JPS63282313A - Ultrafine carbon fiber produced by vapor method - Google Patents

Ultrafine carbon fiber produced by vapor method

Info

Publication number
JPS63282313A
JPS63282313A JP11666387A JP11666387A JPS63282313A JP S63282313 A JPS63282313 A JP S63282313A JP 11666387 A JP11666387 A JP 11666387A JP 11666387 A JP11666387 A JP 11666387A JP S63282313 A JPS63282313 A JP S63282313A
Authority
JP
Japan
Prior art keywords
fiber
carbon fiber
carbon
gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11666387A
Other languages
Japanese (ja)
Inventor
Masayuki Nakatani
雅行 中谷
Yukinari Komatsu
小松 行成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11666387A priority Critical patent/JPS63282313A/en
Publication of JPS63282313A publication Critical patent/JPS63282313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fiber having a fiber diameter and aspect ratio within specific ranges, great specific surface area and excellent reinforcing effects, efficiencies of electrode in batteries or cells, adsorption, catalyst, etc. CONSTITUTION:A normally hollow ultrafine carbon fiber, having 0.001-0.01mu, preferably 0.003-0.01mu fiber diameter, >=10, preferably 10<3>-10<6> aspect ratio and produced by a vapor method. For example, a carbon source (e.g. toluene), a catalyst (e.g. pentacarbonyl iron) and a carrier gas (e.g. hydrogen gas) are fed to a heating zone at >=1,300 deg.C so as to provide >=5.0mol./g feed rate (mol.) of the carrier gas based on the feed rate (g) of the carbon source compound, 0.05-10wt.% feed rate of the catalyst based on the carbon source compound and within 1.5sec residence time in the heating zone to afford the aimed carbon fiber.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相法による超極細径の炭素繊維に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to ultra-fine carbon fibers produced by a vapor phase method.

〔従来の技術〕[Conventional technology]

炭素繊維はその優れた機械的物性から各種複合材料とし
て近年急速に伸びつつある原料材料である。従来の炭素
繊維は有機繊維を焼結して炭化させる等の方法により製
造されていたが、最近炭化水素類の熱分解および触媒反
応によって炭素繊維を生成させる気相法による炭素繊維
の製造が試みられてい°る(例えば工業材料、昭和57
年7月号、109頁、遠藤、小山および特開昭58−1
80615号公報)。
Carbon fiber is a raw material that has been rapidly growing in recent years as a variety of composite materials due to its excellent mechanical properties. Conventionally, carbon fibers were produced by sintering and carbonizing organic fibers, but recently attempts have been made to produce carbon fibers using a gas phase method that produces carbon fibers through thermal decomposition and catalytic reactions of hydrocarbons. (e.g. industrial materials, 1982)
July issue, p. 109, Endo, Koyama and JP-A-1983-1
80615).

気相法で得られた炭素繊維は、従来のものに比較して優
れた結晶性、配向性および高強度を有し、また該繊維か
ら得られた不織布、積層体等は、電気伝導性を有してい
るので、電池の電極材、発熱体等に、またその耐熱、耐
薬品性を利用してフィルタや触媒担持体等に用いられよ
うとしている。
Carbon fibers obtained by the vapor phase method have superior crystallinity, orientation, and high strength compared to conventional ones, and nonwoven fabrics, laminates, etc. obtained from these fibers have excellent electrical conductivity. Because of this, it is expected to be used in battery electrode materials, heating elements, etc., and by taking advantage of its heat resistance and chemical resistance, it is being used in filters, catalyst carriers, etc.

しかしながら、従来の気相法による炭素質繊維は、基板
状で炭素繊維を成長させたり、または基板に散布した金
属の超微粉で炭素繊維を成長させるために、得られる繊
維径が比較的大きい。そのため補強効果、電池の電極効
率、フィルタの吸着効率、触媒効率等が充分といえず、
比表面積の大きな繊維が望まれていた。
However, carbonaceous fibers obtained by conventional vapor phase methods have relatively large fiber diameters because the carbon fibers are grown on a substrate or using ultrafine metal powder sprinkled on the substrate. Therefore, the reinforcement effect, battery electrode efficiency, filter adsorption efficiency, catalyst efficiency, etc. are not sufficient.
Fibers with a large specific surface area were desired.

