JPS62242B2 - - Google Patents

Info

Publication number
JPS62242B2
JPS62242B2 JP57058966A JP5896682A JPS62242B2 JP S62242 B2 JPS62242 B2 JP S62242B2 JP 57058966 A JP57058966 A JP 57058966A JP 5896682 A JP5896682 A JP 5896682A JP S62242 B2 JPS62242 B2 JP S62242B2
Authority
JP
Japan
Prior art keywords
carbon fibers
reaction tube
ultrafine powder
fibers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57058966A
Other languages
Japanese (ja)
Other versions
JPS58180615A (en
Inventor
Morinobu Endo
Tsuneo Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5896682A priority Critical patent/JPS58180615A/en
Publication of JPS58180615A publication Critical patent/JPS58180615A/en
Publication of JPS62242B2 publication Critical patent/JPS62242B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭素繊維に関するものであり、より詳
しく述べるならば、炭化水素の熱分解による気相
法によつて炭素繊維を製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to carbon fibers, and more specifically, to a method for producing carbon fibers by a gas phase method using thermal decomposition of hydrocarbons.

炭素繊維は高強度、高弾性等の優れた性質を有
するために、一般に樹脂、セラミツク、金属等と
の各種複合材料に使用されている。このような複
合材料は、近年は軽量にして高強度、高弾性の材
料として各方面で注目され、その用途も拡大して
いる。従来、炭素繊維は主としてポリアクリロニ
トリル等の合成繊維、ピツチ繊維、セルロール繊
維等の有機繊維を炭化することによつて製造され
ているが、ベンゼン、メタン等の炭化水素を熱分
解して生成する炭素繊維も知られている。後者の
気相法炭素繊維は結晶欠陥が極めて少なく、かつ
結晶子の配向性が良好なため強度、弾性率とも有
機繊維炭化炭素繊維に比べて著しく優れているの
が特徴である。一般に結晶性にすぐれ(多くは単
結晶)、欠陥が少ない短かい繊維はホイスカーと
も呼ばれる。本発明における炭素繊維にはこのホ
イスカーも含む。
Since carbon fiber has excellent properties such as high strength and high elasticity, it is generally used in various composite materials with resins, ceramics, metals, etc. In recent years, such composite materials have attracted attention in various fields as lightweight, high-strength, and high-elastic materials, and their uses are expanding. Conventionally, carbon fibers are mainly produced by carbonizing synthetic fibers such as polyacrylonitrile, organic fibers such as pitch fibers, and cellulose fibers, but carbon fibers produced by thermally decomposing hydrocarbons such as benzene and methane Fibers are also known. The latter vapor-grown carbon fiber has extremely few crystal defects and has good crystallite orientation, so it is characterized by significantly superior strength and elastic modulus compared to organic fiber carbonized carbon fiber. Generally, short fibers with excellent crystallinity (mostly single crystal) and few defects are also called whiskers. The carbon fiber in the present invention also includes this whisker.

気相法による炭素繊維の製造方法は種々提案さ
れており、例えば、特開昭48―41038号公報、特
開昭50―64527号公報、特公昭51―33210号公報、
特開昭52―103528号公報および特開昭55―162412
号公報にて提案されている。特に特開昭52―
103528号公報は、本発明者が気相法炭素繊維の生
成に耐熱性(高融点)の金属等の微粒子(微粉
末)が関与することを見出して特許出願したもの
であり、さらに本発明者はこの特許出願の発明を
基礎にして特願昭56―3149号(昭和56年1月14日
出願)の「気相法による炭素繊維の製造法」およ
び特願昭56―3150号(昭和56年1月14日出願)
(特公昭59―39527号公報)の「分枝を有する炭素
繊維の製造法」を発明した。
Various methods for producing carbon fiber using the vapor phase method have been proposed, such as JP-A-48-41038, JP-A-50-64527, JP-A-51-33210,
JP-A-52-103528 and JP-A-55-162412
It has been proposed in the Publication No. Especially JP-A-52-
No. 103528 is a patent application filed by the present inventor after discovering that fine particles (fine powder) of heat-resistant (high melting point) metal etc. are involved in the production of vapor-grown carbon fibers. is based on the invention of this patent application, Japanese Patent Application No. 56-3149 (filed on January 14, 1981) titled "Method for producing carbon fiber by vapor phase method" and Japanese Patent Application No. 56-3150 (filed on January 14, 1981) (filed on January 14th)
(Japanese Patent Publication No. 59-39527) invented a method for producing carbon fibers with branches.

