JP4706058B2 - Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes - Google Patents

Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes Download PDF

Info

Publication number
JP4706058B2
JP4706058B2 JP2005199781A JP2005199781A JP4706058B2 JP 4706058 B2 JP4706058 B2 JP 4706058B2 JP 2005199781 A JP2005199781 A JP 2005199781A JP 2005199781 A JP2005199781 A JP 2005199781A JP 4706058 B2 JP4706058 B2 JP 4706058B2
Authority
JP
Japan
Prior art keywords
walled carbon
carbon nanotubes
producing
fiber aggregate
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005199781A
Other languages
Japanese (ja)
Other versions
JP2006213590A (en
Inventor
毅 斎藤
哲 大嶋
守雄 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005199781A priority Critical patent/JP4706058B2/en
Publication of JP2006213590A publication Critical patent/JP2006213590A/en
Application granted granted Critical
Publication of JP4706058B2 publication Critical patent/JP4706058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、直径が2.0nm未満、特に0.6nm〜1.0nmである極細単層カーボンナノチューブからなる炭素繊維集合体及びこの炭素繊維集合体を大量かつ安価に製造することができる製造方法に関する。   The present invention relates to a carbon fiber aggregate composed of ultrathin single-walled carbon nanotubes having a diameter of less than 2.0 nm, particularly 0.6 nm to 1.0 nm, and a production method capable of producing the carbon fiber aggregate in a large amount and at low cost. About.

単層カーボンナノチューブを合成するための方法として大別してアーク放電法(特許文献1参照)、レーザー蒸発法(非特許文献1参照)、化学蒸着法(CVD法)(特許文献2参照)の3種類の手法が知られている。
これらの中でCVD法は、大量・安価に合成するための有効な方法であり、中でも触媒の前駆体若しくは粒径のきわめて小さい触媒を含む含炭素原料をスプレー等で霧状にして高温の電気炉に導入することによって合成する流動気相法(特許文献2参照)は、最も大量合成に適した方法の1つである。
The methods for synthesizing single-walled carbon nanotubes are roughly classified into three types: an arc discharge method (see Patent Document 1), a laser evaporation method (see Non-Patent Document 1), and a chemical vapor deposition method (CVD method) (see Patent Document 2). The method is known.
Among these, the CVD method is an effective method for synthesizing a large amount and at a low cost. Among them, a carbon-containing raw material containing a catalyst precursor or a catalyst having a very small particle size is atomized by a spray or the like to generate high-temperature electricity. The fluidized gas phase method (see Patent Document 2), which is synthesized by introducing it into a furnace, is one of the most suitable methods for mass synthesis.

従来のCVD法では金属微超粒子の直径によって生成される単層カーボンナノチューブの直径を2〜3nm程度に制御することが可能であることが知られている(非特許文献2参照)が、それ以下の直径の単層カーボンナノチューブの選択的な合成は非常に困難であり、中でも直径1.0nm以下の極細単層カーボンナノチューブを選択的に生成することはできなかった。   In the conventional CVD method, it is known that the diameter of the single-walled carbon nanotube generated by the diameter of the metal ultra-super particle can be controlled to about 2 to 3 nm (see Non-Patent Document 2). Selective synthesis of single-walled carbon nanotubes with the following diameters is very difficult, and in particular, ultrafine single-walled carbon nanotubes with a diameter of 1.0 nm or less could not be selectively produced.

また、これまで極細単層カーボンナノチューブを生成する方法はレーザー蒸発法において触媒金属もしくは雰囲気温度を調整することによって行う方法が知られているが(特許文献3参照)、上記のようにレーザー蒸発法は大量合成方法として適していないという問題があった。   In addition, as a method for producing ultrafine single-walled carbon nanotubes so far, a method in which a catalyst metal or an atmospheric temperature is adjusted in a laser evaporation method is known (see Patent Document 3). Has a problem that it is not suitable as a mass synthesis method.

特開平7−197325号公報JP-A-7-197325 特開2001−80913号公報JP 2001-80913 A 特開平10−273308号公報Japanese Patent Laid-Open No. 10-273308 「Science」誌,vol.273,1996年発行),p483“Science”, vol. 273, 1996), p483 「Journal of Physical Chemistry B」誌,vol.106,2002(2002年2月16日発行),p2429“Journal of Physical Chemistry B”, vol. 106, 2002 (issued February 16, 2002), p2429

本発明は、ナノサイズのエレクトロニクス材料やオプトエレクトロニクス材料などとして有用な直径が制御された極細単層カーボンナノチューブからなる炭素繊維集合体及びその効率的、且つ大量・安価に製造する方法を提供することを目的とする。   The present invention provides a carbon fiber assembly composed of ultra-thin single-walled carbon nanotubes with controlled diameters useful as nano-sized electronics materials and optoelectronic materials, and a method for efficiently and mass-producing them. With the goal.