本発明者らは、炭素源化合物および特定の遷移金属化合
物とを加熱して、熱分解、触媒反応させることによって
、細くかつ特異な構造を有する炭素繊維が合成されるこ
とを見出し、特許出願をした(特開昭60−23182
1号、特開昭61−108723号、特開昭61−13
2600号、特開昭61−132630号など)。
The present inventors discovered that thin carbon fibers with a unique structure could be synthesized by heating a carbon source compound and a specific transition metal compound to cause thermal decomposition and catalytic reaction, and filed a patent application. (Unexamined Japanese Patent Publication No. 60-23182
No. 1, JP-A-61-108723, JP-A-61-13
No. 2600, JP-A-61-132630, etc.).

本発明者らは、さらにこの気相法による炭素繊維につい
て鋭意検討し、本発明の超極細炭素繊維を見出した。
The inventors of the present invention further conducted extensive studies on carbon fiber produced by this vapor phase method, and discovered the ultra-fine carbon fiber of the present invention.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、補強効果、電池の電極効率、吸着効率
、触媒効率等の優れた、比表面積の大きな超極細炭素繊
維を提供することにある。
An object of the present invention is to provide an ultrafine carbon fiber having a large specific surface area and excellent reinforcing effect, battery electrode efficiency, adsorption efficiency, catalytic efficiency, etc.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、繊維の直径が0.001〜0.01μ、アス
ペクト比が10以上であることを特徴とする気相法によ
る超極細炭素繊維である。゛本発明の超極細炭素繊維は
、気相法による超極細炭素繊維およびその加熱処理物を
総称する。
The present invention is an ultrafine carbon fiber produced by a vapor phase method, characterized in that the fiber diameter is 0.001 to 0.01 μ and the aspect ratio is 10 or more.゛The ultrafine carbon fiber of the present invention is a general term for ultrafine carbon fiber produced by a vapor phase method and heat-treated products thereof.

本発明における超極細炭素繊維の直径は0.001〜0
.01μであり、好ましくは0.003〜0.01μで
ある。直径は小さいほど比表面積が大きく優れているが
、小さすぎると取扱い力1困難である。
The diameter of the ultrafine carbon fiber in the present invention is 0.001 to 0.
.. 01μ, preferably 0.003 to 0.01μ. The smaller the diameter, the better the specific surface area, but if it is too small, the handling force will be difficult.

本発明における超極細炭素繊維のアスペクト比は10以
上であり、好ましくは102〜107、特に103〜1
06が好ましく用いられる。アスペクト比が小さいと電
極やフィルタ等への成形性や複合材としたときの補強効
果が充分に発現されない。また、大きいと取扱いが多少
困難になる傾向にある。
The aspect ratio of the ultrafine carbon fiber in the present invention is 10 or more, preferably 102 to 107, particularly 103 to 1.
06 is preferably used. If the aspect ratio is small, the moldability into electrodes, filters, etc., and the reinforcing effect when used as a composite material cannot be sufficiently expressed. Moreover, if the size is large, handling tends to be somewhat difficult.

本発明における超極細炭素繊維は、炭化水素などの炭素
源化合物を加熱して気相成長させる気相法によって得ら
れる。加熱方法としては、電気炉加熱、プラズマ炎、燃
焼炎などの方法が用いられる。
The ultrafine carbon fiber in the present invention is obtained by a vapor phase method in which a carbon source compound such as a hydrocarbon is heated and grown in a vapor phase. As the heating method, methods such as electric furnace heating, plasma flame, combustion flame, etc. are used.

本発明の超極細炭素繊維は、繊維内部に中空を有してお
り、繊維の長手軸方向に平行に存在している。この中空
は両端または一端が閉じていても、繊維の外部へ通じて
いてもよいが、両端が閉じているほうが好ましい。両端
が閉じている場合、真空プレスによる複合成型時に気泡
発生がなく、大きな強度を有する複合材を成型しやすい
The ultrafine carbon fiber of the present invention has a hollow space inside the fiber, which exists in parallel to the longitudinal axis of the fiber. This hollow space may be closed at both ends or at one end or open to the outside of the fiber, but preferably closed at both ends. When both ends are closed, no air bubbles are generated during composite molding using a vacuum press, and it is easy to mold a composite material with high strength.

