JPH0424320B2 - - Google Patents

Info

Publication number
JPH0424320B2
JPH0424320B2 JP58134355A JP13435583A JPH0424320B2 JP H0424320 B2 JPH0424320 B2 JP H0424320B2 JP 58134355 A JP58134355 A JP 58134355A JP 13435583 A JP13435583 A JP 13435583A JP H0424320 B2 JPH0424320 B2 JP H0424320B2
Authority
JP
Japan
Prior art keywords
gas
substrate
carbon fibers
metallocene
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58134355A
Other languages
Japanese (ja)
Other versions
JPS6027700A (en
Inventor
Morinobu Endo
Tsuneo Koyama
Kunio Komaki
Makoto Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58134355A priority Critical patent/JPS6027700A/en
Publication of JPS6027700A publication Critical patent/JPS6027700A/en
Publication of JPH0424320B2 publication Critical patent/JPH0424320B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の対象) 本発明は気相法による炭素繊維の製造に係り、
とくに基板単位当りの炭素繊維の析出収量の向上
および連続化による生産性増大を可能とする炭素
繊維の気相法による製造方法に関するものであ
る。
[Detailed description of the invention] (Subject of the invention) The present invention relates to the production of carbon fiber by a vapor phase method,
In particular, the present invention relates to a method for manufacturing carbon fibers using a vapor phase method, which enables an improvement in the precipitation yield of carbon fibers per unit of substrate and an increase in productivity through continuous operation.

(従来技術) 気相法炭素繊維の製法は従来バツチ(回分)式
によるのを通常とした。
(Prior Art) Conventionally, the manufacturing method of vapor-grown carbon fiber has been usually a batch method.

この方法では一般に、セラミツク基板に鉄、ニ
ツケル等遷移金属単体またはそれらの合金から成
る微粒子を散布したものを反応炉内の反応帯域に
予め固定し、不活性雰囲気となし、炉温を一定温
度まで上昇したのち炭化水素、水素の混合ガスを
通気し、これを熱分解して炭素繊維を生成させる
方法が採られている。
In this method, fine particles of transition metals such as iron and nickel, or their alloys, are scattered on a ceramic substrate and fixed in advance in the reaction zone of a reactor, creating an inert atmosphere, and raising the furnace temperature to a certain temperature. After rising, a mixed gas of hydrocarbons and hydrogen is passed through, and this is thermally decomposed to produce carbon fibers.

上記は固定床式に属する方法であるが、更に上
記バツチ方式を一歩進めて、反応炉内を連続的に
上記微粒子散布基板を一方向に移動させる移動床
式に属する方法も採られ。
The above method belongs to the fixed bed method, but a method which goes one step further than the batch method and belongs to the moving bed method is also adopted, in which the fine particle dispersion substrate is continuously moved in one direction within the reactor.

しかしながら、このような固定床式あるいは移
動床式製造法においては、反応混合ガスと基板上
の反応物質との接触反応にもとづく操作であるた
めと、反応帯域の全長にわたる温度、雰囲気濃
度、反応速度等の均一条件の保持に困難があり、
このため反応混合ガス組成の炭化水素の、比較的
低温における中間生成物への化学変化、高温帯に
おける高熱分解生成物、またはタール質、瀝青質
状粘性中間物質の生成が見られ、これらが基板へ
付着し、基板への繊維生成は著しく阻害される。
これは炭素繊維生成のため触媒的作用をする金属
微粒子が上記付着物に隠蔽されてその活性を喪失
し、かつ、反応領域内における炭化水素熱分解物
との接触が不十分になるためである。
However, in such fixed-bed or moving-bed manufacturing methods, the operation is based on a contact reaction between the reaction mixture gas and the reactant on the substrate, and the temperature, atmospheric concentration, and reaction rate over the entire length of the reaction zone are It is difficult to maintain uniform conditions such as
For this reason, chemical changes of the hydrocarbons in the reaction mixture gas composition into intermediate products at relatively low temperatures, high thermal decomposition products at high temperatures, or the formation of tarry and bituminous viscous intermediates are observed, and these Fiber formation on the substrate is significantly inhibited.
This is because the fine metal particles that act as a catalyst to produce carbon fibers are hidden by the deposits and lose their activity, and their contact with the hydrocarbon thermal decomposition products in the reaction zone becomes insufficient. .

