (C6H6) n (2) nC 6 H 6 → (C 6 H 6 ) n
次に、 これらの重合反応が生じる温度範囲について検討を行った。 図 19及ぴ 図 20の反応領域から触媒を除去し、 反応領域温度を種々に変更して、 反応管内 面におけるタール状物質の付着量を検討した。 その結果、 これらの重合反応は 3 00°C〜600°Cの範囲で生じることが分かった。  Next, the temperature range in which these polymerization reactions occur was examined. The catalyst was removed from the reaction zone shown in FIGS. 19 and 20, and the temperature of the reaction zone was variously changed, and the amount of the tar-like substance deposited on the inner surface of the reaction tube was examined. As a result, it was found that these polymerization reactions occur in the range of 300 ° C to 600 ° C.
この重合温度領域の発見は、 極めて重要な結論を導出する。 即ち、 300°C以 下の温度領域と 600°C以上の温度領域では重合反応が生じないから、 C2H2 を用いた場合にはタール状物質は生成されないという結論を与える。 The discovery of this polymerization temperature range leads to very important conclusions. That is, since no polymerization reaction occurs in a temperature range of 300 ° C. or lower and a temperature range of 600 ° C. or higher, it is concluded that tar-like substances are not generated when C 2 H 2 is used.
本発明者等の研究によれば、 インジウム 'スズ ·鉄系触媒を用いて、 C2H2 を原料ガスとしてカーボンナノコイルが生成する温度領域は 550°C以上であり、 望ましくは 600°C〜1200°Cであることが分かっている。 つまり、 550°C 以上では、 次のような C2H2の自己分解反応が生起する。 According to the study of the present inventors, the temperature range in which carbon nanocoils are generated using C 2 H 2 as a raw material gas using an indium-tin-iron-based catalyst is 550 ° C. or higher, preferably 600 ° C. It is known to be ~ 1200 ° C. That is, above 550 ° C, the following autolysis reaction of C 2 H 2 occurs.
C2H2 → 2 C + H2 C 2 H 2 → 2 C + H 2
従って、 C2H2からタール状物質を生成させないで、 カーボンナノコイルを 生成するためには、 300°C〜600°Cの中間温度領域を経過しないで、 C2H 2を 300°C以下から一気に 600°C領域に飛躍させることが必要になる。 換言 すれば、 C2H2ガスを低温〜 (常温) 〜300°Cの範囲の温度に設定しておき、 その原料ガスを一気に 600°C以上に設定された触媒領域に吹き込むことで、 タ ール状物質の生成を排除することが可能になる。 Therefore, without producing tar-like substances from C 2 H 2 , carbon nanocoils To generate, without passed intermediate temperature region of 300 ° C. to 600 ° C, consisting of C 2 H 2 need be remarkably at once 600 ° C region from below 300 ° C. In other words, the C 2 H 2 gas is set at a temperature in the range of low temperature to (normal temperature) to 300 ° C, and the raw material gas is blown into the catalyst region set at 600 ° C or more at a stretch, thereby reducing the temperature. This makes it possible to eliminate the formation of repellent substances.
C2H2ガスを低温〜 (常温) 〜300°Cの範囲の温度に設定するには、 反応 器の外側にある低温又は常温の原料ガスをそのまま触媒領域に導入する場合と、 この原料ガスを 300 °C以下の温度まで予熱し、 この予熱原料ガスを触媒領域に 導入する場合の二通りがある。 この予熱方式には、 反応管の外側で予熱する方式 と、 反応管の中で予熱する方式がある。 これらのいずれの方式も本発明方法に含 まれる。 In order to set the C 2 H 2 gas to a temperature in the range of low temperature (normal temperature) to 300 ° C, there are two cases: a low temperature or normal temperature raw material gas outside the reactor is directly introduced into the catalyst region; Is preheated to a temperature of 300 ° C or less, and this preheated raw material gas is introduced into the catalyst region in two ways. The preheating method includes a method of preheating outside the reaction tube and a method of preheating inside the reaction tube. Either of these methods is included in the method of the present invention.
触媒の種類を変更すれば、 カーボンナノコイル以外のカーボンナノ構造物を生 成することができ、 触媒の種類によつてタール状物質の生成温度領域も多少変動 する。 また、 触媒の種類によって、 カーボンナノ構造物の生成温度領域も多少変 化することが分かっている。  By changing the type of catalyst, carbon nanostructures other than carbon nanocoils can be generated, and the temperature range for the formation of tar-like substances slightly varies depending on the type of catalyst. It is also known that the temperature range for forming carbon nanostructures varies somewhat depending on the type of catalyst.
例えば、 特開 2002— 180251によれば、 CH4を原料ガスとして、 了 ルカリ金属含有量を◦ . 05 %以下に抑えた N i金属含有高純度アルミナペレツ ト触媒では、 カーボンナノチューブは 400°C以上で選択的に生成される。 また、 本発明者等の実験では、 この触媒によりタール状物質が生成される温度領域は 2 50°C〜400°Cの範囲であった。 For example, according to Japanese Patent Application Laid-Open No. 2002-180251, a high purity alumina pellet catalyst containing Ni metal with CH 4 content of less than 0.05% using CH 4 as a raw material gas has a carbon nanotube temperature of 400 ° C. The above is selectively generated. In experiments conducted by the present inventors, the temperature range in which tar-like substances were generated by this catalyst was in the range of 250 ° C to 400 ° C.
従って、 この N i金属含有高純度アルミナペレット触媒を用いれば、 CH4等 の原料ガスを 250°C以下に設定しておき、 この原料ガスを一気に 400°C以上 の触媒体に吹き込めば、 タール状物質を生成することなく、 目的とするカーボン ナノチューブを生成することができる。 Therefore, if this Ni metal-containing high-purity alumina pellet catalyst is used, if the raw material gas such as CH 4 is set at 250 ° C or less and this raw material gas is blown into the catalyst body at 400 ° C or more at once, tar The desired carbon nanotubes can be produced without producing a carbonaceous material.
更に、 具体的には、 低温に冷却された原料ガスを直接触媒体に吹き込む方式、 常温の原料ガスを直接触媒体に吹き込む方式、 低温又は常温の原料ガスを 25 0°C以下に予熱し、 この予熱ガスを触媒体に吹き込む方式がある。 予熱方式では、 常温の原料ガスを反応管の外側で 250°C以下に予熱してもよいし、 反応管の中 で 250°C以下に予熱してもよいなど、 様々な変形パターンが設計できる。 いず れにしても、 原料ガスをタール状物質が生成されない温度領域に保持することが 重要で、 この原料ガスを触媒体に直接吹き込むことが発明の要点である。 More specifically, a method in which a raw material gas cooled to a low temperature is directly blown into the catalyst, a method in which a room temperature raw material gas is directly blown into the catalyst, and a method in which a low temperature or room temperature raw material gas is preheated to 250 ° C or less, There is a method of blowing the preheating gas into the catalyst. In the preheating method, various deformation patterns can be designed such that the raw material gas at room temperature may be preheated to 250 ° C or less outside the reaction tube, or may be preheated to 250 ° C or less in the reaction tube. . Izu In any case, it is important to keep the raw material gas in a temperature range where tar-like substances are not generated, and it is the gist of the invention to blow this raw material gas directly into the catalyst.
原料ガスや触媒を変更すれば、 タール状物質の生成温度領域は多少変化するが、 比較的に低温度領域である。 また、 カーボンナノ構造物を選択生成する温度領域 はタール状物質生成温度領域とあまり重ならなレ、比較的に髙温度領域である。 従 つて、 原料ガスをタール状物質が生成されない温度域に保持しておき、 この原料 ガスを一気にカーボンナノ構造物生成温度域にある触媒体に吹き込むことによつ て、 タール状副生成物を急減してカーボンナノ構造物を選択的に生成することが 可能になる。  If the source gas and catalyst are changed, the temperature range for the formation of tar-like substances slightly changes, but it is a relatively low temperature range. In addition, the temperature range in which carbon nanostructures are selectively formed is a relatively low temperature range, which does not overlap with the tar-like substance formation temperature range. Therefore, the raw material gas is kept in a temperature range where tar-like substances are not generated, and this raw material gas is blown into the catalyst in the carbon nanostructure generation temperature range at a stretch to remove tar-like by-products. It is possible to selectively generate carbon nanostructures by rapidly decreasing.
上述の方法によれば、 タール状物質を副生しないから、 その分だけカーボンナ ノ構造物の生成密度や生成収率が増加する反射的効果が得られる。 し力 し、 カー ボンナノ構造物の生成収率を更に高めるために、 本発明では次のような工夫を行 つている。  According to the above-mentioned method, since a tar-like substance is not produced as a by-product, a reflective effect of increasing the production density and the production yield of the carbon nanostructure can be obtained. In order to further enhance the production yield of carbon nanostructures, the present invention employs the following measures.
従来のカーボンナノ構造物の製造装置では、 原料ガスが流通する反応管の断面 積は、 その方向にある触媒の断面積より遥かに大きく構成されている。 触媒表面 と接触して流通する原料ガスは触媒反応を起こすが、 触媒から遠方を通過する原 料ガスではほとんど未反応のまま単に通過するに過ぎなレ、。  In a conventional carbon nanostructure manufacturing apparatus, the cross-sectional area of the reaction tube through which the raw material gas flows is configured to be much larger than the cross-sectional area of the catalyst in that direction. The raw material gas flowing in contact with the catalyst surface causes a catalytic reaction, but the raw material gas that passes far from the catalyst simply passes through without being reacted.
この様な大断面積の反応管では、 内部を流れるキヤリァガスと原料ガスの混合 ガスは、 触媒体との接触確率を増加させるため、 低速で流通されていた。 低速で は混合ガスが層流状態にあり、 キャリアガスである H eと原料ガスである C 2 H 2とが均一に混合せず、 原料ガスの濃度が反応管内で部分的に偏り、 また混合ガ スのガス温度に部分的な偏りがあると思われる。 In a reaction tube having such a large cross-sectional area, the mixed gas of the carrier gas and the raw material gas flowing inside was flowing at a low speed in order to increase the probability of contact with the catalyst. At low speed, the mixed gas is in a laminar flow state, and the carrier gas He and the raw material gas C 2 H 2 are not uniformly mixed, and the concentration of the raw material gas is partially biased and mixed in the reaction tube. There is likely to be a partial bias in the gas temperature of the gas.
そこで、 本発明では、 前述した原料ガスを触媒表面に集中的に吹き付け、 また 吹き込むことによって、 原料ガスと触媒表面との接触確率を飛躍的に向上させ、 カーボンナノ構造物の生成確率を増大化する方法を採用する。  Therefore, in the present invention, the above-mentioned raw material gas is intensively sprayed onto the catalyst surface, and by blowing the raw material gas, the contact probability between the raw material gas and the catalyst surface is drastically improved, and the generation probability of carbon nanostructures is increased. Adopt a method to
原料ガス (常温原料ガス又は予熱原料ガス) を触媒表面に集中的に吹き付ける 方法を実現するために、 本発明装置では、 反応管の中に原料ガスを導入する原料 ガス供給管を反応管と別に配置し、 前記供給管の原料ガス吹出し口を触媒体表面 の近傍に配設する。 つまり、 大径の反応管の中に細径のには原料ガス、 又は原料 ガスとキャリアガスの混合ガスを導入する。 In order to realize a method of intensively blowing a source gas (room temperature source gas or preheated source gas) onto the catalyst surface, the apparatus of the present invention uses a source gas supply pipe for introducing the source gas into the reaction tube separately from the reaction tube. The source gas outlet of the supply pipe is disposed near the surface of the catalyst body. In other words, the raw material gas or raw material A mixed gas of a gas and a carrier gas is introduced.
このように装置構成すれば、 原料ガスは集中的に触媒体表面に強制的に接触し、 カーボンナノ構造物の生成確率が飛躍的に増大する。 同時に、 原料ガス供給管を 流通する原料ガスの濃度を従来よりも低く設定しても、 生成確率が増大する分だ け、 カーボンナノ構造物の生成収率は従来と変わらないか、 又は従来より増加さ せることができる。  With such an apparatus configuration, the raw material gas intensively comes into contact with the surface of the catalyst body, and the generation probability of carbon nanostructures is drastically increased. At the same time, even if the concentration of the raw material gas flowing through the raw material gas supply pipe is set lower than before, the generation yield of carbon nanostructures remains the same as before or only because the generation probability increases. Can be increased.
