JPS5943120A - Preparation of carbon fiber of gaseous phase growth method - Google Patents

Preparation of carbon fiber of gaseous phase growth method

Info

Publication number
JPS5943120A
JPS5943120A JP15065582A JP15065582A JPS5943120A JP S5943120 A JPS5943120 A JP S5943120A JP 15065582 A JP15065582 A JP 15065582A JP 15065582 A JP15065582 A JP 15065582A JP S5943120 A JPS5943120 A JP S5943120A
Authority
JP
Japan
Prior art keywords
substrate
gas
surfactant
active agent
surface active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15065582A
Other languages
Japanese (ja)
Inventor
Yukinari Komatsu
小松 行成
Keisuke Uchiyama
圭介 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15065582A priority Critical patent/JPS5943120A/en
Publication of JPS5943120A publication Critical patent/JPS5943120A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare carbon fibers of gaseous phase growth method in improved productivity industrially advantageously, by suspending an ultrafine metallic particle catalyst in a solvent containing a surface active agent to give a suspension, applying it to a base material, evaporating the solvent. CONSTITUTION:Preferably 0.1-10wt% surface active agent (e.g., anionic surface active agent such as fatty acid, etc. or nonionic surface active agent such as monohydric alcohol monoalkyl ether, etc.) is added to an organic solvent (e.g., methanol, etc.), and an ultrafine metallic particle catalyst (e.g., iron, etc.) having <=500Angstrom average particle diameter is further suspended in it to give a suspension. The suspension is applied to a substrate such as alumina, etc. by spray, etc., the organic solvent is dried and removed, the substrate is put in the furnace core tube of an electric furnace, a hydrocarbon gas (e.g., benzene, etc.) is made to flow together with a carrier gas (e.g., hydrogen gas, etc.), and thermally decomposed, to give the desired carbon fibers of gaseous phase growth method on the substrate.

Description

【発明の詳細な説明】[Detailed description of the invention]

不発ψ1は気相成長式炭素繊維の製造法に関するもので
ある。さらに詳しくは、炭化水素をキャリヤーガスによ
って電気炉の炉芯管内へ導入し一1熱分解することによ
り炉芯管内に設値した基板十で炭素繊組、を′製造〕−
る方法に関同るものである。。 従来、/A’化水素の熱分1十′tにより炭素ウィスカ
ー又は炭素状物質を11)る方法心、1、知らλ1″C
い/、)が、イ!Iらオフる絨井l↑11↓もじトi’
−,)久−りかいものが小量イ、tられ−4)に−すき
゛なン心′つたりして工業的意味を殆んど商′−)て見
・)瀞かつプ、−7、−力特公昭41−12+191号
公報にJ・9〜・て艮〜・炭素にへ絹の製造方法が渚火
出さオじ
Misfire ψ1 relates to a method for producing vapor-grown carbon fiber. More specifically, hydrocarbons are introduced into the furnace core tube of an electric furnace using a carrier gas and thermally decomposed to produce a carbon fiber assembly with a substrate set in the furnace core tube.
It is related to the method of . Conventionally, a method for producing carbon whiskers or carbon-like substances by heating 10't of /A' hydrogen hydride, 1, known λ1''C.
I/,), but, I! I and others are off-ru Kori l↑11↓Mojito i'
-,) It's been a long time since I've had a small quantity of something, -4) -I've learned a lot about industrial meaning, and I've seen most of the industrial meanings.) -7 , - Riki Tokuko Sho 41-12 + 191 publication J. 9 ~ te ~ ・ The method of manufacturing silk in carbon was published by Nagibi.