上記の欠点は固定床式の場合に限らず、移動床
式の場合において、反応ガス流方向と基板移動方
向が同一方向の場合にも対向流の場合にも生起し
うる。
The above drawbacks occur not only in the case of a fixed bed type, but also in the case of a moving bed type, when the reaction gas flow direction and the substrate movement direction are in the same direction or in opposite flows.

(発明の目的) 本発明は上記従来法の欠点を除去するため、微
粒状遷移金属を炭化水素、キヤリア・ガス混合ガ
スと共に同時混合して反応器に送入し、炭素繊維
析出帯域において該遷移金属の触媒作用により炭
化水素を熱分解せしめることにより、高効率にて
連続的に炭素繊維を生成する気相法炭素繊維の製
造法を提供することにある。
(Object of the Invention) In order to eliminate the drawbacks of the above-mentioned conventional methods, the present invention involves simultaneously mixing fine particulate transition metals with hydrocarbons and a carrier gas mixture and feeding the mixture into a reactor, so that the transition metal in the carbon fiber precipitation zone is The object of the present invention is to provide a method for producing vapor-grown carbon fibers that continuously produces carbon fibers with high efficiency by thermally decomposing hydrocarbons using the catalytic action of metals.

(発明の構成) 本発明は上記従来法による基板上への反応生成
物の粘着による反応阻害、炭素繊維の収率低下、
連続操業の不可能という欠点を除去するため種々
の改良法を試行した結果到達した方法であり、こ
の方法は、熱分解気相法炭素繊維の製造法におい
て、メタローセンを気相で炭素繊維析出帯域に導
き、該帯域で熱分解させ、メタローセン中の遷移
金属微粒子を基板上に析出させて炭素繊維を製造
することにある。
(Structure of the Invention) The present invention deals with reaction inhibition due to adhesion of the reaction product onto the substrate by the above-mentioned conventional method, reduction in the yield of carbon fibers,
This method was arrived at after trying various improved methods to eliminate the drawback that continuous operation was not possible. The purpose is to produce carbon fiber by introducing the metallocene into a metallocene, thermally decomposing it in the zone, and precipitating the transition metal fine particles in the metallocene onto a substrate.

ここに遷移金属とは電子が最外殻に8個まで充
填される前に内側の殻の電子数が8個から16個ま
たは32個に増加する、原子番号21(スカンジウム)
から同29(銅)、同39(イツトリウム)から同47
(銀)、同57(ランタン)から同79(金)の元素なら
びに原子番号89(アクチニウム)以上の既知元素
のすべてを指称するものである。
Here, transition metals are atomic number 21 (scandium) in which the number of electrons in the inner shell increases from 8 to 16 or 32 before the outermost shell is filled with 8 electrons.
From 29 (copper), 39 (yztrium) to 47
(silver), elements numbered 57 (lanthanum) to 79 (gold), and all known elements with atomic number 89 (actinium) or higher.

次に本発明の方法を実施する操作について説明
するに、キヤリア・ガスの入口、出口双方側に基
板を入出させるための二重室を備えた反応装置に
おいて、基板はキヤリア・ガス入口より順次にセ
ツトされ、上下機構によつて反応装置レベルに押
し上げられた後水平方向移動機構により反応装置
内に連続的に装入される。
Next, to explain the operation of carrying out the method of the present invention, in a reaction apparatus equipped with a double chamber for allowing substrates to enter and exit on both sides of the carrier gas inlet and outlet, the substrates are placed sequentially from the carrier gas inlet. After being set up and pushed up to the reactor level by an up-and-down mechanism, it is continuously charged into the reactor by a horizontal movement mechanism.