これらの金属等の微粉末を利用した気相法炭素
繊維の製造方法においては、黒鉛、石英、各種セ
ラミツクス等の耐熱性基板に又はすでに形成した
炭素繊維に金属等の微粉末を付着させたものを反
応管内へ装入してから炭素繊維を成長させてい
る。この場合には繊維の生成の反応域は二次元で
あり、また成長終了後の繊維は基板から掻き取る
等のバツチ操作が入つてくるので生産性の上で不
利である。またキヤリアガスと共に反応管内へ流
入する送化水素のうち基板近くを流れるものは有
効に利用できるが、そうでないものは有効に利用
されずに流出してしまう。
In the manufacturing method of vapor-grown carbon fiber using fine powder of these metals, etc., fine powder of metal, etc. is attached to a heat-resistant substrate such as graphite, quartz, various ceramics, etc. or to already formed carbon fiber. The carbon fibers are grown after being charged into the reaction tube. In this case, the reaction zone for fiber production is two-dimensional, and batch operations such as scraping the fibers from the substrate after growth are required, which is disadvantageous in terms of productivity. Also, of the hydrogen feed that flows into the reaction tube together with the carrier gas, that which flows near the substrate can be effectively utilized, but the hydrogen that does not flow near the substrate is not utilized effectively and flows out.

本発明の目的は、気相法による炭素繊維の製造
プロセスにおいて、反応域を三次元にすること、
流動床形式で連続化を図ることにより、生産性と
収率を高めることである。
The purpose of the present invention is to make the reaction zone three-dimensional in a carbon fiber manufacturing process using a vapor phase method.
The goal is to increase productivity and yield by achieving continuous flow in a fluidized bed format.

本発明の目的は、枝のある(分枝を有する)炭
素繊維をも製造することである。
It is an object of the invention to also produce branched carbon fibers.

これらの目的が、炭化水素の熱分解による気相
法によつて炭素繊維を製造する方法において、高
融点金属あるいはその化合物の超微粉末を炭化水
素の熱分解帯域に浮遊させることによつて達成さ
れる。
These objectives were achieved by suspending ultrafine powder of a high melting point metal or its compound in a hydrocarbon pyrolysis zone in a method for manufacturing carbon fiber by a gas phase method using hydrocarbon pyrolysis. be done.

高融点金属は炭化水素の熱分解の温度である
950ないし1300℃において気化しない金属であつ
て、Ti,Zr等の周期津表の第4a族、V,Nb等の
第5a族、Cr,Mo等の第6a族、Mn等の第7a族、
Fe,Co等の第8族の元素が適し、特に望ましい
のはFe,Co,Ni,V,Nb,Ta,Ti,Zrであ
る。そして、かかる金属の化合物にはその酸化
物、窒化物、その他塩類がある。
Refractory metals are the temperature of thermal decomposition of hydrocarbons
Metals that do not vaporize at 950 to 1300°C, such as Group 4a of the periodic table such as Ti and Zr, Group 5a such as V and Nb, Group 6a such as Cr and Mo, and Group 7a such as Mn,
Group 8 elements such as Fe and Co are suitable, with Fe, Co, Ni, V, Nb, Ta, Ti and Zr being particularly preferred. Compounds of such metals include their oxides, nitrides, and other salts.