本発明者らは、前記課題を解決すべく鋭意検討した結果、単層カーボンナノチューブの流動気相CVD法による製造方法において、炭素源となる原料の種類と割合を変えることで、単層カーボンナノチューブの直径を制御できることを知見し、本発明に到達した。
すなわち、この出願によれば、以下の発明が提供される。
1)単層カーボンナノチューブからなる炭素繊維集合体の流動気相CVD法による製造方法において、第一の炭素源である炭化水素と、それよりもより低い温度で熱分解する第二の炭素源である炭化水素を使用し、反応器内に導入するそれらの割合を変えることにより、単層カーボンナノチューブの直径を制御して、直径が2.0nm未満の極細単層カーボンナノチューブとすることを特徴とする極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。
2)第一の炭素源である炭化水素と触媒とを反応器内に導入することを特徴とする上記1)記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。
3)第一の炭素源である炭化水素と共に、遷移金属原子を含有する触媒と硫黄原子を含有する硫黄化合物を反応容器内に導入することを特徴とする上記1)又は2)記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。
4)第一の炭素源である炭化水素として、トルエン、ベンゼン、キシレン、デカリン、テトラリン及びヘキサンから選択した1成分以上の化合物を用いることを特徴とする上記1)〜3)のいずれかに記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。
5)第二の炭素源である炭化水素として、エチレン又はアセチレンを用いることを特徴とする上記1)〜4)のいずれかに記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。
)極細単層カーボンナノチューブが、直径が0.6nm〜1.0nmであることを特徴とする上記1)〜)のいずれかに記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。
)極細単層カーボンナノチューブの含有量が全体の70%以上であることを特徴とする上記)に記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have changed the type and ratio of the raw material to be a carbon source in the method for producing single-walled carbon nanotubes by the fluidized vapor-phase CVD method. As a result, the present inventors have reached the present invention.
That is, according to this application, the following invention is provided.
1) In a method for producing a carbon fiber aggregate composed of single-walled carbon nanotubes by a fluidized gas phase CVD method, a hydrocarbon that is a first carbon source and a second carbon source that is thermally decomposed at a lower temperature. By using a certain hydrocarbon and changing the ratio of those introduced into the reactor, the diameter of the single-walled carbon nanotubes is controlled to form ultrafine single-walled carbon nanotubes having a diameter of less than 2.0 nm. The manufacturing method of the carbon fiber aggregate | assembly which consists of an ultrafine single-walled carbon nanotube.
2) The method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes according to 1) above, wherein a hydrocarbon as a first carbon source and a catalyst are introduced into the reactor.
3) The ultrafine unit according to 1) or 2) above, wherein a catalyst containing a transition metal atom and a sulfur compound containing a sulfur atom are introduced into the reaction vessel together with the hydrocarbon as the first carbon source. A method for producing a carbon fiber assembly comprising single-walled carbon nanotubes.
4) The hydrocarbon as the first carbon source is one or more compounds selected from toluene, benzene, xylene, decalin, tetralin, and hexane, and any one of 1) to 3) above A method for producing a carbon fiber aggregate composed of ultrafine single-walled carbon nanotubes.
5) The method for producing a carbon fiber aggregate composed of ultrafine single-walled carbon nanotubes according to any one of 1) to 4) above, wherein ethylene or acetylene is used as the hydrocarbon as the second carbon source.
6 ) Production of a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes according to any one of 1) to 5 ) above, wherein the ultrafine single-walled carbon nanotubes have a diameter of 0.6 nm to 1.0 nm. Method.
7 ) The process for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes according to 6 ) above, wherein the content of ultrafine single-walled carbon nanotubes is 70% or more of the total.

本発明に係る炭素繊維集合体は、直径が2.0nm未満、特に0.6nm〜1.0nmの極細単層カーボンナノチューブからなるので、半導体としては特性の均質化、光学材料としては発光効率の向上といった顕著な作用効果を奏するものであり、炭素繊維集合体を容易に得ることができるという著しい効果を有する。
また、本発明に係る炭素繊維集合体の製造方法は、流動気相CVD法における炭素源となる原料の種類とその割合を単に変えることで、単層カーボンナノチューブの直径を極細に制御することができ、直径が制御された単層カーボンナノチューブとして、直径が2.0nm未満、特に0.6nm〜1.0nmである極細単層カーボンナノチューブからなる炭素繊維集合体を容易に得ることができるという多大な効果を有する。
Since the carbon fiber aggregate according to the present invention is composed of ultrafine single-walled carbon nanotubes having a diameter of less than 2.0 nm, particularly 0.6 nm to 1.0 nm, the characteristics are uniform as a semiconductor, and the luminous efficiency is as an optical material. It has remarkable effects such as improvement, and has a remarkable effect that a carbon fiber aggregate can be easily obtained.
In addition, the method for producing a carbon fiber aggregate according to the present invention can finely control the diameter of the single-walled carbon nanotubes by simply changing the type and the ratio of the raw material used as the carbon source in the fluidized gas phase CVD method. As a single-walled carbon nanotube having a controlled diameter, a carbon fiber aggregate composed of ultrafine single-walled carbon nanotubes having a diameter of less than 2.0 nm, particularly 0.6 nm to 1.0 nm can be easily obtained. It has a great effect.

本発明に係る炭素繊維集合体は、直径が2.0nm未満好ましくは直径が0.6nm〜1nmの極細単層カーボンナノチューブからなる。そして、この極細単層カーボンナノチューブ含有量は当該炭素繊維集合体全体の70%以上、好ましくは80%以上であることが望ましい。また、炭素繊維集合体の直径は、通常2.0nm〜5.0nmである。
この炭素繊維集合体は、これを構成する単層カーボンナノチューブの直径が従来のものと異なり、極めて極細であることから、無機の半導体材料において現在広く用いられているシリコンなどと同程度のバンドギャップを有しており、また光学材料として用いることが可能な程度の発光効率で蛍光を発するといった特性を有する。したがって、この特性を利用することにより、エレクトロニクス材料やオプトエレクトロニクス材料として利用することができる。
The carbon fiber aggregate according to the present invention consists of ultrafine single-walled carbon nanotubes having a diameter of less than 2.0 nm, preferably 0.6 to 1 nm. The ultrafine single-walled carbon nanotube content is 70% or more, preferably 80% or more of the entire carbon fiber aggregate. The diameter of the carbon fiber aggregate is usually 2.0 nm to 5.0 nm.
This carbon fiber aggregate is different from conventional single-walled carbon nanotubes in its diameter and is extremely fine, so it has the same band gap as silicon, which is widely used in inorganic semiconductor materials. And has a characteristic of emitting fluorescence with a luminous efficiency that can be used as an optical material. Therefore, by utilizing this characteristic, it can be used as an electronic material or an optoelectronic material.