メタローセンの送入は、同時に遷移金属の散布
を行うものであるのでいわゆるSeedingと称され
るが、これは反応装置外に設けられたメタローセ
ン蒸発装置により気化したメタローセン・ガスを
水素、アルゴン、窒素ガスをキヤリア.ガスとし
てこれらと混合して連続的または定期的に反応装
置内に導入することによつて実施される。
The feeding of metallocene is called "seeding" because it simultaneously disperses transition metals. This is a process in which metallocene gas vaporized by a metallocene evaporator installed outside the reactor is mixed with hydrogen, argon, or nitrogen gas. Carrier. This is carried out by continuously or periodically introducing the mixture as a gas into the reactor.

ここにメタローセンとは一般式〔M(C5H52〕、
(ただしMは遷移金属であり前記した定義による
ものであるが、具体的にはTi、V、Cr、Fe、
Co、Ni、Ru、Os、Pdなどを指す)で表わされ
るビス・シクロペンタジエニル金属化合物のうち
非電解質錯体でサンドイツチ構造の分子から成る
ものを指す。MがFe、Niの場合にはそれぞれフ
エローセン、ニツケルセンと呼称されることは周
知である。
Here, metallocene has the general formula [M(C 5 H 5 ) 2 ],
(However, M is a transition metal and is as defined above, but specifically, it includes Ti, V, Cr, Fe,
Refers to bis-cyclopentadienyl metal compounds represented by Co, Ni, Ru, Os, Pd, etc.) that are non-electrolyte complexes and consist of molecules with a sandwich structure. It is well known that when M is Fe or Ni, they are called ferrocene or nickelsen, respectively.

炭化水素ガスは上記キヤリア・ガスとは別異の
反応装置外の供給装置より供給される。
The hydrocarbon gas is supplied from a supply system outside the reactor that is separate from the carrier gas.

反応装置内壁材質はアルミナ質ムライト管を使
用するが、黒鉛、石英、コランダム質耐熱性材料
を使用することも可能である。
The inner wall material of the reactor is an alumina-based mullite tube, but graphite, quartz, or corundum heat-resistant materials can also be used.

反応装置の主体をなす反応管は、たとえば外径
120mmφ、内径105mmφ、長さ2mのごときものが
使用される。
The reaction tube that forms the main body of the reactor is, for example,
Something like 120mmφ, inner diameter 105mmφ, and length 2m is used.

基板は上記寸法反応管に見合う寸法としては、
たとえば外径100mmφ、内径85mmφ、長さ30cmで
あり、2つ割りのアルミナ質ムライトが通常であ
る。
The dimensions of the substrate that correspond to the reaction tube are as follows:
For example, it has an outer diameter of 100 mmφ, an inner diameter of 85 mmφ, and a length of 30 cm, and is usually made of alumina mullite divided into two pieces.

反応装置の加熱はカンタル線抵抗発熱によつて
行われ、炉はたとえば三分割炉のごとき型式が使
用される。
The reactor is heated by Kanthal wire resistance heat generation, and the furnace is of a type such as a three-compartment furnace.

基板の最高温度は1120℃、均熱長さは上記装置
の場合には約1mである。
The maximum temperature of the substrate is 1120° C., and the soaking length is about 1 m in the case of the above device.

反応装置内雰囲気温度は1000〜1300℃の範囲が
最も好ましい。
The atmospheric temperature within the reactor is most preferably in the range of 1000 to 1300°C.

また基板の送り速度は進行方向に線速度3.0
cm/min以下であるが最も好ましい範囲は1±
0.5cm/minである。
Also, the feeding speed of the board is 3.0 linear velocity in the direction of movement.
cm/min or less, but the most preferable range is 1±
It is 0.5cm/min.

