JPH0519341Y2 - - Google Patents

Info

Publication number
JPH0519341Y2
JPH0519341Y2 JP15588287U JP15588287U JPH0519341Y2 JP H0519341 Y2 JPH0519341 Y2 JP H0519341Y2 JP 15588287 U JP15588287 U JP 15588287U JP 15588287 U JP15588287 U JP 15588287U JP H0519341 Y2 JPH0519341 Y2 JP H0519341Y2
Authority
JP
Japan
Prior art keywords
catalyst
reaction vessel
reaction
carbon
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15588287U
Other languages
Japanese (ja)
Other versions
JPH0162366U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15588287U priority Critical patent/JPH0519341Y2/ja
Publication of JPH0162366U publication Critical patent/JPH0162366U/ja
Application granted granted Critical
Publication of JPH0519341Y2 publication Critical patent/JPH0519341Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳现な説明】 産業䞊の利甚分野 本考案は炭玠繊維の補造装眮に係り、特に気盞
成長法により炭玠繊維を補造する装眮であ぀お、
觊媒の䟛絊手段が改良された装眮に関する。
[Detailed description of the invention] [Industrial field of application] The present invention relates to a carbon fiber manufacturing device, and in particular, to a device for manufacturing carbon fiber by a vapor phase growth method.
The present invention relates to a device with improved catalyst supply means.

埓来の技術 炭玠繊維は、埓来からPAN系、ピツチ系のも
のが商業生産されおいる。しかし、PAN系は高
䟡であり、ピツチ系はプロセスが耇雑で品質の制
埡がむずかしいなどの臎呜的な欠点がある。
[Prior Art] PAN-based and pitch-based carbon fibers have been commercially produced. However, PAN-based products are expensive, and pitch-based products have fatal drawbacks such as complicated processes and difficult quality control.

䞀方、近幎気盞成長法が提案されおいる。埓
来、気盞成長炭玠繊維は、電気炉内にアルミナな
どの磁噚、黒鉛などの基板を眮き、これに炭玠成
長栞、鉄、ニツケルなどの超埮粒子觊媒を圢成せ
しめ、この䞊にベンれンなどの炭化氎玠のガスず
氎玠キダリアガスの混合ガスを導入し、950℃〜
1200℃の枩床䞋に炭化氎玠を分解せしめるこずに
より、基板䞊に炭玠繊維を成長させる方法が知ら
れおいる。
On the other hand, a vapor phase growth method has been proposed in recent years. Conventionally, vapor-grown carbon fibers are produced by placing a substrate made of porcelain such as alumina or graphite in an electric furnace, forming carbon growth nuclei, ultrafine particle catalysts such as iron, and nickel on this, and then forming carbonization particles such as benzene on this. Introduce a mixed gas of hydrogen gas and hydrogen carrier gas and heat to 950℃~
A method is known in which carbon fibers are grown on a substrate by decomposing hydrocarbons at a temperature of 1200°C.

しかし、このような方法では、基板衚面の埮
劙な枩床ムラや、呚囲の繊維の密生床によ぀お長
さの䞍均䞀が起こり易いこず、たた炭玠の䟛絊
源ずしおのガスが反応によ぀お消費されるこずに
より反応管の入口に近い所ず出口に近い所で繊維
埄が盞圓異なるこず、基板衚面でのみ生成が行
なわれるため、反応管の䞭心郚分は反応に関䞎せ
ず収率が悪いこず、超埮粒子の基板ぞの分散、
還元、成長次いで繊維の取出しずいう独立に実斜
を必芁ずするプロセスがあるため、連続補造が䞍
可胜であり、埓぀お、生産性が悪いなどの問題点
を有する。
However, with this method, length non-uniformity is likely to occur due to subtle temperature unevenness on the substrate surface and the density of surrounding fibers, and the gas that serves as a carbon source is consumed by the reaction. As a result, the fiber diameter differs considerably between the inlet and the outlet of the reaction tube, and since production occurs only on the substrate surface, the center of the reaction tube does not participate in the reaction, resulting in poor yields. , dispersion of ultrafine particles onto a substrate,
Continuous production is not possible due to the processes of reduction, growth, and fiber extraction that must be carried out independently, resulting in problems such as poor productivity.

そこで、炭玠化合物のガスず無機もしくは有機
遷移金属化合物のガスずキダリアガスずの混合ガ
スを高枩反応させる炭玠繊維の補造方法が提案さ
れた特開昭60−5499860−224816など。
Therefore, a method for producing carbon fibers has been proposed in which a mixed gas of a carbon compound gas, an inorganic or organic transition metal compound gas, and a carrier gas is reacted at high temperature (Japanese Patent Application Laid-open Nos. 60-54998, 1983-224816, etc.).