このような炭素繊維集合体は、単層カーボンナノチューブの流動気相CVD法による製造方法において、炭素源となる原料の種類とその割合を変えることで、製造することができる。   Such a carbon fiber aggregate can be produced by changing the type and ratio of the raw material used as the carbon source in the production method of single-walled carbon nanotubes by the fluidized vapor phase CVD method.

具体的には、流動気相CVD法において、第一の炭素源を反応器内に導入し、これよりも、より低い温度で熱分解する炭化水素を第二の炭素源として反応器内に導入し、かつ両者の流量を制御することにより、その直径が従来のものと著しく異なり極細の単層カーボンナノチューブからなる炭素繊維集合体を得ることができる。   Specifically, in the fluidized gas phase CVD method, a first carbon source is introduced into the reactor, and a hydrocarbon that is thermally decomposed at a lower temperature is introduced into the reactor as a second carbon source. In addition, by controlling the flow rates of the both, a carbon fiber aggregate composed of ultra-thin single-walled carbon nanotubes can be obtained, the diameter of which is significantly different from the conventional one.

第一の炭素源として使用する炭化水素は、特に制約されないが、後記する触媒や反応促進剤を溶解させるものが好ましい。このような炭化水素としては、芳香族炭化水素、脂環式炭化水素、長鎖脂肪族炭化水素などが挙げられる。
特に、トルエン、ベンゼン、キシレン、ナフタレン、アントラセン、デカリン、テトラリン、シクロヘキサン、ヘキサン等を挙げることができる。中でもベンゼン、トルエンが好ましく用いられる。
The hydrocarbon used as the first carbon source is not particularly limited, but is preferably one that dissolves a catalyst and a reaction accelerator described later. Examples of such hydrocarbons include aromatic hydrocarbons, alicyclic hydrocarbons, and long-chain aliphatic hydrocarbons.
In particular, toluene, benzene, xylene, naphthalene, anthracene, decalin, tetralin, cyclohexane, hexane, and the like can be given. Of these, benzene and toluene are preferably used.

前記第二炭素源として使用する炭化水素も、特に制限されないが、第一の炭素源である炭化水素よりもより低い温度で熱分解するものであることが必要である。
このような炭化水素としては、エチレン、プロピレン、アセチレンなどの不飽和脂肪族炭化水素が挙げられる。具体的には、トルエンを第一の炭素源とした場合には、第二の炭素源としてエチレンやアセチレン等を使用することができる。エチレンを用いる場合には生成する極細単層カーボンナノチューブの品質が高いという利点、アセチレンの場合には反応温度を下げられ、たとえば800°Cでも反応が進行するといった利点があり、どちらも好ましい。
The hydrocarbon used as the second carbon source is not particularly limited, but is required to be thermally decomposed at a lower temperature than the hydrocarbon as the first carbon source.
Examples of such hydrocarbons include unsaturated aliphatic hydrocarbons such as ethylene, propylene, and acetylene. Specifically, when toluene is used as the first carbon source, ethylene, acetylene, or the like can be used as the second carbon source. In the case of using ethylene, there is an advantage that the quality of the ultrafine single-walled carbon nanotubes to be produced is high, and in the case of acetylene, there is an advantage that the reaction temperature can be lowered, for example, the reaction proceeds even at 800 ° C., both of which are preferable.

第一炭素源と第二炭素源の使用割合は、それぞれの炭素源の種類や反応温度、合成したい単層カーボンナノチューブの直径などの条件によって定められるが、通常、含まれる炭素の重量比でエチレンの場合には第一炭素源:第二炭素源=1:2、アセチレンの場合には第一炭素源:第二炭素源=5:1程度である。   The usage ratio of the first carbon source and the second carbon source is determined by conditions such as the type of each carbon source, the reaction temperature, and the diameter of the single-walled carbon nanotube to be synthesized. In this case, the first carbon source: second carbon source = 1: 2, and in the case of acetylene, the first carbon source: second carbon source = about 5: 1.

本発明の製造方法では、触媒を使用することが好ましい。使用する触媒は金属の種類やその形態の違いに特に制限されるものではないが、遷移金属化合物又は遷移金属超微粒子が好ましく用いられる。
前記遷移金属化合物は、反応管内で分解することにより、触媒としての遷移金属粒子を発生することができ、反応管内における800〜1200°Cの温度に維持された反応領域に、気体の状態で供給されるのが好ましく、所定の反応温度にまで昇温される前に、完全に気化することができるものが好適である。
In the production method of the present invention, it is preferable to use a catalyst. The catalyst to be used is not particularly limited by the type of metal or the difference in form thereof, but a transition metal compound or transition metal ultrafine particles are preferably used.
The transition metal compound can be decomposed in a reaction tube to generate transition metal particles as a catalyst, and is supplied in a gaseous state to a reaction region maintained at a temperature of 800 to 1200 ° C. in the reaction tube. Preferably, those that can be completely vaporized before being heated to a predetermined reaction temperature are preferred.