気化器におけるメタローセンの温度はM
(C5H52のMによつて一様ではないが、MがFeの
場合、すなわちフエローセンにおいては(520±
100)℃が好ましい。キヤリア・ガスの流量は
(200±50)c.c./minの範囲が好ましい。
The temperature of the metallocene in the vaporizer is M
(C 5 H 5 ) 2 is not uniform depending on M, but when M is Fe, that is, in ferrocene, (520±
100)°C is preferred. The carrier gas flow rate is preferably in the range of (200±50) cc/min.

Seedingの方法は定期的(間歇的)の場合が最
も通常であるが、この場合最適の方法はキヤリ
ア・ガスの反応装置内導入時間10分とし50分間隔
で繰り返すサイクルが最適である。
The most common method of seeding is periodic (intermittent); in this case, the optimal method is a cycle in which the carrier gas is introduced into the reactor for 10 minutes and repeated at 50 minute intervals.

混合ガスは炭化水素ガスを水素、アルゴン、チ
ツ素ガス等で稀釈して使用されるが該稀釈ガスの
種類と量の選択はメタローセンの融点、沸点によ
つて決定される。
The mixed gas is used by diluting a hydrocarbon gas with hydrogen, argon, nitrogen gas, etc., and the selection of the type and amount of the diluting gas is determined by the melting point and boiling point of the metallocene.

混合ガスの容積比の最適範囲は炭化水素2〜
50vol%である。而して、この混合ガスの流量は
300〜500c.c./minの範囲、400±50c.c./minが最
適である。
The optimal range of volume ratio of mixed gas is hydrocarbon 2~
It is 50vol%. Therefore, the flow rate of this mixed gas is
The range of 300 to 500c.c./min, 400±50c.c./min is optimal.

反応装置内への基板の搬入、搬出は入口、出口
部シヤツタにより空気/H2パージを行つた上で
実施されるが安全上ならびに炭素繊維生成雰囲気
上から見て支障はない。
The loading and unloading of substrates into and out of the reactor is carried out after air/H 2 purge is performed using shutters at the inlet and outlet, but this poses no problem from the viewpoint of safety and carbon fiber production atmosphere.

微粒状遷移金属の粒度範囲は300Å以下が好ま
しい。
The particle size range of the particulate transition metal is preferably 300 Å or less.

実施例 1 カンタル線発熱体を備えた電気管状炉内にアル
ミナ系ムライト質炉芯管(内径105mmφ、長さ
2000mm)を水平に配備し、炉芯管内にアルミナ基
板(内径85mmφ、長さ300mm、2つ割り、アルミ
ナ系ムライト質)を自動連続送り装置により炉外
より順次反応管(炉)内に装入し、炉内温度を
1200℃、基板温度1100℃に保持した。
Example 1 An alumina-based mullite furnace core tube (inner diameter 105 mmφ, length
2000mm) is placed horizontally in the furnace core tube, and alumina substrates (inner diameter 85mmφ, length 300mm, split into two, alumina-based mullite) are sequentially charged into the reaction tube (furnace) from outside the furnace using an automatic continuous feeding device. and increase the temperature inside the furnace.
The temperature of the substrate was maintained at 1200°C and 1100°C.

炉芯管の一端はガスおよびメタローセン導入
管、他端には排気管を設ける。導入管を介してベ
ンゼン7vol%を含む水素ガスを毎分400c.c.を通し、
また気化器における温度520℃のフエローセンを
水素ガスと共に水素ガス200c.c./分の割合にて炉
内に通した。
One end of the furnace core tube is provided with a gas and metallocene introduction pipe, and the other end is provided with an exhaust pipe. Hydrogen gas containing 7 vol% benzene was passed through the inlet pipe at a rate of 400 c.c. per minute.
Further, ferrocene at a temperature of 520°C in the vaporizer was passed into the furnace together with hydrogen gas at a rate of 200 c.c./min.