また、 原料ガス供給管の断面積は比較的小さいから、 原料ガス、 又は原料ガス とキャリアガスの混合ガスを原料ガス吹出し口から吹き付けたときに、 その断面 積内での温度ムラや濃度ムラは考えられない。 その意味で、 原料ガスは均一温度 且つ均一濃度で触媒体に接触することができ、 触媒体の表面でカーボンナノ構造 物が比較的均一に成長することができる。  In addition, since the cross-sectional area of the source gas supply pipe is relatively small, when the source gas or a mixed gas of the source gas and the carrier gas is blown from the source gas outlet, uneven temperature and concentration within the cross-sectional area are reduced. Unthinkable. In that sense, the source gas can come into contact with the catalyst at a uniform temperature and a uniform concentration, and the carbon nanostructure can grow relatively uniformly on the surface of the catalyst.
本発明で使用される原料ガスとしては、 チォフェンなどのィォゥ含有有機ガス、 リン含有有機ガスや炭化水素ガスなどが利用できるが、 その中でも不要な元素が 加わらない意味で炭化水素が好適である。 炭化水素としては、 メタン、 ェタンな どのアルカン化合物、 エチレン、 ブタジェンなどのアルケン化合物、 アセチレン などのアルキン化合物、 ベンゼン、 トルエン、 スチレンなどのァリール'炭化水素 化合物、 インデン、 ナフタリン、 フエナントレンなどの縮合環を有する芳香族炭 化水素、 シクロプロパン、 シク口へキサンなどのシク口パラフィン化合物、 シク 口ペンテンなどのシクロォレフイン化合物、 ステロイドなどの縮合環を有する脂 環式炭化水素化合物などが利用できる。 また、 以上の炭化水素化合物を 2種以上 混合した混合炭化水素ガスを使用することも可能である。 特に、 望ましくは炭化 水素の中でも低分子、 例えば、 アセチレン、 ァリレン、 エチレン、 ベンゼン、 ト ルェンなどが好適である。  As the raw material gas used in the present invention, an iodine-containing organic gas such as thiophene, a phosphorus-containing organic gas, a hydrocarbon gas, or the like can be used. Among them, hydrocarbons are preferable because unnecessary elements are not added. Hydrocarbons include alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, aryl hydrocarbon compounds such as benzene, toluene, and styrene, and condensed rings such as indene, naphthalene, and phenanthrene. Aromatic hydrocarbons, cyclopropanes, cyclohexanes such as cyclopentenes, cyclopentin compounds such as cyclopentenes, and alicyclic hydrocarbon compounds having condensed rings such as steroids can be used. It is also possible to use a mixed hydrocarbon gas in which two or more of the above hydrocarbon compounds are mixed. In particular, low molecular weight hydrocarbons, for example, acetylene, arylene, ethylene, benzene, and toluene are preferable.
本発明で使用されるキヤリァガスは原料ガスを搬送できるガスであり、 例えば H e、 N e、 A r、 N 2、 H 2などが利用できる。 原料ガス供給管に流通される ガスは、 原料ガスだけでもよいし、 原料ガスと上記キヤリァガスの混合気体でも よい。 また原料ガス供給管を除く反応管に流通されるガスはキャリアガスが好ま しいが、 キヤリァガスに一部原料ガスが混入されても構わない。 The carrier gas used in the present invention is a gas capable of transporting a source gas, and for example, He, Ne, Ar, N 2 , H 2 and the like can be used. The gas flowing through the source gas supply pipe may be only the source gas or a mixed gas of the source gas and the above-mentioned carrier gas. The carrier gas is preferably used as the gas flowing through the reaction tubes except the source gas supply tube, but the carrier gas may be partially mixed with the carrier gas.
原料ガス供給管に流される気体が原料ガスとキヤリァガスの混合気体である場 合には、 混合気体の濃度比はカーボンナノ構造物の生成量との兼ね合いで自在に 決められる。 原料ガス供給管を有さない従来の装置よりは、 原料ガスの濃度を低 下させても、 原料ガス吹き付け方式により S応確率が増大しているので、 カーボ ンナノ構造物の生成収率を従来以上に確保することができる。 When the gas flowing into the source gas supply pipe is a mixture of source gas and carrier gas In such a case, the concentration ratio of the mixed gas can be freely determined in consideration of the amount of carbon nanostructure generated. Compared to conventional equipment without a source gas supply pipe, even if the concentration of the source gas is lowered, the probability of S response is increased by the source gas spraying method. The above can be secured.
反応管内で 6 0 0 °C〜1 2 0 0 °Cに加熱されている触媒体に原料ガスを直接吹 き付けるため、 原料ガス供給管の原料ガス吹出し口は触媒体の近傍に配置され、 原料ガスが触媒体の表面に直接吹き付けられるように配置構成される。 原料ガス 供給管は 1本以上であればよく、 原料ガス吹出し口の開孔形状は丸孔、 矩形孔な ど種々に形成され、 原料ガスの触媒体表面との接触面積が大きくなるように形成 されることが望ましい。  In order to directly blow the raw material gas to the catalyst heated to 600 ° C to 1200 ° C in the reaction tube, the raw material gas outlet of the raw material gas supply pipe is arranged near the catalyst, The source gas is arranged and configured to be directly blown onto the surface of the catalyst body. The source gas supply pipe only needs to be one or more, and the source gas outlet is formed in various shapes such as a round hole and a rectangular hole so as to increase the contact area of the source gas with the surface of the catalyst. It is desirable to be done.
原料ガス供給管から吹き付けられる原料ガスは、 タール状物質が生成されない 温度領域に設定される。 この温度領域は低温〜 (常温) 〜タール状物質生成最低 温度の範囲である。 従って、 低温や常温の原料ガスを吹き付けるためには、 原料 ガスを加熱する必要は無い。 し力 し、 原料ガスの反応性を高めるためには、 原料 ガスをタール状物質生成最低温度以下に予熱することが望まれる。  The source gas blown from the source gas supply pipe is set in a temperature range where tar-like substances are not generated. This temperature range is from low temperature (normal temperature) to the lowest temperature at which tar-like substances are formed. Therefore, it is not necessary to heat the source gas in order to blow the source gas at a low or normal temperature. However, in order to increase the reactivity of the raw material gas, it is desired to preheat the raw material gas to a temperature lower than the minimum temperature for producing tar-like substances.
原料ガスの予熱方式には二つの方法がある。 第 1の方法は、 反応管の外部で原 料ガスを予熱しておき、 この予熱ガスを反応管内の原料ガス供給管に導入する場 合である。 第 2の方法は、 低温や常温の原料ガスを原料ガス供給管に導入し、 原 料ガス供給管を加熱して内部の原料ガスを加熱する場合である。  There are two methods for preheating the source gas. The first method is a case where a raw material gas is preheated outside a reaction tube, and the preheated gas is introduced into a raw material gas supply tube in the reaction tube. The second method is a case where a source gas at a low temperature or a normal temperature is introduced into a source gas supply pipe, and the source gas supply pipe is heated to heat the internal source gas.
前者の場合、 即ち外部で加熱された原料ガスを原料ガス供給管に導入する場合 には、 原料ガス供給管の周囲に供給管加熱用ヒータを設ける必要は無い。 つまり、 この場合は、 原料ガス供給管に導入される原料ガスの温度範囲が低温〜 (常温) 〜タール状物質生成最低温度にある場合に包含される。  In the former case, that is, when the source gas heated outside is introduced into the source gas supply pipe, it is not necessary to provide a heater for heating the supply pipe around the source gas supply pipe. In other words, this case is included when the temperature range of the source gas introduced into the source gas supply pipe is from low temperature to (normal temperature) to the lowest temperature at which tar-like substances are generated.
後者の場合、 即ち、 原料ガス供給管を加熱する場合では、 原料ガス供給管の周 囲に供給管加熱用ヒータが設けられる。 この供給管加熱用ヒータにより原料ガス はタール状物質が生成されない温度領域内において予熱される。 この予熱温度は 原料ガスの種類に多少は依存し、 C 2 H 2では 3 0 0 °C以下に設定されればよい。 触媒との反応性を高めるために、 望ましくはその最高温度である約 3 0 0 °Cに設 定されればよい。 本発明では、 原料ガスの殆どは触媒体表面でカーボンナノ構造物に転換され、 未反応のまま下流に流れ去る原料ガスは極めて少なくなる。 そのため、 反応管の 下流域でタール状生成物が形成されることも急減できる効果がある。 即ち、 本癸 明ではタール状物質は殆ど生成されな!/、から、 反応領域の上流側にも下流側にも タール状副生成物が付着する現象は殆ど無くなる。 In the latter case, that is, in the case of heating the source gas supply pipe, a heater for heating the supply pipe is provided around the source gas supply pipe. The raw material gas is preheated by the heater for heating the supply pipe in a temperature range in which tar-like substances are not generated. This preheating temperature depends somewhat on the type of the raw material gas, and may be set at 300 ° C. or less for C 2 H 2 . In order to increase the reactivity with the catalyst, it is preferable that the temperature is set to the maximum temperature of about 300 ° C. In the present invention, most of the raw material gas is converted into carbon nanostructures on the surface of the catalyst body, and the amount of the raw material gas flowing downstream unreacted is extremely small. Therefore, the formation of tar-like products in the downstream region of the reaction tube can be rapidly reduced. In other words, tar-like substances are hardly produced in Honmei! Due to /, the phenomenon that tar-like by-products adhere to the upstream and downstream sides of the reaction zone is almost eliminated.
[実施例 1 :カーボンナノコイルの生成] [Example 1: Production of carbon nanocoil]
図 1は本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置をカー ボンナノコイルの製造に用いた場合の概略構成図である。 原料吹き付け式高効率 カーボンナノ構造物製造装置 2は、 反応管 4の外周に反応領域加熱用ヒータ 6を 配置し、 この反応領域加熱用ヒータ 6により均一な反応温度領域を反応領域 1 0 としている。 この反応領域 1 0に触媒体 1 2が配置されている。  FIG. 1 is a schematic configuration diagram when a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention is used for manufacturing carbon nanocoils. In the raw material spraying type high-efficiency carbon nanostructure manufacturing apparatus 2, a heater 6 for heating a reaction area is arranged on the outer periphery of a reaction tube 4, and a uniform reaction temperature area is defined as a reaction area 10 by the heater 6 for heating a reaction area. . The catalyst 12 is disposed in the reaction region 10.
また、 反応管 4の中には細径の原料ガス供給管 8が配置され、 その供給管先端 8 aは反応領域 1 0の中に達しており、 しかも供給管先端 8 aは触媒体 1 2の近 傍に配置されている。 原料ガス供給管 8の周囲には供給管加熱用ヒータ 9が配置 され、 原料ガス供給管 8の全体をタール状物質が生成しない温度領域に加熱保持 している。 実施例 1〜6では、 ノズル状の原料ガス供給管 8が用いられている。 前述した反応管 4は断面直径 (外径) が 3 3 mm (内径 2 8 mm) の石英管で あり、 原料ガス供給管 8は外径 3 . 2 mm、 内径 1 . 6 mmの S U S製の配管が 使用されている。 触媒体 1 2は石英ガラスを基板として、 その上にインジウム · スズ ·鉄系触媒を形成したものである。 ィンジゥム ·スズ ·鉄系触媒の製造方法 は次に述べる。  A small diameter source gas supply pipe 8 is disposed in the reaction pipe 4, and the supply pipe tip 8 a reaches the inside of the reaction region 10, and the supply pipe tip 8 a is a catalyst body 12. It is located in the vicinity of. A heater 9 for supply pipe heating is arranged around the source gas supply pipe 8, and the whole of the source gas supply pipe 8 is heated and held in a temperature range where tar-like substances are not generated. In Examples 1 to 6, the nozzle-shaped source gas supply pipe 8 is used. The above-described reaction tube 4 is a quartz tube having a cross-sectional diameter (outer diameter) of 33 mm (inner diameter 28 mm), and the source gas supply pipe 8 is made of SUS having an outer diameter of 3.2 mm and an inner diameter of 1.6 mm. Piping is used. The catalyst body 12 is a quartz glass substrate on which an indium-tin-iron-based catalyst is formed. The method for producing an aluminum-tin-iron catalyst is described below.
まず、 トルエンにォクチル酸インジウム 8 . 1 g (大研化学工業株式会社製) とォクチル酸スズ 0 . 7 g (大研化学工業株式会社製) を混合し、 超音波振動に より均一に溶解させる。 この有機溶液を 1 0 mm角の石英ガラス基板の上に刷毛 で塗布し、 温風で乾燥して有機膜を形成する。  First, 8.1 g of indium octylate (manufactured by Daiken Chemical Industry Co., Ltd.) and 0.7 g of tin octoate (manufactured by Daiken Chemical Industry Co., Ltd.) are mixed in toluene and uniformly dissolved by ultrasonic vibration. . This organic solution is applied on a 10 mm square quartz glass substrate with a brush, and dried with warm air to form an organic film.