本発明において高融点金属又はその化合物によ
る炭素繊維の生成機構については上記特許出願に
記載した通りであり、その粉末(粒子)の大きさ
は300Å以下であることが望ましい。このような
超微粉末を第1図に示すような反応管内の熱分解
域に入れるには、この超微粉末をアルコールなど
の揮発性分散媒体に懸濁させてスプレー等によつ
て入れるのが望ましい。アルコールなどは950な
いし1300℃の高温にてすぐに揮発するので超微粉
末が反応管内を浮遊することになり、この超微粉
末を触媒として炭素繊維が成長する。また微小ノ
ズルから超微粉末のみを直接に反応管内に落下さ
せて浮遊させることもできる。そして、炭素繊維
が成長すれば、重くなつて反応管の下側内壁上に
落下する。或いはキヤリアーガスの流速を調整す
ることにより系外捕集も可能である。反応域下部
に落下した炭素繊維はそこで成長を続ける。ま
た、成長した炭素繊維に超微粉末が付着すればそ
こから枝状に炭素繊維が成長することによつて分
枝を有する炭素繊維が形成できる。この分枝を有
する炭素繊維の生成は超微粉末の使用量、ガスの
流速等によつてコントロールされる。
In the present invention, the mechanism for producing carbon fibers using a high melting point metal or its compound is as described in the above patent application, and the size of the powder (particles) is preferably 300 Å or less. In order to introduce such an ultrafine powder into the thermal decomposition zone in a reaction tube as shown in Figure 1, it is best to suspend the ultrafine powder in a volatile dispersion medium such as alcohol and introduce it by spraying or the like. desirable. Since alcohol and the like quickly evaporate at high temperatures of 950 to 1300°C, ultrafine powder floats in the reaction tube, and carbon fibers grow using this ultrafine powder as a catalyst. Alternatively, only the ultrafine powder can be directly dropped into the reaction tube from a micronozzle and suspended. As the carbon fibers grow, they become heavier and fall onto the lower inner wall of the reaction tube. Alternatively, collection outside the system is also possible by adjusting the flow rate of the carrier gas. The carbon fibers that fall to the bottom of the reaction zone continue to grow there. Furthermore, if the ultrafine powder is attached to the grown carbon fibers, the carbon fibers will grow in the form of branches from there, thereby forming carbon fibers having branches. The production of carbon fibers having branches is controlled by the amount of ultrafine powder used, the gas flow rate, etc.

更にまた反応管の下側内壁上に耐熱性基板(例
えば、黒鉛、石英等の基板)を配置しておくこと
ができ、この基板に上述した超微粉末を散布して
おいて(例えば、黒鉛、石英等の基板)を配置し
ておくことができ、この基板に上述した超微粉末
を散布しておいて(例えば、揮発性分散媒体に超
微粉末を懸濁したものをスプレー等で基板に散布
し、乾燥して超微粉末を基板に付着させておい
て)から反応管内へ装入することによつて炭素繊
維の製造収率がより向上させることができる。ま
た、予め基板上に炭素繊維(黒鉛繊維を含む)を
用意し、これを反応管内へ装入することによつ
て、この炭素繊維に比較的早く落下した浮遊微粉
末が付着しそこから枝状に炭素繊維の成長を微粉
末の浮遊下における炭素繊維の成長と同時に行な
うことができる。このような分枝を有する炭素繊
維は複合材料との組合せに適している。
Furthermore, a heat-resistant substrate (for example, a substrate of graphite, quartz, etc.) can be placed on the lower inner wall of the reaction tube, and the above-mentioned ultrafine powder can be sprinkled on this substrate (for example, graphite, quartz, etc.). , a substrate made of quartz, etc.), and the above-mentioned ultrafine powder is sprinkled on this substrate (for example, the ultrafine powder is suspended in a volatile dispersion medium and then sprayed onto the substrate). The production yield of carbon fibers can be further improved by charging the carbon fibers into the reaction tube after drying and adhering the ultrafine powder to the substrate. In addition, by preparing carbon fibers (including graphite fibers) on a substrate in advance and charging them into the reaction tube, floating fine powder that falls relatively quickly can adhere to the carbon fibers and form branches from there. The growth of carbon fibers can be carried out simultaneously with the growth of carbon fibers under suspended fine powder. Carbon fibers with such branches are suitable for combination with composite materials.