このキヤリアガスの通気方法は10分間継続装入
後、50分間停止し、これをくり返した。
This carrier gas ventilation method was continued for 10 minutes, then stopped for 50 minutes, and then repeated.

操業開始後4時間にて操業を停止し送入ガスを
アルゴンに切換えて放冷後基板を炉外に取出し、
生成した炭素繊維を剥ぎ取り秤量した。
4 hours after the start of operation, the operation was stopped, the feed gas was changed to argon, and after cooling, the substrate was taken out of the furnace.
The produced carbon fibers were peeled off and weighed.

この結果、生成炭素繊維量は1.3g/時間、平
均繊維径12.5μ、平均長さ7cmの均質な炭素繊維
が得られた。該繊維の引張強さは平均255Kg/mm2
であつた。
As a result, the amount of carbon fiber produced was 1.3 g/hour, and homogeneous carbon fibers with an average fiber diameter of 12.5 μm and an average length of 7 cm were obtained. The average tensile strength of the fiber is 255Kg/mm 2
It was hot.

(比較例) バツチ式により実施例と同一の炉、同一温度、
キヤリア・ガス組成により、予め基板に遷移金属
を散布(スプレー)した上に炭化水素、水素ガス
の混合ガスを実施例と同一条件で通じて得た炭素
繊維においては生成量0.7g/時間、平均長さ3
cm繊維状のものと一部粒状のものを含む不均質な
炭素繊維を得るにすぎなかつた。繊維部分の引張
強さは最大95Kg/mm2、平均50Kg/mm2にすぎなかつ
た。
(Comparative example) The same furnace and the same temperature as the example,
Depending on the carrier gas composition, carbon fibers obtained by spraying transition metals on the substrate and passing a mixed gas of hydrocarbon and hydrogen gas under the same conditions as in the example had an average production rate of 0.7 g/hour. length 3
Only heterogeneous carbon fibers containing some fibrous and some granular carbon fibers were obtained. The tensile strength of the fiber portion was only 95 Kg/mm 2 at maximum and 50 Kg/mm 2 on average.

実施例 2 実施例1と同一条件において(ただし、基板は
固定式)メタローセンとしてニツケルセンを使用
した場合、得られた炭素繊維は平均径11.7μ、平
均長さ6.6cm、均質かつ均長であり、その引張強
さは平均240Kg/mm2であつた。
Example 2 When nickelsen was used as the metallocene under the same conditions as in Example 1 (but the substrate was fixed), the obtained carbon fibers had an average diameter of 11.7μ, an average length of 6.6cm, and were homogeneous and of uniform length. Its tensile strength was 240 Kg/mm 2 on average.

上記結果が示すように、基板上に予め遷移金属
を散布した固定床式に比較し、メタローセンをキ
ヤリアガス、炭化水素と共に装入して気相で炭素
繊維析出帯に導いて熱分解させる本発明の方法
は、炭素繊維生成量、生成速度、生成繊維の均質
性及び繊維の引張強度において格段の相違のある
ことは明白である。
As shown in the above results, compared to the fixed bed method in which transition metals are dispersed on the substrate in advance, the present invention, in which metallocene is charged together with a carrier gas and hydrocarbons and guided to the carbon fiber precipitation zone in the gas phase for thermal decomposition, It is clear that the methods differ significantly in the amount of carbon fiber produced, the rate of production, the homogeneity of the produced fibers, and the tensile strength of the fibers.