【−江[]さ」jろ、1.5になった。 最近、上条4」料>= 30 @3−7号(1(182
年)に′t・5いて、500A以下の金属超微粒子触媒
を用いることで繊維の発生盾−j艮及びその成M連1!
j−か【)4長される事が述べ1、)れ(八・る。 かかる粒<lt!IO生成fi′を苓4゛増太セしめる
事は−に業的にイJ用−Q;b)/、:)。、不発り」
者らは44j(lrの仙究を爪ねた結氷、界面活f−L
ハリグ含is浴媒に金属超微粒手触〃[LをII’ふ濁
さ一1rた懸濁前使基Hに散布し、つ℃・で溶媒を実質
的に蒸発させる41により−C5炭ふ繊維の生成景が著
しく増大する事が認められ、本発明に到丹した。 Jなわち、本発明はZ相成長式炭素繊維の製造法におい
゛(、界面活性剤を含む溶媒に金属超微粒子触媒を懸濁
させた懸濁液を基材に散布し、つ(・で溶媒を実質的に
蒸発さぜる事を特徴とし、効果的に炭素繊維を製造1−
る方法に関するものである。 本発明の効果の発現坤由は明らかiJ、ものではないが
、触媒とし゛C使用うる凝集性の大きい金属超微粒子が
、界面活性剤の作用により均一に分散され、基板に散布
きれた状態でもその分散性を失なわず、各個・2の金属
超微粒子に炭素繊維が生成するからであ4)と考えもれ
4)。 不発す1」−←(・5気相成長式炭素繊維と目1、炭化
水バ・、カスを熱分解し−で得←)第1る炭素繊維なる
ものを届、味し、その用語は例えは]−1梨I料牙30
巻+7号に示され一〇いる1、 本発明に用いる界面活性剤は陰イオン界面活性剤及び非
イ]ン界面活性剤から31′I独に選択されるかあるし
・は2種以上の混合で使用されろ。陰イオン界面活性剤
としては、脂肪酸及びその塩、パーフルオロfJFf 
l17j酸及びその塩、アル・Vルマロン酸塩、7 )
シ:/J 、/ :x 、I+/ ホン酸塩、イ面酸゛
アノしキルエy−チル金戊塩、硫8(アルコギシエチル
)金属塩、硫酸(アルキルポリオキシエチレン)金属塩
、α−スルホ脂肪酸、スルポゴハク酸シフ′ル鵡ル金枝
塩、アルギルベンゼンスルホン酸金属塩等−(= A・
)る。非イア4ン界面活411、剤としては、子細1ブ
ルー■−ル玉ノアルキルエーデル、ポリエヂレングリコ
ール七ノアルキルベT−一−デル、ポリエチレングリ:
1−ルアルキルンエニル5−5−ル、ホリエブ゛[7・
ンクリニ1−ルメチノしエーラール月’r? 89 r
R工、ズテル、ホリエチレングリコーールアル倉ル」−
スデノ[、ジグリ+リン別、′肪酸エヌテ)(、、−、
ポリグリセリン脂肪酸エステル、ソルピクンエーテル、
ンルビタンエスデルエーデル等でt)イ)0 これらの界面活性剤は、脂肪底炭化水素、芳香族炭化水
素、アルニ了−ル、ニーデル、クトン等の有機溶媒に溶
解iiJ能であり、かつ金貨微粒子を分散させる効果が
特にすぐれC1,・る。 界面活性剤の添加量は、41機溶媒に対1、て0.[〜
30 wt%、好適には01〜10wt%にすることに
より界面活性剤の触媒分散効果が充分に発揮される。使
用すく噛機浴媒は沸点の低い掠発件の高(・ものがよく
、例えばメタノール、エタノール等の低級アルコールが
好す−シい。 不発りjに用(・る金属超微粒イ触媒は例えば鉄、酸化
鉄1,1;)るいはそれらを含む合金が好ましい。 当該金属超微粒−j−触媒の平均粒径は通席500 A
以1・゛のものが用いられる。 不発)、1jJの方法により金属超微粒子触媒を懸が8
させた有機溶媒に界面活性剤を添加してえらコまた触媒
分散液を用いて炭素繊維を製造Jるには、該触媒分散液
をスプレー等により基&土に散布し、有機溶媒を乾燥除
去した後、基板を炉芯管内Vc装入し、これに炭化水素
ガスをギヤリヤーガスと共に流し7、/Jr定の温度に
上げる。炉芯管は例えばセラミックス質、石英質等のも
のがよい1.基4]は固定k)る(・は移動しても良く
、その形状はバーイブ状、板状、繊hト状の如何ン゛よ
るものでも良い。その材質はセラミックス質あるいは炭
素質又は黒鉛質のものが使用される1、炭化水素はトリ
えに、ヘー十゛ン、トル1.7翳多くの炭什、水素が使
11]できイ26゜iヤリャーガス(J、水素ガスが用
(・I−)i14、が、こねにfllえ1>:アノトゴ
ン、q3、ガスキγの小fへ性ガスを宙、イーi L、
でもよい、、ギヤリヤーガスと炭化水素の混合ガス中、
炭化水素ガスの含イ]率は1〜(・0%の範囲が適当で
ある、。 混合ガスの二゛1吻流速(佳一般的に5〜l 5 (1
c7B′分の範囲て′用い1うfilるが!持に!!i
ll限さ1(イ)ものではない。 加熱温度は一般的に9 ’40〜13+’+OCの範囲
で選ばれ4)。この範囲で炭化水射の(・1」[を等に
より任意にとt二)れてよい、1 気相成長式炭素繊維の形成は、先ず偵π11の長さ方向
の成長、イ屑いて太さノj向の成長が段1M的に起り、
温度、ガス流速、ある(・は保持時間イ(調整すること
によ・つて(裁維の長さ、太さン1L、はに変えること
かできる。、 本発明に、1、れば、炭素AIR1ff−の生成斌父飛
躍的に向上ンさ一1村る′事ができ、工業的に極めて有
利で々)る。 以下実施例によつ工水発明の態様を杆1〜く説明−4−
る。 実施例1 平均粒径100スの鉄微粒子(真空冶金株式会社製zy
なエタノール川o o cc K i mさぜり後、オ
レイン酸(陰・イメン界面活性剤)2gを添加し充分攪
拌し7、放置後十澄みを注射器でとり採取しj、−触媒
分散液なヌル−でアルミナ質基板(外径58關、内径5
.Qel、長さ100關を長さ方向に2分割したもの)
の四部内力に散布した後、ドライヤーでエタノ・−ルを
乾燥除去した。 内イ¥60Hのアルミナ質炉芯管に該基板を装入し、炉
芯管の一端にガス導入管、他端には排出管な接続した。 水素ガスを導入しつつ、炉温を1100℃に封温した。 一定温度になってから、ガス導入管よりベンゼンを水素
ガスと共に160 ((:/闘の流t;′にて、ベンゼ
ン分圧:351m)1gで流した。その温度で60分間
保持した後、120分かけてベンゼン分圧を35myv
)IgからI Q OmN(g迄徐々に上げ且つ加熱温
度1100℃から1200℃まで徐々に上げていった1
、その後ガスをアルゴンに切換えて冷却し基板を取り出
した1、生成しl、−炭素繊維を基板か「)取り出12
、繊維の径、長さ、4F成量苓・測定した。結果る第1
aI嘉t1示ず。 比較例1 平均粒(’47.10 g ’4σ)1′(微粒子(丁
1空冶金什式イ々t1製)を粉末状で圧気式スプ【、・
−ガン(〃二でII′(拌基板に t)゛(こ布 し、
l−二 、1 以下実施例1ど同様0−’、+方法で炭素!’・t e
llを製]り7 t−た。、その結果をX1表に〉31
寸。 実施1rl+ 2 平均わ、・径】旧戚の鉄数粁子(真空冶金株式会社町、
’、j ) 1νイー−1タフノール1旧)COに懸濁
さ干たクニ、ボIJグリ十すンラウリン酸JT−メチ)
v (非イ;4ン界11+i活性剤):ユgを添加し充
分撹拌後、ちl、x IA:t f+J 1と同様の方
法で触媒を基板上に散布した。 炉芯管に該基板な装入1.、ガス導入管より水素ガスを
毎分150 C−C流し7、(がら1120U杵C打温
した。その温度で15分保持しl、−後ヘンゼン蒸気を
分圧351■1ml(gで水素ガスと共に炉芯管内に通
L60分間保持した。その後120分かけてベンゼン分
圧を100PIIII1gまで徐々に上げ且つ加熱温L
yを1200℃まで徐々に」−げ゛(い一つj、−8;
との後ガ7スイぐ窒素に切換や、゛f冷却し7基軟を取
り出した。生成した炭素繊維を基板から取り出I−1繊
ス・1[の径、長さ、生成量を測定したつイーσ)結果
をA−1表に示ゴ。 比較例2 平均I<7径′(00ÅのC(微粒子(真空冶金株式会
社製)17をエタノール100℃に■l燭させ充分撹拌
後、実施fll 1と同一・方法で/ll′l1iR分
散液なヌグレーを用いて基板上に散布した後、ドライヤ
ーでエタノールを乾燥除去lた1、 以1実施例2と同様の方法で炭素紙ス1〔を11′1造
し。 た。、その結果を(・1表に示す。 実施例3 一=17均粒径100″Aの酸化fk (I’ e20
3 )l’a粒子(真空冶金株式会社重り)をメタノー
ル100℃に懸濁させた後、(1,′−イン酸ナトリウ
A o、 59及びドデシルベンゼンスルホン酸ナトリ
ウノ、 0.57(共に陰イオン界面活性剤)を添加し
て約10分超音波処理後、実施例1と同様の方法で触媒
を基板上に散布した。 炉芯管に該基板を装入し、ガス導入管より1■、ガスを
毎分19 t) CC流しながら1 o B n ℃ま
でケ1温した。 その温度で30分保持した後、・くンゼン分圧76rm
Iigで水素ガスと共に1900CC/分(當温)の流
’iiVで2分間流した。その後ガス流(11をf(a
、初の設定(ijjl 90CC/分にR1−1fi 
0分間保持し?、:oイーの後120分かけ゛〔ベンゼ
ン分圧をI 85ntmT1g+°で徐々に上げ且つ加
熱温度を1250℃−にで徐々に上げていった。 その後ガスをアルゴンに切換えて冷却し基板^・とり出
した。生成し7た炭素繊維を基板から取り出し繊維の径
、長さ、生成量を測定しl(=、 、、その結果4・ス
・1表に示−’II−。 実施例4 平均粒径H,(10Xの鉄−、ブツケル合金微粘ノイ1
7をエタノール100 CCに懸濁させた後、Aレ−4
イA・メチルクラリン酸ツトリウノ、(陰イ〕ン界血清
ゼl−剤) 0.51及びボリメーギシエナレンンルビ
タン七ノオレエート(非イオン界面活性ill )0.
5 f/を添加して約10分超音波処理後、実施例1と
同fRの方法で触媒を基板上に散布した。 実施例5 平均粒径3()0λの酸化鉄(Fe2”、)  微粒子
1yをメタノール1.0 (icc K懸濁させた後、
実施例、うと同様の界面活性剤を添加して得ら第1た触
媒液を実施例1と同様の方法で基板−1−に散布l−た
、。 以下実施例3と同様の方法で炭素繊維を製造した3、釜
の結果を木1表に示j 。 炉芯管い一該基板を装入し、ガス導入管よりアルゴンガ
スを毎分100CC流しながら昇温した。、4150℃
に達し−Cかも水素ガスに切換えて毎分1.50 cc
/分(常温)流I〜、さらに1000℃に達してからベ
ンゼン分圧35 mmHgでベンゼン蒸気を通し2、昇
温しながし)ベンゼン分圧も徐々に上げていった。18
0分かけて加熱温度t、v 1200℃、ベンゼン分圧
を185mHgまで土げてい1)た。その祷ガスをアル
ゴンに切換えて冷却し7基板を取り出し、た。生成した
炭素繊維を基板から取り出し、繊維の径、長さ、生成量
を測冗しl、−1,その結果をオ・1表に示す。 手続補正1(自発) 昭和3f年と月/B′日 特許庁長官 若 杉 和 夫 殿 1、事件の表示   昭和j7年將許願第7306.!
!号2 発明の名称 気相成長式炭素繊維の製造法 a 補止をする渚 事件との関係  特許出願人 大阪府大阪市北区堂島浜1丁「12番6号「明細書全文
」 5 補正の内容 別紙の通り。 全文訂正明細−) / 発明の名称 気相成長式炭素繊維の製造法 22、特許請求の範囲 (1)  気相成長式炭素繊維の勾造法において、界面
活性剤を含むf8媒に金属超微オイを子μ曲媒を懸濁さ
せた懸濁液を基材に散布し、一ついで溶媒を実質的に蒸
発させるrJGを特徴とする方法(2)界面活性剤が陰
イオン界面活性剤、非イAン界面活性剤である・j[を
特徴とする特許請求の範囲第/項記載の方法 (3)界面活性m1−1が長硝不11!+Q 441脂
肋IJi、i2又はぞAしを含む化合物であるLltを
特徴とする特許iil’l水の・凪囲第7項記載の方法 4) 金属超微粒子触媒が鉄、酸化鉄あるいはそれらを
含む合金である巾を特徴とする相、、″I−請求の範囲
第/項記載の方法 3、発明の詳細な説明 本発明は、気相成長式炭素繊維の製造υシに関するもの
である。さらに詳しくは、炭化水■・さをキャリキー1
fスによって電気炉の炉芯管内へ導入シー5、熱分解す
イ)ことにより炉芯管内に設置した基杓−Lで炭素iI
t雄を製造−(る方法に関するものである。 従味、炭化水素の熱う〕解に。[り炭素ウィスカー又は
炭素状物質を得る方法は知られているが、得られる繊維
は/咽以トの短かいものが少鼠得られるに1ぎなか一つ
たりし゛℃工業的急味を殆んど持っていなかった。一方
特公昭</、/−12097号公報に、t・5いで長い
炭克瓜N11の製1告方法が考え出されClI三l二1
さ」1.イ)J二う(二なった。 帰山、」、Y″祠利弔、、i′0巻第7号:(/ソざ2
年)に16いで、7りθθに以1・゛の似属超微粒子−
)11;媒を用いることで縁、卸の発生密IL及びその
成長速j隻が改良される・[1が述べられている。 かかる繊イ((の生成;1支?増大せしめる巴1¥は」
二¥′的にイ1用である。不発町名らは種々の(+Jf
 ’)“にを屯ねたj:1!i里、W 1iii活性剤
な含む浴l渫に金属超微粒子触媒を懸濁さ((た(11
′!%濁itしを]、q vUに散布し、ついで溶媒を
実質的に蒸発させるfiiGによって、炭素繊維の生成
111が著l−1<増大する車が認められ、本究明に到
It;した。 すなわち、木うt、明は気相成長式次、:l+、繊卸の
製危法においで、界面活・t/l ?′τ11を・含む
t′11媒に金属紹6’に朴ン子1111IB媒をi訃
濁さ・(丸たjH%濁液を・県)4に敗イTi L、−
)いで的〃■を実′tり的に蒸光。−\せる中を′l=
、!I叡と1−7、功宋的にL;J素繊維を製造するj
J法に関−4るものである。 本発明の効果(D発現理由は明らか/、Lものではない
が、触媒とし℃使用する凝集性の大きい倉属紹微粒子が
、冑面、古性剤の作用に、1、り均一に勺1ij1.さ
A12、)、(祠に散布された状i、jl:j−(:イ
ー)そCハ・η故4ノ1を失なわず、名個々の金属、l
?Hi成粒t′にtX素什に)1(・が生成するからで
あると老えら)も、”、J 。 本発明でいう気相成員式炭素桟イ11とは、炭化水素ガ
スを熱分解シ2.で得られる炭、4、繊¥11なるもの
を、位味【7、その用4.ハは例えば−II rY j
r’r料j’l’43θイち第7吋に小され(いる。 本発明に用いる界面活性剤は111イオン界而活性ハ1
1及び非イオン界+T+i活性剤から単独に選択さλす
るかあるいは!棹以−にの混合で使ハレスれる1、lぢ
そイオン界面活性剤としては、脂肪酸及びその塩、パー
フルオロ脂肪酸及びその塩、アルキルマロン酸塩、アル
カンスルホン酸塩、硫酸アルキル:Lステル金属塩、(
+tl’iu(アルシ1ギシ−にJ〜ル)金属塩、硫酸
(アルギルポリオキシエチレン)金属塩、α−−スルホ
11)刊17j酸、スルホコノ1り酸ジアルキル金属塩
、アルキルベン−(どンスルホン酸金属塩等である。非
イオン界面活性剤としては、多価アルコールモノアルギ
ルユー−一〜デル、ポリ−てチレングリコールモノアル
キルーr゛、−デル、ポリエチレングリコールアルキル
フ1ニルエーテル、ポリエチレングリコールメイルエー
テル脂肪酸二1−スプル、ポリエチレングリコールアル
キルニスデル、ジグリセリン脂肪酸ニスデル、ポリグリ
セリン脂肪酸エステル、ソルビタン1ニーデル、ソルビ
タンエステルエーテル等である。、これらのうち、特に
長鎖不飽和脂肪酸又はそれを含む化合物が好ましい。 これらの界面活性剤は、脂肪族炭化水素、芳香族炭化水
素、アルコール、エーテル、ケトン等の有機γG媒にl
谷解(iJ能であり、かつ金属微粒子を分散さ(七る効
果が特に1ぐれている。 界面活性h14の添]1[口iは、ri′機浴媒溶媒し
′Cθ60/〜、?θwtJ好)124には9.7〜7