気相法炭素繊維の製造条件には既に提案されて
いる製造方法での条件を用いることができる。一
般的には950〜1300℃の炉内にベンゼン、トルエ
ン、メタン、エタン等の炭化水素ガスをキヤリア
ガスと共に流すことによつて炭化水素が分解し、
超微粉末の高融点金属又はその化合物を触媒とし
て炭素繊維が生成する。炭化水素がメタン等低分
子の場合には、上述した温度範囲で高目の温度
(1200〜1300℃)がよく、分子量が大きくなるに
つれて低温へ移行して、脂肪族高分子および芳香
族炭化水素の場合には、低目の温度(950〜1100
℃)が最適である。キヤリアガスには、水素ガス
あるいはアルゴン、窒素ガス等の不活性ガスを使
用することができる。さらに条件によつてはCO
ガス、CO2ガス等を用いることもできる。この場
合、超微粉末が化合物である場合は、H2ガス、
或いはH2ガス含有雰囲気が好ましい。その化合
物を還元して金属とすることが好ましいからであ
る。炭化水素とキヤリアガスとの混合は、炭化水
素が混合温度で気体ならばそのままキヤリアガス
と混合することによつて行なわれ、また炭化水素
が液体であるならば液体温度を適切温度に上げる
と共にその液体中でキヤリアガスをバブリングす
ることによつて行なわれる。そして、混合ガス
(炭化水素とキヤリアガス)の反応管内の流速は
浮遊する超微粉末と成長しつつある炭素繊維の反
応域への滞留時間を考慮し決定される。
Conditions for production methods that have already been proposed can be used for the production conditions of vapor-grown carbon fiber. Generally, hydrocarbons are decomposed by flowing a hydrocarbon gas such as benzene, toluene, methane, or ethane together with a carrier gas into a furnace at 950 to 1300℃.
Carbon fibers are produced using ultrafine powder of high melting point metal or its compound as a catalyst. When the hydrocarbon is a low molecular weight such as methane, a higher temperature within the above temperature range (1200 to 1300°C) is best, and as the molecular weight increases, it shifts to a lower temperature, and the hydrocarbon becomes aliphatic polymer and aromatic hydrocarbon. In case of low temperature (950~1100
°C) is optimal. As the carrier gas, hydrogen gas or an inert gas such as argon or nitrogen gas can be used. Furthermore, depending on conditions, CO
Gas, CO 2 gas, etc. can also be used. In this case, if the ultrafine powder is a compound, H2 gas,
Alternatively, an atmosphere containing H 2 gas is preferable. This is because it is preferable to reduce the compound to a metal. Mixing of hydrocarbons and carrier gas is carried out by mixing the hydrocarbons with the carrier gas as is if they are gases at the mixing temperature, or by raising the liquid temperature to an appropriate temperature and adding water to the liquid if the hydrocarbons are liquids. This is done by bubbling carrier gas. The flow rate of the mixed gas (hydrocarbon and carrier gas) in the reaction tube is determined in consideration of the residence time of the floating ultrafine powder and the growing carbon fibers in the reaction zone.

以下、添付図面を参照して本発明をさらに説明
する。
The present invention will be further described below with reference to the accompanying drawings.

第1図および第2図は本発明に係る気相法炭素
繊維の製造方法を実施する装置の概略断面図であ
る。
FIGS. 1 and 2 are schematic cross-sectional views of an apparatus for carrying out the method for producing vapor-grown carbon fiber according to the present invention.