䞊蚘特開昭60−54998224816等の埓来の方法
においおは、原料炭玠化合物ず觊媒含有液ずを予
めガス化した埌反応容噚に導入するか、あるい
は、原料炭玠化合物のガスず共に觊媒含有液を液
状のたた盎接反応容噚に導入しお反応を行な぀お
いる。
In conventional methods such as those disclosed in JP-A-60-54998 and 224816, the raw carbon compound and the catalyst-containing liquid are gasified in advance and then introduced into a reaction vessel, or the catalyst-containing liquid is introduced together with the raw carbon compound gas. The reaction is carried out by directly introducing the liquid into the reaction vessel.

考案が解決しようずする問題点 しかしながら、觊媒含有液を予めガス化しおか
ら反応容噚内に導入する方法では、觊媒化合物が
凝瞮し易いものであるこずから、ガス化工皋ず反
応工皋ずの間で保枩性を十分に確保する必芁があ
り、装眮構成が耇雑化するなどの問題がある。
[Problems to be solved by the invention] However, in the method in which the catalyst-containing liquid is gasified in advance and then introduced into the reaction vessel, the catalyst compound tends to condense, so it is difficult to integrate the gasification process and the reaction process. It is necessary to ensure sufficient heat retention between the two, which poses problems such as complicating the device configuration.

たた、觊媒含有液を盎接反応容噚内に導入する
堎合には、液滎が反応容噚内のどの箇所で蒞発し
終わるかが䞍明瞭であるなどの理由から定量的な
反応を行ない難い。たた、液の䟛絊速床により蒞
発率等も異なるこずなどから、液の䟛絊速床の倉
化等によ぀お、気化する觊媒量が異なり、反応は
盎接圱響を受けるこずずなるため、安定な反応を
行なうこずが難しいずいう欠点がある。
Further, when a catalyst-containing liquid is directly introduced into a reaction vessel, it is difficult to perform a quantitative reaction because it is unclear at which point in the reaction vessel the droplets will finish evaporating. In addition, since the evaporation rate varies depending on the liquid supply rate, the amount of catalyst vaporized will vary depending on the liquid supply rate, and the reaction will be directly affected. The disadvantage is that it is difficult to do.

問題点を解決するための手段 本考案は䞊蚘埓来の問題点を解決し、反応を定
量的に、円滑か぀安定に行なうこずができ、しか
も装眮構成も簡単な炭玠繊維の補造装眮を提䟛す
るものである。
[Means for Solving the Problems] The present invention solves the above-mentioned conventional problems and provides a carbon fiber manufacturing device that can quantitatively, smoothly and stably carry out reactions, and has a simple device configuration. It is something to do.

本考案の炭玠繊維の補造装眮は、反応容噚ず、
該反応容噚内ぞの炭玠化合物の導入手段ず、該反
応容噚内ぞの液状觊媒の導入手段ず、該反応容噚
内の炭玠化合物ず觊媒粒子ずの反応ゟヌンを加熱
するための生ヒヌタず、該反応容噚からの反応物
取出手段ずを有する炭玠繊維の補造装眮におい
お、觊媒導入手段は、吐出口が反応容噚内の非反
応ゟヌンに䜍眮するように蚭けられた䟛絊管ず、
該吐出口付近を加熱するための觊媒加熱甚ヒヌタ
ずを備えおなり、か぀、前蚘䟛絊管の先端偎は、
該先端偎から流出された液状觊媒が該觊媒加熱甚
ヒヌタの蚭眮郚に接するように、該蚭眮郚を指向
しおいるこずを特城ずする。
The carbon fiber manufacturing apparatus of the present invention includes a reaction vessel,
a means for introducing a carbon compound into the reaction vessel; a means for introducing a liquid catalyst into the reaction vessel; a raw heater for heating a reaction zone between the carbon compound and catalyst particles in the reaction vessel; In a carbon fiber manufacturing apparatus having a means for taking out a reactant from a reaction vessel, the catalyst introducing means includes a supply pipe provided such that a discharge port is located in a non-reaction zone within the reaction vessel;
a heater for heating the catalyst for heating the vicinity of the discharge port, and the distal end side of the supply pipe includes:
It is characterized in that the liquid catalyst flowing out from the tip side is oriented toward the installation part of the heater for heating the catalyst so as to come into contact with the installation part.

なお、本考案においお、液状觊媒ずは、觊媒粒
子ずなる物質を含む液状化合物を指す。
In the present invention, a liquid catalyst refers to a liquid compound containing a substance that becomes catalyst particles.

䜜甚 本考案の装眮では、䟛絊管により反応容噚内の
非反応ゟヌンに䟛絊された液状觊媒は、この非反
応ゟヌンにおいお觊媒加熱甚ヒヌタにより加熱さ
れお蒞発する。そしお、蒞発により生じた觊媒埮
粒子が反応ゟヌンに送られるようになる。
[Operation] In the apparatus of the present invention, the liquid catalyst supplied to the non-reaction zone in the reaction vessel through the supply pipe is heated and evaporated by the catalyst heater in the non-reaction zone. Then, the catalyst fine particles generated by the evaporation are sent to the reaction zone.