0w1%にすることにより界面活性邦1の触媒り)散効
宋が充分に発揮される。使用する有機8媒は沸点の低い
揮髭性の高いものがよく、例えばメタノール、エタノー
ル青の低級アルコールが好ましい。 本発明にmいる<υ属超微粒J′−触媒は例えば鉄、酸
化鉄、あるいはそれらを含む給金が奸土しい。 当該金属超微粒手触々ν、の平均粒径は通常夕θθA以
十のものが用いられる。 本発明の方法により金属超微わ°l子触媒を懸濁させた
イ、j−1ぶ1′?を媒に界面活性剤を鈴;加I〜てえ
られた触媒分散液を月1いて炭l+:繊に1(−を製造
するには、該11+・1:媒介散液をスプレー等により
基月上に散4i シ、、何1幾7゛δ媒を乾燥除去した
後、基祠を炉芯管内に装入し、これに炭化水素ガスをキ
ャリャーノjスと共に流し、所定の温1すに11げろ。 炉、tモ、管は例えば(=ラミックス質、石英′ei等
のものがよい。〕、1伺は固定あるいは移動しても良く
、その形状はパイプ状、板状、繊維状の如回なるもので
も良い1、その祠質はセラミックス質あるいは炭素a又
は黒鉛性のものが使用される。炭化水素は例えばベンゼ
ン、トルエン等多くの炭化水素が使用できる。 キャリヤーガスは水素ガスが用いられるが、これに例え
ばアルゴン、窒素ガス等の不活性ノfスを混合してもよ
い。ギヤリヤーガスと炭化水素の混合ガス中、炭化水素
ifスの含有率は/〜乙0体積チの範囲がi内当である
。 混合ガスの平均流速は一般的にj〜/−901分の範囲
で用いられるが特に制限されるものではない。 加熱温度は一般的に95θ〜/3θθ℃の範囲で選ばれ
る。この範囲で炭化水素の種類等により任意にとられて
よい。 気相成長式炭素繊維の形成は、先ず繊維の長さ方向の成
長、続いて太さ方向の成長が段階的に起り、温度、ガス
流速、あるいは保持時間を調整することによって繊維の
長さ、太さを任意に変えることができる。 本発明によれば、炭素繊維の生成量を飛躍的に向上させ
る事ができ、工業的に極めて有利である。 以下実施例によつ゛C本発明の態様を詳しく説明する。 実施例/ 平均粒径/θθXの鉄微粒子(真空冶金株式会社製)/
fをエタノール/θθ匡に懸濁させた後、オレイン酸(
陰イオン界面活性Ml )2 rを添ハ11シ充勺攪拌
し、放置後」二澄みを注射器でどり採取しまた触媒分散
液をスプレーでアルミナ質基板(外径夕、lll″1訓
、内径50問、長さ100間を長さ方向にλ分割〔半割
り〕したもの)の凹部両方に散布した後、ドライヤーで
エタノールを乾燥除去した。 内径≦θ喘のアルミナ質・い芯管に該基板を装入し、炉
芯管の−y;Mにガス導入管、他V:!Aには排出管を
接続した。水素ガスを導入しつつ、炉温を7700℃に
昇温した。一定△jへ度になってから、ガス導入管より
ベンゼンを水素ガスと共に/乙θ(カjgの流量にて、
ベンゼン分圧3 J”−1,gで流した。その温度で6
g分間保持した後、120分かけてベンゼン分圧を3 
J′mm1−1gから70011g iE徐々に、にげ
珪つ加熱2!ii度//θθ℃から1.2θθ℃まで徐
々に上げていった。その後ガスをアルゴンに切換えて冷
却し裁板を取り出した。生成した炭素繊維を基板から収
り出し、繊維の径、長さ、生成量を測定した。結果を第
1表に示す。 比較例/ 平均粒径10θXの鉄微粒子(真空冶金株式会社製)を
粉末状で圧気式スプレーガンに゛C直接基板に散布17
た。 以下実施例/と同様の方法で炭素繊維を製造した。その
結果を第7表に示す。 実施例氾 侶均粒径/θθXの鉄微粒子(頁窄冶金株式会社製)/
1をエタノール/θ□CLに)1市7〜させた後、ポリ
グリセリンラウリン酸エステル(非イオン界面活性剤)
7?1を1小加j−充分攪拌後、実施例/と同様の方法
で触媒を基板上に散布した。 炉、1う管に該基板を装入し、ガス導入管より水素ガス
を毎分/夕θω流しなから1120℃まで昇温した。そ
の温度で7t分保持した後ベンゼン蒸気を分圧33 m
mHgで水素ガスと共に炉芯管内に通し6g分間保持し
た。その後720分かけてベンゼン分圧な10θ剛Hg
まで徐々に上げ1tつ加熱温度を/、2θθ℃まで徐々
に一ヒげ°Cいった。その後ガスを窒素に切換えて冷却
し基板を収り出した。 生成した炭素繊維を基板から収り出し、繊維の径、長さ
、生成lを測定した。その結果を第7表に示す。 比較例! 平均粒径30θにの鉄微粒子(真空冶金株式会社製)/
2をエタノール/θθ工に懸濁させ充分攪拌後、実施例
/と同一方法で触媒分子f& /l&をスプレーを用い
て基板りに散布した後、ドライヤーでエタノールを乾燥
除去した。 以下実施例ノと同様の方法で炭素繊維を製造17た。そ
の結果を第7表に示す。 実施例、? 平均粒径/θθXの酸化鉄(1’e203)微粒子(6
”美空冶金株式会社製)をメタノール/θ0 ’Ci:
:懸濁させた後、オレイン酸ナトリウムθ、j1及びド
デンルベンゼンスルホン酸ナトリクムθ、J−y (共
に陰イオン界面活性剤)を添加して約70分超音波処理
後、実施例/と同様の方法で触媒を基板上に散布した。 炉芯管に該基板を装入し、ガス導入管にすH2ガスを毎
分/9θ工流しなから/θ♂θ℃まで昇温l〜だ。その
温度で、70分保持した後、ベンゼン分圧71− ++
nHgで水素ガスと共に/9θθCA7)’f (常温
)の流t、lで2分間流した。その後ガス流量を最初の
設定値/9θ(身分に戻し、60分間保持した。その後
7.2.0分かけてベンゼン分圧を/ざ3′、Hgまで
徐々に」二げ且つ加熱温jM:を/、2J−0℃まで徐
々に上げていった。その後ガスをアルゴンに切換えて冷
却し基板をとり出した。生成した炭素繊維をJ+1板か
ら取り出し繊維の径、長さ、生成(門1を測定した。そ
の結果を第7表に示す。 実施例k ・lL均粒径/θθAの鉄−ニッケル合金微粒子/2を
エタノール/θθ匡に懸濁させた後、オレオイルメチル
タウリン酸ナトリウム(陰イオン界面活性Fi’l )
θ、夕?及びポリオキレエチレンソルビタ〉′モノオレ
エート(非イオン界面活性剤)θ、j2を添加して約7
θ分超音波処理後、実施例/と同様の方法で触媒を基板
」−に散布した。以下実施例3と同様の方法で炭素繊維
を製造した。その結果を第7表に示す。 実施例夕 平均Wi径300 A (7,) m化?k (I’e
203) a粒子/2をメタノール/θ0CCに懸濁さ
せた後、実施例、?と同様の界面活性剤を添加し′C得
られた触謀液を実施例/ど同様の方法で基板」、−に散
布した。 以下実施例、?と同様の方法で炭素繊翁(を製造した。 その結果を第7表に示す。以ド実施例、デと同様の方法
で炭素繊維を製造した。その結果を第7表にボす。 炉芯管に該基板を装入し、ガス導入管よりアルゴンガス
を毎分/θθ印流しながら4温した。 9jθ℃に達してから水素ガスに切換えて毎分/、3θ
σηr(常温)流し、さらに7000℃に達してからベ
ンゼン分圧3 J’ +o+I(gでベンゼン蒸気をi
ll L、、昇温しながらベンゼン分圧も徐々に上げて
いった。/♂θ分かけて加熱温度を720θ℃、ベンゼ
ン分圧を/ f G mm11gまで上げていった。そ
の後ガスをアルゴンに切換えて冷却し基板を取り出した
。生成した炭素繊維を基板から収り出し、繊維の径、長
さ、生成量を測定した。その結果を第7表に示す。 (以ド余白)
[-E []] jro, it became 1.5. Recently, Kamijo 4' fee >= 30 @3-7 (1 (182
In 2005, the use of ultrafine metal particle catalysts of less than 500A enabled the production of fibers and their production.
It is stated that j- or [)4 is lengthened. ;b)/, :). , a misfire.”
They are 44j (the ice that deceived the study of lr, the surfactant f-L
Sprinkle ultrafine metal particles [L] into a turbid suspension of H in a bath medium containing HARAG, and substantially evaporate the solvent at 41°C to -C5 charcoal fibers. It has been recognized that the number of formations is significantly increased, leading to the present invention. That is, the present invention is a method for producing Z-phase growth type carbon fiber, in which a suspension of ultrafine metal catalyst particles in a solvent containing a surfactant is sprayed on a base material, and Effective production of carbon fibers by substantially evaporating the solvent 1-
It concerns how to Although the reason for the effect of the present invention is not clear, the highly cohesive metal ultrafine particles that can be used as a catalyst are uniformly dispersed by the action of the surfactant, and even when they are completely dispersed on the substrate, This is because carbon fibers are formed in each individual ultrafine metal particle without losing its dispersibility4). Unexploded 1" - ← (Produced from 5 vapor-grown carbon fibers and 1 carbonized water vapor by thermally decomposing the residue ←) The first carbon fiber was delivered and tasted, and the term is For example] -1 pear I ryoga 30
1. The surfactants used in the present invention may be selected from anionic surfactants and non-ionic surfactants, or may be selected from two or more of them. Use in combination. As anionic surfactants, fatty acids and their salts, perfluoro fJFf
l17j acid and its salts, Al V lumalonate, 7)
/J, / :x, I+/ phonate, anodic acid ethyl gold salt, sulfur 8(alkogyethyl) metal salt, sulfuric acid (alkylpolyoxyethylene) metal salt, α - Sulfo fatty acids, sulfo-succinic acid Schiffle gold salts, argylbenzenesulfonic acid metal salts, etc. - (= A.
). Non-iron surfactant 411, the agents include:
1-rualkyleneenyl 5-5-yl, hollyene [7.
Nkulini 1-Rumechinoshi Erard'r? 89 r
R Engineering, Zuteru, Polyethylene Glycol Alkuraru”-
Sudeno [, Jiguli + Lin, 'fatty acid enute) (,, -,
Polyglycerin fatty acid ester, Solpicun ether,
These surfactants have the ability to dissolve in organic solvents such as fat bottom hydrocarbons, aromatic hydrocarbons, alnylene alcohols, needles, and chthons, and are soluble in gold coins. The effect of dispersing fine particles is particularly excellent. The amount of surfactant added is 1:0 to 41 solvent. [~
By adjusting the amount to 30 wt%, preferably 01 to 10 wt%, the catalyst dispersing effect of the surfactant can be fully exhibited. The bath medium to be used should be one with a low boiling point and a high oxidation rate, such as lower alcohols such as methanol and ethanol. For example, iron, iron oxide 1,1;
The following 1.゛ are used. 8
To manufacture carbon fibers by adding a surfactant to the organic solvent and using a catalyst dispersion, the catalyst dispersion is sprayed onto the substrate and soil, and the organic solvent is removed by drying. After that, the substrate is charged into the furnace core tube Vc, and hydrocarbon gas is flowed therein together with gear gas to raise the temperature to a constant temperature of 7./Jr. The furnace core tube is preferably made of ceramic, quartz, etc.1. The base 4] is fixed and may be movable, and its shape may be barb-like, plate-like, or fibrous. Its material may be ceramic, carbonaceous, or graphite. 1. Hydrocarbons can be used, hydrogen gas can be used (11), and hydrogen gas can be used (11). I-) i14, but full 1>: Anotgon, q3, gas to the small f of Gaski γ, Yi i L,