第1図に示した横型式の炭素繊維製造装置は、
水平な反応管1、加熱ヒータ2、スプレー3から
なり、反応管1には入口管4および出口管5が設
けられている。また、反応管1内には耐熱性基板
6が装入されており、分枝炭素繊維製造後にはこ
の基板6を取出すことができる。スプレー3内に
は超微粉末の高融点金属ないしその化合物を懸濁
した揮発性媒体7が収容されており、スプレーの
ノズル8からこの揮発性媒体7が反応管1内にス
プレーされるようになつている。耐熱性基板6の
形状は半円筒形ボートであるのが望ましい。
The horizontal carbon fiber manufacturing equipment shown in Figure 1 is
It consists of a horizontal reaction tube 1, a heater 2, and a sprayer 3, and the reaction tube 1 is provided with an inlet tube 4 and an outlet tube 5. Further, a heat-resistant substrate 6 is placed in the reaction tube 1, and this substrate 6 can be taken out after producing the branched carbon fibers. A volatile medium 7 in which an ultrafine powder of a high melting point metal or its compound is suspended is contained in the spray 3, and this volatile medium 7 is sprayed into the reaction tube 1 from a spray nozzle 8. It's summery. The shape of the heat-resistant substrate 6 is preferably a semi-cylindrical boat.

上述した装置においては、加熱ヒータ2によつ
て反応管1を950ないし1300℃に加熱保持し、こ
の反応管1内に炭化水素およびキヤリアガスを入
口管4から矢印Aに入れ、同時にスプレー3のノ
ズル8から超微粉末を揮発性媒体7の噴射によつ
て反応管1内へ入れる。揮発性媒体はすぐに揮発
して超微粉末が反応管1内を浮遊することにな
る。超微粉末の一部は基板6の表面に付着するこ
ともある。通常は、反応域で炭化水素が熱分解し
浮遊している超微粉末9が触媒となつて炭素繊維
10が成長する。そして、基板6上に落下した炭
素繊維11は、基板上でも引続いて成長する。ま
た、超微粉末が成長した炭素繊維10上に付着す
れば、そこから枝状の炭素繊維が成長して分枝を
有する炭素繊維12が得られることになる。浮遊
している炭素繊維10,12は適当なガス流速を
選ぶことにより出口管5から系外に出し、捕集す
ることができる。
In the above-mentioned apparatus, the reaction tube 1 is heated and maintained at 950 to 1300° C. by the heater 2, hydrocarbons and carrier gas are introduced into the reaction tube 1 from the inlet tube 4 in the direction of arrow A, and at the same time the nozzle of the spray 3 is injected into the reaction tube 1. The ultrafine powder from 8 is introduced into the reaction tube 1 by injection of volatile medium 7. The volatile medium evaporates immediately and ultrafine powder floats in the reaction tube 1. A part of the ultrafine powder may adhere to the surface of the substrate 6. Normally, hydrocarbons are thermally decomposed in the reaction zone, and the suspended ultrafine powder 9 acts as a catalyst to grow carbon fibers 10. The carbon fibers 11 that have fallen onto the substrate 6 continue to grow on the substrate. Moreover, if the ultrafine powder adheres to the grown carbon fibers 10, branch-like carbon fibers will grow therefrom, and the carbon fibers 12 having branches will be obtained. The floating carbon fibers 10, 12 can be taken out of the system through the outlet pipe 5 and collected by selecting an appropriate gas flow rate.

