JP3071536B2 - Carbon fiber - Google Patents

Carbon fiber

Info

Publication number
JP3071536B2
JP3071536B2 JP4002023A JP202392A JP3071536B2 JP 3071536 B2 JP3071536 B2 JP 3071536B2 JP 4002023 A JP4002023 A JP 4002023A JP 202392 A JP202392 A JP 202392A JP 3071536 B2 JP3071536 B2 JP 3071536B2
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
fiber
fibers
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4002023A
Other languages
Japanese (ja)
Other versions
JPH06316816A (en
Inventor
健治 橋本
隆夫 増田
紳 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP4002023A priority Critical patent/JP3071536B2/en
Publication of JPH06316816A publication Critical patent/JPH06316816A/en
Application granted granted Critical
Publication of JP3071536B2 publication Critical patent/JP3071536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber.

【0002】[0002]

【従来の技術】炭素繊維は、ガラス繊維などに比べ、高
強度、高弾性等の優れた特性を有するために、プラスチ
ックなどの有機材料、セラミック、セメントなどの無機
材料、或いは金属材料などをマトリックスとして組合せ
た複合材料として、電子、電機、宇宙、航空、車両、建
築、レジャー用品などの広い分野で注目され、使用され
ている。
2. Description of the Related Art Carbon fibers have excellent properties such as high strength and high elasticity as compared with glass fibers and the like. Therefore, organic materials such as plastics, inorganic materials such as ceramics and cement, or metal materials are used as a matrix. As a composite material combined with, it has been attracting attention and used in a wide range of fields such as electronics, electric machinery, space, aviation, vehicles, architecture, and leisure goods.

【0003】従来、炭素繊維の製造にあたっては、合成
繊維や石油ピッチ繊維等の有機繊維を炭化する方法と、
ベンゼン、メタンといった炭化水素を炭素供給源とし
て、これを触媒下で熱分解して炭素繊維を生成させる気
相法による製造法が良く知られている。気相法による炭
素繊維の製造法については、旧くは特公昭41-12091号公
報に記載されている他に、これまでに数多く報告されて
いる。しかしながら、これまでの方法では、炭素繊維の
成長速度が遅く、長い反応時間を必要とする難点があ
り、特に触媒粒子と接触し、炭素の繊維成長種微粒子の
生成と繊維成長とが同時に並行して進むために、最適な
種微粒子を得ることが非常に難しかった。また得られる
炭素繊維も表面が滑らかであり、樹枝状或いは凹凸状に
なったものや(特開昭48-41038号、特開昭57-117623号公
報)、微小絨毛を密生させたもの(特開昭58-156512号
公報)もあるが、複合材料として用いた場合にマトリッ
クスとの密着性が充分でなく、補強効果が充分に得られ
ないという欠点があった。
[0003] Conventionally, in the production of carbon fibers, a method of carbonizing organic fibers such as synthetic fibers and petroleum pitch fibers,
A well-known gas-phase production method in which a hydrocarbon such as benzene or methane is used as a carbon source and pyrolyzed in the presence of a catalyst to produce carbon fibers. A large number of methods for producing carbon fibers by the gas phase method have been reported so far, in addition to those described in Japanese Patent Publication No. 41-12091. However, the conventional methods have the disadvantage that the carbon fiber growth rate is slow and a long reaction time is required.In particular, the method is in contact with the catalyst particles, and the generation of carbon fiber growth seed fine particles and the fiber growth are simultaneously performed in parallel. Therefore, it was very difficult to obtain the optimal seed fine particles. The carbon fibers obtained also have a smooth surface and have a dendritic or irregular shape (JP-A-48-41038 and JP-A-57-117623), and those obtained by densely growing microvilli (see Japanese Patent Application Laid-Open No. 58-156512), however, has the drawback that when used as a composite material, the adhesion to the matrix is not sufficient and the reinforcing effect cannot be sufficiently obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、マトリック
スとの密着性に優れた炭素繊維を提供するものである。
SUMMARY OF THE INVENTION The present invention provides a carbon fiber having excellent adhesion to a matrix.

【0005】[0005]

【課題を解決するための手段】本発明は、表面に0.10〜
15.0μmの微小炭素粒状体が密集形成されている炭素繊
維である。
Means for Solving the Problems The present invention provides a method for producing a surface of 0.10 to 0.10.
It is a carbon fiber in which fine carbon particles of 15.0 μm are densely formed.