この石英ガラス基板を 5 0 0 °Cの加熱炉に 2 0分間投入して有機成分を熱分解 し、 インジウム ·スズ膜を形成した。 このインジウム ·スズ膜の厚みは 3 0 0 n mであった。 このガラス基板のィンジゥム 'スズ膜上に真空蒸着法により 2 0 n mの厚みを有する鉄膜を形成して、 インジウム ·スズ ·鉄系触媒を形成した。 キヤリァガスは大陽東洋酸素株式会社製造の高純度 H e (純度 99. 999 V o 1 %) 、 C2H2は株式会社サーンガス二チゴー製造の一般溶解アセチレン (純度 98 V o 1 %以上) を使用した。 キャリア H eの圧力は 1 a t m、 流速は 0. 8 c m/ s、 反応領域温度は 700 °C、 反応時間は 30分である。 この条件 は、 以下の 3種類の実施例について共通である。 The quartz glass substrate was put into a heating furnace at 500 ° C. for 20 minutes to thermally decompose the organic components to form an indium tin film. The thickness of the indium tin film was 300 nm. By vacuum deposition to Injiumu 'tin layer on the glass substrate to form a iron layer having a thickness of 2 0 n m, to form an indium-tin-iron-based catalyst. Carry gas is high purity He (purity 99.999 V o 1%) manufactured by Taiyo Toyo Oxygen Co., Ltd., and C 2 H 2 is general dissolved acetylene (purity 98 V o 1% or more) manufactured by Sangas Nichigo Co., Ltd. used. The pressure of the carrier He is 1 atm, the flow rate is 0.8 cm / s, the reaction zone temperature is 700 ° C, and the reaction time is 30 minutes. This condition is common to the following three embodiments.
図 2は、 図 1に示すカーボンナノ構造物製造装置に付属装置を組み合わせた場 合の全体構成図である。 キャリアガス容器 21からバルブ 23を介して Heが供 給され、 マスフローコントローラー 25により流量制御されてバルブ 29を介し てキヤリァガス供給管 31に H eが供給される。  FIG. 2 is an overall configuration diagram in a case where an accessory device is combined with the carbon nanostructure manufacturing apparatus shown in FIG. He is supplied from the carrier gas container 21 via a valve 23, the flow rate is controlled by a mass flow controller 25, and He is supplied to a carrier gas supply pipe 31 via a valve 29.
また、 マスフローコントローラー 26により流量制御された Heはバルブ 28 を介して原料ガス供給管 8にも供給される。 他方、 原料ガス容器 22からはパル ブ 24を介して C2H2が供給される。 この C2H2はマスフローコントローラーThe He whose flow rate is controlled by the mass flow controller 26 is also supplied to the source gas supply pipe 8 via the valve 28. On the other hand, C 2 H 2 is supplied from the source gas container 22 via the valve 24. This C 2 H 2 is a mass flow controller
27により流量制御され、 パルプ 30を介して原料ガス供給管 8に供給される。 従って、 原料ガス供給管 8には Heと C2H2の混合気体が供給される。 The flow rate is controlled by 27 and supplied to the raw gas supply pipe 8 via the pulp 30. Therefore, a mixed gas of He and C 2 H 2 is supplied to the source gas supply pipe 8.
更に、 触媒体 12にカーボンナノコイルであるカーボンナノ構造体を成長させ た後、 通過ガスは氷温に冷却された冷却材 32 aを内蔵したタールトラップ 32 まで流れる。 このタールトラップ 32で冷却されたタ一ル状副生成物がトラップ され、 残留ガスは排気管 33から矢印 f方向に流通して行く。  Further, after growing the carbon nanostructure, which is a carbon nanocoil, on the catalyst body 12, the passing gas flows to the tar trap 32 containing the coolant 32a cooled to the ice temperature. The tar-like by-product cooled by the tar trap 32 is trapped, and the residual gas flows from the exhaust pipe 33 in the direction of arrow f.
上述したように、 反応管 4には矢印 a方向に Heを流し、 原料ガス供給管 8に は Heと C2H2の混合ガスを流す。 夫々の濃度条件は条件 1、 条件 2及び条件 3の 3種類で行われた。 As described above, He flows in the reaction tube 4 in the direction of the arrow a, and the mixed gas of He and C 2 H 2 flows in the source gas supply tube 8. Each concentration condition was performed under three conditions: Condition 1, Condition 2 and Condition 3.
条件 1では、 原料ガス供給管 8には、 He = 100 (SCCM) と C2H2 =Under condition 1, the source gas supply pipe 8 contains He = 100 (SCCM) and C 2 H 2 =
30 (SCCM) の混合ガスが流され、 反応管 4には He = 130 (SCCM) が流された。 C2H2の全体に対する濃度比は 30/260 X 100 = 1 1. 5A mixed gas of 30 (SCCM) was flown, and He = 130 (SCCM) was flowed in the reaction tube 4. The concentration ratio of C 2 H 2 to the whole is 30/260 X 100 = 1 1.5
(v o 1 %) である。 原料ガス供給管 8を有さない従来の製造装置における C2 H2濃度比が 23 (v o 1 %) であり、 この 23 (v o 1 %) を基準濃度として、 条件 1は基準濃度の 1 Z 2に設定されている。 (vo 1%). The C 2 H 2 concentration ratio in the conventional manufacturing apparatus without the source gas supply pipe 8 is 23 (vo 1%), and this 23 (vo 1%) is the reference concentration. Set to 2.
条件 2では、 原料ガス供給管 8には、 He = 50 (SCCM) と C2H2=1 5 (SCCM) の混合ガスが流され、 反応管 4には He = 195 (SCCM) が 流された。 C2H2の全体に対する濃度比は 15/260 x 100 = 5. 8 (v o 1 %) であり、 基準濃度の 1/4に設定されている。 Under condition 2, a mixed gas of He = 50 (SCCM) and C 2 H 2 = 15 (SCCM) flows through the raw material gas supply pipe 8, and He = 195 (SCCM) flows through the reaction pipe 4. Streamed. The concentration ratio of C 2 H 2 to the whole is 15/260 x 100 = 5.8 (vo 1%), which is set to 1/4 of the reference concentration.
条件 3では、 原料ガス供給管 8には、 He = 25 (SCCM) と C2H2=8Under condition 3, the source gas supply pipe 8 has He = 25 (SCCM) and C 2 H 2 = 8
(SCCM) の混合ガスが流され、 反応管 4には He = 227 (SCCM) が流 された。 C2H2の全体に対する濃度比は 8ノ 260 X 100 = 3. 1 (v o 1 %) であり、 基準濃度の 1Z8に設定されている。 The mixed gas of (SCCM) was flowed, and He = 227 (SCCM) was flowed in the reaction tube 4. The concentration ratio of C 2 H 2 to the whole is 8 × 260 × 100 = 3.1 (vo 1%), which is set to the reference concentration of 1Z8.
触媒体 12上のカーボンナノコイルの生成状況は電子顕微鏡像から判断され、 良好な生成率の場合は〇、 良好に生成されていない場合には Xであらわされる。 タール状副生成物の生成量は、 反応管 4、 排気管 33及びタールトラップ 32な どに付着したものを全てアセトンに溶解捕集し、 アセトンを蒸発させた残留分の 重量を測定することで計測された。  The state of formation of the carbon nanocoils on the catalyst body 12 is determined from an electron microscope image, and is indicated by 〇 when the generation rate is good, and X when the generation rate is not good. The amount of tar-like by-products can be determined by dissolving and collecting all substances adhering to the reaction tube 4, the exhaust pipe 33, the tar trap 32, etc. in acetone, and measuring the weight of the residue obtained by evaporating the acetone. It was measured.
タール状副生成物は、 赤外分光光度計'(島津製作所 F T— I R-8200 P C) により成分分析が行われ、 アセチレン由来の環数の高い縮合芳香環、 或いは 高縮合芳香環同士の結合物質であることが判明した。 また、 質量分析計により物 質の同定試験を行ったが、 分子量が大きく、 少なくとも分子量 1000以上の物 質であることが判明した。  The tar-like by-products are subjected to component analysis using an infrared spectrophotometer (FT-IR-8200PC, Shimadzu Corp.), and a high-condensed aromatic ring derived from acetylene or a bond between highly condensed aromatic rings Was found to be a substance. In addition, a substance identification test was performed using a mass spectrometer, and it was found that the substance had a high molecular weight and at least a molecular weight of 1,000 or more.
表' 1には、 条件 1〜条件 3までの結果がまとめられている。 条件 1の電子顕微 鏡像は図 3と図 4に示され、 条件 2の電子顕微鏡像は図 5と図 6に示され、 条件 3の電子顕微鏡像は図 7と図 8に示されている。 Table 1 summarizes the results of Condition 1 to Condition 3. The electron microscope images of Condition 1 are shown in FIGS. 3 and 4, the electron microscope images of Condition 2 are shown in FIGS. 5 and 6, and the electron microscope images of Condition 3 are shown in FIGS. 7 and 8.
Figure imgf000023_0001
Figure imgf000023_0001
図 3は条件 1 (基準濃度の 1 2) により得られた 10000倍のカーボンナ ノコイルの電子顕微鏡像である。 図 4は条件 1 (基準濃度の 1/2) により得ら れた 5000倍のカーボンナノコイルの電子顕微鏡像である。 両方共に、 カーボ ンナノコイルがよく成長していることを示している。 図 5は条件 2 (基準濃度の 1/4) により得られた 10000倍のカーボンナ ノコイルの電子顕微鏡像である。 図 6は条件 2 (基準濃度の 1/4) により得ら れた 5000倍のカーボンナノコイルの電子顕微鏡像である。 条件 1と同様、 両 方共に、 カーボンナノコイルがよく成長していることが分かる。 Figure 3 is an electron microscope image of a 10000x carbon nanocoil obtained under condition 1 (reference concentration of 12). Figure 4 is an electron microscope image of a 5,000-fold carbon nanocoil obtained under condition 1 (1/2 of the reference concentration). Both show that carbon nanocoils are growing well. Figure 5 is an electron microscope image of a 10,000 times carbon nanocoil obtained under condition 2 (1/4 of the reference concentration). Figure 6 is an electron microscope image of a 5000-fold carbon nanocoil obtained under condition 2 (1/4 of the reference concentration). As in condition 1, both show that carbon nanocoils grow well.
図 7は条件 3 (基準濃度の 1Z8) により得られた 10000倍のカーボンナ ノコイルの電子顕微鏡像である。 図 8は条件 3 (基準濃度の 1Z8) により得ら れた 30000倍のカーボンナノコイルの電子顕微鏡像である。 やはり、 条件 1 と同様、 両方共に、 カーボンナノコイルがよく成長していることが分かる。  Figure 7 is an electron microscope image of a 10000x carbon nanocoil obtained under condition 3 (standard concentration 1Z8). Figure 8 is an electron microscope image of a 30,000-fold carbon nanocoil obtained under condition 3 (standard concentration 1Z8). Again, as in condition 1, both show that carbon nanocoils grow well.
以上から分かるように、 本発明の方法及び装置を用いれば、 基準濃度の 1/2、 1Z4及ぴ 1/8にまで C2H2濃度を低下させても、 カーボンナノコイルが高 密度に成長することが実証された。 As can be seen from the above, the use of the method and apparatus of the present invention allows carbon nanocoils to grow at a high density even when the C 2 H 2 concentration is reduced to 1/2, 1Z4 and 1/8 of the reference concentration. Proven to be.
また、 タール状物質の生成量は、 基準濃度の 1ダ 2—1 /4→ 1/8になるに 従い、 0. 089 g→0. 025 g→0. 05 l gと変ィ匕し、 しかも極めて少な いことが分かった。 また、 反応管 4の外観を観察しても、 タール状物質による汚 れは極めて少なく、 従来の装置よりも格段に防汚性能が優れていることが実証さ /こ  In addition, the amount of tar-like substance produced changes from 0.089 g to 0.025 g to 0.05 lg according to the standard concentration of 1 da 2−1 / 4 → 1/8, and moreover, It turned out to be very small. Observation of the external appearance of the reaction tube 4 also showed that contamination by tar-like substances was extremely small, and that the antifouling performance was far superior to that of the conventional apparatus.
[比較例:従来装置によるカーボンナノコイルの製造]  [Comparative Example: Production of carbon nanocoil by conventional equipment]
本発明装置を使用した従来例 1と比較するため、 原料ガス供給管 8を取り外し た従来装置、 即ち図 19に示す装置で同様のカーボンナノコイル製造試験を行つ た。 装置の構造や He、 C2H2は全く同じものが使用された。 異なる点は、 C2 H2濃度を変えたことである。 For comparison with Conventional Example 1 using the apparatus of the present invention, a similar carbon nanocoil production test was performed using a conventional apparatus in which the raw material gas supply pipe 8 was removed, ie, the apparatus shown in FIG. The exact same structure and He and C 2 H 2 were used. The difference is that the C 2 H 2 concentration was changed.
条件 4は基準濃度と同一、 条件 5は基準濃度の 2ダ 3、 条件 6は基準濃度の 1 ノ 3である。 これらの結果は表 2に纏められている。 条件 4の結果は図 9及び図 10、 条件 5の結果は図 1 1、 条件 6の結果は図 12に電子顕微鏡像として示さ れている。 【表 2】 Condition 4 is the same as the reference concentration, condition 5 is the reference concentration 2 33, and condition 6 is the reference concentration 1-3. These results are summarized in Table 2. The results of condition 4 are shown in FIGS. 9 and 10, the result of condition 5 is shown in FIG. 11 and the result of condition 6 is shown in FIG. 12 as electron microscope images. [Table 2]
Figure imgf000025_0001
Figure imgf000025_0001