第2図に示した堅型式の炭素繊維製造装置は、
鉛直な反応管21、加熱ヒータ22、反応管の上
端に設けられたスプレー23からなり、反応管1
の下端には入口管24がそして上端に出口管25
が備えられている。反応管21の下部には捕集用
の受皿27が置かれている。スプレー23内には
前述した超微粉末を懸濁した揮発性媒体28が収
容されており、スプレーのノズル29から下向へ
噴射されるようになつている。超微粉末は入口管
24からの矢印B方向への上昇ガス流による浮力
と重力を受けるが、ガス流速を成長を妨げない範
囲で調整し、ノズル25から超微粉末を所要の時
間浮遊させることができ、この間に炭素繊維が成
成するのでその重力によつて、成長しながら落下
させることができる。第1図での横型式の装置と
同様にして反応域にあらかじめ表面に超微粉末を
付着させた円筒基板(図示せず)を設置すること
により、分枝を有する炭素繊維を基板側面に生成
させることができる。
The rigid type carbon fiber manufacturing equipment shown in Figure 2 is
It consists of a vertical reaction tube 21, a heater 22, and a spray 23 provided at the upper end of the reaction tube.
There is an inlet pipe 24 at the lower end and an outlet pipe 25 at the upper end.
is provided. A collection tray 27 is placed at the bottom of the reaction tube 21. A volatile medium 28 in which the above-mentioned ultrafine powder is suspended is contained in the spray 23, and is sprayed downward from a spray nozzle 29. The ultrafine powder is subject to buoyancy and gravity due to the upward gas flow from the inlet pipe 24 in the direction of arrow B, but the gas flow rate is adjusted within a range that does not impede growth, and the ultrafine powder is suspended from the nozzle 25 for the required time. During this time, carbon fibers are formed, and their gravity allows them to fall while growing. By installing a cylindrical substrate (not shown) on which ultrafine powder has been adhered to the surface in advance in the reaction zone in the same way as the horizontal type device shown in Figure 1, carbon fibers with branches are generated on the side of the substrate. can be done.

本発明の方法において、超微粉末の連続供給
(噴射)と生成繊維の抜き出しを適宜行うことに
より連続化も可能である。
In the method of the present invention, continuous feeding is also possible by appropriately carrying out continuous supply (injection) of ultrafine powder and extraction of produced fibers.

また炭素繊維は、超微粉末を少なくし、滞留成
長時間を長くすればかなり長い繊維とすることも
可能であるが、特に本発明方法は短繊維をつくる
のに適している。
Although it is possible to make carbon fibers into considerably long fibers by reducing the amount of ultrafine powder and increasing the residence growth time, the method of the present invention is particularly suitable for making short fibers.

実施例 第2図に示した堅型式の炭素繊維製造装置の構
造のように電気環状炉内にアルミナ質反応管を垂
直に配置し、この反応管にスプレーと入口管とを
備えたアルミナ質蓋を取付ける。スプレー内には
鉄(Fe)の超微粉末(200〜300Åの大きさ)10
mgをエチルアルコール100c.c.の割合で分散させた
揮発性媒体を用意する。反応管を1000℃の温度に
加熱保持する。そして、ベンゼン蒸気を10容量%
含む水素ガスを毎分300c.c.(常温)の量で入口管
から反応管へ流す。この炭化水素を含む水素ガス
の流入と同時にスプレーのノズルから鉄超微粉を
含むエチルアルコールを10c.c.噴射する。この噴射
は1分毎に0.1c.c.の断続噴射で100回行なう。連続
噴射で行なつてもよい。この間100分間であり、
その後10分間炭化水素含有水素ガスを流してから
窒素ガスに切換えて冷却する。そして反応管から
捕集用受皿を取出したところ分枝を有する炭素繊
維を含む短繊維が得られ、その長さは2mm以下で
あり、全体の炭素繊維量は2gである。
Embodiment As in the structure of the rigid type carbon fiber manufacturing equipment shown in FIG. 2, an alumina reaction tube is arranged vertically in an electric ring furnace, and this reaction tube is equipped with an alumina lid equipped with a spray and an inlet pipe. Install. Ultrafine iron (Fe) powder (200-300Å size) is contained in the spray.10
Prepare a volatile medium in which mg is dispersed in 100 c.c. of ethyl alcohol. The reaction tube is heated and maintained at a temperature of 1000°C. Then, add benzene vapor to 10% by volume.
Containing hydrogen gas flows from the inlet tube to the reaction tube at a rate of 300 c.c. per minute (at room temperature). At the same time as this hydrogen gas containing hydrocarbons flows in, 10 c.c. of ethyl alcohol containing ultrafine iron powder is injected from the spray nozzle. This injection is performed 100 times with intermittent injection of 0.1cc every minute. Continuous injection may be used. During this time, it is 100 minutes,
After that, flow the hydrocarbon-containing hydrogen gas for 10 minutes, then switch to nitrogen gas and cool down. When the collection tray was removed from the reaction tube, short fibers containing branched carbon fibers were obtained, the length of which was 2 mm or less, and the total amount of carbon fibers was 2 g.