前記遷移金属原子としては、鉄、ニッケル、コバルト、スカンジウム、チタン、バナジウム、クロム、マンガン等を挙げることができ、中でもより好ましいのは鉄、ニッケル、コバルトである。
前記遷移金属化合物としては、例えば、有機遷移金属化合物、無機遷移金属化合物等を挙げることができる。前記有機遷移金属化合物としては、フェロセン、ニッケロセン、コバルトセン、鉄カルボニル、アセチルアセトナート鉄、オレイン酸鉄等を挙げることができ、より好ましくはフェロセンである。前記無機遷移金属化合物としては塩化鉄等を挙げることができる。
Examples of the transition metal atom include iron, nickel, cobalt, scandium, titanium, vanadium, chromium, manganese, and the like, among which iron, nickel, and cobalt are more preferable.
Examples of the transition metal compound include organic transition metal compounds and inorganic transition metal compounds. Examples of the organic transition metal compound include ferrocene, nickelocene, cobaltocene, iron carbonyl, acetylacetonate iron, iron oleate, and the like, and ferrocene is more preferable. Examples of the inorganic transition metal compound include iron chloride.

本発明の製造方法においては、更に硫黄化合物を添加することが好ましい。この硫黄化合物は触媒である遷移金属と相互作用して、単層カーボンナノチューブの生成を促進する作用を有する。このような硫黄化合物としては、有機硫黄化合物、無機硫黄化合物を挙げることができる。
前記有機硫黄化合物としては、例えば、チアナフテン、ベンゾチオフェン、チオフェン等の含硫黄複素環式化合物を挙げることができ、前記無機硫黄化合物としては、例えば、硫化水素等を挙げることができる。
In the production method of the present invention, it is preferable to further add a sulfur compound. This sulfur compound has an action of interacting with a transition metal as a catalyst to promote the production of single-walled carbon nanotubes. Examples of such sulfur compounds include organic sulfur compounds and inorganic sulfur compounds.
Examples of the organic sulfur compound include sulfur-containing heterocyclic compounds such as thianaphthene, benzothiophene, and thiophene, and examples of the inorganic sulfur compound include hydrogen sulfide.

以下、本発明の特徴を、図に沿って具体的に説明する。なお、以下の説明は、本願発明の理解を容易にするためのものであり、これらの具体例に制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。
図1に、本発明の単層カーボンナノチューブ製造装置の概略図を示す。本装置は電気炉1、反応管2、スプレーノズル3、第一キャリアガス流量計4、第ニキャリアガス流量計5、マイクロフィーダー6、回収フィルター7、第二炭素源流量計8、ガス混合器9、整流板10で構成されている。
この製造装置よって、たとえば、直径が2.0nm未満の極細単層カーボンナノチューブからなる炭素繊維集合体を製造するには、遷移金属原子を含有する触媒と、硫黄原子を含有する硫黄化合物と、第一の炭素源である炭化水素と、第二の炭素源である炭化水素と、キャリアガスとを混合して得られるこれらの原料混合物を、800〜1200°Cの温度に維持された反応管2の反応領域に、マイクロフィーダー6、スプレーノズル3を経て、供給すればよい。
The features of the present invention will be specifically described below with reference to the drawings. In addition, the following description is for making an understanding of this invention easy, and is not restrict | limited to these specific examples. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.
In FIG. 1, the schematic of the single-walled carbon nanotube manufacturing apparatus of this invention is shown. This apparatus includes an electric furnace 1, a reaction tube 2, a spray nozzle 3, a first carrier gas flow meter 4, a second carrier gas flow meter 5, a micro feeder 6, a recovery filter 7, a second carbon source flow meter 8, and a gas mixer. 9 and a current plate 10.
For example, in order to produce a carbon fiber aggregate composed of ultrafine single-walled carbon nanotubes having a diameter of less than 2.0 nm by this production apparatus, a catalyst containing a transition metal atom, a sulfur compound containing a sulfur atom, A reaction tube 2 in which a mixture of these raw materials obtained by mixing a hydrocarbon as one carbon source, a hydrocarbon as a second carbon source, and a carrier gas is maintained at a temperature of 800 to 1200 ° C. The reaction region may be supplied via the microfeeder 6 and the spray nozzle 3.

以下、本発明を実施例に基づきさらに具体的に説明する。なお、以下の実施例は、本願発明の理解を容易にするためのものであり、これらの実施例に制限されるものではない。すなわち、本願発明の技術思想に基づく変形、実施態様、他の例は、本願発明に含まれるものである。   Hereinafter, the present invention will be described more specifically based on examples. In addition, the following examples are for facilitating the understanding of the present invention, and are not limited to these examples. That is, modifications, embodiments, and other examples based on the technical idea of the present invention are included in the present invention.

(実施例1)
図1に示すように、縦型の単層カーボンナノチューブ製造装置を使用した。本装置は4kWの電気炉1、内径5.0cm、外径5.5cmの石英製反応管2、スプレーノズル3、第一キャリアガス流量計4、第二キャリアガス流量計5、マイクロフィーダー6、回収フィルター7、第二炭素源流量計8、ガス混合器9、整流板10で構成されている。
マイクロフィーダー6には、第一炭素源となるトルエン:有機金属化合物であるフェロセン:有機硫黄化合物であるチオフェンを、それぞれの混合比が、重量比で100:4:2になるように原料液を調合して貯留し、スプレーノズル3からスプレーする。他方、第二炭素源としてエチレンを使用し、これを第二炭素流量計8、ガス混合器9を介して流量制御し、反応工程に供給する。
Example 1
As shown in FIG. 1, a vertical single-walled carbon nanotube production apparatus was used. The apparatus comprises a 4 kW electric furnace 1, a quartz reaction tube 2 having an inner diameter of 5.0 cm and an outer diameter of 5.5 cm, a spray nozzle 3, a first carrier gas flow meter 4, a second carrier gas flow meter 5, a microfeeder 6, It consists of a recovery filter 7, a second carbon source flow meter 8, a gas mixer 9, and a rectifying plate 10.
The microfeeder 6 contains toluene: organometallic compound ferrocene: organic sulfur compound thiophene, which is the primary carbon source, and the raw material solution so that the mixing ratio is 100: 4: 2 by weight. Prepare and store and spray from spray nozzle 3. On the other hand, ethylene is used as the second carbon source, and this is flow-controlled through the second carbon flow meter 8 and the gas mixer 9 and supplied to the reaction step.