図 9は条件 4 (基準濃度と同一) により得られた 1 0 0 0 0倍のカーボンナノ コイルの電子顕微鏡像である。 図 1 0は条件 4 (基準濃度と同一) により得られ た 5000倍のカーボンナノコイルの電子顕微鏡像である。 カーボンナノコイル はよく成長しており、 従来技術の結果が再現されて!/、る。 FIG. 9 is an electron microscope image of a 1000 × magnification carbon nanocoil obtained under condition 4 (identical to the reference concentration). Figure 10 is obtained under condition 4 (identical to the reference concentration). It is an electron microscope image of a carbon nanocoil of 5000 times. Carbon nanocoils are growing well, and the results of the prior art have been reproduced! /
図 1 1は条件 5 (基準濃度の 2/3) により得られた 10000倍のカーボン ナノ物質の電子顕微鏡像である。 図 12は条件 6 (基準濃度の 1/3) により得 られた 10000倍のカーボンナノ構造物の電子顕微鏡像である。 これらの像は カーボンナノコイルが成長していないことを示している。  Fig. 11 is an electron microscope image of a 10,000-fold carbon nanomaterial obtained under condition 5 (2/3 of the reference concentration). Figure 12 is an electron microscope image of a 10,000-fold carbon nanostructure obtained under condition 6 (1/3 of the reference concentration). These images show that the carbon nanocoils are not growing.
これらの結果から、 従来方法及び従来装置では基準濃度程度でなければカーボ ンナノコイルは成長できず、 基準濃度よりも低下した場合にはカーボンナノコィ ルは成長できないことが分かった。  From these results, it was found that the conventional method and the conventional apparatus cannot grow carbon nanocoils unless the concentration is about the reference concentration, and carbon nanocoils cannot grow if the concentration is lower than the reference concentration.
また、 タール状物質の生成重量を見ると、 条件 4が 0. 31 7 gと極めて高く. 条件 5及び条件 6になると 0. 083 §及び0. 048 gに低下する。 し力 し、 このタール状物質の生成量は表 1に示される条件 1〜条件 3のタール状物質の生 成量より遥かに多いのである。 反応管 4の内面が黒くなることからもその状況が 分かる。 In addition, the weight of the tar-like substance produced is extremely high at 0.317 g in Condition 4, and decreases to 0.083 § and 0.048 g in Condition 5 and Condition 6. However, the amount of this tar-like substance produced is far greater than the amount of tar-like substance produced under conditions 1 to 3 shown in Table 1. The situation can be understood from the fact that the inner surface of the reaction tube 4 is blackened.
従って、 本発明の方法及び装置を用いれば、 C2H2濃度が基準濃度より低下 してもカーボンナノコイルは確実に生成でき、 しかもタール状物質の生成量は遥 力に小さく改善できることが実証されたのである。 Therefore, it has been demonstrated that the use of the method and apparatus of the present invention can reliably produce carbon nanocoils even when the C 2 H 2 concentration is lower than the reference concentration, and that the production amount of tar-like substances can be significantly reduced. It was done.
[実施例 2 :カーボンナノチューブ]  [Example 2: Carbon nanotube]
図 13は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置を カーボンナノチューブの製造に用いた場合の概略構成図である。 この装置は実施 例 1と全く同様の原料吹き付け式高効率カーボンナノ構造物製造装置 2であり、 異なるのは触媒体 12と反応領域温度と原料ガス供給管温度と原料ガス ·キヤリ ァガスである。  FIG. 13 is a schematic configuration diagram when the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention is used for manufacturing carbon nanotubes. This apparatus is a raw material spraying type high-efficiency carbon nanostructure manufacturing apparatus 2 which is exactly the same as in Example 1, except for the catalyst 12, the reaction zone temperature, the temperature of the raw material gas supply pipe, the raw material gas and the carrier gas.
第 1の相違点は、 触媒体 12として、 ナトリゥム含量が 0. 01 %以下である 高純度 r—アルミナペレツト (99. 95%以上) に N iを焼結させた触媒が 使用されたことである。 第 2の相違点は、 反応領域温度を 500°Cに保持したこ とである。 第 3の相違点は、 原料ガス供給管温度を 250°Cに保持したことであ る。 また、 第 4の相違点は、 原料ガスとして CH4、 キャリアガスとして A rを 使用したことである。 前述したように、 上記 N i金属含有高純度アルミナペレツト触媒では、 カーボ ンナノチューブは 4 0 0 °C以上で生成され、 タール状物質は 2 5 0 °C〜4 0 0 °C の温度範囲で生成される。 従って、 反応領域温度は 5 0 0 °Cに、 原料ガス供給管 温度は 2 5 0 °Cに設定された。 ' The first difference is that a catalyst obtained by sintering Ni on high-purity r-alumina pellets (99.95% or more) with a sodium content of 0.01% or less was used as the catalyst body 12. It is. The second difference is that the temperature of the reaction zone is maintained at 500 ° C. The third difference is that the temperature of the source gas supply pipe was kept at 250 ° C. The fourth difference is that CH 4 is used as a source gas and Ar is used as a carrier gas. As described above, in the Ni metal-containing high-purity alumina pellet catalyst described above, carbon nanotubes are generated at a temperature of 400 ° C or higher, and tar-like substances are generated in a temperature range of 250 ° C to 400 ° C. Generated by Therefore, the temperature of the reaction zone was set at 500 ° C, and the temperature of the source gas supply pipe was set at 250 ° C. '
図 1 3に示されるように、 触媒体 1 2の表面にカーボンナノチューブが高密度 に成長し、 しかも反応管 4の内面にはタール状副生成物が殆ど観察されなかった。 原料ガス供給管 8と供給管加熱用ヒータ 9を用いる本発明方法及び本発明装置に よる良好な作用効果が明らかに観察された。  As shown in FIG. 13, carbon nanotubes grew at a high density on the surface of the catalyst 12, and almost no tar-like by-product was observed on the inner surface of the reaction tube 4. The good effect of the method and the device of the present invention using the raw material gas supply pipe 8 and the heater for heating the supply pipe 9 was clearly observed.
本発明は、 カーボンナノコィルゃカーボンナノチユーブの製造に限定されるも のではなく、 ビーズ付きカーボンナノチューブ、 カーボンナノブラシ、 フラーレ ンなどの広範囲のカーボンナノ構造物の製造に利用できるものである。  The present invention is not limited to the production of carbon nanocoils and carbon nanotubes, but can be used for the production of a wide range of carbon nanostructures such as carbon nanotubes with beads, carbon nanobrushes, and fullerenes. .
[実施例 3 ]  [Example 3]
図 1 4は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置の 触媒体として触媒粉体を用いた場合の概略構成図である。 図 1 4では、 図 1の触 媒体 1 2が触媒構造体から構成されるが、 実施例 3では、 触媒粉体 1 3を矢印 a 方向に流通させている。 前記触媒粉体 1 3が反応領域 1 0に流入すると、 反応領 域加熱用ヒータ 6により前記生成温度まで加熱され、 この触媒粉体 1 3に原料ガ ス吹出し口 8 bから原料ガスが吹き付けられ、 触媒粉体構成粒子 1 3 aの表面に カーボンナノ構造物 1 4が成長する。  FIG. 14 is a schematic configuration diagram of a raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention in which catalyst powder is used as a catalyst. In FIG. 14, the catalyst 12 of FIG. 1 is composed of the catalyst structure. In Example 3, the catalyst powder 13 flows in the direction of arrow a. When the catalyst powder 13 flows into the reaction zone 10, the catalyst powder 13 is heated to the generation temperature by the reaction zone heater 6, and the source gas is blown from the source gas outlet 8 b onto the catalyst powder 13. The carbon nanostructures 14 grow on the surface of the catalyst powder constituent particles 13a.
原料ガス供給管 8は、 原料ガス吹出し口 8 bが反応領域 1 0に達するように配 置され、 原料ガス供給管 8の周囲には原料ガス供給管用ヒータ 9が配置されて、 原料ガス供給管 8の全体をタール状物質が生成しない温度領域に加熱保持してい る。  The source gas supply pipe 8 is arranged so that the source gas outlet 8 b reaches the reaction region 10, and a heater 9 for the source gas supply pipe is arranged around the source gas supply pipe 8. 8 is heated and held in a temperature range where tar-like substances are not generated.
[実施例 4 ]  [Example 4]
図 1 5は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置に 触媒粉体供給管を設けた場合の概略構成図である。 図 1 5では、 原料ガス供給管 8以外に触媒粉体供給管 7及びキャリアガス供給管 3 1が配設され、 各供給管に は、 原料ガス供給管用ヒータ 9、 触媒粉体供給管用ヒータ及びキャリアガス供給 管用ヒータが設けられている。 前記原料ガス供給用ヒータは、 他の実施例と同様 に原料ガス供給管 8の全体をタール状物質が生成しな!/、温度領域に加熱保持して いる。 また、 前記触媒粉体供給管用ヒータ 5は、 触媒粉体供給管 7を生成温度ま で加熱するから、 この触媒粉体 1 3が反応領域 1 0に生成温度で供給され、 原料 ガスを前記触媒粉体に吹き付けることにより、 カーボンナノ構造体が直ちに成長 し始める。 FIG. 15 is a schematic configuration diagram in the case where a catalyst powder supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention. In FIG. 15, a catalyst powder supply pipe 7 and a carrier gas supply pipe 31 are provided in addition to the source gas supply pipe 8, and each supply pipe has a heater 9 for a source gas supply pipe, a heater for a catalyst powder supply pipe, A heater for the carrier gas supply pipe is provided. The source gas supply heater is the same as in the other embodiments. No tar-like substance is generated in the entire raw gas supply pipe 8! / Heated and held in the temperature range. Further, since the catalyst powder supply pipe heater 5 heats the catalyst powder supply pipe 7 to the generation temperature, the catalyst powder 13 is supplied to the reaction region 10 at the generation temperature, and the raw material gas is converted into the catalyst gas. By spraying on the powder, the carbon nanostructures begin to grow immediately.
更に、 図 1 5では、 キヤリァガス供給管 3 1も配設され、 キヤリァガスを所定 温度に加熱することができる。 キャリアガスが加熱されることにより、 反応領域 1 0を均一な温度に保持され、 安定してカーボンナノ構造物の生成を行うことが できる。  Further, in FIG. 15, a carrier gas supply pipe 31 is also provided, so that the carrier gas can be heated to a predetermined temperature. By heating the carrier gas, the reaction region 10 is maintained at a uniform temperature, and a carbon nanostructure can be stably generated.
[実施例 5 ]  [Example 5]
図 1 6は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置に 混合ガス供給管を設けた場合の概略構成図である。 図 1 6では、 前記原料ガスと 触媒粉体 1 3を混合して、 反応領域 1 0に供給する。 前記原料ガスと触媒粉体 1 3の混合比を適宜に調節される。 更に、 混合ガスは混合ガス供給管用ヒータ 9に より、 原料ガスと触媒粉体 1 3は同一温度に予熱され、 反応領域 1 0に導入され ると混合ガスは直ちに生成温度領域まで加熱され、 カーボンナノ構造物 1 4が生 成される。  FIG. 16 is a schematic configuration diagram in a case where a mixed gas supply pipe is provided in the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to the present invention. In FIG. 16, the raw material gas and the catalyst powder 13 are mixed and supplied to the reaction zone 10. The mixing ratio between the raw material gas and the catalyst powder 13 is appropriately adjusted. Further, the mixed gas is heated by the mixed gas supply pipe heater 9 so that the raw material gas and the catalyst powder 13 are preheated to the same temperature. When the mixed gas is introduced into the reaction zone 10, the mixed gas is immediately heated to the generation temperature zone, and Nanostructures 14 are generated.
[実施例 6 ]  [Example 6]
図 1 7は、 本発明に係る原料吹き付け式高効率カーボンナノ構造物製造装置 2 に攪拌装置 1 7が付設された場合の概略構成図である。 図 1 7では、 前記反応領 域 1 0内の触媒粉体 1 3を攪拌する攪拌装置 1 7が付設され、 攪拌された触媒粉 体 1 3に原料ガスを吹き付けるように構成される。 前記攪拌装置 1 7は、 超音波 振動などを用いた振動手段、 回転板を回転させる若しくは触媒粉体が供給される 容器自体を回転させる回転手段、 揺動板を前記反応領域内に付設して揺動運動さ せる揺動手段、 又はその他の公知の手段から構成される。 更に、 実施例 6の攪拌 装置が付設されたカーボンナノ構造体反応領域 1 0内に所定量の触媒粉体 1 3を 堆積させてから、 前記触媒粉体 1 3を攪拌する断続運転、 又は前記触媒粉体 1 3 を供給し続けながら攪拌する連続運転のいずれの場合にも用いることができる。  FIG. 17 is a schematic configuration diagram in a case where a stirrer 17 is attached to the raw material spraying type high efficiency carbon nanostructure manufacturing apparatus 2 according to the present invention. In FIG. 17, a stirrer 17 for stirring the catalyst powder 13 in the reaction region 10 is provided, and the raw material gas is blown onto the stirred catalyst powder 13. The stirrer 17 is provided with a vibrating means using ultrasonic vibration or the like, a rotating means for rotating a rotating plate or a container itself to which the catalyst powder is supplied, and a swinging plate provided in the reaction area. It is composed of rocking means for rocking movement or other known means. Further, an intermittent operation in which a predetermined amount of the catalyst powder 13 is deposited in the carbon nanostructure reaction region 10 provided with the stirring device of Example 6, and then the catalyst powder 13 is stirred, or It can be used in any case of continuous operation in which the catalyst powder 13 is continuously supplied while stirring.