なお、金属微粉散布方法は懸濁液とせず、微細
なノズル8又は29に振動を与えて、微粉を少量
ずつ連続的に落下させることもできる。
In addition, in the method of dispersing fine metal powder, instead of using a suspension, the fine nozzle 8 or 29 may be vibrated to cause the fine powder to fall continuously little by little.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る炭素繊維の製造方法を実
施するための横型式の炭素繊維製造装置の概略断
面図であり、第2図は本発明に係る製造方法を実
施するための堅型式の炭素繊維製造装置の概略断
面図である。 1…反応管、2…加熱ヒータ、3…スプレー、
6…基板、7…超微粉末を懸濁した揮発性媒体、
8…ノズル、9…超微粉末、10,11,12…
炭素繊維。
FIG. 1 is a schematic cross-sectional view of a horizontal type carbon fiber manufacturing apparatus for implementing the carbon fiber manufacturing method according to the present invention, and FIG. FIG. 1 is a schematic cross-sectional view of a carbon fiber manufacturing apparatus. 1... Reaction tube, 2... Heater, 3... Spray,
6... Substrate, 7... Volatile medium in which ultrafine powder is suspended,
8... Nozzle, 9... Ultrafine powder, 10, 11, 12...
Carbon fiber.

Claims (1)

【特許請求の範囲】[Claims] 1 炭化水素の熱分解による気相法によつて炭素
繊維を製造する方法において、高融点金属あるい
は該金属の化合物の超微粉末を炭化水素の熱分解
帯域に浮遊させることを特徴とする気相法による
炭素繊維の製造方法。
1. A method for producing carbon fiber by a gas phase method using hydrocarbon thermal decomposition, which is characterized by suspending ultrafine powder of a high melting point metal or a compound of the metal in a hydrocarbon thermal decomposition zone. Method of manufacturing carbon fiber by method.
JP5896682A 1982-04-10 1982-04-10 Preparation of carbon fiber by vapor phase method Granted JPS58180615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5896682A JPS58180615A (en) 1982-04-10 1982-04-10 Preparation of carbon fiber by vapor phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5896682A JPS58180615A (en) 1982-04-10 1982-04-10 Preparation of carbon fiber by vapor phase method

Publications (2)

Publication Number Publication Date
JPS58180615A JPS58180615A (en) 1983-10-22
JPS62242B2 true JPS62242B2 (en) 1987-01-07

Family

ID=13099578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5896682A Granted JPS58180615A (en) 1982-04-10 1982-04-10 Preparation of carbon fiber by vapor phase method

Country Status (1)

Country Link
JP (1) JPS58180615A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934845C2 (en) * 1988-10-28 2002-01-24 Kitagawa Ind Co Ltd Conductive seal
JP2008290918A (en) * 2007-05-25 2008-12-04 Shinshu Univ Method for manufacturing multilayer carbon nanotube and multilayer carbon nanotube