キャリアガスとして流量7L/minの水素を使用し、1200°Cに加熱された電気炉中の反応管2に、上記原料液を65μL/minの流速で60分間スプレーすることによって流動気相CVD合成を行った。第二炭素源流量は、100sccmに制御し、生成物は回収フィルター7で捕集した。この生成物を試料1とする。この試料1の収量は45.6mgであった。   Hydrogen gas with a flow rate of 7 L / min is used as a carrier gas, and the above raw material liquid is sprayed at a flow rate of 65 μL / min for 60 minutes onto a reaction tube 2 in an electric furnace heated to 1200 ° C. for fluidized vapor phase CVD synthesis. Went. The second carbon source flow rate was controlled to 100 sccm, and the product was collected by the collection filter 7. This product is designated as Sample 1. The yield of Sample 1 was 45.6 mg.

実施例1で製造した試料1のラマン分光測定(日本分光社製、NRS−2100)を実施した。Science vol.275、1997年 p.187−191記載のラマン分光法によるピーク位置と直径の関係により、単層カーボンナノチューブの直径を見積もることができる。この手法により、試料1では、図2に示すように269cm−1のピークのみが観測された。
これは単層カーボンナノチューブの直径が、ほぼ0.92nmであることに対応する。すなわち、本実施例1により、直径が2.0nm未満である本発明の条件、特に0.6nm以上1.0nm以下である条件を満たしており、優れた極細単層カーボンナノチューブからなる炭素繊維集合体を得ることができた。
The sample 1 produced in Example 1 was subjected to Raman spectroscopic measurement (manufactured by JASCO Corporation, NRS-2100). Science vol. 275, 1997 p. The diameter of the single-walled carbon nanotube can be estimated based on the relationship between the peak position and the diameter by Raman spectroscopy described in 187-191. By this method, only a peak at 269 cm −1 was observed in Sample 1 as shown in FIG.
This corresponds to the diameter of the single-walled carbon nanotube being approximately 0.92 nm. That is, according to Example 1, the carbon fiber assembly comprising the excellent ultrafine single-walled carbon nanotubes satisfying the conditions of the present invention having a diameter of less than 2.0 nm, particularly 0.6 nm to 1.0 nm. I was able to get a body.

また、試料1を透過電子顕微鏡(日本電子社製、JEM1010)で観察した。この透過電子顕微鏡写真を図3に示す。これによっても、単層カーボンナノチューブが生成していることが確認できた。
さらに、単層カーボンナノチューブの90%以上が直径0.6nm以上1.0nm未満である炭素繊維集合体が得られることを確認することができた。
Sample 1 was observed with a transmission electron microscope (JEM1010, manufactured by JEOL Ltd.). This transmission electron micrograph is shown in FIG. This also confirmed that single-walled carbon nanotubes were generated.
Furthermore, it was confirmed that a carbon fiber aggregate in which 90% or more of the single-walled carbon nanotubes had a diameter of 0.6 nm or more and less than 1.0 nm was obtained.

(実施例2)
第二炭素源流量を35sccmにした以外は、実施例1と同様にして実験を行った。これによって得られた生成物を試料2とする。
収量は45.9mgであり、実施例2と同様にして単層カーボンナノチューブの直径分布を見積もったところ、図2に示すように183cm−1のピークが観測された。これは、直径が1.4nmであることに対応する。
この実施例2の場合、単層カーボンナノチューブの製造が、直径が実施例1に比べ大きくなっていることが分かる。これは、第二炭素源流量を下げることによって、単層カーボンナノチューブの径を大きくすることができる、すなわち径をコントロールすることができることを意味している。
(Example 2)
The experiment was performed in the same manner as in Example 1 except that the flow rate of the second carbon source was 35 sccm. The product thus obtained is designated as sample 2.
The yield was 45.9 mg. When the diameter distribution of the single-walled carbon nanotube was estimated in the same manner as in Example 2, a peak of 183 cm −1 was observed as shown in FIG. This corresponds to a diameter of 1.4 nm.
In the case of Example 2, it can be seen that the diameter of the production of the single-walled carbon nanotube is larger than that of Example 1. This means that by reducing the second carbon source flow rate, the diameter of the single-walled carbon nanotube can be increased, that is, the diameter can be controlled.