本発明の超極細炭素繊維は、粉末X線解析による(OO
2)面の面間隔が(do。2)が3.60〜3.35人
であり、また(OO2)方向の結晶サイズ(Lc)が5
〜100人であり、一般には5〜90人である。なお、
従来の気相法による炭素繊維は例えば“応用物理42 
(7) 、690 (1973)”に示されるように、
2400℃の熱処理によってLcが200Å以上になる
のに対して、本発明の超極細炭素繊維は2400℃の熱
処理物においてもLcが100Å以下である。
The ultrafine carbon fiber of the present invention was determined by powder X-ray analysis (OO
2) The interplanar spacing (do. 2) is 3.60 to 3.35, and the crystal size (Lc) in the (OO2) direction is 5.
~100 people, generally between 5 and 90 people. In addition,
Carbon fiber produced by the conventional vapor phase method is produced by, for example, “Applied Physics 42
(7), 690 (1973)”,
While Lc becomes 200 Å or more by heat treatment at 2400°C, the ultrafine carbon fiber of the present invention has Lc of 100 Å or less even after heat treatment at 2400°C.

本発明の超極細炭素繊維は、直線状、湾曲状、捲縮状な
どいずれの形状でもよいが、直線状および湾曲状のもの
が好ましり、捲縮状のものは、アスペクト比10以内に
捲縮のないものが好ましい。
The ultrafine carbon fiber of the present invention may have any shape such as straight, curved, or crimped, but straight and curved ones are preferable, and crimped ones have an aspect ratio of 10 or less. Preferably, those without crimp.

このうち直線状のものが最も好ましい、ここで捲縮とは
、1本の繊維におけるその直径の10倍の長さの範囲に
おいて、任意にとった繊維長手軸の中心の接線が120
°以下の角度をなすものをいう。捲縮数が多いと、複合
材としたときの強度が発現しにくい傾向にある。
Of these, straight ones are most preferable, and crimp here means that the tangent to the center of the longitudinal axis of the fiber is 120
It refers to something that forms an angle of less than °. When the number of crimps is large, it tends to be difficult to develop strength when made into a composite material.

本発明の超極細炭素繊維は酸性官能基゛(例えば−OH
,−Co□Hなど)を有していてもよい。
The ultrafine carbon fiber of the present invention has acidic functional groups (e.g. -OH
, -Co□H, etc.).

本発明の超極細炭素繊維は、炭素源化合物、触媒源化合
物およびキャリヤガスを加熱帯に供給して炭素繊維を製
造する方法において、加熱帯温度を1300℃以上、単
位時間当たりに加熱帯に供給するキャリヤガス量(mo
jりが炭素源化合物の単位時間当たりの供給量(g)に
対して5.0mo l / g以上、供給する炭素源化
合物に対する触媒源化合物の量が0.05〜l Q w
 t%、加熱帯での滞留時間を1.5秒以内とすること
により製造される。
The ultrafine carbon fiber of the present invention is produced by supplying a carbon source compound, a catalyst source compound, and a carrier gas to a heating zone in a method for producing carbon fiber, in which the temperature of the heating zone is 1300°C or higher and the heating zone is supplied per unit time. carrier gas amount (mo
J is 5.0 mol/g or more with respect to the amount (g) of carbon source compound supplied per unit time, and the amount of catalyst source compound with respect to the supplied carbon source compound is 0.05 to 1 Q w
t%, and the residence time in the heating zone is 1.5 seconds or less.

炭素源化合物とは、800〜2500℃に加熱すること
によって炭素を析出し得る化合物をいい、炭素化合物全
般を対象としている。例えばCO、メタン、エタン等の
アルカン化合物、エチレン、ブタジェン等のアルケン化
合物、アセチレン等のアルキン化合物、ベンゼン、トル
エン、スチレン、ナフタレン、アントラセン等の芳香族
化合物、シクロヘキサン、シクロペンタジェン、ジシク
ロペンタジェン等の脂環式炭化水素化合物、またはこれ
らの窒素、酸素、ハロゲン等の誘導体、ガソリン、灯油
、重油等があげられ、これらの混合物も用いることがで
きる。
The carbon source compound refers to a compound that can precipitate carbon by heating to 800 to 2500°C, and refers to carbon compounds in general. For example, CO, alkane compounds such as methane and ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, aromatic compounds such as benzene, toluene, styrene, naphthalene and anthracene, cyclohexane, cyclopentadiene and dicyclopentadiene. Examples include alicyclic hydrocarbon compounds such as, derivatives thereof such as nitrogen, oxygen, halogen, etc., gasoline, kerosene, heavy oil, etc., and mixtures thereof can also be used.