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224815A (en) * 1984-04-19 1985-11-09 Nikkiso Co Ltd Gas-phase production of carbon fiber
JPS60185818A (en) * 1984-03-01 1985-09-21 Nikkiso Co Ltd Preparation of carbon fiber by gaseous phase method
JPS6054998A (en) * 1983-09-06 1985-03-29 Nikkiso Co Ltd Production of carbon fiber grown in vapor phase
JPS60181319A (en) * 1984-02-21 1985-09-17 Nikkiso Co Ltd Manufacture of carbon fiber by vapor-phase process
JPS60224816A (en) * 1984-04-20 1985-11-09 Nikkiso Co Ltd Gas-phase production of carbon fiber
JPS60231821A (en) * 1984-04-25 1985-11-18 Asahi Chem Ind Co Ltd Production of carbonaceous fiber
JPS6170013A (en) * 1984-09-13 1986-04-10 Nikkiso Co Ltd Production of extra fine fiber
US4663230A (en) * 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPS61179826A (en) * 1986-01-17 1986-08-12 Nikkiso Co Ltd Composite material of initial fine carbon fiber
CA1321863C (en) * 1986-06-06 1993-09-07 Howard G. Tennent Carbon fibrils, method for producing the same, and compositions containing same
US4923637A (en) * 1987-06-24 1990-05-08 Yazaki Corporation High conductivity carbon fiber
JPH01213409A (en) * 1988-02-17 1989-08-28 Showa Denko Kk Production of organic short fiber containing microfiber
JPH02127523A (en) * 1988-11-08 1990-05-16 Mitsui Eng & Shipbuild Co Ltd Carbon fiber of vapor growth
GB2233971B (en) * 1989-06-28 1993-02-24 Central Glass Co Ltd Carbonaceous fibers having coil-like filaments and method of producing same
CA2099808C (en) * 1992-07-06 2000-11-07 Minoru Harada Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof
JP3502490B2 (en) * 1995-11-01 2004-03-02 昭和電工株式会社 Carbon fiber material and method for producing the same
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
US6464950B1 (en) 1998-05-22 2002-10-15 Showa Denko K.K. Method for separating and treating exhaust gas of carbon fiber
DE10352709A1 (en) * 2003-11-06 2005-06-16 Volker Gallatz Fiber for use as a component of a composite material and such a composite material and a production method for such a fiber
US7981396B2 (en) 2003-12-03 2011-07-19 Honda Motor Co., Ltd. Methods for production of carbon nanostructures
EP2365117B1 (en) 2005-07-28 2014-12-31 Nanocomp Technologies, Inc. Apparatus and method for formation and collection of nanofibrous non-woven sheet
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
KR102467230B1 (en) 2014-11-14 2022-11-16 도다 고교 가부시끼가이샤 Carbon nanotube and method for manufacturing same, and lithium ion secondary battery using carbon nanotube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107329A (en) * 1976-03-04 1977-09-08 Sumitomo Chem Co Ltd Production of carbon fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107329A (en) * 1976-03-04 1977-09-08 Sumitomo Chem Co Ltd Production of carbon fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934845C2 (en) * 1988-10-28 2002-01-24 Kitagawa Ind Co Ltd Conductive seal
JP2008290918A (en) * 2007-05-25 2008-12-04 Shinshu Univ Method for manufacturing multilayer carbon nanotube and multilayer carbon nanotube
JP4660705B2 (en) * 2007-05-25 2011-03-30 国立大学法人信州大学 Method for producing multi-walled carbon nanotube

Also Published As

Publication number Publication date
JPS58180615A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
JPS62242B2 (en)
US10500582B2 (en) Compositions of matter including solid carbon formed by reducing carbon oxides
CA2546639C (en) Method
US5102647A (en) Method of producing vapor growth carbon fibers
EP1277858B1 (en) Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
US5413773A (en) Method for forming carbon filters
US5404836A (en) Method and apparatus for continuous controlled production of single crystal whiskers
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
JPS58110493A (en) Production of graphite whisker
JPH062222A (en) Production of carbon fiber by gaseous phase growth
EP0214302A1 (en) Gas phase method of manufacturing carbon fibers
JP2010100518A (en) Method and apparatus for producing carbon nanocoil
JP3071536B2 (en) Carbon fiber
JP2007146316A (en) Method for producing gas phase method carbon fiber
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JPS644999B2 (en)
JP6755029B2 (en) Fibrous carbon nanostructure manufacturing equipment and fibrous carbon nanostructure manufacturing method
JP2505912B2 (en) Production method of vapor grown carbon fiber
JPS61257000A (en) Production of silicon carbide whisker
JP2531739B2 (en) Method for producing vapor grown carbon fiber
JPH0497998A (en) Production of aluminum nitride whisker
JPH0471040B2 (en)
JPH02175698A (en) Production of sic whisker and device therefor