Claims (1)

【特許請求の範囲】[Claims] 1 熱分解による気相法炭素繊維の製造法におい
て、メタローセンを気相で炭素繊維析出帯域に導
き、該帯域で熱分解させ、遷移金属微粒子を基板
上に析出させて炭素繊維を製造することを特徴と
する気相法炭素繊維の製造法。
1. In a method for producing vapor-grown carbon fibers by pyrolysis, metallocene is introduced in the vapor phase into a carbon fiber precipitation zone, and is thermally decomposed in the zone to precipitate transition metal fine particles on a substrate to produce carbon fibers. Characteristic manufacturing method of vapor grown carbon fiber.
JP58134355A 1983-07-25 1983-07-25 Preparation of carbon fiber by vapor-phase method Granted JPS6027700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58134355A JPS6027700A (en) 1983-07-25 1983-07-25 Preparation of carbon fiber by vapor-phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58134355A JPS6027700A (en) 1983-07-25 1983-07-25 Preparation of carbon fiber by vapor-phase method

Publications (2)

Publication Number Publication Date
JPS6027700A JPS6027700A (en) 1985-02-12
JPH0424320B2 true JPH0424320B2 (en) 1992-04-24

Family

ID=15126426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58134355A Granted JPS6027700A (en) 1983-07-25 1983-07-25 Preparation of carbon fiber by vapor-phase method

Country Status (1)

Country Link
JP (1) JPS6027700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579061B2 (en) * 2004-06-08 2010-11-10 昭和電工株式会社 Vapor grown carbon fiber, method for producing the same, and composite material containing carbon fiber

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621377B2 (en) * 1985-09-26 1994-03-23 昭和電工株式会社 Production method of vapor grown carbon fiber
US5210116A (en) * 1988-01-19 1993-05-11 Yazaki Corporation Resin composite material containing graphite fiber
DE4133540B4 (en) * 1990-10-12 2004-07-22 Kitagawa Industries Co., Ltd., Nagoya Flexible film for wrapping food and food transport element
US6150446A (en) * 1997-08-29 2000-11-21 Teijin Limited Destaticizing thermoplastic resin composition
US6221489B1 (en) 1998-11-19 2001-04-24 Showa Denko Kabushiki Kaisha Carbonaceous fiber acute-angled at both ends and production process therefor
US6489025B2 (en) 2000-04-12 2002-12-03 Showa Denko K.K. Fine carbon fiber, method for producing the same and electrically conducting material comprising the fine carbon fiber
US6780388B2 (en) 2000-05-31 2004-08-24 Showa Denko K.K. Electrically conducting fine carbon composite powder, catalyst for polymer electrolyte fuel battery and fuel battery
US6565971B2 (en) 2000-11-10 2003-05-20 Showa Denko Kabushiki Kaisha Fine carbon fiber and method for producing the same
CN100336952C (en) 2000-12-20 2007-09-12 昭和电工株式会社 Branched vapor-grown carbon fiber, electrically conductive transparent compsn. and use thereof
US7150911B2 (en) 2001-02-08 2006-12-19 Showa Denko Kabushiki Kaisha Electrical insulating vapor grown carbon fiber and method for producing the same, and use thereof
EP1417363B1 (en) 2001-08-03 2009-04-08 Showa Denko K.K. Fine carbon fiber and composition thereof
US6730398B2 (en) 2001-08-31 2004-05-04 Showa Denko K.K. Fine carbon and method for producing the same
JP3710436B2 (en) * 2001-09-10 2005-10-26 キヤノン株式会社 Electron emitting device, electron source, and manufacturing method of image display device
CN1321232C (en) * 2001-09-20 2007-06-13 昭和电工株式会社 Fine carbon fiber mixture and composition thereof
WO2003040445A1 (en) 2001-11-07 2003-05-15 Showa Denko K.K. Fine carbon fiber, method for producing the same and use thereof
US7150840B2 (en) 2002-08-29 2006-12-19 Showa Denko K.K. Graphite fine carbon fiber, and production method and use thereof
CN100373503C (en) 2002-12-26 2008-03-05 昭和电工株式会社 Carbonaceous material for forming electrically conductive material and use thereof
JP4454353B2 (en) * 2003-05-09 2010-04-21 昭和電工株式会社 Linear fine carbon fiber and resin composite using the same
TW200508431A (en) 2003-08-26 2005-03-01 Showa Denko Kk Crimped carbon fiber and production method thereof
WO2005026430A1 (en) 2003-09-16 2005-03-24 Showa Denko K. K. Composite of vapor grown carbon fiber and inorganic fine particle and use thereof
US7700064B2 (en) 2004-03-11 2010-04-20 Teijin Limited Carbon fiber
US7993620B2 (en) 2005-07-28 2011-08-09 Nanocomp Technologies, Inc. Systems and methods for formation and harvesting of nanofibrous materials
US20120189846A1 (en) * 2007-01-03 2012-07-26 Lockheed Martin Corporation Cnt-infused ceramic fiber materials and process therefor
KR101529747B1 (en) 2008-04-08 2015-06-17 데이진 가부시키가이샤 Carbon fiber and method for production thereof
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
JP5602730B2 (en) 2009-06-03 2014-10-08 昭和電工株式会社 Catalyst for fuel cell and polymer electrolyte fuel cell using the same
KR20150056617A (en) 2012-11-20 2015-05-26 쇼와 덴코 가부시키가이샤 Method for producing negative electrode material for lithium ion batteries
KR101669512B1 (en) 2012-11-21 2016-10-26 쇼와 덴코 가부시키가이샤 Method for producing negative electrode material for lithium ion batteries
KR101830207B1 (en) 2013-08-05 2018-02-20 쇼와 덴코 가부시키가이샤 Method for producing composite, and lithium ion battery negative electrode material
DE102017202038B4 (en) 2017-02-09 2022-05-05 Eagleburgmann Germany Gmbh & Co. Kg Mechanical seal arrangement with safety seal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477725A (en) * 1977-12-05 1979-06-21 Asahi Chem Ind Co Ltd Production of carbon whisker
JPS55162412A (en) * 1979-06-04 1980-12-17 Asahi Chem Ind Co Ltd Manufacture of carbonaceous whisker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477725A (en) * 1977-12-05 1979-06-21 Asahi Chem Ind Co Ltd Production of carbon whisker
JPS55162412A (en) * 1979-06-04 1980-12-17 Asahi Chem Ind Co Ltd Manufacture of carbonaceous whisker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4579061B2 (en) * 2004-06-08 2010-11-10 昭和電工株式会社 Vapor grown carbon fiber, method for producing the same, and composite material containing carbon fiber