In a mixed gas of gear gas and hydrocarbon,
The content ratio of hydrocarbon gas is suitably in the range of 1 to 0%.
Use 1 fill within the range of c7B'! Hold on! ! i
It is not limited to one thing. The heating temperature is generally selected in the range of 9'40 to 13+'+OC4). In this range, carbonization water injection may be carried out arbitrarily by (・1'', etc.).1 The formation of vapor-grown carbon fibers involves first growing the lengthwise direction of the rectangular π11, and then Growth in the direction of Sano J occurs in steps 1M,
By adjusting the temperature, gas flow rate, and holding time (the length of the fiber, the thickness of 1 L, etc.), the present invention can be changed to The production process of AIR1ff- can be dramatically improved, and it is extremely advantageous from an industrial perspective. −
Ru. Example 1 Iron fine particles with an average particle size of 100 mm (Zy manufactured by Shinku Yakini Co., Ltd.)
After mixing with a large amount of ethanol, add 2 g of oleic acid (anionic surfactant) and stir thoroughly.7 After leaving to stand, collect the liquid with a syringe and collect the -catalyst dispersion. Null and alumina substrate (outer diameter 58mm, inner diameter 5mm)
.. Qel, length 100 meters divided into two in the length direction)
After spraying on all four parts, the ethanol was removed by drying with a dryer. The substrate was placed in an alumina furnace core tube of 60 yen in diameter, and a gas inlet pipe was connected to one end of the furnace core tube, and a discharge pipe was connected to the other end. While introducing hydrogen gas, the furnace temperature was sealed at 1100°C. After the temperature reached a constant temperature, 1 g of benzene was flowed together with hydrogen gas from the gas inlet tube at a pressure of 160 (benzene partial pressure: 351 m at (:/flow t;'). After being held at that temperature for 60 minutes, Benzene partial pressure is increased to 35 myv over 120 minutes.
) Ig to I Q OmN (g and heating temperature was gradually raised from 1100℃ to 1200℃1)
After that, the gas was changed to argon to cool it down and the substrate was taken out.
, fiber diameter, length, and 4F growth were measured. The first result
aIkat1 not shown. Comparative Example 1 Average particles ('47.10 g '4σ) 1' (fine particles (manufactured by T1 air metallurgy) were powdered in a pneumatic sprayer.
-gun
l-2, 1 Carbon in 0-', + method as in Example 1 below! '・te
7 t. , the results are shown in Table X1〉31
Dimensions. Implementation 1rl + 2 Average Wa... Diameter] Former relative Tetsukazuko (Shinku Yakiniku Co., Ltd. Town,
',j) 1ν E-1 Tuffnol 1 Old) Dried Kuni suspended in CO, BoIJ Grijusuun Lauric acid JT-Methi)
v (non-I; 4-field 11+i activator): After adding Yg and stirring thoroughly, the catalyst was dispersed onto the substrate in the same manner as in 1, x IA:t f+J 1. Charge the substrate into the furnace core tube1. , hydrogen gas was flowed through the gas inlet pipe at a rate of 150 C-C per minute and heated with a 1120U pestle. After holding at that temperature for 15 minutes, Hensen vapor was heated at a partial pressure of 351cm 1ml (g). The benzene partial pressure was then gradually increased to 100PIII1 g over 120 minutes, and the heating temperature was lowered to L.
Gradually increase y to 1200℃.
After that, the gas was switched to 7-switch nitrogen, and the 7-gas was cooled down. The produced carbon fibers were taken out from the substrate and the diameter, length, and amount of produced carbon fibers were measured.The results are shown in Table A-1. Comparative Example 2 C (fine particles (manufactured by Shinku Yakiniku Co., Ltd.) 17 with an average I<7 diameter' (00 Å) were heated to ethanol at 100°C and thoroughly stirred, followed by a /ll'l1iR dispersion in the same manner as in Example 1. After dispersing the ethanol on the substrate using a dryer, the ethanol was removed by drying with a dryer. 11 Carbon paper sheets 1 were prepared in the same manner as in Example 2.The results are as follows. (See Table 1. Example 3 Oxidation fk (I' e20
3) After suspending l'a particles (Shinku Yakiniku Co., Ltd. weights) in methanol at 100°C, (1,'-sodium acid Ao, 59 and sodium dodecylbenzenesulfonate Ao, 0.57 (both anions) After adding a surfactant) and ultrasonicating for about 10 minutes, a catalyst was sprinkled on the substrate in the same manner as in Example 1.The substrate was placed in a furnace core tube, and 1. The temperature was raised to 1°C while gas was flowing at a rate of 19 t/min. After holding at that temperature for 30 minutes, ・Kunzen partial pressure 76rm
Iig and hydrogen gas at a flow rate of 1900 CC/min (at current temperature) 'iiV for 2 minutes. Then the gas flow (11 is f(a
, first setting (R1-1fi to ijjl 90CC/min
Hold for 0 minutes? After 120 minutes, the benzene partial pressure was gradually raised to 85 ntmT1 g+°, and the heating temperature was gradually raised to 1250°C. After that, the gas was changed to argon to cool it down, and the substrate was taken out. The produced carbon fibers were taken out from the substrate and the fiber diameter, length, and amount produced were measured. , (10X iron-, Butkell alloy slightly viscous Noi 1
After suspending 7 in 100 CC of ethanol, Aray-4
A. Methylclarate, (anionic serum gel agent) 0.51 and Volimegi sieenalene rubitan heptanooleate (nonionic surfactant ill) 0.51.
After adding 5 f/ and ultrasonication for about 10 minutes, the catalyst was sprayed onto the substrate using the same fR method as in Example 1. Example 5 After suspending iron oxide (Fe2'') fine particles 1y with an average particle size of 3()0λ in methanol 1.0 (icc K,
A first catalyst solution obtained by adding the same surfactant as in Example 1 was sprayed onto substrate-1 in the same manner as in Example 1. Below, carbon fibers were produced using the same method as in Example 3. The results of the 3-kettle are shown in Table 1. The substrate was placed in a furnace core tube, and the temperature was raised while flowing argon gas at 100 cc/min from the gas introduction tube. ,4150℃
Reach -C and switch to hydrogen gas at 1.50 cc/min
/min (room temperature) flow I~, and when the temperature reached 1000°C, benzene vapor was passed through the reactor at a benzene partial pressure of 35 mmHg.2) The benzene partial pressure was also gradually increased while the temperature was being raised. 18