触媒源化合物とは、FeCl13、Fe (No)4 
、N i C12、Co (No)2 C1等の無機遷
移金属化合物、F e (C3Hs ) 2 、N i
  (C5Hs)2、Co (Cs N5)2、Fe 
(Co)5.1:’e2  (Co)1 、Ni  (
Co)4等の有機遷移金属化合物、アセチルアセトン鉄
、カルボン酸鉄、鉄アルコキシド、鉄アリールオキシド
、ニッケルチオアルコキシド、コバルトアルコキシド、
チオ酢酸鉄等の遷移金属化合物等が用いられる。これら
触媒源化合物は2種以上間時に用いてもよい。
Catalyst source compounds are FeCl13, Fe (No)4
, N i C12, inorganic transition metal compounds such as Co (No) 2 C1, Fe (C3Hs) 2 , N i
(C5Hs)2, Co (Cs N5)2, Fe
(Co)5.1:'e2 (Co)1 , Ni (
Organic transition metal compounds such as Co)4, iron acetylacetonate, iron carboxylate, iron alkoxide, iron aryloxide, nickel thioalkoxide, cobalt alkoxide,
Transition metal compounds such as iron thioacetate are used. Two or more of these catalyst source compounds may be used at the same time.

さらに触媒源化合物として、特開昭60−54998号
、特開昭60−54999号、特開昭60−18131
9号、特開昭60−185818号、特開昭60−22
4815号、特開昭60−224816号、特開昭60
−231822号、特開昭61−108723号、特開
昭61−225322号、特開昭61−225327号
、特開昭61−275425号、特願昭60−1232
01号等に記載されている化合物を用いてもよい。これ
らのうち、熱分解温度の低い化合物が好ましく用いられ
、500℃以下の化合物が好ましく用いられる。
Further, as a catalyst source compound, JP-A-60-54998, JP-A-60-54999, JP-A-60-18131
No. 9, JP-A-60-185818, JP-A-60-22
No. 4815, JP-A-60-224816, JP-A-60
-231822, JP 61-108723, JP 61-225322, JP 61-225327, JP 61-275425, JP 60-1232
Compounds described in No. 01 and the like may be used. Among these, compounds with a low thermal decomposition temperature are preferably used, and compounds with a thermal decomposition temperature of 500°C or less are preferably used.

触媒源化合物の量は、供給する炭素源化合物に対して0
.05〜l Qwt%であり、特に0.1〜IQ w 
t%がより好ましく用いられる。
The amount of catalyst source compound is 0 relative to the carbon source compound supplied.
.. 05~l Qwt%, especially 0.1~IQ w
t% is more preferably used.

キャリヤガスとは、N2ガス、Heガス、N2ガス、N
eガス、Arガス、Krガス、CO□ガスを主体とする
ガスであり、これらの混合物を用いてもよい。
Carrier gas means N2 gas, He gas, N2 gas, N2 gas,
The gas is mainly composed of e gas, Ar gas, Kr gas, and CO□ gas, and a mixture of these gases may also be used.

キャリヤガスは、用いる炭素源化合物によっても異なる
が、30Vof%以上を水素ガスとするのが好ましく、
特に50Voji%以上とするのが好ましい。
Although the carrier gas varies depending on the carbon source compound used, it is preferable that 30 Vof% or more is hydrogen gas,
In particular, it is preferably 50Voji% or more.

単位時間当たりに加熱帯に供給するキャリヤガス量(m
ol)は、炭素源化合物の単位時間当たりの供給it(
g)に対して5.0moj?/g以上である。キャリヤ
ガス量が5.0 m o e / g未満だと繊維径が
太くなる傾向にある。キャリヤガス量は、5、0〜50
.0 m o l / gが好ましく、特に5.0〜2
0、0 m o l / gが好ましい。キャリヤガス
量が多すぎると収率が低下する傾向がある。
The amount of carrier gas supplied to the heating zone per unit time (m
ol) is the supply of carbon source compound per unit time it(
5.0 moj for g)? /g or more. When the amount of carrier gas is less than 5.0 m oe / g, the fiber diameter tends to become thicker. The carrier gas amount is 5,0~50
.. 0 mol/g is preferable, especially 5.0-2
0.0 mol/g is preferred. If the amount of carrier gas is too large, the yield tends to decrease.