しかも、觊媒は、先端偎が觊媒加熱甚ヒヌタの
蚭眮郚を指向しおいる䟛絊管により該ヒヌタの蚭
眮郚に接するように䟛絊されるため、ヒヌタによ
り確実に加熱されお、効率的に蒞発する。
Moreover, the catalyst is supplied from a supply pipe whose tip is directed toward the installation portion of the catalyst heater so as to come into contact with the installation portion of the heater, so that the catalyst is reliably heated by the heater and efficiently evaporated.

このように、本考案の補造装眮は反応容噚の非
反応ゟヌン内に觊媒含有液の蒞発郚を蚭けたもの
であ぀お、觊媒含有液は液状のたた反応容噚に䟛
絊されるので、気化した觊媒を保枩しお反応容噚
に送る埓来の装眮に比し、保枩構造が必芁ずされ
ず、装眮構成も簡単である。しかも、觊媒は非反
応ゟヌンの䟛絊吐出口近傍にお予め気化した埌、
反応ゟヌンに入るため、反応は円滑に進行し、觊
媒の気化郚が明確で、觊媒加熱甚ヒヌタの加熱枩
床を調敎するこずにより、気化量の制埡も容易で
あるこずから、反応ゟヌンぞの䟛絊量、䟛絊速床
のバラツキも殆どなく、定量的か぀安定に觊媒を
䟛絊し、効率的な反応を行なうこずができる。
As described above, the production apparatus of the present invention has an evaporation section for the catalyst-containing liquid in the non-reaction zone of the reaction vessel, and since the catalyst-containing liquid is supplied to the reaction vessel in a liquid state, the vaporized catalyst is Compared to conventional devices that maintain heat and send it to a reaction vessel, a heat insulating structure is not required and the device configuration is simple. Moreover, after the catalyst has been vaporized in advance near the supply and discharge ports of the non-reaction zone,
Because the catalyst enters the reaction zone, the reaction proceeds smoothly, the vaporization part of the catalyst is clear, and the amount of vaporization can be easily controlled by adjusting the heating temperature of the catalyst heater. There is almost no variation in the amount or supply rate, and the catalyst can be quantitatively and stably supplied to carry out an efficient reaction.

実斜䟋 以䞋、図面を参照しながら、本考案の実斜䟋に
぀いお説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第図、第図は、本考案のそれぞれ異なる実
斜䟋に係る炭玠繊維の補造装眮の抂略構成を瀺す
断面図である。
1 and 2 are cross-sectional views showing the schematic configuration of carbon fiber manufacturing apparatuses according to different embodiments of the present invention.

笊号は反応容噚本実斜䟋においおは反応
管であり、その䞀端偎には、觊媒粒子ずなる物
質を含む液状化合物以䞋、「液状觊媒」ずい
う。の䟛絊管が、その吐出口が、埌
述の反応ゟヌンよりも䞊流偎に䜍眮するよ
うに、反応容噚内に挿入、接続されおいる。
たた、䟛絊管の吐出口近傍を加熱する
ための觊媒加熱甚ヒヌタが反応容噚の倖
壁に近接しお蚭けられおいる。たた、この䟛絊管
の接続䜍眮近傍には、キダリアガスの䟛絊甚
配管の原料ず炭玠化合物のガスを䟛絊するた
めの配管ずが接続されおいる。これらの配管
の途䞭にそれぞれ流量制埡装眮図瀺
せずが蚭けられおいる。前蚘液状觊媒の䟛絊管
には、定量ポンプ図瀺せずが接続されお
おり、定量的な䟛絊が可胜ずされおいる。
Reference numeral 10 denotes a reaction vessel (reaction tube in this example), and at one end thereof, a supply pipe 12 for supplying a liquid compound (hereinafter referred to as "liquid catalyst") containing a substance to become catalyst particles is connected to its discharge. The outlet 12a is inserted into and connected to the reaction vessel 10 so as to be located upstream of a reaction zone 10a, which will be described later.
Further, a catalyst heater 14 for heating the vicinity of the discharge port 12a of the supply pipe 12 is provided close to the outer wall of the reaction vessel 10. Further, in the vicinity of the connection position of the supply pipe 12, a pipe 16 for supplying the raw material of the carrier gas supply pipe 16 and the carbon compound gas is connected. A flow rate control device (not shown) is provided in the middle of each of these pipes 16 and 18. A metering pump (not shown) is connected to the liquid catalyst supply pipe 12 to enable quantitative supply.

反応容噚の他端偎には反応生成物である炭
玠繊維の捕集噚が接続され、この炭玠繊
維捕集噚には排ガスの抜出管が接続され
おいる。
A collector 22 for carbon fibers 20, which are reaction products, is connected to the other end of the reaction vessel 10, and an exhaust gas extraction pipe 24 is connected to the carbon fiber collector 22.