【0006】本発明の炭素繊維は、触媒微粒子を高密度
に生成させて、触媒微粒子や繊維が成長するに至らなか
った炭素の種微粒子を、成長した繊維の表面に一面に密
に付着させ、繊維の表面に炭素を半球状に析出させ、更
にその隙間に熱CVDにより炭素を析出させて表面に微
小な炭素粒状体が密集した炭素繊維である。この微小な
粒状体は、マトリックスと複合体を作るときに強固な投
描効果を示し、繊維とマトリックスとの密着性の高い優
れた特性を発揮することが可能となる。
In the carbon fiber of the present invention, the catalyst fine particles are generated at a high density, and the catalyst fine particles and the carbon seed fine particles which have not led to the growth of the fibers are densely adhered to the surface of the grown fiber. A carbon fiber in which carbon is deposited in a hemispherical shape on the surface of the fiber and carbon is further deposited in a space between the fibers by thermal CVD, and fine carbon particles are densely packed on the surface. The fine particles exhibit a strong drawing effect when forming a composite with the matrix, and can exhibit excellent characteristics with high adhesion between the fiber and the matrix.

【0007】本発明の炭素繊維を得るには、触媒成分を
炭素供給源と共に定量的に流すのではなく、パルスとし
て高温の反応域に導入する方法が挙げられる。それによ
り、高密度な状態の触媒微粒子域を得ることが可能とな
り、触媒微粒子への伝熱が非常に良くなり、発生した触
媒微粒子と炭素供給源との接触が瞬時となって炭素の種
微粒子生成が最初に起こり、次いで供給されてくる炭素
供給源と種微粒子の接触により炭素繊維が成長してゆく
という過程を経るため、種微粒子生成過程と繊維成長過
程とを区別することができ、触媒微粒子と炭素供給源を
供給する量やこれらが接触するまでの時間、種微粒子が
炭素供給源と接触して繊維が成長する時間などを自由に
制御することができ、繊維成長に必要な最適の大きさの
種微粒子の生成を容易に行なうことができ、従来の方法
に比べ、数十〜数百倍の成長速度で炭素繊維を得ること
ができる。
In order to obtain the carbon fiber of the present invention, there is a method in which the catalyst component is introduced into the high-temperature reaction zone as a pulse, instead of flowing the catalyst component quantitatively together with the carbon source. As a result, it is possible to obtain a catalyst fine particle region in a high density state, heat transfer to the catalyst fine particles is extremely improved, and the contact between the generated catalyst fine particles and the carbon supply source is instantaneous, so that carbon seed fine particles can be obtained. Since the carbon fiber grows due to the contact between the supplied carbon source and the seed particles, the generation of the seed occurs first, so that the seed particle generation process can be distinguished from the fiber growth process, and the catalyst can be distinguished. The amount of the fine particles and the carbon source to be supplied, the time until they come into contact, and the time during which the seed fine particles come into contact with the carbon source and the fiber grows can be freely controlled. Seed fine particles having a size can be easily generated, and carbon fibers can be obtained at a growth rate of several tens to several hundreds times that of the conventional method.

【0008】本発明の炭素繊維を得るにあたって使用す
る炭素供給源としては、通常炭化水素が用いられ、例え
ば、メタン、エタン、プロパン、アセチレン、エチレ
ン、プロピレンなどの脂肪族炭化水素、ベンゼン、トル
エン、ナフタレン、アンスラセンなどの芳香族炭化水素
などが使用される。
As the carbon source used for obtaining the carbon fiber of the present invention, hydrocarbons are usually used, for example, aliphatic hydrocarbons such as methane, ethane, propane, acetylene, ethylene and propylene, benzene, toluene, and the like. Aromatic hydrocarbons such as naphthalene and anthracene are used.

【0009】触媒としては、金属触媒が用いられ、金属
としては、鉄、ニッケル、コバルト、チタン、ジルコ
ン、ヴァナジウム、ニオブマンガン、ロジウム、タング
ステン、パラジウム、白金、シリコンなどであり、これ
らの金属は直接金属を蒸発させたり、有機金属化合物と
して用いたりすることができる。
As the catalyst, a metal catalyst is used. Examples of the metal include iron, nickel, cobalt, titanium, zircon, vanadium, niobium manganese, rhodium, tungsten, palladium, platinum, silicon, and the like. The metal can be evaporated or used as an organometallic compound.