加熱帯温度は1300℃以上であり、具体的には反応容
器の内壁温度が1300℃以上に加熱される。このうち
1350〜2500℃、特に1400〜2500℃がよ
り好ましい。温度が低いと生産性および収率が低下し、
高いと煤が混入する傾向がある。加熱方法については特
に限定されないが、例えば電気炉加熱、赤外線加熱、プ
ラズマ加熱、レーザー加熱、燃焼熱利用、反応熱利用等
いずれを用いてもよい。このうち、電気炉加熱が便利で
ある。
The heating zone temperature is 1300°C or higher, and specifically, the inner wall temperature of the reaction vessel is heated to 1300°C or higher. Among these, 1350 to 2500°C, particularly 1400 to 2500°C is more preferable. Lower temperatures reduce productivity and yield;
If the temperature is high, soot tends to be mixed in. The heating method is not particularly limited, but any method such as electric furnace heating, infrared heating, plasma heating, laser heating, use of combustion heat, use of reaction heat, etc. may be used. Among these, electric furnace heating is convenient.

加熱帯での滞留時間は1.5秒以内であり、このうち、
0.01〜1.0秒、特に0.05〜0.5秒が好まし
い。滞留時間とは、加熱帯でのキャリヤガスの滞留時間
をいい、理想気体として計算した滞留時間をいう。
The residence time in the heating zone is within 1.5 seconds;
0.01 to 1.0 seconds, particularly 0.05 to 0.5 seconds is preferred. The residence time refers to the residence time of the carrier gas in the heating zone, and refers to the residence time calculated as an ideal gas.

硫黄化合物を加熱帯に供給するのは好ましく、硫黄化合
物としては、硫化水素、二硫化炭素および有機硫黄化合
物などがあげられ、特に有機硫黄化合物が好ましく用い
られる。有機硫黄化合物としては、メチルチオール、エ
チルチオール、ブチルチオール、フェニルチオール等の
チオール類、ジメチルスルフィド、ジエチルスルフィド
、フェニルメチルスルフィド等のスルフィド類、ジメチ
ルスルホキシド、ジエチルスルホキシド、ジフェニルス
ルホキシド等のスルホキシド類、ジメチルスルホン、ジ
エチルスルホン等のスルホン類、チオフェン、イソベン
ゾチオフェン等の含硫黄複素環化合物、その他、スルフ
ェン酸類、スルフェン酸エステル類、スルホン酸類、ス
ルホン酸エステルおよびその無水物等、スルフィン酸類
、スルフィン酸エステル類、チオールスルフィナート類
、チオカルボニル化合物、チオカルボン酸類、チオカル
ボン酸エステル類、ジチオカルボン酸類、スルフィン類
、チオカルボン酸誘導体S−オキシド類、スルホニウム
イリド類、スルフラン類等があげられる。これらは1種
または2種以上組合わせて用いられる。
It is preferable to supply a sulfur compound to the heating zone, and examples of the sulfur compound include hydrogen sulfide, carbon disulfide, and organic sulfur compounds, with organic sulfur compounds being particularly preferably used. Examples of organic sulfur compounds include thiols such as methylthiol, ethylthiol, butylthiol, and phenylthiol; sulfides such as dimethyl sulfide, diethyl sulfide, and phenylmethyl sulfide; sulfoxides such as dimethyl sulfoxide, diethyl sulfoxide, and diphenyl sulfoxide; and dimethyl Sulfones such as sulfone and diethylsulfone, sulfur-containing heterocyclic compounds such as thiophene and isobenzothiophene, other sulfenic acids, sulfenic esters, sulfonic acids, sulfonic esters and their anhydrides, sulfinic acids, sulfinic esters, etc. Examples include thiol sulfinates, thiocarbonyl compounds, thiocarboxylic acids, thiocarboxylic acid esters, dithiocarboxylic acids, sulfines, thiocarboxylic acid derivatives S-oxides, sulfonium ylides, sulfurans, and the like. These may be used alone or in combination of two or more.