炭玠繊維捕集噚ず液状觊媒の䟛絊管の
吐出口ずの管には、反応ゟヌンが蚭
定され、加熱甚の䞻ヒヌタが該反応ゟヌン
に察応しお反応容噚倖壁に蚭けられおいる。
A reaction zone 10a is set in the pipe between the carbon fiber collector 22 and the discharge port 12a of the liquid catalyst supply pipe 12, and a main heater 26 for heating is connected to the reaction zone 1.
It is provided on the outer wall of the reaction vessel corresponding to 0a.

第図、第図に瀺す実斜䟋装眮においお、液
状觊媒の䟛絊管の吐出口から吐出した
液状觊媒は、吐出口近傍にお觊媒加熱甚ヒ
ヌタにより100〜120℃皋床に加熱されお気化
した埌、反応ゟヌンに、䟛絊甚配管
からのキダリアガス、原料炭玠化合物のガス
ず共に送られ、䞻ヒヌタにより600〜1300℃
皋床に加熱されお反応する。反応により、觊媒埮
粒子䞊に炭玠化合物が析出しお炭玠繊維が成長す
る。反応容噚の反応ゟヌンにおいお生成し
た炭玠繊維は、キダリアガスず共に炭玠繊維捕集
噚内に導入される。この捕集方法は埓来から
知られおいる重力沈降法、電気集塵法等の各皮方
法を採甚するこずができる。なお、炭玠繊維捕集
噚は、生成した炭玠繊維を冷华する圹割をも
果たす。炭玠繊維捕集噚から抜き出されたキ
ダリアガスは、そのたた排気凊理手段に導入しお
攟出しおもよいのであるが、粟補埌再埪環させお
甚いるようにしおもよい。
In the embodiment apparatus shown in FIGS. 1 and 2, the liquid catalyst discharged from the discharge port 12a of the liquid catalyst supply pipe 12 is heated to about 100 to 120°C by the catalyst heating heater 14 near the discharge port 12a. After being vaporized, a supply pipe 16,
The carrier gas from 18 is sent together with the raw carbon compound gas, and heated to 600 to 1300°C by the main heater 26.
It reacts when heated to a certain degree. Through the reaction, a carbon compound is precipitated on the catalyst fine particles and carbon fibers grow. The carbon fibers produced in the reaction zone 10a of the reaction vessel are introduced into the carbon fiber collector 22 together with a carrier gas. As this collection method, various conventionally known methods such as gravity sedimentation method and electrostatic precipitation method can be employed. Note that the carbon fiber collector 22 also plays a role of cooling the generated carbon fibers. The carrier gas extracted from the carbon fiber collector 22 may be directly introduced into the exhaust treatment means and discharged, but it may also be purified and recirculated for use.

第図に瀺す実斜䟋装眮は液状觊媒の䟛絊管
の先端が䞋方に型に曲げられたものであ぀
お、觊媒加熱甚ヒヌタの蚭眮郚ぞ向けお、液
状觊媒が滎䞋されるため、効率的に觊媒が気化さ
れる。
The embodiment shown in FIG.
The tip of the catalyst 2 is bent downward into an L shape, and the liquid catalyst is dripped toward the installation part of the catalyst heater 14, so that the catalyst is efficiently vaporized.

第図に瀺す実斜䟋装眮は、第図ず同様に䟛
絊管が䞋方に曲げられおおり、その吐出口
の䜍眮する反応容噚の壁面に、凹郚
が蚭けられおいる。そしお、この凹郚の圢状に倣
぀お觊媒加熱甚ヒヌタが蚭眮されおいる。本
実斜䟋装眮では、吐出口に察する觊媒加熱
甚ヒヌタの加熱が緩和され、吐出口郚
分でのコヌキングが防止される。
In the embodiment shown in FIG. 2, the supply pipe 12 is bent downward as in FIG.
A recess 28 is formed on the wall surface of the reaction vessel 10 where the reaction vessel 2a is located.
is provided. A catalyst heater 14 is installed following the shape of this recess. In the device of this embodiment, the heating of the catalyst heater 14 to the discharge port 12a is relaxed, and caulking at the discharge port 12a portion is prevented.

なお、第図、第図に瀺す装眮はいずれも本
考案の䞀実斜䟋であ぀お、本考案は図瀺の装眮に
䜕ら限定されるものではない。本考案の装眮にお
いおは、原料炭玠化合物や觊媒の掻性化のために
レヌザビヌムを利甚するものであ぀おも良い。レ
ヌザビヌムを䜵甚する堎合には、加熱に芁する゚
ネルギヌコストを倧幅に䜎枛し、たた反応容噚の
噚壁枩床を䜎枛し、噚壁ぞの生成物の付着を防止
しお収率の向䞊を図るこずができる。
Note that the devices shown in FIGS. 1 and 2 are only examples of the present invention, and the present invention is not limited to the illustrated devices in any way. In the apparatus of the present invention, a laser beam may be used to activate the raw carbon compound and the catalyst. When using a laser beam in combination, it is possible to significantly reduce the energy cost required for heating, reduce the temperature of the reaction vessel wall, and prevent products from adhering to the vessel wall to improve yield. I can do it.