Also Published As

Publication number Publication date
JPS6027700A (en) 1985-02-12

Similar Documents

Publication Publication Date Title
JPH0424320B2 (en)
US5500200A (en) Fibrils
US6423288B2 (en) Fibrils
JP2899407B2 (en) Catalytic vapor growth method for producing carbon fibrils
US2083824A (en) Manufacture of hydrocyanic acid
JP2000086217A (en) Production of carbon nanotube
JP3628290B2 (en) Method for producing catalytic carbon nanofibers by decomposition of hydrocarbon and catalyst thereof
JPS61225328A (en) Production of carbonaceous fiber
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JPS60181319A (en) Manufacture of carbon fiber by vapor-phase process
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS6262914A (en) Production of carbonaceous fiber
JP3071536B2 (en) Carbon fiber
Masuda et al. Rapid vapor grown carbon fiber production using the intermittent liquid pulse injection technique
JP3117523B2 (en) Method for producing vapor grown carbon fiber
JPS6228120B2 (en)
JPS61194223A (en) Production of carbon fiber by gaseous phase method
JPS61225322A (en) Production of carbonaceous fiber
CA2005642C (en) Fibrils
JPS62162699A (en) Production of carbonaceous whisker
JPS6257927A (en) Continuous production of carbon fiber with vapor-phase method
Klimov et al. Formation of Multiwall Carbon Nanotubes on Cylindrical Substrates in Synthesis by Metal-Organic Chemical Vapor Deposition
JPS61119715A (en) Production of carbon fiber
JPH0413448B2 (en)
JPS59223299A (en) Method and device for producing vapor phase method carbon fiber by thermal decomposition