加熱帯に供給する硫黄化合物の量(mob)は、供給す
る炭素源化合物の質量(g)に対して2×10−4mo
6/g以上が好ましく、2X10−’〜5x 10””
mo 17g、特に3X10−’ 〜IXIQ−3m 
o l / gが好ましく用いられる。硫黄化合物を加
熱帯に供給することによって、アスペクト比の大きな繊
維が得られる傾向にある。
The amount (mob) of the sulfur compound supplied to the heating zone is 2 x 10-4 mob relative to the mass (g) of the carbon source compound supplied.
6/g or more is preferable, and 2X10-' to 5x 10""
mo 17g, especially 3X10-'~IXIQ-3m
ol/g is preferably used. By supplying a sulfur compound to the heating zone, fibers with a large aspect ratio tend to be obtained.

〔実施例〕〔Example〕

以下、実施例より詳細に説明する。 Examples will be explained in more detail below.

実施例1 第1図に示したように、電気炉1 (均熱長50cm)
にアルミナ質炉管2 (内径60龍、長さ150cm)
を設置し、これにフィルタ6を第1図のように設置して
超極細炭素繊維を捕集するようにした。アルミナ質炉管
の一端には原料を供給するためのパイプ3.4とノズル
5を設置した。また、他の一端はゴム栓7で栓をし、排
ガス用のパイプ8を設置した。
Example 1 As shown in Fig. 1, electric furnace 1 (soaking length 50 cm)
Alumina furnace tube 2 (inner diameter 60cm, length 150cm)
A filter 6 was installed thereon as shown in FIG. 1 to collect ultrafine carbon fibers. A pipe 3.4 and a nozzle 5 for supplying raw materials were installed at one end of the alumina furnace tube. Moreover, the other end was plugged with a rubber stopper 7, and a pipe 8 for exhaust gas was installed.

電気炉1内およびアルミナ質炉管2内を窒素置換した後
、アルミナ質炉管2内を1500℃に加熱し、その後水
素ガスでアルミナ質炉管2内を置換した。炭素源として
トルエンを用い、これにペンタカルボニル鉄を3.Q 
w t%とチオフェン2.7wt%溶解させ、ノズル5
に0.5g/分で供給した。同時に水素ガスを80β/
分でノズル5に供給して、トルエン溶液とともにアルミ
ナ質炉管2内へ噴霧した。噴霧を5分間行なった後、ア
ルミナ質炉管2内を水素ガスで置換し、次いで室温まで
冷却し、生成物をフィルタ6で捕集し、その重量を測定
し、また電子顕微鏡で観察した。
After replacing the inside of the electric furnace 1 and the alumina furnace tube 2 with nitrogen, the inside of the alumina furnace tube 2 was heated to 1500° C., and then the inside of the alumina furnace tube 2 was replaced with hydrogen gas. 3. Pentacarbonyl iron was added to toluene as a carbon source. Q
wt% and thiophene 2.7wt%, nozzle 5
was fed at a rate of 0.5 g/min. At the same time, hydrogen gas is 80β/
The mixture was supplied to the nozzle 5 for a few minutes and sprayed into the alumina furnace tube 2 together with the toluene solution. After spraying for 5 minutes, the inside of the alumina furnace tube 2 was replaced with hydrogen gas, and then cooled to room temperature, and the product was collected with a filter 6, its weight was measured, and it was observed with an electron microscope.

その結果、繊維径0.006μ、アスペクト比3000
〜10,000の超極細炭素繊維が0.3g得られた。
As a result, the fiber diameter is 0.006 μ and the aspect ratio is 3000.
0.3 g of ~10,000 ultrafine carbon fibers were obtained.

得られた繊維の内部には中空が繊維の長手軸方向に平行
に存在しており、その両端は閉じていた。また、N2ガ
スを用いたBET法によって比表面積を測定したところ
350+y?/gであった。
A hollow space existed inside the obtained fiber parallel to the longitudinal axis of the fiber, and both ends thereof were closed. Also, when the specific surface area was measured by the BET method using N2 gas, it was 350+y? /g.

実施例2 実施例1で得られた超極細炭素繊維をアルゴン雰囲気下
で2400℃で加熱処理し、粉末X線解析を行なったと
ころ、do02が3.36人であり、その半値幅から求
めた結晶サイズ(Lc)は20人であった。
Example 2 The ultrafine carbon fiber obtained in Example 1 was heat-treated at 2400°C in an argon atmosphere and subjected to powder X-ray analysis, and the do02 was 3.36 people, which was determined from its half-width. Crystal size (Lc) was 20.