このような本考案の装眮は第図、第図に瀺
すような暪型反応装眮に奜適であるが、勿論瞊型
であ぀おも良い。
The apparatus of the present invention is suitable for a horizontal reaction apparatus as shown in FIGS. 1 and 2, but it may of course be of a vertical type.

以䞋、本考案で甚いられる原料炭玠化合物、觊
媒、キダリアガス等に぀いお詳现に説明する。
Hereinafter, the raw material carbon compound, catalyst, carrier gas, etc. used in the present invention will be explained in detail.

本発明における炭玠化合物ずは、ガス化可胜な
炭玠化合物党般を察象ずしおおり、CCl4
CHCl3CH2Cl2CH3ClCOCS2等の無機化
合物ず有機化合物党般を察象ずする。特に有甚性
の高い化合物は、脂肪族炭化氎玠、芳銙族炭化氎
玠である。たた、これらの他窒玠、酞玠、硫黄、
北玠、沃玠、燐、砒玠等の元玠を含んだ誘導䜓も
䜿甚可胜である。具䜓的な個々の化合物の䟋の䞀
郚を挙げるず、メタン倩然ガスでも良い。、゚
タン等のアルカン化合物、゚チレン、ブタゞ゚ン
等のアルケン化合物、アセチレン等のアルキン化
合物、ベンれン、トル゚ン、スチレン等のアリヌ
ル炭化氎玠化合物、むンデン、ナフタリン、プ
ナントレン等の瞮合環を有する芳銙族炭化氎玠、
シクロプロパン、シクロヘキサン等のシクロパラ
フむン化合物、シクロペンテン、シクロヘキセン
等のシクロオレフむン化合物、ステロむド等の瞮
合環を有する脂環匏炭化氎玠化合物、メチルチオ
ヌル、メチル゚チルスルフむド、ゞメチルチオケ
トン等の含硫黄脂肪族化合物、プニルチオヌ
ル、ゞプニルスルフむド等の含流黄芳銙族化合
物、ベンゟチオプン、チオプン等の含硫黄耇
玠環匏化合物、たた単䜓ではないがガ゜リン等の
消防法危険物第四類、第䞀石油類、ケロシン、テ
レビン油、暟脳油、束根油等の第二石油類、重油
等の第䞉石油類、ギダヌ油、シリンダ油等の第四
石油類も有効に䜿甚できる。たた、これら混合物
も䜿甚できるこずは蚀うに及ばない。
The carbon compound in the present invention refers to all carbon compounds that can be gasified, including CCl 4 ,
It covers all inorganic and organic compounds such as CHCl 3 , CH 2 Cl 2 , CH 3 Cl, CO, and CS 2 . Particularly useful compounds are aliphatic hydrocarbons and aromatic hydrocarbons. In addition to these, nitrogen, oxygen, sulfur,
Derivatives containing elements such as fluorine, iodine, phosphorus, arsenic, etc. can also be used. Some specific examples of individual compounds include methane (natural gas may also be used), alkane compounds such as ethane, alkene compounds such as ethylene and butadiene, alkyne compounds such as acetylene, benzene, toluene, styrene, etc. aryl hydrocarbon compounds, aromatic hydrocarbons having condensed rings such as indene, naphthalene, and phenanthrene;
Cycloparaffin compounds such as cyclopropane and cyclohexane, cycloolefin compounds such as cyclopentene and cyclohexene, alicyclic hydrocarbon compounds having condensed rings such as steroids, sulfur-containing fats such as methylthiol, methylethyl sulfide, and dimethylthioketone Group compounds, phenylthiol, diphenyl sulfide, and other yellow aromatic compounds; benzothiophene, thiophene, and other sulfur-containing heterocyclic compounds; The first petroleum, the second petroleum such as kerosene, turpentine, camphor oil, and pine oil, the third petroleum such as heavy oil, and the fourth petroleum such as gear oil and cylinder oil can also be effectively used. It goes without saying that mixtures of these can also be used.