[実施例 7 ] 図 1 8は、 本発明に係る各ガス供給管 8とそのガス吹出し口の概略構成図であ る。 (1 8 A) は、 ノズル状のガス供給管 8の概略構成図である。 各ガス供給管 (原料ガス供給管、 触媒粉体供給管又はキャリアガス供給管) の供給管先端 8 a には、 ガス吹出し口 8 bが形成され、 このガス吹出し口 8 bから反応領域 1 0へ ガスを供給する。 (1 8 A) では、 先端 8 aがテーパ状に構成され、 供給ガスを より効率的に反応領域 1 0に吹き付けることができる。 [Example 7] FIG. 18 is a schematic configuration diagram of each gas supply pipe 8 according to the present invention and its gas outlet. (18 A) is a schematic configuration diagram of the nozzle-shaped gas supply pipe 8. A gas outlet 8b is formed at the leading end 8a of each gas supply pipe (a raw material gas supply pipe, a catalyst powder supply pipe, or a carrier gas supply pipe). Supply gas to In (18A), the tip 8a is formed in a tapered shape, and the supplied gas can be more efficiently blown to the reaction region 10.
( 1 8 B ) は、 外周にガス吹出し口 8 bを設けたガス供給管 8の概略構成図で ある。 ( 1 8 B ) では、 複数の吹出し口 8 bが供給管先端 8 aの外周に設けられ、 前記反応領域 1 0内に原料ガス及び Z又は触媒粉体 1 3が拡散される。 従って、 前記原料ガスと触媒粉体 1 3の接触確率が増加するから、 高効率にカーボンナノ 構造物 1 4を生成することができる。 実施例 1 〜 6に用いられるガス供給管は、 図 1 8に示す形状に限定されず、 目的に応じて種々の形状を有する公知のガス供 給管及びそのガス吹出し口を用いることができる。  (18B) is a schematic configuration diagram of a gas supply pipe 8 provided with a gas outlet 8b on the outer periphery. In (18B), a plurality of outlets 8b are provided on the outer periphery of the supply pipe tip 8a, and the raw material gas and Z or the catalyst powder 13 are diffused into the reaction region 10. Therefore, the contact probability between the raw material gas and the catalyst powder 13 increases, so that the carbon nanostructures 14 can be generated with high efficiency. The gas supply pipes used in Examples 1 to 6 are not limited to the shape shown in FIG. 18, and known gas supply pipes having various shapes according to the purpose and gas outlets thereof can be used.
本発明は上記実施例に限定されるものではなく、 本発明の技術的思想を逸脱し ない範囲における種々の変形例、 設計変更などをその技術的範囲内に包含するも のであることは云うまでもない。  The present invention is not limited to the above-described embodiment, but includes various modifications and design changes within the technical scope without departing from the technical idea of the present invention. Nor.
(産業上の利用可能性) (Industrial applicability)
本発明の第 1の形態によれば、 タール状副生成物は低温から次第にカーボンナ ノ構造物生成温度にまで上昇する過程で、 原料ガスが分解 ·結合することによつ て発生することが本発明者等の研究で分かった。 つまり原料ガスが分解 ·結合す る中間温度領域を反応過程から除去することが本努明の主題となる。 このために、 この発明では、 原料ガスをタール状副生成物が生成されない温度領域 (前記中間 温度領域より低い温度、 常温又は更に低温) に保持しておき、 この原科ガスを前 記中間温度を跳び越して、 一気にカーボンナノ構造物生成温度領域に導入するこ とにより、 タール状副生成物の発生を大幅に低減することが可能となる。 しかも、 原料ガスを反応領域に向かつて直接吹き付けるから、 反応領域内の触媒体と原料 ガスとの反応確率が増大し、 カーボンナノ構造物の生成収率を大幅に向上できる ようになる。 更に、 前記触媒体を反応領域内に固定して、 この触媒体に原料ガス を吹き付けても良く、 又は触媒体を触媒体タンク等から必要に応じて前記反応領 域に供給することもできる。 According to the first aspect of the present invention, the tar-like by-products are generated by the decomposition and combination of the raw material gas in the process of gradually increasing from the low temperature to the temperature for forming the carbon nanostructure. The inventor's research revealed this. In other words, the subject of this effort is to remove from the reaction process the intermediate temperature region where the source gas decomposes and combines. For this purpose, in the present invention, the raw material gas is kept in a temperature range where the tar-like by-product is not generated (lower temperature, normal temperature or lower temperature than the intermediate temperature range), and the raw material gas is maintained at the intermediate temperature. By jumping into the temperature range where carbon nanostructures are generated at once, it is possible to greatly reduce the generation of tar-like by-products. Moreover, since the raw material gas is directly blown toward the reaction region, the reaction probability between the catalyst body and the raw material gas in the reaction region is increased, and the production yield of carbon nanostructures can be greatly improved. Further, the catalyst body is fixed in the reaction region, and the raw material gas is added to the catalyst body. Or a catalyst may be supplied from the catalyst tank or the like to the reaction area as needed.
本発明の第 2の形態によれば、 この発明では、 原料ガスをタール状副生成物が 生成されない温度域まで予熱しておき、 この予熱原料ガスを中間温度を跳び越し て一気にカーボンナノ構造物生成温度にまで引き上げることにより、 タール状副 生成物の発生を大幅に低減することができる。 第 1の発明との相違は原料ガスを 予熱する点にある。 この予熱により原料ガスの反応性を増大でき、 触媒領域にお ける原料ガスの反応確率を加速的に増大することになる。 また、 原料ガスを反応 領域に向かつて直接吹き付けるから、 反応領域内の触媒体と原料ガスとの反応確 率が増大し、 カーボンナノ構造物の生成密度と生成効率を大幅に向上できるよう になる。 更に、 前記触媒体を反応領域内に固定して、 この触媒体に原料ガスを吹 き付けても良く、 又は触媒体を触媒体タンク等から必要に応じて前記反応領域に 供給することもできる。  According to the second aspect of the present invention, in the present invention, the raw material gas is preheated to a temperature range in which tar-like by-products are not generated, and the preheated raw material gas is jumped over the intermediate temperature to make a carbon nanostructure at once. By raising the temperature to the formation temperature, the generation of tar-like by-products can be significantly reduced. The difference from the first invention is that the raw material gas is preheated. This preheating can increase the reactivity of the raw material gas, thereby increasing the reaction probability of the raw material gas in the catalyst region at an accelerated rate. In addition, since the raw material gas is directly blown toward the reaction region, the reaction probability between the catalyst body and the raw material gas in the reaction region increases, and the generation density and generation efficiency of the carbon nanostructure can be greatly improved. . Further, the catalyst body may be fixed in the reaction area, and a raw material gas may be sprayed on the catalyst body, or the catalyst body may be supplied to the reaction area as needed from a catalyst body tank or the like. .
本発明の第 3の形態によれば、 前記触媒体が触媒構造体から構成されることに より、 反応領域内にのみ触媒体を設置することができるから、 触媒体と原料ガス を高効率に反応させることができる。 更に、 カーボンナノ構造物は触媒構造体の 表面に形成されるから、 この触媒構造体よりカーボンナノ構造物を高効率に捕集 することができる。  According to the third aspect of the present invention, since the catalyst body is composed of the catalyst structure, the catalyst body can be installed only in the reaction region, so that the catalyst body and the raw material gas can be efficiently converted. Can be reacted. Further, since the carbon nanostructure is formed on the surface of the catalyst structure, the carbon nanostructure can be collected with higher efficiency than the catalyst structure.
本発明の第 4の形態によれば、 製造されるカーボンナノ構造物の前記触媒構造 体の種類に応じて、 触媒構造体の構造を選択することができる。 表面積が大きい 層状構造、 格子状構造、 多孔質構造又は繊維状構造を有する触媒構造体を用いる ことにより、 高効率にカーボンナノ構造物を生成することができる。 更に、 板状 構造の触媒構造体を用いることにより、 容易にカーボンナノ構造体を回収するこ とができる。  According to the fourth aspect of the present invention, the structure of the catalyst structure can be selected according to the type of the catalyst structure of the carbon nanostructure to be produced. By using a catalyst structure having a layered structure, a lattice structure, a porous structure, or a fibrous structure having a large surface area, a carbon nanostructure can be generated with high efficiency. Further, by using a catalyst structure having a plate-like structure, a carbon nanostructure can be easily recovered.
本発明の第 5の形態によれば、 前記触媒体が触媒粉体から形成されることによ り、 必要に応じて触媒体を容易に供給することができる。 更に、 前記触媒粉体構 成粒子表面に形成されたカーボンナノ構造物は、 触媒粉体を流出させることによ り、 容易に回収することができる。  According to the fifth aspect of the present invention, the catalyst body is formed from catalyst powder, so that the catalyst body can be easily supplied as needed. Further, the carbon nanostructure formed on the surface of the catalyst powder constituent particles can be easily collected by flowing out the catalyst powder.
本発明の第 6の形態によれば、 前記触媒粉体を必要に応じて反応領域に供給す ることができ、 原料ガスと触媒粉体を高効率に反応させることができる。 According to the sixth aspect of the present invention, the catalyst powder is supplied to the reaction region as needed. Thus, the source gas and the catalyst powder can be reacted with high efficiency.
本発明の第 7の形態は、 前記触媒粉体を触媒粉体供給管から前記生成温度域ま で加熱された空間内に供給する原料吹き付け式高効率カーボンナノ構造物製造方 法である。 前記触媒粉体が触媒粉体供給管から供給されることにより、 必要な量 を適宜に反応領域へ供給することができる。 更に、 前記触媒粉体供給管を加熱す ることにより、 前記生成温度域まで加熱された触媒粉体を供給することができ、 前記原料ガスと直ぐに反応することができる。  A seventh aspect of the present invention is a method for producing a raw material spraying type high-efficiency carbon nanostructure in which the catalyst powder is supplied from a catalyst powder supply pipe into a space heated to the production temperature range. By supplying the catalyst powder from the catalyst powder supply pipe, a necessary amount can be appropriately supplied to the reaction region. Further, by heating the catalyst powder supply pipe, the catalyst powder heated to the production temperature range can be supplied, and can react with the raw material gas immediately.
本発明の第 8の形態によれば、 前記原料ガスと触媒粉体の混合比を適宜に調節 することにより、 高効率に前記カーボンナノ構造物を製造することができる。 更 に、 混合ガスを加熱することにより、 原料ガスと触媒粉体を同一温度に予熱する ことができ、 反応領域に導入されると混合ガスは瞬時に生成温度領域まで加熱さ れ、 カーボンナノ構造物を高効率に製造することができる。  According to the eighth aspect of the present invention, the carbon nanostructure can be manufactured with high efficiency by appropriately adjusting the mixing ratio of the raw material gas and the catalyst powder. Furthermore, by heating the mixed gas, the raw material gas and the catalyst powder can be preheated to the same temperature, and when introduced into the reaction zone, the mixed gas is immediately heated to the generation temperature range, and the carbon nanostructure is heated. Products can be manufactured with high efficiency.
本発明の第 9の形態によれば、 前記触媒粉体を攪拌することにより、 原料ガス を触媒粉体と効率的に接触させることができ、 高効率にカーボンナノ構造物を製 造することができる。 攪拌方法としては、 超音波振動などを用いた振動方法、 回 転板を回転させる若しくは触媒粉体が供給される容器自体を回転させる回転方法、 揺動板を前記反応領域内に付設して揺動させる揺動方法、 又はその他の公知の方 法を用いることができる。  According to the ninth aspect of the present invention, the raw material gas can be efficiently brought into contact with the catalyst powder by stirring the catalyst powder, and the carbon nanostructure can be manufactured with high efficiency. it can. Examples of the stirring method include a vibration method using ultrasonic vibration, a rotation method for rotating a rotating plate or a container to which the catalyst powder is supplied, and a swinging plate provided in the reaction region. An oscillating method of moving or other known methods can be used.