The heating temperature t and v were raised to 1200° C. and the benzene partial pressure was raised to 185 mHg over 0 minutes 1). The cooling gas was changed to argon, and the 7 substrates were taken out and cooled. The produced carbon fibers were taken out from the substrate, and the diameter, length, and amount of produced fibers were measured redundantly, l, -1, and the results are shown in Table E.1. Procedural amendment 1 (spontaneous) 1953 and month/B' Director-General of the Patent Office Kazuo Wakasugi 1, Indication of the case 1939 Shohankai No. 7306. !
! No. 2 Name of the invention Method for manufacturing vapor-grown carbon fiber a Relationship with the Nagisa case to be supplemented Patent applicant No. 12-6 “Full text of the specification” 1-chome Dojimahama, Kita-ku, Osaka-shi, Osaka 5 Contents of the amendment As per attached sheet. Full text correction specification-) / Name of the invention Method for manufacturing vapor-grown carbon fiber 22, Claims (1) In the gradient method of vapor-grown carbon fiber, ultrafine metal is added to the f8 medium containing a surfactant. A method characterized by rJG, in which a suspension in which oysters are suspended in a particle is sprayed onto a substrate, and the solvent is substantially evaporated in one step (2) The surfactant is an anionic surfactant, a non-ionic surfactant, a (3) The method according to claim 1, characterized in that the surfactant m1-1 is a surfactant. +Q 441 The method described in Paragraph 7 of the patent iil'l water, which is characterized by Llt, which is a compound containing fatty ribs IJi, i2, or ZA 4) The ultrafine metal particle catalyst contains iron, iron oxide, or The present invention relates to the production of vapor-grown carbon fibers. For more details, please refer to Carry Key 1
Carbon iI is introduced into the furnace core tube of the electric furnace by f step 5, and carbon iI is thermally decomposed by the base ladle L installed in the furnace core tube.
This invention relates to a method for producing carbon fibers. However, methods for obtaining carbon whiskers or carbonaceous materials are known, but the resulting fibers are It is one of the few that can be obtained by a small number of mice, and it has almost no industrial sharpness.On the other hand, in Tokuko Sho</, /-12097, a long one with t. A method for producing charcoal melon N11 was devised in ClI 3121.
1. I) J2u (Two became. Returning to the mountain,"Y" Shrine Condolences,, i'0 Volume 7: (/Soza2
16 in 2000), ultrafine particles of a similar genus of 7 θθ less than 1.
) 11; By using a medium, the density and growth of IL and its growth rate are improved. [1 has been stated. Such a fiber ((generation of; 1 branch? 1 yen of Tomoe that increases it)
It is for A1 in terms of 2 yen. There are various names of unexploded towns (+Jf
')' When I went back to work, I suspended ultrafine metal catalyst particles in a bath containing an activator.
′! By applying fiiG to q vU and then substantially evaporating the solvent, it was observed that the carbon fiber production 111 was significantly increased by l-1, leading to the present investigation. In other words, wood and light are the following vapor phase growth formula: l+, and in the textile manufacturing process, surface activity t/l? 'τ11 containing t'11 medium, metal introduction 6', Pakunko 1111IB medium i turbidity (maruta jH% turbid liquid prefecture) 4 defeated i Ti L, -
) and actually vaporize the target. -\Seru wo'l=
,! I and 1-7, in the Gong and Song Dynasty L;J manufacturing basic fibers.
This is related to Law J-4. Effects of the present invention (The reason for the appearance of D is clear/L Although the reason for the appearance of .SaA12,), (the state of scattering in the shrine i, jl:j-(:i)soCha・η, so without losing the 4 no 1, the name individual metal, l
? The vapor phase member type carbon beam 11 referred to in the present invention refers to the heating of hydrocarbon gas. The charcoal, 4, and 11 fibers obtained in decomposition step 2.
The surfactant used in the present invention has a 111 ionic field activity level.
1 and nonionic field+T+i activator alone or! 1. Lithium ion surfactants that can be used in mixing with the base include fatty acids and their salts, perfluoro fatty acids and their salts, alkyl malonates, alkanesulfonates, alkyl sulfates: L ster metals. salt,(
+ tl'iu (alkyl 1 gyl) metal salts, sulfuric acid (argyl polyoxyethylene) metal salts, sulfonic acid metal salts, etc. Nonionic surfactants include polyhydric alcohol monoalkyl-1-del, polyethylene glycol monoalkyl-del, polyethylene glycol alkyl vinyl ether, polyethylene These include glycol male ether fatty acid 21-spur, polyethylene glycol alkyl nysdel, diglycerin fatty acid nysdel, polyglycerin fatty acid ester, sorbitan 1 needle, sorbitan ester ether, etc. Among these, long-chain unsaturated fatty acids or These surfactants are preferably compounds containing organic γG media such as aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, ethers, and ketones.
Tani solution (iJ ability, and dispersion of metal fine particles (the effect of dispersing metal particles is particularly outstanding. Addition of surface active h14) 1 θwtJ good) 9.7 to 7 for 124
By setting it to 0w1%, the surface active catalyst (1) dispersion effect can be fully exhibited. The organic solvent used is preferably one with a low boiling point and high volatility, such as lower alcohols such as methanol and ethanol blue. The ultrafine J'-catalyst in the <υ group used in the present invention is often made of iron, iron oxide, or a metal containing them. The average particle diameter of the ultrafine metal particles ν is usually greater than or equal to θθA. A metal ultrafine particle catalyst is suspended by the method of the present invention. Add a surfactant to the charcoal l+:fiber by adding a surfactant to the charcoal l+:fiber once a month. After drying and removing the δ medium, the base gas was placed in the furnace core tube, and hydrocarbon gas was flowed through it together with the carrier gas until the predetermined temperature was reached. 11. The furnace, chamber, and tube may be made of laminate, quartz, etc., for example. The first section may be fixed or movable, and its shape may be pipe-like, plate-like, or fibrous. The abrasive material may be ceramic, carbon a, or graphite. Many hydrocarbons such as benzene, toluene, etc. can be used as the carrier gas. Hydrogen gas is used as the carrier gas. However, it may be mixed with an inert gas such as argon or nitrogen gas.In the mixed gas of gear gas and hydrocarbon, the content of hydrocarbon gas is in the range of 0 to 0 volume. is within i. The average flow rate of the mixed gas is generally used in the range of j~/-901 minutes, but is not particularly limited. The heating temperature is generally in the range of 95θ~/3θθ°C. It may be arbitrarily selected within this range depending on the type of hydrocarbon, etc. In the formation of vapor-grown carbon fibers, growth in the length direction of the fibers is first followed by growth in the thickness direction. The length and thickness of the fibers can be changed arbitrarily by adjusting the temperature, gas flow rate, or holding time.According to the present invention, the amount of carbon fiber produced can be dramatically improved. It is extremely advantageous industrially. Aspects of the present invention will be explained below in detail with reference to Examples. Examples/ Iron fine particles with average particle size/θθX (manufactured by Shinku Yakiniku Co., Ltd.)/