本発明においお、觊媒ずしおは、無機遷移金属
化合物、Siの無機化合物、有機遷移金属化合物、
Siの有機化合物などが挙げられる。この無機遷移
金属化合物ずは、単独で気化が可胜な遷移金属の
無機化合物又は氎もしくは少なくずも䞀皮以䞊の
氎もしくは有機溶媒この有機溶媒ずしおは炭玠
原料化合物を甚いおも良い。に可溶なもしくは
埮粒子ずしお懞濁可胜な遷移金属の無機化合物が
察象ずなる。遷移金属ずしおは、鉄、ニツケル、
コバルト、モリブデン、バナゞりム、パラゞりム
等が奜たしく、特に鉄が奜たしい。前者の単独で
気化が可胜な無機遷移金属化合物ずしおは、Fe
NO4FeCl3FeNO3ClFeNO2Fe
NO2FeF3に代衚される。たた埌者ずしお
は、前者ずしお挙げた化合物の他に、FeNO3
FeBr3FeHCOO3C27H42FeN9O12Fe
SO43FeSCN3C5H52FeC5H52Ni
FeNO3NH3CoNO2ClNiNOClPd
NO2Cl2NiCl2等が代衚ずしおあげられる。
In the present invention, the catalyst includes an inorganic transition metal compound, an inorganic Si inorganic compound, an organic transition metal compound,
Examples include organic compounds of Si. This inorganic transition metal compound is an inorganic transition metal compound that can be vaporized alone, or is soluble in water or at least one kind of water or organic solvent (a carbon raw material compound may be used as the organic solvent). Alternatively, inorganic compounds of transition metals that can be suspended as fine particles are targeted. Transition metals include iron, nickel,
Cobalt, molybdenum, vanadium, palladium, etc. are preferred, and iron is particularly preferred. The former inorganic transition metal compound that can be vaporized alone is Fe.
(NO) 4 , FeCl 3 , Fe(NO) 3 Cl, Fe(NO) 2 , Fe
(NO) 2 I, represented by FeF 3 . In addition to the compounds listed as the former, the latter includes Fe(NO 3 )
2 , FeBr 3 , Fe(HCOO) 3 , C 27 H 42 FeN 9 O 12 , Fe
(SO 4 ) 3 , Fe(SCN) 3 , (C 5 H 5 ) 2 Fe, (C 5 H 5 ) 2 Ni,
Fe(NO) 3 NH 3 , Co(NO) 2 Cl, Ni(NO) Cl, Pd
Representative examples include (NO) 2 Cl 2 and NiCl 2 .

本発明における有機遷移金属化合物ずは、アル
キル基ず金属が結合したアルキル金属、アリル基
ず金属が結合したアリル錯䜓、炭玠間重結合や
重結合ず金属ずが結合したπ−コンプレツクス
ずキレヌト型化合物等に代衚される有機遷移金属
化合物である。たた、ここで遷移金属ずしおは、
スカンゞりム、チタン、パナゞりム、クロム、マ
ンガン、鉄、コバルト、ニツケル、むツトリり
ム、ゞルコニりム、ニオブ、モリブテン、ルテニ
りム、ロゞりム、パラゞりム、タンタル、タング
ステン、レニりム、むリゞりム、癜金を指すもの
であるが、これらの内特に呚期埋衚族に属する
もの、その内で特に鉄、ニツケル、コバルトが奜
適であ぀お、鉄が最も奜適である。
The organic transition metal compounds in the present invention include alkyl metals in which an alkyl group and a metal are bonded, allyl complexes in which an allyl group and a metal are bonded, and π-complexes in which a carbon-carbon double bond or triple bond is bonded to a metal. It is an organic transition metal compound typified by chelate type compounds. In addition, here, the transition metals are:
This refers to scandium, titanium, panadium, chromium, manganese, iron, cobalt, nickel, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, tantalum, tungsten, rhenium, iridium, and platinum. Those belonging to the periodic table group, among which iron, nickel, and cobalt are particularly preferred, with iron being the most preferred.

たた、含硫黄炭玠化合物たたは無機硫黄化合物
の存圚䞋では、シリコンの無機化合物も甚いるこ
ずができる。䟋えば、䞊蚘の無機金属化合物にお
いお金属をSiに眮換したものや炭化珪玠を甚い埗
る。さらに、各皮の有機珪玠化合物をも甚い埗
る。
Furthermore, in the presence of a sulfur-containing carbon compound or an inorganic sulfur compound, an inorganic compound of silicon can also be used. For example, the above-mentioned inorganic metal compounds in which the metal is replaced with Si or silicon carbide can be used. Furthermore, various organosilicon compounds may also be used.