【0010】キャリーガスとしては、水素ガス、一酸化
炭素ガスといった還元性のガスを単独で、或いはこれに
窒素ガス、二酸化炭素ガスなどを混合して用いる。
As the carry gas, a reducing gas such as a hydrogen gas or a carbon monoxide gas is used alone, or a mixture of a reducing gas such as a nitrogen gas and a carbon dioxide gas is used.

【0011】本発明の炭素繊維を得る方法の一例につい
て、概略図を用いて以下に詳述する。図1は、反応器部
分における繊維製造手順の一例を示すもので、反応器1
中にキャリアガスとして水素を、反応器中間部にある原
料導入口2より炭素供給源としてベンゼン蒸気を定常的
に流し()、次いでこの状態のところへ、触媒として
鉄の有機化合物であるフェロセンをベンゼンに溶解した
溶液を定量パルスポンプ3より液パルスで打込み、反応
器壁4に衝突させる。反応器壁4は、所定の温度に加熱
されており、ここに衝突した液パルスは瞬時に熱せられ
た触媒微粒子を生成して炭素繊維析出帯域5全体に拡散
する()。生成した触媒微粒子は、ベンゼン蒸気と接
触し、種微粒子となり、これから気相成長した炭素繊維
(VGCF)が短時間に成長を続け、反応器の下流に設
置された内管6にトラップされ、更に繊維は成長を続け
る()。また、この内管はなくても反応管下流に成長
した繊維が運ばれる。その際に、一部の繊維は反応管に
付着して成長する。一定の反応時間を経過後にキャリア
ガスを窒素ガスに切替えて反応を停止し、VGCFを回
収する()。
An example of the method for obtaining the carbon fiber of the present invention will be described in detail below with reference to schematic diagrams. FIG. 1 shows an example of a fiber production procedure in a reactor part.
Hydrogen as a carrier gas and benzene vapor as a carbon supply source are steadily flowed from the raw material inlet 2 in the middle of the reactor (), and then ferrocene, which is an organic compound of iron, is used as a catalyst in this state. A solution dissolved in benzene is injected with a liquid pulse from a fixed-quantity pulse pump 3 to collide with a reactor wall 4. The reactor wall 4 is heated to a predetermined temperature, and the impinging liquid pulse instantly generates heated catalyst fine particles and diffuses throughout the carbon fiber deposition zone 5 (). The generated catalyst fine particles come into contact with benzene vapor to become seed fine particles, from which carbon fibers (VGCF) grown in a vapor phase continue to grow in a short time, and are trapped in an inner tube 6 installed downstream of the reactor. Fibers continue to grow (). Further, the fibers grown downstream of the reaction tube are carried without the inner tube. At that time, some fibers adhere to the reaction tube and grow. After a certain reaction time has elapsed, the reaction is stopped by switching the carrier gas to nitrogen gas, and the VGCF is collected ().

【0012】概略図に示した方法以外にも、触媒の導入
については、例えば反応器中心に極微細管から超微粒子
でパルスを噴霧するといった方法をとることもできる。
また、ベンゼン蒸気をキャリアガスと共に最初から流す
とか、反応器に予熱部を設けておくといったことも可能
である。繊維の補捉は、自重で堆積させてもよいし、反
応器外へ排出するとか、縦型で自由落下させるとかの方
法をとることもできる。
In addition to the method shown in the schematic diagram, the introduction of the catalyst may be carried out, for example, by spraying a pulse with ultrafine particles from an ultrafine tube at the center of the reactor.
It is also possible to flow benzene vapor together with the carrier gas from the beginning, or to provide a preheating section in the reactor. The fiber may be captured by its own weight, may be discharged to the outside of the reactor, or may be freely dropped vertically.