After suspending f in ethanol/θθ匡, oleic acid (
Anionic surfactant Ml)2r was added and stirred for 11 hours, and after being left to stand, the liquid was collected with a syringe, and the catalyst dispersion was sprayed onto an alumina substrate (outer diameter: 1, 1, 1, inner diameter). After spraying on both concave parts of the 50 questions, 100 mm long (divided into λ parts in the length direction), the ethanol was dried and removed using a hair dryer. The substrate was loaded, and the gas inlet pipe was connected to -y; After the temperature reaches △j, benzene is added together with hydrogen gas from the gas inlet pipe / θ (at a flow rate of △jg,
It was flowed at a benzene partial pressure of 3 J"-1, g. At that temperature, 6
After holding for g minutes, the benzene partial pressure was increased to 3 g over 120 minutes.
J'mm 1-1g to 70011g iE Gradually, heating 2! The temperature was gradually increased from ii degrees//θθ°C to 1.2θθ°C. Thereafter, the gas was changed to argon to cool it down, and the cut board was taken out. The produced carbon fibers were collected from the substrate, and the fiber diameter, length, and amount produced were measured. The results are shown in Table 1. Comparative example/Spraying fine iron particles (manufactured by Shinku Yakiniku Co., Ltd.) in powder form with an average particle diameter of 10θX onto the substrate directly using a pressure air spray gun17
Ta. Carbon fibers were produced in the same manner as in Example below. The results are shown in Table 7. Example Iron fine particles with average particle diameter / θθX (manufactured by Paiko Yakin Co., Ltd.) /
1 to ethanol/θ□CL) 1 city 7 ~, then polyglycerin lauric ester (nonionic surfactant)
After adding 1 small amount of 7-1 and stirring thoroughly, the catalyst was sprinkled on the substrate in the same manner as in Example. The substrate was placed in a tube of a furnace, and the temperature was raised to 1120° C. while flowing hydrogen gas through the gas introduction tube at a rate of θω per minute/night. After holding at that temperature for 7 tons, the benzene vapor was heated to a partial pressure of 33 m
It was passed through the furnace core tube together with hydrogen gas at mHg and held for 6 g. After that, over 720 minutes, the benzene partial pressure is 10θ rigid Hg.
The heating temperature was gradually increased to 2θθ°C by 1t°C. Thereafter, the gas was changed to nitrogen, the substrate was cooled, and the substrate was collected. The produced carbon fibers were collected from the substrate, and the fiber diameter, length, and production l were measured. The results are shown in Table 7. Comparative example! Fine iron particles with an average particle size of 30θ (manufactured by Shinku Yakiniku Co., Ltd.) /
After suspending 2 in ethanol/θθ and stirring thoroughly, catalyst molecules f&/l& were sprayed onto the substrate using a sprayer in the same manner as in Example, and the ethanol was removed by drying with a dryer. Carbon fibers were produced in the same manner as in Example 17. The results are shown in Table 7. Example,? Iron oxide (1'e203) fine particles (6
”Miso Yakin Co., Ltd.) with methanol/θ0'Ci:
: After suspending, sodium oleate θ, j1 and sodium dodenlebenzenesulfonate θ, J-y (both anionic surfactants) were added, and after about 70 minutes of ultrasonication, the same as in Example/ The catalyst was dispersed onto the substrate using the method described above. The substrate was charged into the furnace core tube, and H2 gas was introduced into the gas introduction tube at a rate of 9θ/min/min to θ♂θ°C at a temperature of 1~. After holding at that temperature for 70 minutes, the benzene partial pressure was 71- ++
Flows t and 1 of /9θθCA7)'f (at room temperature) were flowed for 2 minutes with hydrogen gas at nHg. Thereafter, the gas flow rate was returned to the initial set value/9θ (state) and held for 60 minutes.Then, the benzene partial pressure was gradually increased over 7.2.0 minutes to /3', Hg and heating temperature: was gradually raised to /, 2J-0℃.Then, the gas was switched to argon, cooled, and the substrate was taken out.The carbon fibers produced were taken out from the J+1 plate, and the fiber diameter, length, and formation (gate 1 The results are shown in Table 7. Example K After suspending iron-nickel alloy fine particles/2 of 1L average particle size/θθA in ethanol/θθ匡, sodium oleoylmethyltaurate ( Anionic surfactant Fi'l)
θ, evening? and polyoxyethylene sorbita〉'monooleate (nonionic surfactant) θ, j2 was added to give about 7
After the ultrasonic treatment for θ minutes, the catalyst was sprayed onto the substrate in the same manner as in Example. Carbon fibers were produced in the same manner as in Example 3. The results are shown in Table 7. Example evening average Wi diameter 300 A (7,) m? k (I'e
203) After suspending a particles/2 in methanol/θ0CC, Example, ? A surfactant similar to that in Example 1 was added, and the resulting catalytic solution was sprayed onto a substrate in the same manner as in Examples. Examples below? Carbon fiber was produced in the same manner as in Example 1 and Table 7 shows the results. The substrate was placed in the core tube and heated for 4 minutes while flowing argon gas through the gas inlet tube at a rate of 3θ/min after reaching 9jθ°C.
σηr (at room temperature), and after reaching 7000°C, the benzene partial pressure is 3 J' + o + I (g) and the benzene vapor is
ll L... While increasing the temperature, the benzene partial pressure was also gradually increased. The heating temperature was increased to 720θ°C and the benzene partial pressure was increased to /f G mm11g over /♂θ minutes. Thereafter, the gas was switched to argon to cool it down, and the substrate was taken out. The produced carbon fibers were collected from the substrate, and the fiber diameter, length, and amount produced were measured. The results are shown in Table 7. (Less than blank space)