(比較例1)
第二炭素源流量を用いない以外は、実施例1と同様にして実験を行った。これによって得られた生成物を試料3とする。実施例1と同様にしてラマン分光測定によって分析したところ、190cm−1以下の領域に幅広いピークがみられ直径分布が広範囲にばらついていることがわかった。
実施例1と同様にして、単層カーボンナノチューブの直径分布を透過型電子顕微鏡で見積もったところ、直径分布にばらつきがあり、平均直径は3nmになっていた。第二炭素源流量を用いない場合、単層カーボンナノチューブの径が粗大化し、またばらつきが大きくなり、安定した単層カーボンナノチューブからなる炭素繊維集合体が得られないことが分かった。
(Comparative Example 1)
The experiment was performed in the same manner as in Example 1 except that the second carbon source flow rate was not used. The product thus obtained is designated as sample 3. When analyzed by Raman spectroscopic measurement in the same manner as in Example 1, it was found that a wide peak was observed in a region of 190 cm −1 or less, and the diameter distribution varied widely.
When the diameter distribution of the single-walled carbon nanotube was estimated with a transmission electron microscope in the same manner as in Example 1, the diameter distribution varied and the average diameter was 3 nm. It was found that when the second carbon source flow rate was not used, the diameter of the single-walled carbon nanotubes became coarse and the dispersion increased, and a carbon fiber aggregate composed of stable single-walled carbon nanotubes could not be obtained.

(実施例3)
触媒を鉄の超微粒子にした以外は、実施例1と同様にして実験を行った。これによって得られた生成物を試料4とする。試料4の生成物について実施例1と同様にして、単層カーボンナノチューブの直径分布を見積もったところ、試料1と同様に269cm−1のピークのみが観測された。これは、直径0.92nmに対応するものである。
この実施例3の場合も、直径が2.0nm未満である本発明の条件、特に0.6nm以上1.0nm以下である条件を満たしており、優れた極細単層カーボンナノチューブからなる炭素繊維集合体を得ることができた。
また、上記実施例1と同様に透過型電子顕微鏡で観察したところ、ほぼすべての単層カーボンナノチューブが直径0.6nm以上1.0nm未満であることを確認できた。
(Example 3)
The experiment was performed in the same manner as in Example 1 except that the catalyst was iron ultrafine particles. The product thus obtained is designated as sample 4. When the diameter distribution of the single-walled carbon nanotube was estimated in the same manner as in Example 1 for the product of Sample 4, only the peak at 269 cm −1 was observed as in Sample 1. This corresponds to a diameter of 0.92 nm.
In the case of Example 3 as well, the condition of the present invention in which the diameter is less than 2.0 nm, particularly the condition of 0.6 nm to 1.0 nm is satisfied, and the carbon fiber assembly composed of excellent ultrafine single-walled carbon nanotubes I was able to get a body.
Moreover, when observed with the transmission electron microscope similarly to the said Example 1, it has confirmed that almost all the single-walled carbon nanotubes were 0.6 nm or more and less than 1.0 nm in diameter.

(実施例4)
第二炭素源にアセチレンを用い、第二炭素源流量を5sccm、反応温度を900°Cに制御した以外は、実施例1と同様にして実験を行った。これによって得られた生成物を試料5とする。試料5の生成物について実施例1と同様にして、単層カーボンナノチューブの直径分布を見積もったところ、試料1と同様に主に269cm−1のピークのみが観測された。これは、直径0.92nmに対応するものである。
この実施例4の場合も、直径が2.0nm未満である本発明の条件、特に0.6nm以上1.0nm以下である条件を満たしており、優れた極細単層カーボンナノチューブからなる炭素繊維集合体を得ることができた。
また、上記実施例1と同様に透過型電子顕微鏡で観察したところ、ほぼすべての単層カーボンナノチューブが直径0.6nm以上1.0nm未満であることを確認できた。
Example 4
The experiment was conducted in the same manner as in Example 1 except that acetylene was used as the second carbon source, the flow rate of the second carbon source was controlled to 5 sccm, and the reaction temperature was controlled to 900 ° C. The product thus obtained is designated as sample 5. When the diameter distribution of the single-walled carbon nanotube was estimated for the product of Sample 5 in the same manner as in Example 1, only the peak at 269 cm −1 was observed as in Sample 1. This corresponds to a diameter of 0.92 nm.
In the case of Example 4 as well, the condition of the present invention in which the diameter is less than 2.0 nm, in particular, the condition of 0.6 nm to 1.0 nm is satisfied, and the carbon fiber assembly comprising excellent ultrafine single-walled carbon nanotubes I was able to get a body.
Moreover, when observed with the transmission electron microscope similarly to the said Example 1, it has confirmed that almost all the single-walled carbon nanotubes were 0.6 nm or more and less than 1.0 nm in diameter.

上記実施例から、本発明の単層カーボンナノチューブからなる炭素繊維集合体の流動気相CVD法による製造方法おいては、炭素源として反応器内に導入する炭化水素を含有する有機溶媒よりも、より低い温度で熱分解する炭化水素を第二の炭素源とするのが有効であることが判る。
また、この第二の炭素源の流量を増加させることにより、単層カーボンナノチューブの径を小さくできることが確認された。また、この第二の炭素源として、アセチレンを用いると、反応温度を著しく低下させることができ、より緩和な条件下で、単層カーボンナノチューブを得ることができるこが判明した。
From the above examples, in the method for producing a carbon fiber aggregate composed of single-walled carbon nanotubes of the present invention by a fluidized gas phase CVD method, rather than an organic solvent containing hydrocarbons introduced into the reactor as a carbon source, It turns out that it is effective to use the hydrocarbon which thermally decomposes at a lower temperature as the second carbon source.
It was also confirmed that the diameter of the single-walled carbon nanotube can be reduced by increasing the flow rate of the second carbon source. It has also been found that when acetylene is used as the second carbon source, the reaction temperature can be significantly reduced, and single-walled carbon nanotubes can be obtained under more relaxed conditions.