比較例1 特開昭59−76921号に記載されている方法に従っ
て従来の気相法(基板法)による炭素繊維(繊維径が約
10μ、長さ約3cm)を製造した。
Comparative Example 1 Carbon fibers (fiber diameter: about 10 μm, length: about 3 cm) were produced by a conventional vapor phase method (substrate method) according to the method described in JP-A-59-76921.

比較例2 実施例1と同様の装置を用い、アルミナ質炉管内を11
50℃に設定した。炉管内を窒素置換後水素ガスで置換
した。炭素源としてベンゼンを用い、これにフェロセン
をベンゼンに対して15wt%熔解させた。ノズル5か
ら水素ガス101A分とともにベンゼン溶液を2g/分
でアルミナ質炉管内へ噴霧した。この結果、繊維径0.
3μ、アスペクト比が約100の炭素繊維が31%の収
率で得られた。またBET法(N2ガス)における比表
面積は7 td / gであった。
Comparative Example 2 Using the same equipment as in Example 1, the inside of the alumina furnace tube was heated to 11
The temperature was set at 50°C. The inside of the furnace tube was replaced with nitrogen gas and then replaced with hydrogen gas. Benzene was used as a carbon source, and 15 wt % of ferrocene was dissolved in the benzene. A benzene solution was sprayed into the alumina furnace tube from the nozzle 5 at a rate of 2 g/min along with 101 A of hydrogen gas. As a result, the fiber diameter is 0.
Carbon fibers having a diameter of 3μ and an aspect ratio of approximately 100 were obtained in a yield of 31%. Further, the specific surface area in the BET method (N2 gas) was 7 td/g.

使用例1 実施例1および比較例1.2の炭素繊維を各1g準備し
、それぞれをビスフェノールA型エポキシ1.5 w 
t%のエマルジョン水溶液11に入れてよく攪拌した。
Usage Example 1 Prepare 1 g each of the carbon fibers of Example 1 and Comparative Example 1.2, and add 1.5 w of bisphenol A epoxy to each.
t% emulsion aqueous solution 11 and stirred well.

その後濾過し、濾液を観察した結果を下表に示した。Thereafter, it was filtered, and the results of observing the filtrate are shown in the table below.

第  1  表 実施例1の超極細炭素繊維を濾過後、乾燥して重量を測
定したところ、エマルジョン水溶液のエポキシを96%
吸着していたことがわかった。
Table 1 When the ultrafine carbon fiber of Example 1 was filtered, dried and weighed, it was found that the epoxy content of the emulsion aqueous solution was 96%.
It turned out that it was adsorbed.

〔発明の効果〕〔Effect of the invention〕

本発明の超極細炭素繊維は、直径0.001〜0゜01
μ、アスペクト比10以上と、従来の炭素繊維に較べて
超極細で比表面積が大きいため、補強効果、電池の電極
効率、吸着効率、触媒効率等に優れており、極めて有用
である。
The ultrafine carbon fiber of the present invention has a diameter of 0.001 to 0°01.
μ and aspect ratio of 10 or more, it is ultra-fine and has a larger specific surface area than conventional carbon fibers, so it has excellent reinforcing effects, battery electrode efficiency, adsorption efficiency, catalytic efficiency, etc., and is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の超極細炭素繊維を製造する装置の一
例を示す説明図である。 1・・・電気炉、2・・・アルミナ質炉管、3.4.8
・・・パイプ、5・・・ノズル、6・・・生成物を捕集
するためのフィルタ、7・・・ゴム栓、9・・・ボック
ス。 代理人 弁理士 川 北 武 長 第1図
FIG. 1 is an explanatory diagram showing an example of an apparatus for manufacturing ultrafine carbon fibers of the present invention. 1... Electric furnace, 2... Alumina furnace tube, 3.4.8
... Pipe, 5... Nozzle, 6... Filter for collecting products, 7... Rubber stopper, 9... Box. Agent Patent Attorney Takenaga Kawakita Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)繊維の直径が0.001〜0.01μ、アスペク
ト比が10以上であることを特徴とする気相法による超
極細炭素繊維。
(1) Ultra-fine carbon fiber produced by a vapor phase method, characterized in that the diameter of the fiber is 0.001 to 0.01μ and the aspect ratio is 10 or more.
JP11666387A 1987-05-13 1987-05-13 Ultrafine carbon fiber produced by vapor method Pending JPS63282313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11666387A JPS63282313A (en) 1987-05-13 1987-05-13 Ultrafine carbon fiber produced by vapor method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11666387A JPS63282313A (en) 1987-05-13 1987-05-13 Ultrafine carbon fiber produced by vapor method