Claims (1)

【特許請求の範囲】 (])  気気相成長式炭素紙の製造法に」・5いて、
界面活性剤を含む溶媒に金属超微粒子触媒を懸濁させた
懸濁液を基旧に散布l−1ついで溶媒を実質的に蒸発さ
せる事を特徴とI゛−る方法(2)界面活性剤が隘イオ
ン界面活性剤、非イオン界面活性剤である事を特徴と−
f 7.)特許請求の範囲別゛1項記載の方法 L3+  51−面l′ll1tl剤が長鎖不飽和脂肪
酸又はそれを宮む化合物である事を特徴とする特許請求
の範囲ス・1項記載の方法 (4)金属超微粒子触媒が鉄、酸化鉄あるいはそれらを
てiむイ]金でに、ろ事を特徴とする特許請求の範囲′
A−1項記載の方法
[Scope of claims]
Method (2) Surfactant characterized by spraying a suspension of ultrafine metal catalyst particles in a solvent containing a surfactant onto the base and then substantially evaporating the solvent. It is characterized by being an ionic surfactant and a nonionic surfactant.
f7. ) The method according to claim 1, the method according to claim 1, characterized in that the L3+ 51-face l'll1tl agent is a long-chain unsaturated fatty acid or a compound that supports it. (4) Claims characterized in that the metal ultrafine particle catalyst is made of iron, iron oxide, or any of these.
Method described in Section A-1
JP15065582A 1982-09-01 1982-09-01 Preparation of carbon fiber of gaseous phase growth method Pending JPS5943120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15065582A JPS5943120A (en) 1982-09-01 1982-09-01 Preparation of carbon fiber of gaseous phase growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15065582A JPS5943120A (en) 1982-09-01 1982-09-01 Preparation of carbon fiber of gaseous phase growth method