本発明の第 1 0の形態によれば、 例えば、 原料ガスとして使用される炭化水素 からタール状副生成物が生成される温度は 3 0 0 °C〜6 0 0 °Cであり、 炭化水素 からカーボンナノ構造物が生成される温度は触媒の種類によつて多少幅がある力、 5 5 0 °C以上であり、 効率的には 6 0 0 °C〜1 2 0 0 °Cであると考えられる。 従 つて、 原料ガスの予熱温度を 3 0 0 °C以下に制御して、 この予熱原料ガスを一気 に 6 0 0 °C以上の反応領域に送り込めば、 原料ガスはタール状副生成物の生成温 度領域を通過しないから原理的にタ一ル状副生成物は生成されないことになる。 本発明の第 1 1の形態によれば、 原料ガスの温度はタール状副生成物が生成さ れない温度域にあるから、 原料ガス供給管の内部でタ一ル状副生成物は生じず、 しかも原料ガス吹出し口からこの原料ガスを触媒体に直接吹き付ける構造である から、 原料ガスは触媒と高確率に接触して効率的にカーボンナノ構造物に転換さ れ、 タール状副生成物の発生を急減できる。 原料ガスの多くは触媒反応に消費さ れる力 ら、 反応管内でタール状物質が生成されることも強力に抑制される。 According to the tenth aspect of the present invention, for example, the temperature at which tar-like by-products are generated from hydrocarbons used as a raw material gas is from 300 ° C. to 600 ° C., The temperature at which carbon nano-structures are formed from 550 ° C or more, depending on the type of catalyst, is a little more than 550 ° C, and is efficiently between 600 ° C and 1200 ° C. it is conceivable that. Therefore, if the preheating temperature of the raw material gas is controlled to 300 ° C. or lower and the preheated raw material gas is sent to the reaction zone at 600 ° C. or higher at a stretch, the raw material gas becomes a tar-like by-product. Since it does not pass through the production temperature region, no by-products are generated in principle. According to the eleventh embodiment of the present invention, the temperature of the raw material gas is in a temperature range in which tar-like by-products are not generated, so that no tar-like by-products are generated inside the raw material gas supply pipe. In addition, since the source gas is blown directly from the source gas outlet to the catalyst body, the source gas comes into contact with the catalyst with high probability and is efficiently converted into carbon nanostructures. Thus, the generation of tar-like by-products can be sharply reduced. Since much of the raw material gas is consumed in the catalytic reaction, the formation of tar-like substances in the reaction tube is also strongly suppressed.
本発明の第 1 2の形態によれば、 予熱温度域では原料ガス供給管の内部でター ル状生成物は生じず、 しかも原料ガス吹出し口から予熱原料ガスを触媒体に直接 吹き付ける構造であるから、 予熱原料ガスは触媒と高確率に接触し、 カーボンナ ノ構造物が高効率に製造される。 従って、 上述の装置と同様、 原料ガスの多くは 触媒反応に消費されるから、 反応管内でタール状物質が生成されることも防止で きる。  According to the 12th mode of the present invention, a tar-like product is not generated inside the raw material gas supply pipe in the preheating temperature range, and the preheated raw material gas is directly blown from the raw material gas outlet to the catalyst. Therefore, the preheated raw material gas comes into contact with the catalyst with high probability, and the carbon nanostructure is produced with high efficiency. Therefore, as in the case of the above-described apparatus, much of the raw material gas is consumed in the catalytic reaction, so that the generation of tar-like substances in the reaction tube can be prevented.
本発明の第 1 3の形態によれば、 予熱温度域では混合ガス供給管の内部でター ル状生成物は生じなレヽ。 混合ガス吹出し口から反応領域に流入した予熱混合ガス は、 瞬時に生成温度まで加熱され、 混合ガスを構成する原料ガスと触媒体に時に されたから予熱混合ガスを触媒体に直接吹き付ける構造であるから、 予熱原料ガ スは触媒と高確率に接触し、 カーボンナノ構造物が高効率に製造される。 従って、 上述の装置と同様、 原料ガスの多くは触媒反応に消費されるから、 反応管内でタ ール状物質が生成されることも防止できる。  According to the thirteenth aspect of the present invention, no tar-like products are generated inside the mixed gas supply pipe in the preheating temperature range. The preheated mixed gas that has flowed into the reaction zone from the mixed gas outlet is instantaneously heated to the generation temperature, and is discharged to the raw material gas and the catalyst body of the mixed gas, so that the preheated mixed gas is directly blown onto the catalyst body. However, the preheated raw material gas comes into contact with the catalyst with high probability, and carbon nanostructures are produced with high efficiency. Therefore, as in the case of the above-described apparatus, much of the raw material gas is consumed in the catalytic reaction, so that the formation of tar-like substances in the reaction tube can be prevented.
本発明の第 1 4の形態によれば、 前記触媒体を供給する触媒供給管を流通して 触媒体を反応領域へ供給することにより、 必要な量の触媒粉体を供給することが できる。 更に、 前記予熱装置より前記触媒体を予熱することによって、 反応領域 に供給された触媒体は瞬時に生成温度まで到達し、 前記原料粉体と反応すること ができる。  According to the fourteenth aspect of the present invention, a required amount of catalyst powder can be supplied by supplying the catalyst to the reaction region through the catalyst supply pipe for supplying the catalyst. Further, by preheating the catalyst body from the preheating device, the catalyst body supplied to the reaction region reaches the generation temperature instantaneously and can react with the raw material powder.
本発明の第 1 5の形態によれば、 前記触媒粉体を攪拌することにより、 原料ガ スを触媒粉体と効率的に接触させることができ、 高効率にカーボンナノ構造物を 製造することができる。 前記攪拌装置は、 超音波振動などを用いた振動手段、 回 転板を回転させる若しくは触媒粉体が供給される容器自体を回転させる回転手段、 揺動板を前記反応領域内に付設して揺動運動させる揺動手段、 又はその他の公知 の手段から構成することができる。 更に、 反応領域内に所定量の触媒体を堆積さ せてから、 前記触媒体を攪拌しても良く、 又は前記触媒体を供給し続けながら攢 拌することもできる。  According to the fifteenth aspect of the present invention, the raw material gas can be efficiently brought into contact with the catalyst powder by stirring the catalyst powder, and the carbon nanostructure can be produced with high efficiency. Can be. The stirrer includes a vibrating means using ultrasonic vibration, a rotating means for rotating a rotating plate or a container to which the catalyst powder is supplied, and a swinging plate provided in the reaction region. It can be constituted by a rocking means for performing a moving motion, or other known means. Further, the catalyst may be stirred after a predetermined amount of the catalyst has been deposited in the reaction zone, or the catalyst may be stirred while the supply of the catalyst is continued.
本発明の第 1 6の形態によれば、 カーボンナノコイル製造触媒を用いれば、 炭 化水素から選択的にカーボンナノコイルを生成できるから、 本発明方法によりタ 一ル状副生成物を低減すると同時にカーボンナノコイルを高密度で高効率に製造 することができる。 前記カーボンナノコイル製造触媒としては、 遷移金属元素を 含有する金属炭化物触媒、 金属酸ィ匕物触媒又は金属系触媒を用いることができる。 遷移金属元素は、 周期表に示される遷移元素を意味しており、 具体的には、 第 4 周期の S c〜Cu、 第 5周期の Y〜Ag、 第 6周期の L a〜Auなどである。 上 記遷移金属元素から選択された元素を Aとすると、 前記金属炭化物としては、 A I nC、 ASnC、 A I n S n Cなどをカーボンナノ構造物製造触媒として用い ることができる。 更に、 前記金属酸化物としては、 AI n〇、 ASnO、 A I n SnO、 AA 1 3110又は 。 S n Oなどをカーボンナノ構造物製造触媒とし て用いることができ、 前記金属系触媒としては、 AA l Sn、 AC r Sn又は A I n Snなどを用いることができる。 更に、 好適な金属触媒として、 遷移金属元 素に F e元素を含有する金属触媒をカーボンナノ構造物製造用触媒として用いる ことができる。 より具体的には、 F ex I nyCz、 F e x S n y C z若しくは F e x I nyCzSnwなどの Fe系金属炭化物触媒をカーボンナノ構造物製造用触媒 として用いることができ、 金属炭化物触媒のより好適な組成比は F e3 I nC。. 5、 F e 3S nC若しくは F e 3 I n iVC0.5S nw (0≤ v< 1, W≥0) であ る。 更に、 前記カーボンナノ構造物製造用触媒として、 F ex I nySnz、 F e xA l ySnz又は F exC rySnzなどの F e系金属触媒を用いることができ、 より好適な組成比は F e 3 I nyS nz (y≤ 9, z≤ 3) 、 F exA l ySnz According to the sixteenth aspect of the present invention, if a carbon nanocoil production catalyst is used, Since carbon nanocoils can be selectively produced from hydrogen hydride, the method of the present invention can reduce tallic by-products and simultaneously produce carbon nanocoils with high density and high efficiency. As the carbon nanocoil production catalyst, a metal carbide catalyst, a metal oxide catalyst or a metal catalyst containing a transition metal element can be used. The transition metal element means a transition element shown in the periodic table. Specifically, the transition metal element includes Sc to Cu in the fourth cycle, Y to Ag in the fifth cycle, and La to Au in the sixth cycle. is there. Assuming that an element selected from the above transition metal elements is A, as the metal carbide, AInC, ASnC, AInSnC and the like can be used as a catalyst for producing a carbon nanostructure. Further, as the metal oxide, AIn〇, ASnO, AInSnO, AA13110 or SnO or the like can be used as a catalyst for producing a carbon nanostructure. As the metal-based catalyst, AAl Sn, AC r Sn or AI n Sn can be used. Further, as a suitable metal catalyst, a metal catalyst containing a Fe element as a transition metal element can be used as a catalyst for producing a carbon nanostructure. More specifically, as F e x I n y C z , F e x S n y C z or F e x I n y C z Sn w Fe -based metal carbide catalyst for carbon nanostructure production catalyst, such as The preferred composition ratio of the metal carbide catalyst is Fe 3 InC. . 5, F e 3 S nC or F e 3 I ni -. V C 0 5 S n w (0≤ v <1, W≥0) Ru der. Further, as the carbon nanostructure production catalyst, F e x I n y Sn z, F e x A l y Sn z or F e x C r y Sn z can be used F e based metal catalyst such as , A more preferable composition ratio is F e 3 I n y S n z ( y ≤ 9, z ≤ 3), F e x A l y Sn z
(y≤l, z≤ 3) 若しくは F e CrySnz (y≤ 1, z≤ 3) である。 これ らの金属触媒から目的に応じた触媒体を選択することにより、 高効率にカーボン ナノ構造物を生成することができる。 (y≤l, z≤3) or F e Cr y Sn z (y≤1, z≤3). By selecting a catalyst from these metal catalysts according to the purpose, carbon nanostructures can be produced with high efficiency.
本発明の第 17の形態によれば、 原料ガスがアセチレン、 ァリレン、 エチレン、 ベンゼン又はトルエン、 アルコール又はメタンの少なくとも一^ 3を含む原料吹き 付け式高効率カーボンナノ構造物製造方法である。 これらの原料ガスは、 炭化水 素の中でも特にカーボンナノ構造物を生成する場合に好適な原料ガスであり、 タ ール状副生成物を発生させないで、 カーボンナノ構造物を量産することができる。 本発明の第 18の形態によれば、 カーボンナノ構造物が、 カーボンナノコイル、 カーボンナノチューブ、 カーボンナノツイスト、 ビーズ付きカーボンナノチュー ブ、 カーボンナノブラシ又はフラーレンである原料吹き付け式高効率力一ボンナ ノ構造物製造方法である。 触媒体の種類を変更したり、 反応領域の生成温度を可 変調整することにより、 特定のカーボンナノ構造物を選択的に量産することがで きる。 According to a seventeenth aspect of the present invention, there is provided a method for producing a high-efficiency carbon nanostructure, wherein the raw material gas contains at least one of acetylene, arylene, ethylene, benzene or toluene, alcohol or methane. These source gases are suitable source gases particularly for producing carbon nanostructures among hydrocarbons, and can mass-produce carbon nanostructures without generating tar-like by-products. . According to an eighteenth aspect of the present invention, the carbon nanostructure is a carbon nanocoil, This is a method for producing a high-efficiency mono-bonano structure by spraying a raw material, which is carbon nanotube, carbon nano twist, carbon nanotube with beads, carbon nano brush or fullerene. By changing the type of the catalyst body or variably adjusting the generation temperature of the reaction zone, a specific carbon nanostructure can be selectively mass-produced.