Publications (1)

Publication Number Publication Date
JPS63282313A true JPS63282313A (en) 1988-11-18

Family

ID=14692814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11666387A Pending JPS63282313A (en) 1987-05-13 1987-05-13 Ultrafine carbon fiber produced by vapor method

Country Status (1)

Country Link
JP (1) JPS63282313A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110693A (en) * 1989-09-28 1992-05-05 Hyperion Catalysis International Electrochemical cell
US5246794A (en) * 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
US5690997A (en) * 1993-10-04 1997-11-25 Sioux Manufacturing Corporation Catalytic carbon--carbon deposition process
WO2000058536A1 (en) * 1999-03-25 2000-10-05 Showa Denko K. K. Carbon fiber, method for producing the same and electrode for cell
JP2002514694A (en) * 1998-05-13 2002-05-21 アプライド・サイエンシズ・インコーポレーテッド Plasma catalysis for obtaining carbon nanofibers
US7390593B2 (en) 2001-11-07 2008-06-24 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
US8084121B2 (en) 2003-05-09 2011-12-27 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5110693A (en) * 1989-09-28 1992-05-05 Hyperion Catalysis International Electrochemical cell
US5246794A (en) * 1991-03-19 1993-09-21 Eveready Battery Company, Inc. Cathode collector made from carbon fibrils
US5690997A (en) * 1993-10-04 1997-11-25 Sioux Manufacturing Corporation Catalytic carbon--carbon deposition process
JP2002514694A (en) * 1998-05-13 2002-05-21 アプライド・サイエンシズ・インコーポレーテッド Plasma catalysis for obtaining carbon nanofibers
WO2000058536A1 (en) * 1999-03-25 2000-10-05 Showa Denko K. K. Carbon fiber, method for producing the same and electrode for cell
US6489026B1 (en) * 1999-03-25 2002-12-03 Showa Denko K.K. Carbon fiber, method for producing the same and electrode for cell
US6946110B2 (en) 1999-03-25 2005-09-20 Showa Denko K.K. Carbon fibers, production process therefor and electrode for batteries
US7390593B2 (en) 2001-11-07 2008-06-24 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
US8084121B2 (en) 2003-05-09 2011-12-27 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same
US8372511B2 (en) 2003-05-09 2013-02-12 Showa Denko K.K. Fine carbon fiber with linearity and resin composite material using the same

Similar Documents

Publication Publication Date Title
JP5042333B2 (en) Crimped carbon fiber and its production method
US7537682B2 (en) Methods for purifying carbon materials
JP7086419B2 (en) Carbon nanotubes, their manufacturing methods and positive electrodes for primary batteries containing them
JP2009062670A (en) Fine carbon fiber and composition thereof
JP4852671B2 (en) Carbon fiber manufacturing method
KR100497766B1 (en) Fine carbon fiber and process for producing the same, and conductive material comprising the same
JPS63282313A (en) Ultrafine carbon fiber produced by vapor method
JP4535808B2 (en) Crimped carbon fiber and its production method
Ezz et al. Synthesis and characterization of nanocarbon having different morphological structures by chemical vapor deposition over Fe-Ni-Co-Mo/MgO catalyst
JP4010767B2 (en) Fine carbon fiber aggregate
US6565971B2 (en) Fine carbon fiber and method for producing the same
Huang et al. Syntheses of carbon nanomaterials by ferrocene
JP4357163B2 (en) Fine carbon fiber and composition containing the same
CN100503913C (en) Crimped carbon fiber and production method thereof
KR101383821B1 (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
JP2003089930A (en) Fine carbon fiber mixture and composition containing the same
JPH01298214A (en) Production of carbon fiber
JPS62282020A (en) Production of carbon fiber
JPS61282427A (en) Production of carbonaceous fiber
JPS63219630A (en) Production of carbon fiber
JP2752023B2 (en) Manufacturing method of composite carbon material
JPH02127523A (en) Carbon fiber of vapor growth
Ma et al. One-Dimensional Carbon Nanostructures: Low-Temperature Chemical Vapor Synthesis and Applications
JPS6134221A (en) Manufacture of ultra-fine carbon fiber by vapor-phase process
JPS62238826A (en) Production of carbon fiber