有機珪玠化合物ずしおは、珪玠−炭玠結合をも
぀有機化合物の他にシラン、ハロゲンシランを䟿
宜䞊含むものずする。炭玠−珪玠結合を持぀有機
化合物ずしおは、テトラメチルシラン、メチルト
リプニルシラン等のオリガノシラン、クロルゞ
フルオルメチルシラン、プロムトリプロピルシラ
ン等のオルガノハロゲンシランメトキシトリメ
チルシラン、トリメチルプノキシシラン等のオ
ルガノアルコキシシランゞアセトキシゞメチル
シラン、アセトキシトリプロピルシラン等のオル
ガノアセトキシシランヘキサ゚チルゞシラン、
ヘキサプニルゞシラン、オクタプニルシクロ
テトラシラン等のオルガノポリシランゞメチル
シラン、トリプニルシラン等のオルガノヒドロ
ゲノシランSiH2oで衚瀺されるシクロシラ
ントリプニルシラザン、ヘキサ゚チルゞシラ
ザン、ヘキサプニルシクロトリシラザン等のオ
ルガノシラザン、SiH2NHoで衚瀺されるシク
ロシラザンゞ゚チルシランゞオヌル、トリプニ
ルシラノヌル等のオルガノシラノヌルトリメチ
ルシリル酢酞、トリメチルシリルピロピオン酞等
のオルガノシラノヌルトリメチルシリル酢酞、
トリメチルシリルプロピオン酞等のオルガノシラ
ンカルボン酞トリメチルシリコンむ゜シアナヌ
ト、ゞプニルシリコンゞむ゜シアナヌト等のシ
リコンむ゜シアナヌト、トリメチルシリコンむ
゜チオシアナヌト、ゞプニルシリコンゞむ゜チ
オシアナヌト等のオルガノシリコンむ゜チオシア
ナヌトシアン化トリ゚チルシリル等のオルガノ
シリコン゚ステルヘキサメチルゞシルチアン、
テトラメチルシクロゞシルチアン等のシルチア
ンSiH2oで衚瀺されるシクロシルチアン
ヘキサメチルゞシルメチレン、オクタメチルトリ
シルメチレン等のオルガノシルメチレンヘキサ
メチルゞシロキサン、ヘキサプロピルゞシロキサ
ン等のオルガノシロキサン等が挙げられるが、そ
の他の炭玠−珪玠結合を含む化合物であ぀おもよ
い。たた、これらの混合物の䜿甚も可胜である。
The organic silicon compound includes, for convenience, silane and halogen silane in addition to organic compounds having a silicon-carbon bond. Organic compounds with carbon-silicon bonds include organosilanes such as tetramethylsilane and methyltriphenylsilane; organohalogensilanes such as chlorodifluoromethylsilane and promtripropylsilane; methoxytrimethylsilane, trimethylphenoxysilane, etc. organoalkoxysilane; organoacetoxysilane such as diacetoxydimethylsilane, acetoxytripropylsilane; hexaethyldisilane,
Organopolysilanes such as hexaphenyldisilane and octaphenylcyclotetrasilane; organohydrogenosilanes such as dimethylsilane and triphenylsilane; cyclosilanes represented by (SiH 2 ) o ; triphenylsilazane, hexaethyldisilazane, hexa Organosilazane such as phenylcyclotrisilazane, (SiH 2 NH) o Organosilanols such as diethylsilanediol and triphenylsilanol; Organosilanols such as trimethylsilylacetic acid and trimethylsilylpyropionic acid; Trimethylsilylacetic acid,
Organosilane carboxylic acids such as trimethylsilylpropionic acid; silicone isocyanates such as trimethylsilicon isocyanate and diphenylsilicon diisocyanate; organosilicon isothiocyanates such as trimethylsilicon isothiocyanate and diphenylsilicon diisothiocyanate; cyanide organosilicon esters such as triethylsilyl; hexamethyldisylthian;
Silthian such as tetramethylcyclodisilthian; cyclosilthian represented by (SiH 2 S) o ;
Examples include organosylmethylenes such as hexamethyldisylmethylene and octamethyltrisylmethylene; organosiloxanes such as hexamethyldisiloxane and hexapropyldisiloxane; however, compounds containing other carbon-silicon bonds may also be used. . It is also possible to use mixtures of these.

本発明におけるキダリアガスずは、盎接反応に
関䞎しないガス党般を察象ずしおいる。䟋瀺すれ
ば、H2ガス、N2ガス、NH3ガス、Arガス、He
ガス、Krガス、又はこれらの混合ガスを䞻䜓ず
するガスである。このうち、H2ガスが通垞の堎
合甚いられる。
The carrier gas in the present invention refers to all gases that are not directly involved in the reaction. Examples include H 2 gas, N 2 gas, NH 3 gas, Ar gas, He
Gas, Kr gas, or a mixture of these gases. Among these, H 2 gas is usually used.

このような本考案の炭玠繊維の補造装眮によれ
ば、通垞長さ10Ό〜500mm皋床であり、盎埄が
0.1〜300Ό皋床の炭玠繊維を容易か぀効率的に
補造するこずができる。
According to the carbon fiber manufacturing apparatus of the present invention, the length is usually about 10 ÎŒm to 500 mm, and the diameter is about 10 ÎŒm to 500 mm.
Carbon fibers of about 0.1 to 300 ÎŒm can be easily and efficiently produced.

考案の効果 以䞊詳述した通り、本考案の炭玠繊維の補造装
眮によれば、 觊媒を予め気化させた埌反応ゟヌンに送るので
反応が円滑に進行する。
[Effects of the invention] As detailed above, according to the carbon fiber manufacturing apparatus of the invention, the reaction proceeds smoothly because the catalyst is vaporized in advance and then sent to the reaction zone.

觊媒の䟛絊量、気化量の制埡が容易であり、気
化した觊媒を反応ゟヌンぞ定量的に導入するこず
ができる。
It is easy to control the amount of catalyst supplied and the amount of vaporization, and the vaporized catalyst can be quantitatively introduced into the reaction zone.