また、上述した実施例以外の第一の炭素源、第二の炭素源、更には含硫黄複素環式化合物を用いても、所望とする極細単層カーボンナノチューブが得られることも確認されている。   It has also been confirmed that the desired ultrafine single-walled carbon nanotube can be obtained even when the first carbon source, the second carbon source, and further the sulfur-containing heterocyclic compound other than the above-described examples are used. .

本発明に係る炭素繊維集合体は、直径が2.0nm未満、特に0.6nm〜1.0nmの極細単層カーボンナノチューブからなるので、半導体としては特性の均質化、光学材料としては発光効率の向上といった顕著な作用効果を奏するものである。
また、本発明に係る炭素繊維集合体の製造方法は、流動気相CVD法における炭素源となる原料の種類とその割合を単に変えることで、単層カーボンナノチューブの直径を極細に制御することができ、直径が制御された単層カーボンナノチューブとして、直径が2.0nm未満、特に0.6nm〜1.0nmである極細単層カーボンナノチューブからなる炭素繊維集合体を容易に得ることができるという多大な効果を有する。
このようにして得られた極細単層カーボンナノチューブからなる炭素繊維集合体は、ナノサイズのエレクトロニクス材料やオプトエレクトロニクス材料などに有用である。
Since the carbon fiber aggregate according to the present invention is composed of ultrafine single-walled carbon nanotubes having a diameter of less than 2.0 nm, particularly 0.6 nm to 1.0 nm, the characteristics are uniform as a semiconductor, and the luminous efficiency is as an optical material. There is a remarkable effect such as improvement.
In addition, the method for producing a carbon fiber aggregate according to the present invention can finely control the diameter of the single-walled carbon nanotubes by simply changing the type and the ratio of the raw material used as the carbon source in the fluidized gas phase CVD method. As a single-walled carbon nanotube having a controlled diameter, a carbon fiber aggregate composed of ultrafine single-walled carbon nanotubes having a diameter of less than 2.0 nm, particularly 0.6 nm to 1.0 nm can be easily obtained. It has a great effect.
The carbon fiber assembly composed of the ultrafine single-walled carbon nanotubes thus obtained is useful for nano-sized electronics materials and optoelectronic materials.

実施例1で使用した単層カーボンナノチューブ製造装置の概略図である。1 is a schematic view of a single-walled carbon nanotube production apparatus used in Example 1. FIG. 実施例1、2、比較例1で測定した試料1〜3のラマン分光測定の結果である。It is the result of the Raman spectroscopic measurement of the samples 1-3 measured in Examples 1, 2 and Comparative Example 1. 実施例1で得られた単層カーボンナノチューブ試料1の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of a single-walled carbon nanotube sample 1 obtained in Example 1. FIG.

符号の説明Explanation of symbols

1、電気炉
2、石英反応管
3 スプレーノズル
4、5、キャリアガス流量計
6 マイクロフィーダー(第一炭素源と触媒の溶液)
7 回収フィルター
8 第二炭素源流量計
9 ガス混合器
10 整流板
1, electric furnace 2, quartz reaction tube 3, spray nozzles 4, 5, carrier gas flow meter 6 micro feeder (first carbon source and catalyst solution)
7 Recovery filter 8 Second carbon source flow meter 9 Gas mixer 10 Rectifier plate

Claims (7)

単層カーボンナノチューブからなる炭素繊維集合体の流動気相CVD法による製造方法において、第一の炭素源である炭化水素と、それよりもより低い温度で熱分解する第二の炭素源である炭化水素を使用し、反応器内に導入するそれらの割合を変えることにより、単層カーボンナノチューブの直径を制御して、直径が2.0nm未満の極細単層カーボンナノチューブとすることを特徴とする極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。 In a method for producing a carbon fiber aggregate composed of single-walled carbon nanotubes by a fluidized gas phase CVD method, a hydrocarbon as a first carbon source and a carbonization as a second carbon source that thermally decomposes at a lower temperature. Using ultra-thin single-walled carbon nanotubes with a diameter of less than 2.0 nm by controlling the diameter of single-walled carbon nanotubes by using hydrogen and changing their proportions introduced into the reactor A method for producing a carbon fiber assembly comprising single-walled carbon nanotubes. 第一の炭素源である炭化水素と共に、触媒を反応器内に導入することを特徴とする請求項1に記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。   The method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes according to claim 1, wherein a catalyst is introduced into the reactor together with the hydrocarbon as the first carbon source. 第一の炭素源である炭化水素と共に、遷移金属原子を含有する触媒と硫黄原子を含有する硫黄化合物を反応容器内に導入することを特徴とする請求項1又は2記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。   3. The ultrafine single-walled carbon nanotube according to claim 1, wherein a catalyst containing a transition metal atom and a sulfur compound containing a sulfur atom are introduced into the reaction vessel together with the hydrocarbon as the first carbon source. A method for producing a carbon fiber assembly comprising: 第一の炭素源である炭化水素として、トルエン、ベンゼン、キシレン、デカリン、テトラリン及びヘキサンから選択した1成分以上の化合物を用いることを特徴とする請求項1〜3のいずれか1項に記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。   The hydrocarbon as the first carbon source is one or more compounds selected from toluene, benzene, xylene, decalin, tetralin and hexane, according to any one of claims 1 to 3. A method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes. 第二の炭素源である炭化水素として、エチレン又はアセチレンを用いることを特徴とする請求項1〜4のいずれか1項に記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。   5. The method for producing a carbon fiber aggregate composed of ultrafine single-walled carbon nanotubes according to claim 1, wherein ethylene or acetylene is used as the hydrocarbon that is the second carbon source. 極細単層カーボンナノチューブが、直径が0.6nm〜1.0nmであることを特徴とする請求項1〜のいずれか1項に記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。 The method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes according to any one of claims 1 to 5 , wherein the ultrafine single-walled carbon nanotubes have a diameter of 0.6 nm to 1.0 nm. . 極細単層カーボンナノチューブの含有量が全体の70%以上であることを特徴とする請求項に記載の極細単層カーボンナノチューブからなる炭素繊維集合体の製造方法。 The method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes according to claim 6 , wherein the content of ultrafine single-walled carbon nanotubes is 70% or more of the total.
JP2005199781A 2005-01-04 2005-07-08 Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes Active JP4706058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199781A JP4706058B2 (en) 2005-01-04 2005-07-08 Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005000279 2005-01-04
JP2005000279 2005-01-25
JP2005199781A JP4706058B2 (en) 2005-01-04 2005-07-08 Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2006213590A JP2006213590A (en) 2006-08-17
JP4706058B2 true JP4706058B2 (en) 2011-06-22