Publications (1)

Publication Number Publication Date
JPS5943120A true JPS5943120A (en) 1984-03-10

Family

ID=15501589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15065582A Pending JPS5943120A (en) 1982-09-01 1982-09-01 Preparation of carbon fiber of gaseous phase growth method

Country Status (1)

Country Link
JP (1) JPS5943120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPH026617A (en) * 1988-06-14 1990-01-10 Mitsui Eng & Shipbuild Co Ltd Production of carbon fiber
US5039504A (en) * 1988-12-21 1991-08-13 Mitsubishi Petrochemical Company Limited Process for producing graphite whiskers
EP0758920A1 (en) * 1994-05-12 1997-02-26 Hyperion Catalysis International, Inc. Improved catalysts for the manufacture of carbon fibrils and methods of use thereof
CN112111665A (en) * 2020-08-17 2020-12-22 丽水正阳电力建设有限公司 Method for preparing carbon modified aluminum alloy composite material by vacuum pressure infiltration method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855091A (en) * 1985-04-15 1989-08-08 The Dow Chemical Company Method for the preparation of carbon filaments
JPH026617A (en) * 1988-06-14 1990-01-10 Mitsui Eng & Shipbuild Co Ltd Production of carbon fiber
US5039504A (en) * 1988-12-21 1991-08-13 Mitsubishi Petrochemical Company Limited Process for producing graphite whiskers
EP0758920A1 (en) * 1994-05-12 1997-02-26 Hyperion Catalysis International, Inc. Improved catalysts for the manufacture of carbon fibrils and methods of use thereof
EP0758920A4 (en) * 1994-05-12 1999-06-16 Hyperion Catalysis Int Improved catalysts for the manufacture of carbon fibrils and methods of use thereof
CN112111665A (en) * 2020-08-17 2020-12-22 丽水正阳电力建设有限公司 Method for preparing carbon modified aluminum alloy composite material by vacuum pressure infiltration method

Similar Documents

Publication Publication Date Title
US5049450A (en) Aluminum and boron nitride thermal spray powder
JP2006007213A (en) Production method of catalyst for producing carbon nanotube
JPS5943120A (en) Preparation of carbon fiber of gaseous phase growth method
Gong et al. Controlled synthesis of Pt nanoparticles via seeding growth and their shape-dependent catalytic activity
JPH05507768A (en) Method of forming surface film
JP2002212112A (en) Ruthenium compound for chemical vapor deposition and method for chemical vapor deposition of ruthenium thin film and ruthenium compound thin film
JP5352024B1 (en) Chemical vapor deposition material comprising organic nickel compound and chemical vapor deposition method using the chemical vapor deposition material
US20140363586A1 (en) Laser-based method for growing an array of carbon nanotubes
JP5892668B1 (en) Chemical vapor deposition material comprising organic ruthenium compound and chemical vapor deposition method using the chemical vapor deposition material
KR102230246B1 (en) Continuous synthesizing method of carbon nanotubes
JP2003535839A (en) Self-reducing copper (II) source reactant for chemical vapor deposition of metallic copper
JP2005097329A (en) Composition comprising fullerene derivative and method for producing coated film and powder using the composition
JP2023548407A (en) Continuous production method of carbon nanotubes
JPS6296397A (en) Production of diamond
JPH05229806A (en) Fine powder of red phosphorus and its production
US3012974A (en) Preparation of sodium dispersions
JPS5976921A (en) Production of carbon fiber grown in vapor phase
Acuña et al. Nickel nanoparticles decoration of ordered mesoporous silica thin films for carbon nanotubes growth
JPH0751568A (en) Carbon black composite and manufacture thereof
JPS60121271A (en) Formation of super hard coating layer
JPH04187503A (en) Magnesium-based hydrogen storage material and production thereof
JP2825992B2 (en) Manufacturing method of ceramic fiber
JP3185422B2 (en) Vapor phase diamond synthesis method
JP2835767B2 (en) CVD diamond synthesis method and synthesis apparatus
RU2254397C2 (en) Method of production of the diamond-like film