【0013】液パルスの導入は、0.2〜4.0秒、好ましく
は0.3〜0.6秒の範囲内のパルス間隔で行なうのが良い。
通常、析出帯域の反応温度は、800〜1300℃、反応時間
は、バッチ式では10秒〜10分、連続式では成長域滞留時
間が10秒〜2分である。炭素源の供給量は、0.01〜0.1ml
/min、キャリアガスの流量は10〜60ml/minである。パ
ルス間隔、反応温度、反応時間、炭素源の種類や供給
量、溶媒の種類などを適宜選択調節することにより、炭
素繊維の成長速度、得られる炭素繊維の太さ、長さ、表
面状態などを制御することができる。炭素繊維の成長
は、100〜1500μm/secの速度で制御することができ、
繊維径1.0〜6.0μm、長さ3〜50mmのものを得ることがで
きる。炭素繊維表面に密集する微小炭素粒状体の大きさ
は、0.10〜15.0μmである。以下に実施例を示す。
The introduction of the liquid pulse is carried out at a pulse interval in the range of 0.2 to 4.0 seconds, preferably 0.3 to 0.6 seconds.
Usually, the reaction temperature in the precipitation zone is 800 to 1300 ° C., and the reaction time is 10 seconds to 10 minutes in the batch system, and 10 seconds to 2 minutes in the continuous system. Supply amount of carbon source is 0.01-0.1ml
/ Min, and the flow rate of the carrier gas is 10 to 60 ml / min. By appropriately selecting and adjusting the pulse interval, reaction temperature, reaction time, type and supply amount of the carbon source, type of the solvent, etc., the growth rate of the carbon fiber, the thickness, length, surface state, etc. of the obtained carbon fiber can be controlled. Can be controlled. The growth of carbon fiber can be controlled at a speed of 100-1500 μm / sec,
A fiber having a fiber diameter of 1.0 to 6.0 μm and a length of 3 to 50 mm can be obtained. The size of the fine carbon particles densely packed on the carbon fiber surface is 0.10 to 15.0 μm. Examples will be described below.

【0014】[0014]

【実施例】【Example】

(実施例1)電気炉内に予熱部と反応部(炭素繊維析出
帯域)とを持つ、中間部に原料導入口のついた反応器を
設置し、30分間窒素ガスを流した後、水素ガスを60ml/
minの流量で流しておき、反応管を加熱する。予熱部の
温度800℃、反応部の温度1050℃になったところで、ベ
ンゼンを0.1ml/minの流量で原料導入口より流し、安定
したところで、フェロセンの10%ベンゼン溶液を0.025m
l単位で0.5秒間隔のパルスで1秒間原料導入口より対壁
へ打込み、打込開始後0.5分間反応経過したところでベ
ンゼン及び水素ガスの供給を停止し、窒素ガスに切替
え、反応を停止した。得られた炭素繊維は、図2に示す
ように、表面に0.18〜1.0μmの炭素粒状体が密集した、
径10〜20μm、長さ35〜45mmのものであった。
(Example 1) A reactor having a preheating section and a reaction section (carbon fiber deposition zone) in an electric furnace and having a raw material introduction port in an intermediate section was installed, and after flowing nitrogen gas for 30 minutes, hydrogen gas was supplied. 60ml /
Heat the reaction tube at a flow rate of min. When the temperature of the preheating section reached 800 ° C. and the temperature of the reaction section reached 1050 ° C., benzene was flowed from the raw material inlet at a flow rate of 0.1 ml / min, and when stable, a 10% benzene solution of ferrocene was dissolved in 0.025 m.
The mixture was driven into the opposite wall from the raw material introduction port for 1 second with a pulse of 0.5 second intervals in units of l, and after the reaction had progressed for 0.5 minutes after the start of the supply, the supply of benzene and hydrogen gas was stopped, and the reaction was stopped by switching to nitrogen gas. As shown in FIG. 2, the obtained carbon fibers had densely packed carbon granules of 0.18 to 1.0 μm on the surface.
The diameter was 10 to 20 μm and the length was 35 to 45 mm.

【0015】(実施例2)実施例1において、反応部の
温度を1100℃、ベンゼン流量0.07ml/min、液パルス0.3
秒間隔で1秒間、反応経過時間0.25分とした以外は実施
例1と同様にして反応を行なった。得られた炭素繊維
は、図3に示すように、表面に1.0〜4.5μmの炭素粒状
体が密集した、径2.5〜6.0μm、長さ40〜50mmのもので
あった。
Example 2 In Example 1, the temperature of the reaction section was 1100 ° C., the flow rate of benzene was 0.07 ml / min, and the liquid pulse was 0.3.
The reaction was carried out in the same manner as in Example 1 except that the reaction elapsed time was 0.25 minutes at intervals of 1 second. As shown in FIG. 3, the obtained carbon fiber had a diameter of 2.5 to 6.0 μm and a length of 40 to 50 mm in which carbon particles of 1.0 to 4.5 μm were densely packed on the surface.