Claims

請 求 の 範 囲 The scope of the claims
1 . 原料ガスから触媒化学気相成長法によりカーボンナノ構造物を製造する方 法において、 力一ボンナノ構造物の生成温度域まで加熱された空間内で、 触媒体 と接触するように、 タール状副生成物が生成されない温度域にある原料ガスを吹 き付けて、 カーボンナノ構造物を生成することを特徴とする原料吹き付け式高効 率カーボンナノ構造物製造方法。  1. In a method of producing carbon nanostructures from a source gas by catalytic chemical vapor deposition, a tar-like material is placed in a space heated to the temperature at which carbon nanostructures are formed, so as to contact the catalyst body. A method for producing a high-efficiency carbon nanostructure by spraying a raw material, wherein a raw material gas in a temperature range in which by-products are not generated is sprayed to generate a carbon nanostructure.
2 . 原料ガスから触媒化学気相成長法によりカーボンナノ構造物を製造する方 法において、 カーボンナノ構造物の生成温度域まで加熱された空間内で、 触媒体 と接触するように、 タール状副生成物が生成されない温度域まで予熱された原料 ガスを直接吹き付けて、 カーボンナノ構造物を生成することを特徴とする原料吹 き付け式高効率力一ボンナノ構造物製造方法。  2. In the method of producing carbon nanostructures from the raw material gas by catalytic chemical vapor deposition, the tar-like secondary material is brought into contact with the catalyst body in a space heated to the temperature range for generating carbon nanostructures. A method for producing carbon nanostructures by spraying a raw material gas preheated to a temperature range in which products are not generated, thereby producing carbon nanostructures.
3 . 前記触媒体が触媒構造体から構成される請求項 1又は 2に記載の原料吹き 付け式高効率力一ボンナノ構造物製造方法。  3. The method for producing a high-efficiency carbon nanostructure according to claim 1 or 2, wherein the catalyst body comprises a catalyst structure.
4 . 前記触媒構造体が板状構造、 層状構造、 格子状構造、 多孔質構造又は繊維 状構造の少なくとも 1つ以上の構造を有する請求項 3に記載の原料吹き付け式力 一ボンナノ構造製造方法。  4. The method according to claim 3, wherein the catalyst structure has at least one of a plate structure, a layer structure, a lattice structure, a porous structure, and a fibrous structure.
5 . 前記触媒体が触媒粉体から構成される請求項 1又は 2に記載の原料吹き付 け式高効率力一ボンナノ構造物製造方法。  5. The method for producing a high-efficiency carbon nanostructure according to claim 1 or 2, wherein the catalyst body is composed of a catalyst powder.
6 . 前記触媒粉体をカーボンナノ構造物の生成温度域まで加熱された空間内の 反応領域に供給して、 この触媒粉体を前記生成温度域まで加熱する請求項 5に記 載の原料吹き付け式高効率カーボンナノ構造物製造方法。  6. The raw material spraying according to claim 5, wherein the catalyst powder is supplied to a reaction zone in a space heated to a carbon nanostructure generation temperature range, and the catalyst powder is heated to the generation temperature range. Method for producing high-efficiency carbon nanostructures.
7 . 前記触媒粉体を触媒粉体供給管から前記生成温度域まで加熱された空間内 に供給する請求項 5に記載の原料吹き付け式高効率力一ボンナノ構造物製造方法。 7. The method according to claim 5, wherein the catalyst powder is supplied from a catalyst powder supply pipe into a space heated to the production temperature range.
8 . 前記触媒粉体が混合された原料ガスを前記生成温度域まで加熱された空間 内に吹き付ける請求項 5に記載の原料吹き付け式高効率カーボンナノ構造物製造 方法。 8. The method according to claim 5, wherein the raw material gas mixed with the catalyst powder is blown into a space heated to the generation temperature range.
9 . 前記生成温度域まで加熱された空間内にある触媒粉体を攪拌しておき、 こ の触媒粉体に前記原科ガスを吹き付ける請求項 5に記載の原料吹き付け式高効率 カーボンナノ構造物製造方法。 9. The raw material spraying type high efficiency carbon nanostructure according to claim 5, wherein the catalyst powder in the space heated to the generation temperature range is stirred, and the raw material gas is blown onto the catalyst powder. Production method.
1 0 . 原料ガスの予熱温度を 3 0 0 °C以下に設定する請求項 2に記載の原料吹 き付け式高効率力一ボンナノ構造物製造方法。 10. The method for producing a high-efficiency single-bon nanostructure according to claim 2, wherein the preheating temperature of the raw material gas is set to 300 ° C. or lower.
1 1 . 原料ガスから触媒化学気相成長法によりカーボンナノ構造物を製造する 装置において、 反応領域をカーボンナノ構造物の生成温度域にまで加熱する加熱 装置を設け、 反応領域内に原料ガスを導入する原料ガス供給管を設けてその原料 ガス吹出し口を反応領域内に配置し、 タール状副生成物が生成されない温度域に ある原料ガスを前記原料ガス吹出し口から触媒体に吹き付けることを特徴とする 原料吹き付け式高効率カーボンナノ構造物製造装置。  1 1. In a device that manufactures carbon nanostructures from a raw material gas by catalytic chemical vapor deposition, a heating device that heats the reaction region to the temperature range for generating carbon nanostructures is provided, and the raw material gas is placed in the reaction region. A source gas supply pipe to be introduced is provided, the source gas outlet is arranged in the reaction region, and a source gas in a temperature range where tar-like by-products are not generated is blown from the source gas outlet to the catalyst. High-efficiency carbon nanostructure manufacturing equipment with material spraying.
1 2 . 原料ガスから触媒化学気相成長法によりカーボンナノ構造物を製造する 装置において、 反応領域をカーボンナノ構造物の生成温度域にまで加熱する加熱 装置を設け、 反応領域内に原料ガスを導入する原料ガス供給管を設けてその原料 ガス吹出し口を反応領域内に配置し、 原料ガスからタール状生成物が生成されな V、温度域にまで前記原料ガス供給管を予熱する予熱装置から構成され、 予熱され た原料ガスを前記原料ガス吹出し口から触媒体に吹き付けることを特徴とする原 料吹き付け式高効率力ーボンナノ構造物製造装置。  1 2. In a device that manufactures carbon nanostructures from a raw material gas by catalytic chemical vapor deposition, a heating device that heats the reaction region to the temperature range for generating carbon nanostructures is provided, and the raw material gas is placed in the reaction region. A source gas supply pipe to be introduced is provided, and the source gas outlet is arranged in the reaction area. From a preheating device that preheats the source gas supply pipe to a temperature and a temperature range where a tar-like product is not generated from the source gas. A raw material spraying type high-efficiency carbon nanostructure manufacturing apparatus which is configured and blows a preheated raw material gas from the raw material gas outlet to the catalyst.
1 3 . 原料ガスから触媒化学気相成長法によりカーボンナノ構造物を製造する 装置において、 反応領域を力"ボンナノ構造物の生成温度域にまで加熱する加熱 装置を設け、 反応領域内に原料ガスと触媒体の混合ガスを導入する混合ガス供給 管を設けてその混合ガス吹出し口を反応領域内に配置し、 混合ガスからタール状 生成物が生成されない温度域にまで前記混合ガス供給管を予熱する予熱装置を設 け、 予熱された混合ガスを反応領域に吹き付けることを特徴とする原料吹き付け 式高効率力一ボンナノ構造物製造装置。  1 3. In a device for producing carbon nanostructures from a source gas by catalytic chemical vapor deposition, a heating device that heats the reaction area to the temperature range for generating carbon nanostructures is provided. A mixed gas supply pipe for introducing a mixed gas of the catalyst and the catalyst body is provided, and the mixed gas outlet is arranged in the reaction area, and the mixed gas supply pipe is preheated to a temperature range in which tar-like products are not generated from the mixed gas. A raw material spraying type high-efficiency single-bon nanostructure manufacturing apparatus, characterized in that a preheating apparatus is installed and a preheated mixed gas is blown into a reaction zone.
1 4 . 前記反応領域に触媒体を供給する触媒体供給管を配置し、 この触媒体供 給管を予熱する予熱装置を設け、 予熱された触媒体に前記原料ガスを吹き付ける 請求項 1 1又 1 2に記載の原料吹き付け式高効率カーボンナノ構造物製造装置。 14. A catalyst supply pipe for supplying a catalyst in the reaction region, a preheating device for preheating the catalyst supply pipe is provided, and the raw material gas is blown onto the preheated catalyst. 13. The raw material spraying type high efficiency carbon nanostructure manufacturing apparatus according to 12.
1 5 . 前記反応領域内の触媒体を攪拌する攪拌装置が付設され、 攪拌された触 媒体に原料ガスを吹き付ける請求項 1 1又は 1 2に記載の原料吹き付け式高効率 カーボンナノ構造物製造装置。 15. The raw material spraying type high-efficiency carbon nanostructure manufacturing apparatus according to claim 11 or 12, further comprising a stirrer for stirring the catalyst body in the reaction region, wherein the raw material gas is blown to the stirred catalyst medium. .
1 6 . 前記触媒体がカーボンナノコイル製造触媒である請求項 1又は 2に記載 の原料吹き付け式高効率カーボンナノ構造物製造方法。 16. The catalyst according to claim 1, wherein the catalyst is a carbon nanocoil production catalyst. Method for producing high-efficiency carbon nanostructures by spraying raw materials.
1 7 . 原料ガスがアセチレン、 ァリレン、 エチレン、 ベンゼン、 トルエン、 了 ルコール又はメタンの少なくとも一つを含む請求項 1又は 2に記載の原料吹き付 け式高効率力一ボンナノ構造物製造方法。  17. The method according to claim 1, wherein the raw material gas contains at least one of acetylene, arylene, ethylene, benzene, toluene, alcohol and methane.
1 8 . 前記カーボンナノ構造物が、 カーボンナノコイル、 カーボンナノチュー プ、 カーボンナノツイスト、 ビーズ付きカーボンナノチューブ、 カーボンナノブ ラシ又はフラーレンである請求項 1又は 2に記載の原料吹き付け式高効率カーボ ンナノ構造物製造方法。  18. The raw material spraying type high efficiency carbon nano according to claim 1 or 2, wherein the carbon nano structure is a carbon nano coil, a carbon nanotube, a carbon nano twist, a carbon nanotube with beads, a carbon nano brush or a fullerene. Structure manufacturing method.
PCT/JP2004/008181 2002-12-05 2004-06-04 Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor WO2005118473A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/628,304 US20070253890A1 (en) 2002-12-05 2004-06-04 Highly Efficient Material Spraying Type Carbon Nanostructure Synthesizing Method and Apparatus
PCT/JP2004/008181 WO2005118473A1 (en) 2004-06-04 2004-06-04 Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
JP2006514046A JP4674355B2 (en) 2004-06-04 2004-06-04 Raw material spray type high efficiency carbon nanostructure manufacturing method and apparatus
CN2004800432279A CN1960942B (en) 2004-06-04 2004-06-04 Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/008181 WO2005118473A1 (en) 2004-06-04 2004-06-04 Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor

Publications (1)

Publication Number Publication Date
WO2005118473A1 true WO2005118473A1 (en) 2005-12-15

Family

ID=35462848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008181 WO2005118473A1 (en) 2002-12-05 2004-06-04 Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor

Country Status (3)

Country Link
JP (1) JP4674355B2 (en)
CN (1) CN1960942B (en)
WO (1) WO2005118473A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system
JP2009155181A (en) * 2007-12-27 2009-07-16 Toshiba Corp Apparatus for producing carbon nanotube
WO2010035439A1 (en) * 2008-09-25 2010-04-01 日新電機株式会社 Process and apparatus for producing carbon nanocoil
US7829494B2 (en) 2003-05-29 2010-11-09 Japan Science And Technology Agency Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
WO2015045427A1 (en) 2013-09-30 2015-04-02 日本ゼオン株式会社 Method for producing carbon nanostructure, and carbon nanotube
JP2019167266A (en) * 2018-03-23 2019-10-03 日本ゼオン株式会社 Manufacturing method and manufacturing apparatus of carbon structure

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282020A (en) * 1986-05-26 1987-12-07 Asahi Chem Ind Co Ltd Production of carbon fiber
JPH026617A (en) * 1988-06-14 1990-01-10 Mitsui Eng & Shipbuild Co Ltd Production of carbon fiber
JPH062222A (en) * 1992-06-16 1994-01-11 Toho Gas Co Ltd Production of carbon fiber by gaseous phase growth
JPH11229240A (en) * 1998-02-19 1999-08-24 Seiji Motojima Vapor phase manufacturing of coiled carbon fiber and manufacturing equipment for the same
JP2001115342A (en) * 1999-10-08 2001-04-24 Nikkiso Co Ltd Apparatus and method for producing fine carbon fiber by vapor growth, antisticking apparatus for fine carbon fiber by vapor growth, and fine carbon fiber by vapor growth
JP2002088590A (en) * 2000-09-11 2002-03-27 Seiji Motojima Method for producing carbon fiber
JP2003252613A (en) * 2001-12-26 2003-09-10 Toray Ind Inc Method and device for manufacturing carbon nanotube
JP2003535794A (en) * 2000-06-02 2003-12-02 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティー オブ オクラホマ Method and apparatus for producing carbon nanotubes
JP2004149961A (en) * 2002-10-30 2004-05-27 Nikkiso Co Ltd Method and apparatus for collecting vapor-grown carbon fiber
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491747B2 (en) * 1999-12-31 2004-01-26 喜萬 中山 Method for producing carbon nanocoil and catalyst
JP3585033B2 (en) * 2000-04-29 2004-11-04 喜萬 中山 Method for producing indium-tin-iron catalyst for producing carbon nanocoils
KR100382879B1 (en) * 2000-09-22 2003-05-09 일진나노텍 주식회사 Method of synthesizing carbon nanotubes and apparatus being used therein.
JP3822806B2 (en) * 2001-07-11 2006-09-20 喜萬 中山 Mass production method of carbon nanocoils
JP3847589B2 (en) * 2001-08-29 2006-11-22 独立行政法人科学技術振興機構 Manufacturing method of carbon nanotube with beads

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282020A (en) * 1986-05-26 1987-12-07 Asahi Chem Ind Co Ltd Production of carbon fiber
JPH026617A (en) * 1988-06-14 1990-01-10 Mitsui Eng & Shipbuild Co Ltd Production of carbon fiber
JPH062222A (en) * 1992-06-16 1994-01-11 Toho Gas Co Ltd Production of carbon fiber by gaseous phase growth
JPH11229240A (en) * 1998-02-19 1999-08-24 Seiji Motojima Vapor phase manufacturing of coiled carbon fiber and manufacturing equipment for the same
JP2001115342A (en) * 1999-10-08 2001-04-24 Nikkiso Co Ltd Apparatus and method for producing fine carbon fiber by vapor growth, antisticking apparatus for fine carbon fiber by vapor growth, and fine carbon fiber by vapor growth
JP2003535794A (en) * 2000-06-02 2003-12-02 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティー オブ オクラホマ Method and apparatus for producing carbon nanotubes
JP2002088590A (en) * 2000-09-11 2002-03-27 Seiji Motojima Method for producing carbon fiber
JP2003252613A (en) * 2001-12-26 2003-09-10 Toray Ind Inc Method and device for manufacturing carbon nanotube
JP2004149961A (en) * 2002-10-30 2004-05-27 Nikkiso Co Ltd Method and apparatus for collecting vapor-grown carbon fiber
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system
US7829494B2 (en) 2003-05-29 2010-11-09 Japan Science And Technology Agency Catalyst for synthesizing carbon nanocoils, synthesizing method of the same, synthesizing method of carbon nanocoils, and carbon nanocoils
JP2009155181A (en) * 2007-12-27 2009-07-16 Toshiba Corp Apparatus for producing carbon nanotube
WO2010035439A1 (en) * 2008-09-25 2010-04-01 日新電機株式会社 Process and apparatus for producing carbon nanocoil
WO2015045427A1 (en) 2013-09-30 2015-04-02 日本ゼオン株式会社 Method for producing carbon nanostructure, and carbon nanotube
JPWO2015045427A1 (en) * 2013-09-30 2017-03-09 日本ゼオン株式会社 Carbon nanostructure manufacturing method and carbon nanotube
US10011489B2 (en) 2013-09-30 2018-07-03 Zeon Corporation Method of producing carbon nanostructures, and carbon nanotubes
US10294108B2 (en) 2013-09-30 2019-05-21 Zeon Corporation Method of producing carbon nanostructures, and carbon nanotubes
JP2019167266A (en) * 2018-03-23 2019-10-03 日本ゼオン株式会社 Manufacturing method and manufacturing apparatus of carbon structure
JP7081252B2 (en) 2018-03-23 2022-06-07 日本ゼオン株式会社 Manufacturing method and equipment for carbon structure

Also Published As

Publication number Publication date
JPWO2005118473A1 (en) 2008-09-18
CN1960942B (en) 2013-04-10
CN1960942A (en) 2007-05-09
JP4674355B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP3962773B2 (en) Raw material spray type carbon nanostructure manufacturing method and apparatus
CA2559070C (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
JP6243880B2 (en) Method for producing agglomerates
JP4968643B2 (en) Method for producing single-walled carbon nanotube
JP4914218B2 (en) System and method for manufacturing carbon nanostructures
US20040000697A1 (en) Manufacturing method for a carbon nanomaterial, a manufacturing apparatus for a carbon nanomaterial, and manufacturing facility for a carbon nanomaterial
Yang et al. Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays
WO2007125923A1 (en) Single-walled carbon nanotube, carbon fiber aggregate containing the single-walled carbon nanotube, and method for production of the single-walled carbon nanotube or the carbon fiber aggregate
JP2008520429A (en) Catalyst for the synthesis of single-walled carbon nanotubes
JP2016502491A (en) Reactor and method for producing solid carbon material
Li et al. Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions
JP4674355B2 (en) Raw material spray type high efficiency carbon nanostructure manufacturing method and apparatus
Csató et al. Synthesis and characterisation of coiled carbon nanotubes
Donato et al. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes
CN107614426B (en) Method for producing carbon nanotube-containing composition
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
JP5269037B2 (en) Carbon nanostructure manufacturing method and apparatus
KR100881878B1 (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus therefor
Mirabootalebi et al. Synthesis of Carbon Nanotubes by Chemical Vapor Deposition Methods-Review
Khairurrijal et al. Structural characteristics of carbon nanotubes fabricated using simple spray pyrolysis method
WO2023191851A2 (en) System and method for synthesizing carbon nanotubes and hybrid materials via catalytic chemical deposition
JP2011063468A (en) Process for producing single wall carbon nanotube
KR20110037757A (en) Cup-stacked carbon nanotubes and method of preparing same
KR20090131507A (en) Apparatus for synthesizing carbon nanotube

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480043227.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11628304

Country of ref document: US

Ref document number: 2006514046

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077000250

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11628304

Country of ref document: US