Family

ID=36977123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199781A Active JP4706058B2 (en) 2005-01-04 2005-07-08 Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes

Country Status (1)

Country Link
JP (1) JP4706058B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007125923A1 (en) * 2006-04-24 2009-09-10 独立行政法人産業技術総合研究所 Single-walled carbon nanotubes, carbon fiber assemblies containing the single-walled carbon nanotubes, and methods for producing them
EP3157675A1 (en) * 2014-06-09 2017-04-26 Canatu Oy Catalyst particle and method for producing thereof
WO2018123796A1 (en) * 2016-12-26 2018-07-05 東レ株式会社 Method for producing single-walled carbon nanotube-containing composition
CN114341054A (en) * 2019-09-03 2022-04-12 住友电气工业株式会社 Carbon nanotube assembly line and carbon nanotube assembly line bundle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322615A (en) * 1993-05-14 1994-11-22 Nec Corp Carbon fiber and its production
JP2000095509A (en) * 1998-07-21 2000-04-04 Showa Denko Kk Production of carbon nanotube and catalyst therefor
JP2002356776A (en) * 2001-05-30 2002-12-13 National Institute Of Advanced Industrial & Technology Method of manufacturing single layer carbon nanotube
WO2004007362A1 (en) * 2002-07-17 2004-01-22 Cambridge University Technical Services Limited Cvd synthesis of carbon nanotubes
JP2005314206A (en) * 2003-09-02 2005-11-10 Toray Ind Inc Method of manufacturing carbon nanotube and carbon nanotube-containing composition
JP2006036575A (en) * 2004-07-26 2006-02-09 Univ Meijo Single layer carbon nanotube and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322615A (en) * 1993-05-14 1994-11-22 Nec Corp Carbon fiber and its production
JP2000095509A (en) * 1998-07-21 2000-04-04 Showa Denko Kk Production of carbon nanotube and catalyst therefor
JP2002356776A (en) * 2001-05-30 2002-12-13 National Institute Of Advanced Industrial & Technology Method of manufacturing single layer carbon nanotube
WO2004007362A1 (en) * 2002-07-17 2004-01-22 Cambridge University Technical Services Limited Cvd synthesis of carbon nanotubes
JP2005314206A (en) * 2003-09-02 2005-11-10 Toray Ind Inc Method of manufacturing carbon nanotube and carbon nanotube-containing composition
JP2006036575A (en) * 2004-07-26 2006-02-09 Univ Meijo Single layer carbon nanotube and method for producing the same

Also Published As

Publication number Publication date
JP2006213590A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP5645090B2 (en) A method for producing a carbon fiber aggregate containing single-walled carbon nanotubes, and a carbon fiber aggregate containing single-walled carbon nanotubes produced by the method.
Jung et al. Growth of carbon nanotubes by chemical vapor deposition
JP4968643B2 (en) Method for producing single-walled carbon nanotube
JP4413046B2 (en) Method for producing vapor grown carbon fiber
US7833505B2 (en) Methods and systems for synthesis on nanoscale materials
Abbaslou et al. The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method
US20070253890A1 (en) Highly Efficient Material Spraying Type Carbon Nanostructure Synthesizing Method and Apparatus
US8835006B2 (en) Carbon nanohorn carried material and process for producing carbon nanotube
JP5831966B2 (en) Method for producing a carbon nanotube aggregate in which single-walled carbon nanotubes and double-walled carbon nanotubes are mixed at an arbitrary ratio
JP4953606B2 (en) Vapor grown carbon fiber and method for producing the same
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
Yadav et al. Selective synthesis of metallic and semi-conducting single-walled carbon nanotube by floating catalyst chemical vapour deposition
JP2001080913A (en) Carbonaceous nanotube, fiber assembly and production of carbonaceous nanotube
JP6094723B1 (en) Method for producing carbon nanotube-containing composition
Ago et al. Formation mechanism of carbon nanotubes in the gas-phase synthesis from colloidal solutions of nanoparticles
CN1960942B (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
JP7360133B2 (en) Carbon nanotube manufacturing method
Park et al. Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method
WO2018123796A1 (en) Method for producing single-walled carbon nanotube-containing composition
KR101109046B1 (en) Cup-stacked Carbon Nanotubes and Method of Preparing Same
Labunov et al. Method of low-temperature formation of horizontally aligned CNT networks on various substrates
Han et al. Synthesis of aligned carbon nanotubes by C 2 H 2 decomposition on Fe (CO) 5 as a catalyst precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

R150 Certificate of patent or registration of utility model

Ref document number: 4706058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250