【0016】[0016]

【発明の効果】本発明によれば、複合材料としたときに
マトリックスとの密着性に優れた炭素繊維を得ることが
できる。
According to the present invention, it is possible to obtain a carbon fiber having excellent adhesion to a matrix when formed into a composite material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭素繊維を得るための製法の一例を示
す概略図である。
FIG. 1 is a schematic view showing an example of a production method for obtaining a carbon fiber of the present invention.

【図2】本発明の実施例1によって得られた炭素繊維の
電子顕微鏡写真である。
FIG. 2 is an electron micrograph of a carbon fiber obtained according to Example 1 of the present invention.

【図3】本発明の実施例2によって得られた炭素繊維の
電子顕微鏡写真である。
FIG. 3 is an electron micrograph of a carbon fiber obtained according to Example 2 of the present invention.

【符号の説明】[Explanation of symbols]

1:反応器 2:原料導入口 3:定量パルスポンプ 4:反応器壁 5:炭素繊維析出帯域 6:内管 1: reactor 2: raw material inlet 3: metering pulse pump 4: reactor wall 5: carbon fiber deposition zone 6: inner tube

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面に0.10〜15.0μmの微小炭素粒状体
が密集形成されている炭素繊維。
1. A carbon fiber in which fine carbon particles of 0.10 to 15.0 μm are densely formed on the surface.
JP4002023A 1992-01-09 1992-01-09 Carbon fiber Expired - Lifetime JP3071536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002023A JP3071536B2 (en) 1992-01-09 1992-01-09 Carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002023A JP3071536B2 (en) 1992-01-09 1992-01-09 Carbon fiber

Publications (2)

Publication Number Publication Date
JPH06316816A JPH06316816A (en) 1994-11-15
JP3071536B2 true JP3071536B2 (en) 2000-07-31

Family

ID=11517737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002023A Expired - Lifetime JP3071536B2 (en) 1992-01-09 1992-01-09 Carbon fiber

Country Status (1)

Country Link
JP (1) JP3071536B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781664B1 (en) 2000-12-20 2007-12-03 쇼와 덴코 가부시키가이샤 Branched vapor-grown carbon fiber, electrically conductive transparent composition and use thereof
DE60231881D1 (en) * 2001-08-03 2009-05-20 Showa Denko Kk Us
JP3847589B2 (en) * 2001-08-29 2006-11-22 独立行政法人科学技術振興機構 Manufacturing method of carbon nanotube with beads
CN102296381B (en) * 2011-06-16 2013-02-06 西北工业大学 Wet vapor regulating and controlling system for filament processing dryer

Also Published As

Publication number Publication date
JPH06316816A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
JP2778434B2 (en) Method for producing vapor grown carbon fiber
US5102647A (en) Method of producing vapor growth carbon fibers
JPS6249363B2 (en)
JP5735234B2 (en) Method and apparatus for producing carbon nanotube continuous fiber
JPH0424320B2 (en)
JPS62242B2 (en)
EP1618234A1 (en) Method of producing vapor-grown carbon fibers
WO2001038219A1 (en) Combustion synthesis of single walled nanotubes
KR100376202B1 (en) Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same
JP3071571B2 (en) Method for producing vapor grown carbon fiber
JP3071536B2 (en) Carbon fiber
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JP3117523B2 (en) Method for producing vapor grown carbon fiber
US20040136895A1 (en) Method and apparatus for producing vapor grown carbon fiber
JP3404543B1 (en) Method for producing carbon nanotube
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS60231821A (en) Production of carbonaceous fiber
Mukai et al. The production of vapor grown carbon fibers from a mixture of benzene, toluene and xylene using the liquid pulse injection technique
JPH026617A (en) Production of carbon fiber
JP4156978B2 (en) Carbon fiber manufacturing method
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS6262914A (en) Production of carbonaceous fiber
Liu et al. Low temperature growth of carbon nanotubes by thermal chemical vapor deposition using non-isothermal deposited Ni–P–Pd as co-catalyst
JP2721075B2 (en) Method for producing vapor grown carbon fiber
JP2531739B2 (en) Method for producing vapor grown carbon fiber

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12