装眮構成が簡易である。 The device configuration is simple.

等の効果が奏され、炭玠繊維を気盞成長法によ
り、䜎コストで効率的に補造するこずができる。
These effects are achieved, and carbon fibers can be efficiently produced at low cost by the vapor growth method.

【図面の簡単な説明】[Brief explanation of the drawing]

第図及び第図の各図は、本考案の䞀実斜䟋
に係る炭玠繊維の補造装眮の抂略構成を瀺す断面
図である。   反応容噚、  反応ゟヌン、
  液状觊媒の䟛絊管、  吐出口、
  觊媒加熱甚ヒヌタ、  炭玠繊維、
  䞻ヒヌタ。
Each of FIGS. 1 and 2 is a sectional view showing a schematic configuration of a carbon fiber manufacturing apparatus according to an embodiment of the present invention. 10...Reaction container, 10a...Reaction zone, 1
2...Liquid catalyst supply pipe, 12a...Discharge port, 1
4...Heater for catalyst heating, 20...Carbon fiber, 2
6...Main heater.

Claims (1)

【実甚新案登録請求の範囲】 反応容噚ず、該反応容噚内ぞの炭玠化合物の導
入手段ず、該反応容噚内ぞの液状觊媒の導入手段
ず、該反応容噚内の炭玠化合物ず觊媒粒子ずの反
応ゟヌンを加熱するための䞻ヒヌタず、該反応容
噚からの反応物取出手段ずを有する炭玠繊維の補
造装眮においお、 前蚘觊媒導入手段は、吐出口が反応容噚内の非
反応ゟヌンに䜍眮するように蚭けられた䟛絊管
ず、該吐出口付近を加熱するための觊媒加熱甚ヒ
ヌタずを備えおなり、か぀、前蚘䟛絊管の先端偎
は、該先端偎から流出された觊媒が該觊媒加熱甚
ヒヌタの蚭眮郚に接するように、該蚭眮郚を指向
しおいるこずを特城ずする炭玠繊維の補造装眮。
[Claims for Utility Model Registration] A reaction vessel, a means for introducing a carbon compound into the reaction vessel, a means for introducing a liquid catalyst into the reaction vessel, and a combination of the carbon compound and catalyst particles in the reaction vessel. In a carbon fiber manufacturing apparatus having a main heater for heating a reaction zone and a means for taking out a reactant from the reaction vessel, the catalyst introduction means is configured such that a discharge port is located in a non-reaction zone within the reaction vessel. and a catalyst heating heater for heating the vicinity of the discharge port; A carbon fiber manufacturing apparatus characterized in that the carbon fiber manufacturing apparatus is oriented toward the installation part of a heater so as to be in contact with the installation part.
JP15588287U 1987-10-12 1987-10-12 Expired - Lifetime JPH0519341Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15588287U JPH0519341Y2 (en) 1987-10-12 1987-10-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15588287U JPH0519341Y2 (en) 1987-10-12 1987-10-12

Publications (2)

Publication Number Publication Date
JPH0162366U JPH0162366U (en) 1989-04-20
JPH0519341Y2 true JPH0519341Y2 (en) 1993-05-21

Family

ID=31433906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15588287U Expired - Lifetime JPH0519341Y2 (en) 1987-10-12 1987-10-12

Country Status (1)

Country Link
JP (1) JPH0519341Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2406059C (en) * 2000-04-12 2007-08-14 Showa Denko K.K. Fine carbon fiber and process for producing the same, and conductive material comprising the same

Also Published As

Publication number Publication date
JPH0162366U (en) 1989-04-20

Similar Documents

Publication Publication Date Title
US4876078A (en) Process for preparing carbon fibers in gas phase growth
EP0136497B2 (en) A process for preparing fine carbon fibers in a gaseous phase reaction
EP1618234B1 (en) Method of producing vapor-grown carbon fibers
JPS6249363B2 (en)
WO2006009316A2 (en) Production method of vapor-grown varbon fiber and apparatus therefor
KR100360686B1 (en) Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JPH0519341Y2 (en)
JPH0246691B2 (en)
JP2001080913A (en) Carbonaceous nanotube, fiber assembly and production of carbonaceous nanotube
JPH0413446B2 (en)
JP4706058B2 (en) Method for producing a carbon fiber aggregate comprising ultrafine single-walled carbon nanotubes
JPH026617A (en) Production of carbon fiber
JPH062222A (en) Production of carbon fiber by gaseous phase growth
JPS6392727A (en) Production of carbon fiber and apparatus therefor
JPH0470409B2 (en)
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPH0440451B2 (en)
JPH0440450B2 (en)
JPS6278217A (en) Vapor-phase production of carbon fiber
JPH02127523A (en) Carbon fiber of vapor growth
JP2670040B2 (en) Hollow carbon fiber by fluidized vapor deposition
JPS60224815A (en) Gas-phase production of carbon fiber
JPH07843B2 (en) Method for producing vapor grown carbon fiber